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Abstract

A natural definition for instanton density operator in lattice QCD has been long
desired. We show this problem is, and has to be, resolved by higher category theory.
The problem is resolved by refining at a conceptual level the Yang-Mills theory on
lattice, in order to recover the homotopy information in the continuum, which would
have been lost if we put the theory on lattice in the traditional way.

The refinement needed is a generalization—through the lens of higher category
theory—of the familiar process of Villainization that captures winding in lattice XY
model and Dirac quantization in lattice Maxwell theory. The apparent difference is
that Villainization is in the end described by principal bundles, hence familiar, but
more general topological operators can only be captured on the lattice by more flexible
structures beyond the usual group theory and fibre bundles, hence the language of
categories becomes natural and necessary. The key structure we need for our particular
problem is called multiplicative bundle gerbe, based upon which we can construct
suitable structures to naturally define the 2d Wess-Zumino-Witten term, 3d skyrmion
density operator and 4d hedgehog defect for lattice S3 (pion vacua) non-linear sigma
model, and the 3d Chern-Simons term, 4d instanton density operator and 5d Yang
monopole defect for lattice SU(N) Yang-Mills theory.

In a broader perspective, higher category theory enables us to rethink more sys-
tematically the relation between continuum quantum field theory and lattice quantum
field theory. We sketch a proposal towards a general machinery that constructs the
suitably refined lattice degrees of freedom for a given non-linear sigma model or gauge
theory in the continuum, realizing the desired topological operators on the lattice.

1



Contents

1 Introduction 3

1.1 Problem and vague ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Why category theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Known Examples 12

2.1 Villainized S1 non-linear sigma model: winding and vortex . . . . . . . . . . 12

2.2 Villainized U(1) gauge theory: Dirac quantization, monopole, Chern-Simons
and instanton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 More general Villainizations, including Z2 vortex in RP 2 non-linear sigma
model, and ZN monopole in PSU(N) gauge theory . . . . . . . . . . . . . . 25

2.4 Spinon-decomposed S2 non-linear sigma model: Berry phase, skyrmion and
hedgehog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Difficulty beyond the Known Examples 35

4 Main Construction 38

4.1 S3 non-linear sigma model: Wess-Zumino-Witten, skyrmion and hedgehog . 41

4.2 SU(N) lattice gauge theory: Chern-Simons, instanton and Yang monopole . 52

5 Category Theory Foundation 59

5.1 Strict categories, and the known examples . . . . . . . . . . . . . . . . . . . 59

5.2 Internalization and anafunctor . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Weak categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Simplicial weak categories, and our construction . . . . . . . . . . . . . . . . 90

6 Sketching a Relation between Continuum QFT and Lattice QFT 108

6.1 Non-linear sigma models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 Gauge theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Further Thoughts 114

References 120

2



1 Introduction

Quantum chromodynamics (QCD), which describes the strong interaction between quarks
and gluons, is a theory that has a simple and elegant form but from which extremely rich
dynamics emerges. The dynamics is so non-trivial that most substantial computations of
interest are out of the reach of usual analytical means. Wilson pioneered the development
of lattice QCD [1, 2], which puts QCD on a spacetime lattice of Euclidean signature, so
that, at the fundamental level, the quantum path integral of the theory receives a non-
perturbative, UV complete definition, while at the practical level, many problems of interest
can henceforth be computed numerically. In this sense, in many practical scenarios lattice
QCD is the essential embodiment of QCD.

One of the most important aspects in the richness of QCD is the existence of instanton [3],
a topological configuration of the Yang-Mills gauge field, whose presence leads to significant
consequences in the observed properties of QCD [4–6]. Yet a curious problem then arises.
While the instanton configurations are well-defined in the continuum, and moreover it is
intuitive that in lattice QCD these configurations must have been somehow effectively cap-
tured in the fluctuations of the lattice Yang-Mills path integral, there is no lattice operator
that can be defined in an unambiguous, mathematically natural manner to explicitly repre-
sent the instanton. Yet such an operator is desired, if we want to compute the correlations
of instantons among themselves or with other operators, or to study further formal, non-
perturbative problems. This problem has been well-known for over four decades [7]. It has
a simple origin, which we will review below, along with its current workaround solutions [8].

The primary goal of this work is to resolve this problem. We find we must understand
more deeply what it really means to “put a continuum path integral onto the lattice”. We
are naturally brought to the use of higher category theory, which returns us a conceptually
refined version of lattice Yang-Mills path integral which represents the continuum Yang-Mills
theory, especially its topological aspects, better than the traditionally defined lattice Yang-
Mills does. Based upon this lesson, our more general goal—though not fully achieved within
the present work—is to establish a machinery that does the following: Given a continuum
quantum field theory of interest—think of a non-linear sigma model or gauge theory whose
field takes continuous values and has topological configurations—construct the suitable field
contents on the lattice so that the topological aspects of the continuum theory are adequately
captured.

Our goal of the present work is to introduce the new concepts. An immediate numerical
implementation is beyond the scope of the present work. However there should be no further
fundamental obstacle. We do anticipate that, using our newly introduced concepts, actual
numerical computations that involve explicit instanton operators can be implemented and
carried out in the near future.

We stress that being able to define topological operators on the lattice is not only useful
for numerical purposes, but also important for analytical studies as well as fundamental un-
derstandings. For early examples, being able to define the vortex operator in S1 non-linear
sigma model on the lattice led to the discovery of the Berezinskii-Kosterlitz-Thouless transi-
tion in 2d [9–11] and allowed an explicit lattice derivation for the 2d boson-vortex duality [12]
(with T-duality being its special case); while being able to define the monopole operator in
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lattice U(1) gauge theory allowed explicit lattice derivations for the 3d boson-vortex duality
and the 4d electro-magnetic duality [13–15]. In fact, as we will see, these previous examples
played a crucial role in motivating our present work. Later, lattice construction has also
found an important position in the developments of topological quantum field theory, from
both the high energy [16, 17] and the condensed matter perspective [18–20]. The thoughts
from topological quantum field theory have also deeply influenced our present work, even
though the theories we consider, including QCD and others, are not purely topological and
contain interesting dynamics at various energy scales. Therefore, in addition to the potential
application to the numerics of lattice QCD, theoretical appeals is in itself a major motivation
of this work, in hope to facilitate future analytical studies, and to deepen the understanding
of the theories themselves by placing the problem in a broader context.

1.1 Problem and vague ideas

Let us first introduce the origin of the problem, and sketch some intuitive but vague ideas
towards a solution.

We are interested in SU(N) Yang-Mills gauge field in the continuum in 4d. The instanton
density and the total instanton number (on an oriented closed 4d manifoldM, or an oriented
infinite 4d manifoldM with decaying field strength towards infinity) are given by

I :=
1

2
tr

[
F

2π
∧ F

2π

]
, I :=

∫
M
I ∈ Z . (1)

The instanton number I is the second Chern number of the SU(N) principal bundle of the
gauge field over M, and can be non-zero when the principal bundle is topologically non-
trivial. In the quantum path integral of a gauge theory, all possible principal bundles are to
be summed over.

We want to realize such topological configurations in lattice gauge theory. In the tradi-
tional lattice gauge theory [1, 2], a lattice gauge field is to assign to each (oriented) lattice
link l an element from the gauge group G, so the total configuration space is

∏
links lGl. (We

emphasize an important conceptual point: Gauge redundancy does not require any extra
treatment on the lattice, because it is merely

∏
vertices v Gv, i.e. an element from G at each

vertex, which is a locally finite size space for finite dimensional, compact G, and hence only
leads to a product of local constant factors in the partition function [1, 2]. At the level of
observables, the Elitzur’s theorem [21] means we do not need to demand any observable to
be gauge invariant, since the gauge non-invariant part will essentially automatically vanish
anyways.) Thus, in our case, to assign an instanton number to a lattice gauge configuration
is to have a function ∏

links l

SU(N)l → Z . (2)

But the configuration space on the left-hand-side is connected. Thus, if we want to map the
configurations to different values of instanton numbers, we must encounter discontinuities in
the assignment, which is unnatural.
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From this simple argument it is easy to see the same problem occurs in more general
cases, whenever we want to define the lattice counterpart of “topological configurations”
for continuous-valued fields in the continuum. Such cases mainly include non-linear sigma
models, whose traditional lattice realizations map each vertex to a point on a vacua manifold,
and gauge theories, whose traditional lattice realizations map each link to an element in a
Lie group.

In the context of lattice QCD, the current solutions (see e.g. [8] for a review) are to allow
discontinuous assignments, as long as the discontinuities are designed to only occur at field
configurations of small weights in the Euclidean lattice path integral. There are several ways
to do so. An early way is to forbid those lattice field configurations which appear “highly non-
smooth”, thus cutting the connected configuration space into disconnected pieces containing
“smooth enough” configurations only, and then assign an instanton number to each piece by
a procedure of interpolation to the continuum [7]. Another way, close in spirit but much more
efficient in practice, is to design a procedure to flow those apparently “highly non-smooth”
lattice configurations to more smooth ones, so that the interpolation to a continuum field
configuration becomes obvious [22, 23]; discontinuities occur at where the flow bifurcates.
Another direction of development is to define suitable Dirac operators on the lattice, and
use a lattice version of the Atiyah-Singer index theorem to define the instanton number as
the computed index [24–26], which may jump when the field configuration varies.

These methods to define instanton number on the lattice have all been studied deeply.
The flow based methods and the Dirac operator based methods are both practically used
for computing the topological susceptibility, ⟨I2⟩/V , the variance of the instanton number
per spacetime volume. On the other hand, these definitions have important unsatisfactory
aspects. On the practical side, if we want to compute correlations that involve local instanton
densities at given spacetime positions, as opposed to the total instanton number, it seems the
current methods are not sufficient to give an adequate local lattice definition (perhaps except
for the first kind of method, which nonetheless has the disadvantage that too large a portion
of the configuration space is forbidden, and hence not often used in practical computations).
On the fundamental side, the problem is even more apparent—discontinuities indicate that
these definitions are not sufficiently mathematically natural, and therefore it is hard to
anticipate the aforementioned deepened understanding of the theory itself or the facilitation
towards future analytical studies; moreover, the Dirac operator based methods have the
additional problem of requiring an extra structure on the spacetime, the spin structure, i.e.
fermion boundary conditions, which should not have been needed for defining the SU(N)
instanton configurations.

What can be done to resolve the problem, then? There are two ideas to explore:

1. If the lattice theory has discrete degrees of freedom to begin with, then we can use
their values to define discrete topological numbers without encountering discontinuity.
Moreover, the definition should have some local expression so that the local density of
the topological number is also defined.

2. Suppose the lattice degrees of freedom are still continuous-valued. But instead of
assigning a discrete topological number to a field configuration, we assign a probability
profile of the topological number:
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As we continuously vary the field on the lattice, the probability profile changes contin-
uously. Nevertheless, the most probable topological number can jump when the two
largest probabilities cross over at some “highly non-smooth” configurations, and this is
intuitively how this idea is related to the previous methods that allow discontinuities.
Moreover, the assignment of the probability profile to a given field should have some
local expression, so that we can also define the probability profile of the local density
of the topological number.

At the level of classical action, these ideas seem ad hoc and diverted from the original
continuum theory, in which there seems to be no discrete-valued local fields, and I depends
on F deterministically. However, we are in a quantum theory. The apparent degrees of
freedom we use to present the path integral are nothing fundamental, as they are to be
integrated out anyways. So these concerns raised around the classical action might not be
relevant. On the very contrary, quantum mechanically there are good arguments in support
of both ideas:

1. The very problem itself, that we should somehow get discrete topological numbers
on the lattice, suggests that it is a good idea to find a presentation of our theory
that involve discrete-valued degrees of freedom on the lattice. In fact, even in the
continuum, the choice of different principal bundles is a discrete degree of freedom,
though seemingly not manifested locally in the classical action.

2. If we intuitively think of the field on the lattice as some kind of “sampling” of the
field in the continuum, then something deterministic in the continuum becoming prob-
abilistic on the lattice is natural, because from a “sampling” we should not expect a
deterministic inference of the “full original data”, but a probabilistic inference. And
this especially rings in the context of Euclidean path integral.

More interestingly, these two ideas are not mutually exclusive or orthogonal, but com-
plementary. Let us start from the first idea, i.e. we want to find such a presentation for our
theory of interest on the lattice, that not only involves the “traditional” continuous-valued
fields, but also some “new” fields, some of which are discrete-valued. In the Euclidean path
integral, the “traditional” fields and the “new” fields are coupled, i.e. integrated over with
a joint weight which depends on the fields smoothly. For a given configuration of all these
fields, a topological operator density has an explicit local expression, such that the associ-
ated total topological number is only determined by the discrete-valued fields, hence there
is no discontinuity. On the other hand, for a given configuration of the “tranditional” fields
only, we can integrate out the “new” fields, and since those “new” fields are weighted proba-
bilistically conditioned on the given “tranditional” fields, so will be the topological operator
density and hence the total topological number.
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The question, then, becomes how to naturally find such “new” fields and joint weights,
given a continuum theory of interest. This is where the lessons from the previous exam-
ples [9–15] and the power of category theory come in. The purpose is to build a natural
correspondence between the lattice and the continuum. The idea can be summarized as

.

Here the “homotopy information” means how a field changes gradually from one place to
another in the continuum; this is an infinite dimensional piece of information, but since a lot
of details are unimportant, the topological part of the information can be effectively reduced
to finite dimensional by category theory (these kinds of mathematical problems were indeed
one major motivation why category theory was invented and developed in the first place), to
be used as the lattice degrees of freedom. The “traditional” lattice fields are in no sense more
“fundamental” than the “new” lattice fields, only that they are the lowest order topological
approximation to the continuum in a suitable sense.

1.2 Why category theory

The idea sketched above has been realized before, though only in limited examples, and
not organized into such a general perspective. It first appeared in what is now known as
the Villain model [9–11, 27], which we will review in details in Section 2. Briefly speaking,
this is a lattice construction for S1 non-linear sigma model, but such that, in addition to
the “traditional” angular variable θv on the vertices, there is also an integer variable ml on
the links. They have a joint weight in the Euclidean path integral so that, summing out
the integers ml, we will retrieve a theory that resembles the traditional lattice S1 non-linear
sigma model (XY model) in terms of eiθv only. At first, the Villain model was simply seen as
an approximation to the seemingly “more actual” XY model. However, it was soon realized
that, in the Villain model, we can explicitly define the the topological observables of winding
number and vortex in terms of the integer variable ml, and this played a crucial role in a
lot of analytical studies of the S1 non-linear sigma model [9–13]. This suggests that there is
something more profound to the Villain model than simply being an approximation to the
XY model.

What are the lessons to be extracted from the Villain model? There are two directions
of thinking, and both will lead to higher category theory if we dig deep enough. In fact,
the two directions of thinking splice again within higher category theory, whence bring us a
natural resolution for our goal.

The more geometrical direction of thinking is to first understand the “continuum mean-
ing” of the integer variable ml on the links in the Villain model. Think of the lattice as
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being embedded in the continuum. Then, starting from the angular variable eiθv at vertex
v, moving in the continuum along the path traced out by the link l towards a neighboring
vertex v′, the integer ml can be thought of as parametrizing the winding of eiθ(x) around the
S1 before reaching eiθv′ :

lattice θv′ − θv + 2πml ↭ continuum

∫
x∈l

dθ(x) . (3)

In this sense, the Villian model topologically refines the XY model: it captures more informa-
tion of the continuum theory than the traditional XY model does; in particular, it recovers
the homotopy information, so that winding and vortex can be explicitly defined.

This suggests that more generally, when the desired continuum theory has continuous-
valued fields, the traditionally defined lattice theory misses the homotopy information from
the continuum; but we can refine the lattice theory by suitably including more lattice fields
in order to capture the essential homotopy information of interest from the continuum. This
is admittedly vague, but category theory is what it takes to make it substantial. Category
theory is the mathematical language that deals with relations, relations between relations,
essential contents, and so on, in a manner that is highly general, flexible but at the same
time rigorous. It is therefore the natural language to help us rethink what it really means
to “essentially capture” the continuum theory onto the lattice.

Let us now turn to the other, more algebraical direction of thinking, as we speak of
the “essential information of interest”, which is the topological information in our context.
Soon after the invention of Villain model, it was understood that the Villainization pro-
cess of introducing the integer variable is, mathematically, to implement the universal cover
Z→ R→ S1 over S1, so that the fundamental group π1(S

1) ∼= Z—the topological character-
ization of winding and vortex—is explicitly captured into the newly introduced Z variables,
π1(S

1)
∼−→ π0(Z) ∼= Z. With this understanding, the Villainization process has soon been

generalized to lattice gauge theories, with the space S1 above replaced by Lie groups such
as U(1) or others with non-trivial π1 [14, 15, 28], so that the monopole operators can be ex-
plicitly defined and worked with. We will review these ideas and these known constructions
in details in Section 2.

For SU(N) Yang-Mills theory, Villainization would not help, as SU(N) already has trivial
π1 and is its own universal cover; meanwhile the instanton configurations in 4d comes from
π3(SU(N)) ∼= Z. It turns out that there is a mathematical notion called 3-connected cover,
which is to π3 just like the universal cover (1-connected cover) is to π1. This seems to be
what we might need. However, in basically all cases of interest, the 3-connected covers are
infinite dimensional spaces, and are hence contradictory to the very purposes of defining
lattice theories, especially the purpose of performing numerical computations.

Category theory comes to rescue. In the recent years, Villainization has been reformulated
as realizing the universal cover into a category [29–31]. With this perspective in mind,
instead of realizing the 3-connected cover as a single infinite dimensional space, one has the
new option of realizing it as a higher category, which involves multiple “layers” of spaces
relating to one another via suitable maps, and moreover each layer can be chosen to be a
finite dimensional space [32]. This higher category realization of the 3-connected cover, of
which the key part is known as a multiplicative bundle gerbe [33], is what we need to put on
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the lattice in order to capture the π3 of the field in the continuum theory, and describing
how this works is indeed the primary purpose of this paper.

Most interestingly, this is also where the geometrical and the algebraical directions of
thinking splice back together. In the geometrical direction of thinking, we are led to consider
the paths, surfaces and so on in the target space. It turns out that, these geometrical objects
precisely form a choice of the higher categorical realization of the 3-connected cover [34,35]—
albeit that, in this particular choice, infinite dimensional layers are involved. But in the
categorical sense, or say the algebraic sense, this choice of higher categorical realization is
not unique, and there are realizations that are essentially equivalent, but with each layer
being finite dimensional [32] and hence suitable for lattice theory. Therefore, the language
of higher category theory indeed unifies the different directions of inspirations that can be
drawn from the Villain model, and thereby resolves our problem.

In broad terms, our work results in a framework that turns the problem of “how to
‘discretize’ a continuum quantum field theory (QFT) onto the lattice while retaining the
topological operators for the continuous-valued fields” into a well-posed mathematical prob-
lem. The general framework is only a sketched one at this stage (though our current limited
development is already sufficient for our primary goal), as we will discuss in Section 6, and
we believe it can be made more complete in the future. For non-linear sigma models, our
proposal can be schematically (not precisely) summarized into a diagram:

M→ T =⇒

Ld PdM PdT ETd

⇊ ⇊ ⇊ ⇊
. . . . . . . . . . . .

⇊
∼−−→ ⇊ −−→ ⇊

equiv up to−→
what we care

⇊

L2 P2M P2T ET2

⇊ ⇊ ⇊ ⇊
L1 PM PT ET1

⇊ ⇊ ⇊ ⇊
L0 M T T

. (4)

The left of the “⇒ ” describes a field in the continuum—simply a function from the space-
time manifold M to some target manifold T . The right is what we need for the lattice:
Briefly speaking, the second and third columns (higher categories) are the continuum space-
time and the target space, where P means taking the space of all paths, which will in general
give infinite dimensional spaces. The first column is the lattice, with the subscript labelling
the dimension of the cells; this column is discrete, but nonetheless captures the essential
information of the second column in the intuitive way—the lattice just fills up the contin-
uum. The mathematical problem that becomes well-posed is to find the last column: we
want a finite dimensional structure (in general a weak higher category) that is nonetheless
topologically equivalent—up to whatever topological information that we care—to the infi-
nite dimensional third column. The horizontal arrows between columns are suitably defined
maps (higher anafunctors between higher categories). The map from the first column to the
last column represents a field on the lattice. Remarkably, this process of considering the
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higher path spaces in the continuum and then looking for categorical equivalence resonate
with the historical development of the subject of higher homotopy theory itself [36,37]. The
proposal for gauge theories is similar,

PM G
⇊ −→ ⇊
M ∗

=⇒

Ld PdM Pd|BG| BEGd

⇊ ⇊ ⇊ ⇊
. . . . . . . . . . . .

⇊
∼−−→ ⇊ −→ ⇊

equiv up to−→
what we care

⇊

L2 P2M P2|BG| BEG2

⇊ ⇊ ⇊ ⇊
L1 PM P|BG| G
⇊ ⇊ ⇊ ⇊
L0 M |BG| ∗

(5)

where |BG| is the classifying space of G, and the last column, i.e. the structure to be found,
can be thought of as related to that in the non-linear sigma model case via the categorical
process of delooping. Here we are only posting these diagrams for a schematic (not precise)
summary. They will be explained in Section 6.

Prior to the present work, in the recent years higher category theory is already becoming
important in theoretical physics, especially in the context of classification of phases of matter
using generalized global symmetries (e.g. [29–31,38–40]); higher gauge theories have also been
proposed to describe exotic field theories [41–43]; moreover, some of these studies indeed have
an emphasis on lattice theories [30,38,40,42]. In the present work, however, the way higher
category theory appears has some notable differences with the previous works:

• Physically, the present work is not a study of the low energy, universal properties of
phases, but a study of the dynamics of particular theories at generic energy scales.
Moreover, the theories we study are by no means “exotic”. They are familiar quan-
tum field theories (pion effective theory and Yang-Mills theory in QCD) that describe
fundamental particle physics, even though there is no obvious involvement of higher
categories in their familiar continuum presentations.

• Lattice theories with discrete higher categories are way much better studied than those
with continuous ones. The present work deals with continuous ones, and as we have
seen, the very reason that higher categories appear is to rescue continuity. The key
mathematical feature needed for handling continuous higher categories is the use of
simplicial weak categories and anafunctors. This point seems not to have been well
appreciated in the theoretical physics context before.

• The categories involved in the present work are not inherently equipped with a linear
structure, unlike those used in the the classification of low energy phases. Here the
quantum mechanical linearity simply results from the fact that in the end we are
building a well-defined path integral.

10



Note however, that if we apply the categorical formalism in this work to discrete groups, we
will straightforwardly recover the previously developed group cohomology based lattice mod-
els [16,20]; the Turaev-Viro model [17] beyond group theory can also be covered. Therefore,
we view the present work as (potentially) a more general framework that can encompass the
study of topological aspects in both the UV physics and the IR physics.

The previous literature which could somehow hint our present work is [33], which intro-
duced the higher categories needed for our primary goal (i.e. multiplicative bundle gerbes)
in the context of Wess-Zumino-Witten terms and Chern-Simons terms in the continuum.
The surprise, however, is that the seemingly overkilling mathematical formality there in the
continuum becomes natural and necessary on the lattice. And of course the crucial advan-
tage of the lattice over the continuum is that the path integral measure is explicitly locally
well-defined. Moreover, the systematic topological relation found in our present work be-
tween quantum field theories in the continuum and on the lattice will allow us to work on
more general problems, with more general mathematical structures, in the future.

On the other hand, some recent works [44,45], which appeared during the course of prepa-
ration of this manuscript, used bundle gerbe (without multiplicative structure) on the lattice
for a very different physical context. The goal there is to study the higher Berry phase [46,47]
on 1d spatial lattice using matrix product states, and the bundle gerbe realizes an element
in H3(X;Z) ∼←− H2(Ω∗X,Z), where X is the parameter space (which a priori has nothing
multiplicative) at each point on the 1d spatial system. By contrast, in our present work,
the multiplicative bundle gerbe realizes an element (the generator) of H4(|BG|;Z), which
can transgress H4(|BG|;Z)→ H3(|G|,Z) if we forget about the multiplicative structure on
G. While their physical context and hence the categorical structure are different from our
present work, the purpose to introduce finite dimensional higher categorical structures on
the lattice is the same: to keep the lattice problem locally finite dimensional meanwhile cap-
turing the essential homotopy information from the continuum. This coincidence shows that
such categorical way of thinking might be becoming broadly useful in tackling traditionally
difficult problems in different branches of theoretical physics.

This work is organized as the following. In Section 2, we review in details the known
examples of lattice theories with well-definedined topological operators for continuous-valued
fields; they include variants of the Villain model and the spinon decomposition. In Section
3, we explain the fundamental difficulty to go beyond the known examples if we stick with
the familiar toolbox of group theory and/or fibre bundles. In Section 4, we introduce our
main constructions for 1) lattice pion effective theory with skyrmion operator and 2) lattice
QCD with instanton operator, respectively, using an intuitive explanation rather than the
systematic language of category theory. In Section 5, we first cast the previously known
examples in the language of strict higher categories, and then explain how the picture can
be generalized to more flexible higher categories and lead to our main constructions. In
Section 6, we sketch our more general proposal towards connecting continuum QFT and
lattice QFT. Finally, Section 7 contains our further, scattered thoughts.
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2 Known Examples

We begin by reviewing the known examples of lattice QFTs in which the topological
operators of continuous-valued fields are naturally defined after making suitable refinements
on the lattice. These known examples belong to two kinds: (generalized) Villainization, and
spinon-decomposition (CP 1 representation). We will extract the common rationale behind
these constructions, putting them into an organized picture. While the examples themselves
are familiar, in the below we will make special emphasis on some conceptual points which
are not commonly discussed but will become important. This will help us understand why
no more example can be (and indeed, has been) found along this rationale, and henceforth
think about how to step back and then reach beyond.

2.1 Villainized S1 non-linear sigma model: winding and vortex

The first example is S1 non-linear sigma model (nlσm). In 1d, there is the topological
configuration of winding; in 2d and above, there is the topological defect of vortex, where a
winding occurs around the vortex core. They are characterized by π1(S

1) ∼= Z.
On the lattice, the traditional theory, known as the XY model, has an S1 variable eiθv at

each vertex v. On the link l between v and v′, the path integral is weighted by some positive
increasing function WXY (e

idθl+ c.c), where dθl := θv′− θv, so that configurations with better
aligned eiθ have higher weights. The partition function then reads

ZXY =

[∏
v′

∫ π

−π

dθv′

2π

]∏
l

WXY (e
idθl + c.c) . (6)

A usual choice for WXY is WXY (x) = exp[(x − 2)/2T ], where T can be interpreted as the
temperature in statistical mechanics context, and R = T−1/2 can be interpreted as the S1

radius in QFT context. 1 However, minor quantitative changes in the detailed choice for the
weight should not matter for long distance observables, in the sense of renormalization. The
theory has a 0-form U(1) global symmetry eiθv → eiθveiαv with αv satisfying eidαl = 1. 2 3

(We do not say “eiα is a constant” because if the spacetime has multiple pieces disconnected
from each other, eiα can take different values between the pieces.)

For the general reason explained in Section 1.1, topological operators—windings and
vortices—cannot be defined naturally in the XY model. For instance, consider a 1d lattice
which forms a loop, with the eiθ configuration indicated by the arrows; here we pictured two
configurations:

1Here we assumed the lattice is uniform, since we have implicitly set each lattice length to be 1. Otherwise
the weight on each link should depend on the length of the link in order for the physics to appear uniform.
This consideration is understood in all the discussions below.

2Our use of S1 versus U(1) is based on whether it is thought of as a space, or as a Lie group with a
special point being the identity.

3The global symmetry here is actually U(1)⋊Z2
∼= O(2), where the Z2 part takes eiθv → e−iθv . This Z2

part will not play a crucial role in our discussion below; we can explicitly break it and our key points below
will not be altered.
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.

We feel the first configuration should have a winding number w = 1. However, by turning
each arrow individually (note, this cannot be done in the continuum), this configuration can
be continuously deformed to the one on the right, which, we feel, should have w = 0. So
a deterministic assignment of winding number would certainly run into discontinuities. To
avoid this, we can, instead, say the two configurations, respectively, have high probabilities
with w = 1 and w = 0, and the probabilities for different w crossover during the deformation
process.

The Villain model is the natural refinement of the XY model that makes this concrete.
Originally, on each link l, the variable under consideration is eidθl ∈ U(1). In the Villain
model, the link variable is extended to γl ∈ R, with the constraint that eiγl = eidθl . We
will interpret γl below. If we choose a 2π range for θ, say θ ∈ (−π, π], then we can write
γl = dθl +2πml = θv′ − θv +2πml, where ml ∈ Z; but the value of ml itself is not physically
meaningful, because if we change the 2π range for θ, the value of ml will change accordingly
to keep γl unchanged. Since the m part is not fixed by eiθ, it is an independent degree of
freedom (d.o.f.) to be summed over in the path integral. The XY model is supposed to be
the Villain model with ml summed over, i.e.

WXY (e
idθl + c.c) ≈

∑
ml∈Z

W1(γl) (7)

as a function of dθl thought of as being in R, where W1 is some positive even function
decreasing with with |γl|. Here the ≈ is because, as we said before, the weight can change
slightly without changing the physics, in the sense of renormalization; the usual choice
WXY (e

idθl + c.c) = exp[(cos dθl − 1)/T ] is often approximated by a sum of Gaussians, where
W1(γl) = exp[−γ2l /2T ], with ml controlling the center of the Gaussian. 4 The partition
function of the Villain model is therefore [9, 10, 27]

Z =

[∏
v′

∫ π

−π

dθv′

2π

]∏
l′

∑
ml′∈Z

∏
l

W1(γl) . (8)

Now we need to understand the following questions:

4Sometimes this Gaussian approximation is said to be the motivation for performing Villainization. We
emphasize that it is not. While bringing in many conveniences for further analytical studies (as we will see
soon), the Gaussian approximation is not an important point at the fundamental level. The important point
of Villainization is to make it possible to define topological operators [9, 10].
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1. How does Villainization enable us to define windings and vortices?

2. What is the reason behind the extension from eidθl ∈ U(1) to γl ∈ R, or say, behind
the introduction of ml ∈ Z?

3. In what sense things are continuous/smooth in the Villain model?

to appreciate that the Villain model is useful and natural.

Geometrically, it is intuitive to understand the meaning of γl ∈ R in relation to the
continuum S1 nlσm. Think of the lattice as being embedded in the continuum. Then eiθv

at different vertices v are like sampling from eiθ(x) with x generic points in the continuum.
The lattice link l connecting v and v′ is a path in the continuum. Along this path l, the
field eiθ(x∈l) interpolates and traces out a smooth path in S1 going from eiθv to eiθv′ . Then
γl ∈ R, satisfying eiγl = eidθl , is nothing but the length of this path in S1, γl =

∫
x∈l dθ(x),

with ml ∈ Z describing the different winding choices for the interpolating path. It is then
intuitive why the path integral weight W (γl) is chosen to be decreasing with |γl|.

With this understanding of γ, the definition for winding number in 1d is obvious:

w :=

∮
1d

γ

2π
:=

∑
l

γl
2π

=
∑
l

ml ∈ Z . (9)

It is easy to confirm our intuition before. Consider the given eiθ configuration again:

While the 2πZ part of γl is not determined by eiγl = eidθl , the weightW will prefer the choice
that makes γl closest to 0. In the example of configuration pictured above, it amounts to
the most probable choice being each γl ≈ 2π/(number of links), and thus w = 1. In terms of
ml, since we have chosen θ ∈ (−π, π], we find dθl ≳ 0 on most links, except for the indicated
link, where θv′ ≳ −π, θv ≲ π so that dθl ≳ −2π, therefore the most probable configuration
for m is to have ml = 1 at the indicated link and ml = 0 elsewhere, and thus w = 1 is the
most probable winding number. If we have chosen some other range (a, a + 2π] for θ, then
where it prefers ml = 1 would change, but the physically meaningful γl and w do not depend
on this choice.

In 2d and above, we can define the topological defect of vortex. The vorticity around a
plaquette p is defined as

vp :=
dγp
2π

= dmp ∈ Z , (10)

where dγp is the lattice curl around the plaquette (it can be a square, or 2d cell of other
shapes), and thus vp is the local winding number. Clearly it satisfies∮

2d

v :=
∑
p

vp = 0, dvc = 0 , (11)
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(here c labels a 3d lattice cube, or 3d lattice cell of other shapes) which means on a closed
oriented 2d surface the total vorticity must be 0, 5 and in 3d or above the vortex forms a
(d− 2)-dimensional defect without boundary if viewed on the dual lattice.

Now that vortices are naturally defined on the lattice for d ≥ 2, we can independently
control their fugacity:

Z =

[∏
v′

∫ π

−π

dθv′

2π

]∏
l′

∑
ml′∈Z

∏
l

W1(γl)
∏
p

W2(vp) (12)

where the subscripts on W denote the dimension of the lattice cells on which the weight is
defined (so (7) will not longer take place exactly). A usual choice is the Gaussian W2 =
exp[−Uv2p/2], where U suppresses the vortices. Being able to unambiguously define the
vortices and control their fugacity is tremendously important for understanding the role
played by vortices in the BKT transition in 2d [9–12, 48] and the spontaneous symmetry
breaking (SSB) transition in 3d and above.

If we want to completely forbid the vortices, we can use an S1 Lagrange multiplier

W forbid
2 (vp) :=

∫ π

−π

dθ̃p
2π

eiθ̃pvp = δvp,0 , (13)

and this will hence prohibit the disordered phase. 6 This is something the traditional
XY model cannot achieve. 7 The Lagrangian multiplier S1 field eiθ̃p can be thought of as
living on (d− 2)-dimensional cells on the dual lattice, and it has a (d− 2)-form U(1) global

symmetry eiθ̃p → eiθ̃peiα̃p with eiα̃p satisfying eid
⋆α̃l = 1, where d⋆ is like d but performed

on the dual lattice. 8 9 This vortex-forbiddening symmetry is the conservation of winding
number, because a vortex in spacetime is a change of winding number in space. Using the
Villain model on the lattice, we can easily see the celebrated mixed anomaly between the

5On non-orientable ones such as a Klein bottle, it is easy to see the total vorticity is only well-defined
mod 2, and thus can take any even number, and which even number to choose depends on some choice in
the definition.

6Note that an S1 nlσm with vortices forbidden, while often being called “non-compact” in the literature,
is actually still a compact S1 theory, because 1) the legitimate local boson operator is quantized, einθv , n ∈ Z,
and 2) there can be non-trivial windings around non-contractible loops. Mathematically, m being closed does
not mean it is exact. By contrast, an actually non-compact R theory does not require n ∈ R, and moreover
there is no winding number. However, traditionally this topological distinction is not well-appreciated, so
that an S1 nlσm with vortices forbidden has been called “non-compact”, leading to confusions.

7In the XY model, the vortex fugacity cannot be controlled directly since vorticity is not well-defined,
however one can anticipate to suppress vortices by suppressing large dθl mod 2π in the choice of WXY , only
that such control is indirect, not as explicitly meaningful as the W2 fugacity in the Villain model. On the
other hand, obviously W forbid

2 can only be defined in the Villain model but not in the XY model.
8One may think of vp as a 2-cochain and θ̃p as a 2-chain (hence a (d − 2)-cochain on the dual lattice),

and d⋆ acting on cochains on the dual lattice is the same as the boundary ∂ acting on chains on the original
lattice.

9This symmetry can be seen via the lattice version of integration by parts
∑
p θ̃pdγp = −

∑
p d

⋆θ̃lγl +
(boundary terms). The boundary terms might or might not be 0 depending on the boundary condition, and
hence the said symmetry might or might not be respected on the boundary.
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original 0-form U(1) and this dual (d − 2)-form U(1) symmetry: We can try to introduce
a background U(1) gauge field for the original symmetry, and find the only way to make it
appear consistently in W forbid

2 is to let it explicitly break the dual U(1). 10 (In 1d, while

W forbid
2 cannot be defined, one can define a topological theta term eiΘ̃

∑
l γl/2π = eiΘ̃w in the

path integral. One can discuss the notion of a dual “(−1)-form global symmetry” of Θ̃ and
its mixed anomaly with the original U(1) symmetry [49].)

An analytical convenience for choosing W1 and W2 to be Gaussian is the following. 11

In 2d, by performing Hubbard-Stratonovich transformations for both W1 and W2 and then
summing out m, and viewing the result on the dual lattice, one can derive the exact boson-
vortex duality between the lattice and the dual lattice [12] (here the terms are those on the
exponent):

− 1

2T

∑
l

(dθ + 2πm)2l −
U

2

∑
p

dm2
p

⇓ Hubbard-Stratonovich fields γ̃l/2π ∈ R and θ̃p + 2πκ̃p ∈ R

− T

2

∑
l

γ̃2l
(2π)2

+ i
∑
l

γ̃l
2π

(dθ + 2πm)− 1

2U

∑
p

(θ̃ + 2πκ̃)2 + i
∑
p

θ̃dmp

⇓ sum out ml, enforcing γ̃l − d⋆θ̃l =: 2πm̃l ∈ 2πZ

− T

2(2π)2

∑
l

(d⋆θ̃ + 2πm̃)2l −
1

2U

∑
(θ̃ + 2πκ̃)2p + i

∑
v

θvd
⋆m̃v . (14)

Note that the R/2πZ part of the Hubbard-Stratonovich field for W2 is nothing but the θ̃ in
W forbid

2 . The 1/2U term explicitly breaks the dual U(1) global symmetry of θ̃. As U →∞,
the Hubbard-Stratonovich transformed W2 reduces to W forbid

2 as expected, and the dual
U(1) symmetry emerges. In this limit, the boson-vortex duality becomes a self-duality (with
2π/T̃ = T/2π), which is the T-duality. In d ≥ 3, the derivation for boson-vortex duality is
exactly the same, and one can easily see that in d = 3 the resulting dual theory is a U(1)

10The introduction of U(1) background gauge field is to replace γl → γl−Al in W1, where the background
Al is U(1) in the sense that any local 2πZ shift Al → Al + 2πNl can be absorbed by the dynamical field
ml → ml+Nl. However, this changes the value of vp := dγp/2π = dmp by dNp inW2. To remedy this, inW2

we might replace vp by (dγp−dAp)/2π, which is no longer Z-valued. For a generic W2, there is no particular

problem, but for W2 = W forbid
2 , the θ̃p and hence α̃p will cease to be U(1)-valued but R. Alternatively, we

can replace vp by dγp/2π+Sp in W2, where Sp ∈ Z is the Dirac string part for Al such that the background
flux Fp := dAp + 2πSp (see Section 2.2) remains invariant under the Nl shift; dγp/2π + Sp also remains
invariant. But Sp can at most be required to be closed on the lattice (closedness is a requirement that can
be imposed locally, while exactness is a non-local requirement; in a complimentary view, if Sp is required
to be exact, it is equivalent to Al being R rather than U(1)), it is unlike dγp/2π = dmp which is exact by

definition. Now that Sp at least might be non-exact in a Dirac quantized flux situation, whenW2 =W forbid
2 ,

it will explicitly break the dual U(1) symmetry parametrized by α̃, demonstrating the said mixed anomaly.
11We emphasize that while the dualities below are exactly derived at the lattice level by choosing the

weights to be Gaussian, if the weights are modified by not too much, the physics of the dualities should still
hold in the IR. Hence this is a connivence, rather than something fundamental.
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gauge theory (see Section 2.2) coupled to a U(1) nlσm Higgs field [13], while in more general
dimensions it is a (d− 2)-form U(1) theory (see Section 2.3) coupled to a (d− 3)-form U(1)
field; when U → 0 the (d− 3)-form field cease to exist and a (d− 2)-form dual U(1) global
symmetry emerges.

All these discussions show that Villainization is a topological refinement to better connect
the lattice theory to the continuum, and is tremendously useful in the analytical studies of
important non-perturbative physics.

To prepare for our later discussions, however, we need some further understandings of
the Villain model. We begin by reinterpreting Villainzation as gauging a Z global symmetry.
While such kind of group theoretic interpretation will no longer be possible in the more
general cases that we aim at (and this is a crucial point—we will only have category theoretic
interpretation in general), it is helpful for bringing up some important points that we want
to discuss.

Suppose we begin with an R-valued theory, where θv ∈ R instead of S1. Each link has
weightW1(dθl), so the theory has a 0-form R global symmetry θv → θv+αv, αv ∈ R, dαl = 0.
We want to reduce this R global symmetry to U(1), and we can do so by gauging the 2πZ
subgroup of the global symmetry. Denoting the 2πZ-valued dynamical gauge field by 2πml,
the gauging process is to replace dθl by dθl + 2πml in W1 and sum over ml, and the gauge
invariance is θv → θv + 2πkv, ml → ml − dkl for any kv ∈ Z; moreover, the gauge flux dmp

can have its own dynamical weight, some W2(dmp) on each plaquette p. Thus, we basically
obtained the Villain model, except here θv ∈ R. But there is the 2πZ gauge invariance kv
that we can exploit, to gauge fix each θv to (−π, π]. Thus, we obtained the Villain model by
gauging the 2πZ subgroup from an R theory and then gauge fixing.

A first observation from this reinterpretation is that the Villain model relies on the fact
that S1 = R/2πZ. More exactly, it relies on finding the universal cover of S1, which is R:

2πZ→ R
↓
S1

. (15)

While such a two row notation is standard for a fibre bundle in mathematics, in our context
there is an extra meaning to have two rows—different rows are fields that live on lattice cells
of different dimensions: the lowest row contains fields that live at the 0-dimensional vertices,
eiθv ∈ S1, while the row above are fields that live at the 1-dimensional links, ml ∈ Z and
γl = dθl + 2πml ∈ R (which is not an independent field but determined by θ and m).

Why is finding the universal cover such a useful thing to do? This leads to the algebraic
motivation behind Villainization, in complimentary to the geometrical motivation explained
before. It is because Villainization leads to an isomorphism from π1(S

1) to π0(Z), through
the universal cover R which is a non-trivial Z bundle over S1. Generally, for a fibre bundle
F → E → B, their homotopy groups satisfy the long exact sequence 12

· · · → πn(F )→ πn(E)→ πn(B)→ πn−1(F )→ πn−1(E)→ πn−1(B)→ · · · . (16)

12Which means the image of each arrow is the kernel of the next arrow.
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The reason to find the universal cover E of B is so that π1(E) is trivial and π0(E) = π0(B)
(which is usually trivial as well, if B is connected), hence the long exact sequence leads to an
isomorphism π1(B)

∼−→ π0(F ). In our case, π1(S
1) is what characterizes the winding of eiθ,

which becomes ambiguous on the lattice due to the said discontinuity problem; by capturing
this information into π0(Z), which is counted by m, the discontinuity problem is resolved
because Z is discrete to begin with. Using the same idea, we can use the Villainization
process to capture general π1 topological information, see Section 2.3.

The Z gauge theory perspective also brings us to the front of an important conceptual
question: In what sense things are continuous/smooth in the Villain model?

First of all, this is a question because apparently γl = θv′ − θv + 2πml is no longer
continuous in the original S1 variables eiθv , and therefore if we think of eiθv ∈ S1 and
ml ∈ Z as some kind of “fundamental local d.o.f.”, the path integral weight W1(γl) appears
discontinuous in eiθv .

This question arises because eiθv ∈ S1 and ml ∈ Z are not a good set of variables to
simultaneously think about. We can either simultaneously think about θv ∈ (−π, π] and
ml ∈ Z, or simultaneously think about eiθv ∈ S1 and γl ∈ R subjected to the constraint
eiγl = eidθl . The path integral weight is smooth in either way.

The Z gauge theory perspective helps us understand this important conceptual point.
In gauge theory, it is common to either describe the d.o.f. by gauge fixing, or by looking at
gauge invariant combinations:

• Apparently, θv ∈ (−π, π] and ml ∈ Z are the Z gauge fixed d.o.f.. The path integral
weight is smooth in θv ∈ (−π, π], but the desired continuity from θv ≳ −π to θv ≲ π in
only recovered by absorbing the 2πZ shift into the neighboring ml’s, or in other words,
the path integral, smooth in θv ∈ (−π, π], becomes smooth in eiθv only after summing
over all the ml’s, see (7), but not before the sum.

• On the other hand, eiθv ∈ S1 and γl ∈ R are Z gauge invariant. Physical observables
must be built out of them. In terms of these Z gauge invariant variables, the path
integral weight is smooth as expected. 13 The price paid is, the independent Z gauge
invariant variables are not locally factorized, due to the link constraint eiγl = eidθl , and
this is a common feature of gauge theory. 14

For instance, consider a lattice consisting of a single plaquette only, with vertices v1, v2, v3, v4
and links l21, l32, l43, l14. The locally factorized but Z gauge non-invariant d.o.f., forming the
space (−π, π]4 × Z4, are shown on the left, while an independent set of Z-gauge invariant
fields can be chosen as on the right, forming the actual configuration space S1 × R3 × Z,
obtained from the restriction (S1)4 × R4|link constraints eiγ=eidθ :

13The factors W1,W2 are smooth in γl, and do not otherwise depend on eiθv due to the 0-form U(1) global
symmetry. If the U(1) global symmetry is explicitly broken, there can be some vertex weightW0(e

iθv ), which
is still Z gauge invariant.

14For general gauge theories in the Hamiltonian formulation, it is familiar that the gauge invariant Hilbert
space is not locally factorized. Although we are in a path integral rather than a Hamiltonian formulation,
this aspect is similar.
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.

The Z gauge fixed space (−π, π]4 × Z4 is glued along suitable boundaries into the actual
configuration space S1 × R3 × Z (rather than into the naive (S1)4 × Z4)—this is when we
express the variables on the right in terms of those on the left. The path integral weight
is smooth over the actual configuration space. Moreover, the actual configuration space
S1 × R3 × Z can be mapped to the (S1)4 of the XY model by exponentiating the γl. On a
more general lattice, the configuration space has a topology of (S1)B0×RN0−B0×ZN1−(N0−B0)

obtained from the restriction (S1)N0 × RN1
∣∣
eiγ=eidθ

, rather than the naive (S1)N0×ZN1 or the

Z gauge fixed (−π, π]N0 × ZN1 , where N0, N1 are the numbers of vertices and links, and B0

is the zeroth Betti number, i.e. the number of disconnected pieces of the lattice. The (S1)B0

factor is where the U(1) global symmetry acts on, the ZN1−(N0−B0) factor counts all possible
winding and vortex configurations, and the RN0−B0 factor is space of the independent γ’s
given the winding and vorticity. The dependence on the topological number B0 is a reflection
that the configuration space is not a local factorization.

In summary, the apparent θv ∈ (−π, π] and ml ∈ Z variables allow us to write the path
integral measure in an explicitly locally factorized form, and they can be further glued into
the actual configuration space which is not locally factorized; the path integral weight is
smooth over the actual configuration space, effectively reproducing the traditional eiθv ∈ S1

when we exponentiate the γl’s. Alternatively, the space of the physical observables e
iθv ∈ S1

and γl ∈ R is also factorized, but there is an extra constraint eiγl = eidθl on every link,
making the constrained actual configuration space not locally factorized. It seems a little
verbose here to describe this trade-off between continuity and local factorizability, though
fortunately the Z gauge theory perspective helps us understand this point, thanks to our
familiarity with gauge theories. Later we will show the Villainization process can be recasted
in the language of the Lie groupoid S1 × R ⇒ S1. There, this continuity and locality issue
becomes naturally understood in terms of functors from the lattice to this Lie groupoid.
When we tackle our main problems of S3 nlσm and SU(N) Yang-Mills, the familiar gauge
group approach becomes mathematically inadaquate, but these two alternative pictures of
“apparently locally factorized d.o.f. glueing into a not locally factorized actual configuration
space” and “apparently locally factorized d.o.f. being constrained down to a not locally
factorized actual configuration space” remain valid, and is naturally understood from the
category theory perspective.

2.2 Villainized U(1) gauge theory: Dirac quantization, monopole,
Chern-Simons and instanton

Soon after the Villainization method appeared in the S1 nlσm context, it has been applied
to U(1) gauge theory as well [13–15]. In the recent years the Villainized U(1) gauge theory
(along with further generaliztions) has attracted new attention in the purview of topological
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theta term, topological order, higher form symmetries [50, 51] and beyond [52]. The idea is
extremely simple—just put those d.o.f. we have for Villainized S1 nlσm onto lattice cells of
one higher dimension. This leads to natural lattice descriptions for Dirac quantization in
2d, monopole in 3d or higher, abelian Chern-Simons (CS) term in 3d and abelian instanton
in 4d, and so on.

In the traditional U(1) lattice gauge theory [1], on each link there is a U(1) variable eial ,
which can be thought of as a Wilson line across that link. The flux around a plaquette is
also U(1)-valued, eidap , which can be thought of as a Wilson loop around the plaquette; the
path integral of the traditional U(1) lattice gauge theory is weighted by a positive increasing
function W (eidap + c.c.) on each plaquette. If the gauge theory is coupled to matter, such as
in lattice QED 15 or abelian Higgs model, eial appears in the hopping of the matter particles.
For examples, when coupled to fermion ψ of charge qψ ∈ Z, the hopping is ψ̄v′e

iqψalψv;
when coupled to an XY model boson eiθv of charge qθ ∈ Z, the hopping is e−idθl+iqθal . The
charge must be integer due to the U(1) nature of eial . The U(1) gauge transformation is
eial → eialeidαl , ψ → eiqψαvψ, eiθv → eiqθαveiθv for arbitrary eiαv ∈ U(1).

The path integral of the gauge field is to integrate over eial ∈ U(1) for all links l. As
emphasized in the introduction, gauge redundancy is unimportant and does not require any
treatment on the lattice. In the partition function, gauge redundancy is merely a U(1) at
each vertex, which is a locally finite size space and hence only leads to a product of local
constant factor in the partition function [1,2]. And observables are not demanded to be gauge
invariant, since any gauge non-invariant part will automatically vanish anyways, by Elitzur’s
theorem [21]. Therefore, gauge fixing or any other treatment about the gauge redundancy
is not needed. This is a remarkable point, because in many cases in the continuum, gauge
fixing involves solving (usually differential) equations over the spacetime manifold, generally
leading to global issues, but these issues are artifacts from the choice of gauge fixing condition,
rather than anything intrinsic to the gauge invariance itself. Any physical effect, local or
global, must manifest on the lattice without any extra treatment about the gauge.

A pure U(1) gauge theory has a 1-form U(1) global symmetry eial → eialeiβl , where eiβl

satisfies eidβp = 1, which does not change eidap and hence the path integral weight. 16 This is
not a U(1) gauge transformation in general, because when the spacetime has non-contractible
loops, the closedness condition eidβp = 1 does not imply exactness, i.e. there might be no
choice of eiαv such that eiβl = eidαl . Thus, when the U(1) gauge field is coupled to matter,
while the U(1) gauge invariance must still be there, the 1-form U(1) global symmetry is
explicitly broken.

Similar to the winding and vortex configurations in XY model, configurations which

15It is understood that QED is not “renormalizable” in the sense that if we reduce the lattice unit length
in the UV, meanwhile changing the path integral weight in order to maintain the IR physics, then we expect,
in analogy to the Landau pole, that the path integral weight will run into some singularity at some finite
unit length, i.e. the unit length cannot be made arbitrarily small, unless new physics is introduced in the
UV. But at any finite unit length before that happens, the lattice model is still well-defined and we can still
discuss its IR physics.

16By “1-form global” here, it does not mean β is “constant”. It means the eiβ holonomy for any two loops
(generally non-contractible) that can be deformed to each other must be the same. This is like, by “0-form
global”, it means eiα for any two points can be connected by a path to each other must be the same, but
not necessarily so for those that cannot.
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look like having non-trivial Dirac quantized fluxes or non-trivial monopoles do appear in
fluctuations in the traditional U(1) lattice gauge theory, but there is no natural way to
actually define these topological operators. Being able to define and hence forbid (or at least
highly suppress) the monopole operator is particularly important for application to Maxwell
theory in reality, in which monopoles have not been observed; monopole proliferation will
lead to the confinement phase [1,13,48,53] rather than the realistic Coulomb phase, i.e. the
1-form U(1) SSB phase. 17

We have to Villainize the traditional theory to have natural definitions for the topological
operators. That is, on each plaquette we now have the real-valued flux fp ∈ R satisfying the
constraint eifp = eidap ; if we fix the range al ∈ (−π, π], then we can write fp = dap + 2πsp,
where sp ∈ Z is to be thought of as the Dirac string variable and summed over in the
path integral. If we think of the plaquette as being embedded in the continuum, the lattice
gauge flux fp ∈ R can be thought of as the integral of the continuum field strength over the
plaquette. Over a closed oriented 2d surface, we find the Dirac quantization condition∮

2d

f

2π
:=

∑
p

fp
2π

=
∑
p

sp ∈ Z (17)

(just like the winding number in the S1 nlσm). On each lattice cube c (or 3d cell of other
shapes), we can define the monopole number

mc :=
dfc
2π

= dsc ∈ Z , (18)

(just like the vorticity in the S1 nlσm) which satisfies∮
3d

m :=
∑
c

mc = 0, dmh = 0 (19)

where h denotes a hypercube (or 4d cell of other shapes). So monopoles are (d−3)-dimensions
defects without boundary, if viewed on the dual lattice. The Villainized U(1) gauge theory
reads

Z =

[∏
l′

∫ π

−π

dal′

2π

]∏
p′

∑
sp′∈Z

∏
p

W2(fp)
∏
c

W3(mc) . (20)

(If there are charged matter fields, Villainization makes no change to their coupling with the
gauge field.) The usual Gaussian choices for the weights are W2(fp) = exp[−f 2

p/2e
2] (with

e2 the usual Maxwell coupling), W3(mc) = exp[−Um2
c/2]. Again, if we want to completely

forbid the monopoles and hence prohibit the confinement phase—as it should for the Maxwell
theory in reality—we can use the Lagrange multiplier

W forbid
3 (mc) :=

∫ π

−π

dãc
2π

eiãcmc = δmc,0 (21)

17In the Coulomb vs the confinement phase, the Wilson loops’ exponential suppression is proportional to
the perimeter vs the (minimal) bounded area, generalizing the long vs short ranged correlation for order
parameters in 0-form symmetry SSB. When coupled to matter field, both phases have perimeter law, but a
closer inspection shows in the Coulomb phase the perimeter law can be realized as a zero law [54].
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18 where ãc can be thought of as living on (d− 3)-dimensional cells on the dual lattice, and

has a dual (d − 3)-form U(1) global symmetry eiãc → eiãceiβ̃c satisfying eid
⋆β̃p = 1. Again,

the original 1-form U(1) global symmetry (exist only in a pure gauge theory) has a mixed
anomaly with this dual (d−3)-form U(1). (In d = 2, whileW forbid

3 cannot be defined, one can

define the topological theta term eiΘ̃
∑
p fp/2π, and discuss the “(−1)-form global symmetry”

of Θ̃ and its mixed anomaly with the 1-form U(1) [49].) And again, dualities can be derived
just like in the S1 nlσm case; a remarkable case is the electromagnetic duality in 4d [13],
which is self dual with 2π/ẽ2 = e2/2π when both charged matter particles and monopoles
are forbidden (or both present).

The Villainized U(1) gauge theory can be thought of as gauging a 1-form Z global sym-
metry from an R gauge theory, and then gauge fixing the 1-form Z by fixing the range of
al ∈ (−π, π]. This uses the universal cover central extension

2πZ→ R
↓
U(1)

(22)

which is similar to the structure in S1 nlσm, except everything is in one higher dimension, and
thus the space S1 becomes the group U(1) because consecutive link variables can be naturally
composed. We would like to reiterate the conceptual point made at the end of Secion 2.1. The
configuration space for Villainized U(1) pure gauge theory is U(1)B1×RN1−B1×ZN2−(N1−B1)

rather than the naive U(1)N1×ZN2 or the 1-form Z gauge fixed (−π, π]N1×ZN2 , where N2, N1

are the numbers of plaquettes and links, and B1 is the first Betti number. The U(1)B1 factor
is the space on which the 1-form U(1) global symmetry acts, while the ZN2−(N1−B1) factor
counts all possible quantized flux and monopole configurations. The appearance of the
topological number B1 shows the configuration space is not locally factorized, but this is not
due to the U(1) gauge invariance (since the space for U(1) gauge redundancy is just U(1)N0

which is local); again this comes from Villainization. Later, we will recast the Villainized
U(1) gauge theory in the language of the Lie 2-group U(1)× R ⇒ U(1) ⇒ ∗ [29, 30], which
is the delooping of the Lie groupoid used for S1 nlσm.

All the above are straightforward generalizations from the S1 nlσm, by putting everything
in one higher dimension. There are also aspects which do not have familiar counterparts in
nlσm. They are the abelian CS term and abelian instanton.

When monopole is forbidden, the Dirac quantized real-valued flux f is a representative
element for the first Chern class c1 in the image of H2(|BU(1)|;Z) → H2(|BU(1)|;R).
Taking the cup product with itself will give an element in the image of H4(|BU(1)|;Z) →
H4(|BU(1)|;R), which is the instanton number. 19

18Similar to the situation in footnote 6, a U(1) gauge theory with monopoles forbidden has often been
called “non-compact” in the literature, which is confusing, because it is in fact still a compact U(1) gauge
theory rather than a non-compact R gauge theory. The topological distinctions are whether the Wilson loop
operators have to have quantized charges, and whether it is possible to have non-zero Dirac quantized fluxes
over non-contractible 2d surfaces.

19The classifying space of a group G is usually denoted as BG, but in this work we will reserve the notation
BG for the category obtained by delooping G (see Section 5.1), while the classifying space will be denoted
as |BG|, the geometric realization of the category BG (see Section 5.4).
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More explicitly, on a hypercube h (or 4d cell of other shapes), we can use cup product
to define the abelian instanton density [50,51]

Ih :=
(
f

2π
∪ f

2π

)
h

. (23)

20 Note this is well-defined even when the monopole is not forbidden. The cup product
satisfies the Leibniz rule, so clearly in 5d and above, the instanton non-conservation defect,
dI, is proportional to the monopole defect df/2π. Moreover, we may note that

Ih =
dCh
2π

+ (s ∪ s)h, Cc :=
1

2π
(a ∪ da+ a ∪ 2πs+ 2πs ∪ a+ 2πa ∪1 ds)c . (24)

Here Cc is the CS density which will be discussed soon. 21 (If monopoles are forbidden,
ds = 0, then the last term with higher cup product ∪1 will vanish; we will not discuss this
term any further.) This equation implies that the total abelian instanton number over a
closed oriented 4d spacetime is quantized as expected:

I :=

∮
4d

I =
∑
h

Ih =
∑
h

(s ∪ s)h ∈ Z . (25)

Topological theta term in 4d can hence be defined. 22

If the 4d spacetime is a spin manifold, it is well known [16] that the quantization is
even stronger:

∑
h(s ∪ s)h ∈ 2Z for any sp satisfying dsc = 0. Therefore, in fermion-related

contexts, there is another convention that calls I/2 rather than I the abelian instanton
density, and I/2 rather than I the total abelian instanton number.

The CS density Cc is only well-defined as eiCc ∈ U(1), because under the 1-form 2πZ shift
al → al+2πnl (which effectively restores the 2π periodicity of al) and sp → sp−dnp that keeps
the physical flux fp invariant, Cc might shift by 2πZ. Now, on oriented 3d spacetime (or 3d
submanifold embedded in higher dimensional spacetime), one can possiblity include another
factor in the path integral, the CS phase (it is often understood that this is accompanied
with the monopole forbidding W forbid

3 , and we will indeed assume so in the below):

W k
CS := eik

∑
c Cc (26)

20On a hypercube, one choice of the cup product is the following. Suppose the hypercube has corner
vertices given by coordinates x, y, z, τ ∈ {0, 1}. There are a total of six pairs of plaquettes p and pf on the
hypercube, such that the center of pf is shifted from the center of p by x̂/2 + ŷ/2 + ẑ/2 + τ̂ /2; for example
one such pair is the xy-plaquette p centered at x = y = 1/2, z = τ = 0 and the zτ -plaquette pf centered at
x = y = 1, z = τ = 1/2. Multiply fpfpf for each such pair, and then adding up the contributions from all
six pairs, we get (f ∪ f)h. One can show the cup product satisfies the Leibniz rule under lattice exterior
derivative. The choice is not unique, but any choice is required to satisfy the Leibniz rule. On more general
4d lattice, the choice of cup product is given by a branching structure.

21On a cubic lattice, a choice of cup product is defined using the shift x̂/2 + ŷ/2 + ẑ/2, and this choice is
compatible with the 4d choice made above when the 3d is embedded in 4d as the xyz hyperplane.

22One can also let the theta become local and dynamical, but then for consistency we will need to introduce
the Villainization integer field for this theta (on the dual lattice), which will couple to the CS density. This
is the lattice axion theory.
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with any level k ∈ Z. Under U(1) gauge transformation, the CS weight changes by a
boundary factor, therefore if the 3d spacetime has a boundary, Dirichlet boundary condition
is needed to avoid boundary gauge transformation. It is easy to check, using the expression
(24), that a non-trivial CS phase breaks the 1-form U(1) global symmetry of the U(1) gauge
field to a Z2k subgroup, 23 and moreover this 1-form Z2k global symmetry is anomalous. 24

If the 3d spacetime is endowed with a spin structure, then level k ∈ Z/2 is also possible.
The eiπ ambiguity in eik

∑
c Cc for half-integer k can be absorbed by an extra fermionic path

integral zχ[s] = ±1 that depends on sp mod 2 as well as a choice of the spin structure, so
that the well-defined combination valid for any k ∈ Z/2 is

W k
CS := eik

∑
c Cc(zχ[s])

2k . (27)

The explicit construction of zχ[s] can be found in [56] for simplicial complex and in [51] for
cubic lattice along with an intuitive Berry phase interpretation. Because of this, in fermion-
related contexts, there is another convention that calls k := 2k ∈ Z rather than k ∈ Z/2 the
abelian CS level.

The 3d U(1) Chern-Simons-Maxwell theory on lattice reads [57]

ZkCS =

[∏
l′

∫ π

−π

dal′

2π

]∏
p′

∑
sp′∈Z

 W k
CS

∏
p

W2(fp)
∏
c

W forbid
3 (mc) . (28)

It is important to note that the theory becomes ill-defined when the Maxwell weight W2 be-
comes trivial,W2 = 1, i.e. when one attempts to define a purely topological CS theory on the
lattice. This problem was originally analyzed in R gauge theory [58], but the problem stays
the same in Villainized U(1) gauge theory. 25 In fact, a purely topological CS theory is ex-
pected to be impossible, because the gapless chiral boundary mode must be non-topological.

23To get the factor of 2, we need the property β ∪ s = s ∪ β + d(· · · ) when β and s are both closed. In
fact, the (· · · ) is given by β ∪1 s, and this is how the notion of higher cup product is motivated.

24Which means if a 2-form Z2k background is introduced, the CS phase will not be gauge invariant under
the 1-form Z2k gauge transformation. It is well-known and easy to check on the lattice [51,55] that gauging
a Zn subgroup of this Z2k (which means introducing a 2-form Zn background field and then promoting
this background to dynamical—this will essentially make the a ∪ s + s ∪ a terms in C rescale by 1/n) is
equivalent to (after rescaling a by 1/n—which leads to some unimportant local constant in the path integral
measure) dividing the CS level by n2. So only those Zn subgroups of this Z2k where n2 divides k will be
non-anomalous. (And if n2 divides 2k but not k, the theory can be made non-anomalous by introducing
fermions; see below.)

25First consider the R-valued CS term on the lattice, ∝
∮
3d
a∪ da, al ∈ R. We vary a to find the equation

of motion, which means we want
∮
3d

(δa ∪ da|EoM + da|EoM ∪ δa) = 0 for any δa. But the two terms are in
general unequal, unlike the wedge product in the continuum. Therefore we cannot conclude da|EoM = 0,
which means there are undesired zero modes that can be added to any given da configuration while leaving
the action invariant. Moreover, unlike the gauge redundancy which occurs at each vertex locally, these extra
zero modes have non-local profiles. Thus, they make the Gaussian path integral ill defined.
The problem is the same in Villainized U(1) gauge theory with monopoles forbidden, because locally

(though not globally) this theory looks the same as R gauge theory and hence inherits the same problem:
Given any configuration of the gauge flux fp ∈ R, it is easy to see any shift ∆f (due to shifts of a and s)
that satisfies d∆fc = 0 and

∮
3d

(δa ∪∆f +∆f ∪ δa) = 0 for any δal ∈ R will leave the CS term invariant.
The partition function thus diverges, with one infinite factor from each of such non-local zero mode, and the
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So it is natural to include a non-topological Maxwell term. In the continuum, a Maxwell
term with tiny 1/e2 is secretly understood in the regularization of the eta-invariant [60];
when we are on the lattice, the necessity to include a Maxwell term just gets better exposed.

While the CS-Maxwell theory is non-topological, it is a free theory if the Maxwell weight
W2 is chosen to be Gaussian as usual. In this case, the CS-Maxwell theory can be solved.
It reproduces all the interesting properties from a continuum U(1) CS theory [61], but in an
explicit, UV complete fashion. These include: the Wilson loop flux attachment, with the
framing interpolating from point splitting [61] (determined by the cup product) at small 1/e2

to geometrical [62] (determined by the metric) at large 1/e2 [63]; the ground state degener-
acy; the chiral boundary mode and, most non-trivially, the associated gravitational/framing
anomaly understood in a microscopic exposition. We will present the details in a separate
work [57].

2.3 More general Villainizations, including Z2 vortex in RP 2 non-
linear sigma model, and ZN monopole in PSU(N) gauge theory

Villainization has many more applications. The most obvious is to work with multiple
U(1), which is useful in studying topological order [51,64,65]. Another obvious direction is to
work with q-form U(1) gauge fields, where q = 0, 1 reduce to the previous cases; by the same
steps as before, we can derive boson-vortex-type dualities between q-form U(1) gauge theory
and (d − q − 2)-form U(1) gauge theory, and demonstrate the associated mixed anomaly
between the q-form U(1) and (d − q − 2)-form dual U(1) global symmetries. Interestingly,
sometimes Villainization is even useful for dealing with discrete abelian gauge groups for more
subtle purposes (compared to our main purpose of avoiding discontinuities); an important
case is 2Z→ Z→ Z2 for spin-c connection in footnotes 31 (also footnote 26); other examples
include the Villainization nZn → Zn2 → Zn in Zn topological order [65,66] and more in exotic
models [52].

It is common to develop the impression that Villainization is to deal with U(1), or at
most including other abelian groups built out of (or being a subgroup of) U(1). This is not
the case. Through our algebraic motivation discussed below (15), it should be clear that the
real purpose of Villainization is to capture π1. This leads to many more applications.

We begin with nlσm, i.e. 0-form theory. Suppose the nlσm target space T has a non-
trivial π1(T ) ∼= Γ, with Γ some discrete group, not necessarily abelian. To capture the Γ
winding/vorticity, we can Villainize the traditional T lattice nlσm by the universal cover T̃

Γ→ T̃
↓
T

. (29)

Interestingly, although T̃ appears on the link, it does not have to be a group, only Γ does.
This is a little counter-intuitive because we might want link variables to be able to compose,

number of such non-local zero modes depends non-locally all the details of the lattice and the cup product.
Imposing non-local constraints can directly forbid these zero modes [55,59]. On the other hand, having a

Maxwell term will remove these zero modes while retaining the locality of the QFT.
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just like γl in the Villainized S1 nlσm. To understand this, let’s take the RP 2 nlσm for an
example, which describes the physics of nematicity in systems like liquid crystals. The target
space has π1(RP 2) ∼= Z2, and hence there are Z2 winding in 1d and Z2 vorticity in higher
dimensions; RP 2 also has higher πn’s, but for now we ignore their physical effects and only
focus on the π1 effects. The structure

Z2 → S2

↓
RP 2

(30)

can be implemented on the lattice as an S2 nlσm with a Z2 global symmetry gauged. Thus,
the Villanized partition function reads

Z =

[∏
v′′

∫
S2

d2n̂v′′

4π

]∏
l′

∑
σl′=±1

 ∏
l=⟨v′v⟩

W1(n̂v′ · σln̂v)
∏
p

W2(Dσp) (31)

where W1,W2 are some positive increasing function, and Dσp :=
∏

l∈∂p σl describes the Z2

vortex. (We can also introduce W forbid
2 that uses a Z2 Lagrange multiplier field to forbid the

Z2 vortex. In 1d, while there is no W2, we can have a topological Z2 theta term for the Z2

winding number.) The Z2 gauge invariance here is n̂v → svn̂v, σl=⟨v′v⟩ → sv′σls
−1
v . Note that

we have not fix the Z2 gauge here, which is fine because it is merely a local, finite factor of
2 on each vertex; this is in contrast to the Z gauge invariance before, which is of infinite size
and hence must be fixed. (If we do want to fix the Z2 gauge, we can, for instance, require
every n̂v to live on the upper hemisphere which is sufficient to specify a nematic variable
living on RP 2.) With this model, we can understand the point raised before, that in what
sense a link variable takes value in T̃ which is not a group in general. Consider a nematic
order parameter pointing along ±n̂v at vertex v, and focus on, say, its +n̂v end. Moving
along the link l, this end will gradually move and reach some other direction in S2, denoted
by σln̂v′ ∈ S2; correspondingly, the −n̂v end will move and reach −σln̂v′ .

Next we move to gauge theory, i.e. 1-form theory. The mathematical structure for
Villainization is the central extension of a group G, not necessarily abelian, to its universal
covering group:

Γ→ G̃
↓
G

. (32)

Here Γ has to be abelian because the Γ-valued field lives on plaquettes, and the composi-
tion of adjacent plaquettes has no specified order, unlike the links. An important example
is PSU(N) lattice gauge theory, which contains ZN monopoles [28]. Recall PSU(N) :=
SU(N)/Z(SU(N)) where the the center of SU(N) is Z(SU(N)) = ei2πZN/N1N×N ∼= ZN .
Note that PSU(N) has higher πn’s inherited from SU(N) (the next non-trivial one being
π3 inherited from SU(N), which is the main problem we will tackle in the work), but here
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we only focus on the π1 effects, which arises from the mod-out of the center. The structure

ZN → SU(N)
↓

PSU(N)
(33)

can be implemented on the lattice as an SU(N) gauge theory with the 1-form Z(SU(N)) ∼=
ZN global symmetry gauged.

We first briefly review the traditional SU(N) lattice gauge theory defined by Wilson [2].
The dynamical d.o.f. is gl ∈ SU(N) at each link l, thought of as a Wilson line along the link.
The path integral is weighted by a plaquette weight which is a positive, increasing function
of (trDgp + c.c.), where the SU(N) flux Dgp is the Wilson loop around a plaquette, i.e. the
ordered product of the gl’s around p starting from some chosen vertex:

(34)

(for abelian group, Deiap = eidap). Choosing another starting vertex only changes Dgp by a
conjugation, which does not change the trace; the starting vertex can even be located away
from the plaquette, as long as we conjugate the flux by a suitable Wilson line. The flux Dgp
satisfies DDgc = 1 on any cube c, where the definition and why it equals 1 is illustrated by
the picture

(35)

A conceptual point, similar to that regarding the T̃ -valued link variable before, is that now
we have a SU(N)-valued plaquette variable Dgp, which might seem problematic, because
plaquette variables should be abelian as mentioned above. The resolution is, this is not
problematic because Dgp is not an independent plaquette variable, it is defined via link
variables starting from a chosen vertex, and composition between plaquettes can be defined
accordingly using the conjugation of Wilson lines built out of link variables (for example see
the pictorial definition of DDg).

The flux Dgp respects the 1-form global symmetry gl → glzl for zl ∈ Z(SU(N)) ∼= ZN
satisfying Dzp = 1. This is what we will gauge, in order to obtain the Villainized PSU(N)
gauge theory [28]:

Z =

[∏
l′

∫
gl′∈SU(N)

]∏
p′

∑
σp′∈Z(SU(N))

∏
p

W2(tr(σpDgp) + c.c.)
∏
c

W3(Dσc) . (36)
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Here W2 and W3 are some positive, increasing functions, and D(σDg)c = Dσc :=
∏

p∈∂c σp,
with the orientations of p here chosen to be consistent with that of ∂c, describes the ZN
monopole. (We can also use W forbid

3 by introducing a ZN Lagrange multiplier to forbid the
ZN monopoles.) We can also define ZN skyrmion and the associated ZN topological theta
term over a 2d surface [30]. For N = 2 the ZN skyrmion configuration represents the second
Stiefel-Whitney class of the PSU(2) ∼= SO(3) gauge field. 26

Moving further up to higher form gauge theories, since the q ≥ 2 form independent
variables can only be abelian for reasons explained above, only abelian examples exist, which
have already been discussed at the beginning of this subsection.

This concludes what Villainization in its general form can do. It captures the π1 of nlσm
target spaces or gauge groups by taking universal covers. An important step in furthering
the understanding of Villainization appeared in [29,30], which turned out to be an important
inspiration for our present work. The physical context there is to study the possible low en-
ergy phases of Yang-Mills theory. Under this context, the Villainized PSU(N) gauge theory
is interpreted in terms of the Lie 2-group PSU(N)×SU(N) ⇒ PSU(N) ⇒ ∗. Importantly,
[29,30] shows the low energy phases of Yang-Mills theory admit more possibilities, which are
described by more general Lie 2-groups gauge theories [42], G ⋉ H ⇒ G ⇒ ∗, in which H

might not fully cover G, leading to the exact sequence ∗ → ker(t)→ H
t−→ G→ coker(t)→ ∗.

We will review such structure in Sections 5.1 and 5.3.

2.4 Spinon-decomposed S2 non-linear sigma model: Berry phase,
skyrmion and hedgehog

The Villain model and all its variants serve to capture the π1 of continuous-valued fields.
There is another type of known examples, the CP 1 representation, also known as the spinon
decomposition, for S2 nlσm, which captures π2(S

2) ∼= Z; this can be generalized to capture
π2 of more general target spaces such as CPN . Beyond these examples, there is no more
known example that captures higher πn’s of continuous-valued fields on the lattice, and we
will explain why in Section 3. In this subsection we review how the CP 1 representation
works. It will bring out more discussions about the geometrical intuition as well as some
technical points, which will be useful for our construction in Section 4 and beyond.

A traditional S2 nlσm on lattice has a unit vector n̂v ∈ S2 at each vertex v, and the link
weight is a positive increasing functionW (n̂v′ ·n̂v). Again there are topological configurations
that cannot be naturally defined in the traditional lattice model: the skyrmion in 2d, and
the hedgehog defect in 3d or above (that can be seen as the non-conservation of skyrmion
number in the 2d space over time), which are characterized by π2(S

2) ∼= Z. In fact, even

26In fact, even if we have usedW forbid
3 to forbid the ZN monopoles, there remains a new piece of interesting

topological effect in d ≥ 3. We can Villainize σp =: ei2πsp/N by introducing an Nhc ∈ NZ, forming

NZ → Z → ZN , where the Z variable dsc −Nhc is invariant under sp → Nnp, hc → dnc. Then W forbid
3 is

enforcing that there exists some hc such that dsc −Nhc = 0 ∈ Z. While this implies hc is closed, it might
not be exact in Z because in general sp/N /∈ Z. Therefore we can have a closed, non-exact hc topological
configuration; for N = 2 it represents the third integral Stiefel-Whitney class of the PSU(2) ∼= SO(3) gauge
field.
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around a 1d loop there is an important piece of physics that cannot be naturally defined, the
Berry phase around the loop, whose 2π periodicity is due to the same topological information
π2(S

2) ∼= Z. 27

Viewing S2 as CP 1 := C2/C∗ ∼= SU(2)/U(1) solves this problem [67–70]. This CP 1

representation was originally developed and much more well-known in the continuum context,
but on the lattice it becomes more crucial for capturing topology. Algebraically, the idea is
obvious: to cover S2 by U(1)→ SU(2)→ S2, and then Villainize the U(1):

2πZ→ R
↓
U(1)→ SU(2)

↓
S2 .

(37)

The sequence of fibre bundles leads to the sequence of isomorphisms π2(S
2)

∼−→ π1(U(1))
∼−→

π0(Z). The Berry phase is captured at the U(1) stage, while the skyrmion and hedgehog are
captured at the last stage.

The implementation goes as the following. Across the link l = ⟨v′v⟩, we introduce an
SU(2) variable Vl ∈ SU(2) that rotates n̂v to n̂v′ , i.e. subjected to the constraint RVln̂v = n̂v′ ,
where RVl is the rotation matrix given by Vl in the spin-1 representation. Equivalently, we
can say the constraint is Vl(n̂v ·σ⃗)V−1

l = n̂v′ ·σ⃗. This is like the constraint eiγleiθv = eiθv′ in the
Villain model. This constraint does not uniquely fix Vl but leaves a U(1) d.o.f., because after
a given rotation we can still make a rotation around n̂v′ without changing n̂v′ . Casting in the
spin-1/2 representation, the constraint reads Vlun̂v = e−ialun̂v′ , where n̂v = u†n̂v σ⃗un̂v (the un̂v
is called spinon, and therefore this CP 1 representation is also called spinon decomposition),
and eial is the said U(1) d.o.f., with 2al being the rotation angle around n̂v′ . This dynamical
eial part is then viewed as a U(1) gauge field, which we will Villainize as we did in Section
2.2. The partition function reads:

Z =

[∏
v′

∫
S2

d2n̂v′

4π

][∏
l′

∫ π

−π

dal′

2π

]∏
p′

∑
sp′∈Z

∏
l

W1(trVl + c.c.)
∏
p

W2(fp)
∏
c

W3(mc)

(38)

where W1 is positive and increasing, W2,W3 are positive and decreasing with the absolute
value of the arguments (or we can use W forbid

3 ). (This is for d ≥ 3. For d = 2 just
ignore the W3 part. For d = 1 ignore the sp field and the W2 and W3 parts.) The skyrmion
configuration and hedgehog defect of the S2 d.o.f. are then defined as the Dirac quantized flux
and monopole of the U(1) gauge theory. In particle physics, this is the familiar situation of an
SU(2) gauge field being Higgsed by an S2 vacua down to a residual U(1) gauge field [71,72];
the constraint RVln̂v = n̂v′ means the massive gauge bosons are set to be infinitely massive.

27In the previous S1 nlσm, in 0d there is also a phase, the eiθ itself, which is well-defined without Vil-
lainization. In U(1) gauge theory, in 1d there is also a phase, the Wilson loop

∏
l e
ial , which is again

well-defined without Villanization. So the S2 nlσm is the first example where some physical phase requires
suitable refinement of the traditional lattice theory to be well-defined.
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More explicitly, for n̂v given by the spherical coordinates (θv, ϕv), it is common to make
a standard choice of SU(2) matrix Un̂v whose spin-1 representation would rotate ẑ to n̂v:

Un̂v = e−iσ
zϕv/2e−iσ

yθv/2eiσ
zϕv/2 =

[
cos(θv/2) −e−iϕv sin(θv/2)

eiϕv sin(θv/2) cos(θv/2)

]
=

[
un̂v − iσyu∗n̂v

]
.

(39)

This is like fixing θv ∈ (−π, π] in the Villain model. Then Vl can be parametrized as Vl =
Un̂v′e

−iσzalU−1
n̂v

, where e−ial ∈ U(1) is a new dynamical variable not fixed by the constraint
RVln̂v = n̂v′ ; indeed, it manifests in Vlun̂v = e−ialun̂v′ . If we change the standard choice
of Un̂v by a U(1) gauge transformation Un̂veiψvσ

z
, accompanying it by al → al + dψl leaves

Vl unchanged. The apparent singularity in Un̂v at θv = π (due to the ambiguity of ϕv) is
like the apparent but not physically harmful discontinuity between θv = ±π in the Villain
model—Vl has nothing singular, just like γl has nothing discontinuous in the Villain model.

Now we want to show that eial should be naturally interpreted as the Berry connection
across the link, so that the Berry phase eiΦ around a loop is given by

eiΦ := ei
∮
1d a =

∏
l

eial or equivalently e−iσ⃗·n̂vΦ :=
∏
l

Vl (path ordered staring from v) ,

(40)

and the Berry curvature is the Berry phase around a single plaquette, eifp := eidap , i.e.
e−iσ⃗·n̂vfp = DVp. Thus, a 1d worldloop weighted by the Berry phase reads

ZqBerry =

[∏
v′

∫
S2

d2n̂v′

4π

][∏
l′

∫ π

−π

dal′

2π

]
eiqΦ

∏
l

W1(trVl + c.c.) .

for any q ∈ Z. This is actually the simplest non-trivial case of putting a 1d coadjoint orbit
theory [61] onto the lattice. We will discuss more about coadjoint orbit theories on lattice
in subsequent works. For odd q, the SO(3) global symmetry becomes anomalous and is
extended to SU(2), and the interpretation is familiar: the total Berry phase over the sphere
being 2πq means the spin is q/2. 28

To check this Berry connection interpretation, consider the spinon decomposed link
weight (pretending there are no other weights that depend on al for now)

W (n̂v′ · n̂v) ≈
∫ π

−π

dal
2π

W1(trVl + c.c.) (41)

where both W and W1 are positive increasing functions. It is technically useful to express
trVl in terms of the spinons (and the result turns out to be the hopping of spinons):

trVl = trV†
l = eialu†n̂v′un̂v + c.c. . (42)

28To manifestly see the anomaly on lattice, we can introduce a background gauge field Vl ∈ SU(2), which

appears in W1 as trVl → tr(VlV †
l ). If the background is SO(3) ∼= PSU(2), then Vl and −Vl must be

equivalent, and this is realized by an eiπ shift of eial , which leaves ZqBerry invariant only for even q.
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The dominating contribution to W1 comes from eial ≈ u†n̂vun̂v′/|u
†
n̂v
un̂v′ |. When n̂v and n̂v′

are close to each other, we have a ≈ −iu†du, recovering the familiar expression for Berry
connection in continuum. On the other hand, when n̂v and n̂v′ are nearly opposite to each
other, u†n̂v′un̂v → 0 and W1 becomes insensitive to eial . 29

It is better to understand the general situations in geometrical terms.

(43)

Clearly trVl is maximized when the rotation angle in RVl is minimized, and this is when it
is a rotation around the n̂v × n̂v′ axis by an angle of arccos |n̂v · n̂v′|. When the rotation
angle gradually increases from 0 to arccos |n̂v · n̂v′ |, the n̂ is brought along the black solid
curve, which is the shortest geodesic on the sphere. When trVl is not maximized, Vl will
bring the n̂ along some other rotational path with a larger rotation angle, such as the blue
ones. 30 The two black dashed paths are associated with our choice of Un̂, i.e. when the
rotation angle in Un̂ gradually increases from 0 to θ, the n̂ is brought along a dashed path;
the path turns out to be the shortest geodesic for our standard choice of Un̂. A generic (blue)
rotational path associated with Vl, together with the two dashed paths associated with Un̂v
and Un̂v′ , bound a solid angle whose value turns out equal to twice the rotation angle of
U−1
n̂v
V−1
l Un̂v′ , which is 2al by definition. Thus, the value of eial that maximizes trVl and

hence the weight, given by u†n̂vun̂v′/|u
†
n̂v
un̂v′ |, is geometrically given by half of the solid angle

of the area bounded by the black solid geodesic and the two dashed geodesics. The sensitivity
of the weight to changes in al, say characterized by the second derivative, is proportional to
|u†n̂vun̂v′ | =

√
(n̂v · n̂v′ + 1)/2.

One can notice that the value of eial maximizing trVl sees two kinds of singularities, one
is an artifact and the other is meaningful. The first kind of singularity occurs when either of
n̂v, n̂v′ is in the vicinity of −ẑ. In this case, the associated dashed curve and hence the solid
angle changes rapidly. But this is an artifact due to our standard gauge choice for Un̂; in the
gauge invariant Berry phase, which only depends on the actual rotational paths associated
with Vl, the dependence on the dashed paths will cancel out anyways. Such kind of artifact
is unavoidable if we use the Un̂v and eial parametrization of Vl, because SU(2) is a non-trivial
U(1) bundle over S2 (but this is crucial, making it possible to capture π2(S

2)
∼−→ π1(U(1))).

29This is not the minimum of W1, because trVl + c.c. can take negative values for “bad choices” of eial .
30The rotational paths are allowed to have a rotation angle larger than π, and this is desired. In SO(3),

a rotation around some axis m̂ by some amount α ∈ [0, π] is the same as a rotation around −m̂ by 2π − α,
but they correspond to opposite elements in SU(2) (differing by 2al → 2al + 2π), and this is manifested by
the fact that the associated curves are different and can join into a circle of 2π rotation. Thus, the U(1)
d.o.f. in Vl is geometrically seen by the fact that the mid point of the rotational path can be anywhere on
the great circle about which n̂v and n̂v′ are symmetric.
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This is like, in the Villain model, the most probably choice of ml will jump when either of
θv, θ

′
v moves across ±π when the Z gauge is fixed to θv ∈ (−π, π], but γl does not jump. We

would also like to remark that the Berry phase (40) can be defined from Vl directly without
referring to the Un̂v and eial parametrization.

The second kind of singularity occurs when n̂v and n̂v′ are nearly opposite. In this case,
the black solid geodesic between them changes rapidly; as the two points become exactly
opposite, there is no unique choice of the shortest geodesic, hence no unique choice for
the most probable eial . Such singularity occurring in the most probable choice of eial does
not mean any physical observable becomes singular. Rather, it simply means all choices
of rotational paths, parametrized by eial , become equally probable, as we would intuitively
expect when n̂v and n̂v′ become opposite. Indeed, trVl and hence the weight W1 becomes
insensitive to eial as u†n̂v′un̂v → 0. This is like, in the Villain model, when eiθv and eiθv′

become opposite, γl can take values ±π which are equally probable.

Having understood the Berry phase, the skyrmion and hedgehog become easy to under-
stand. The skyrmion configuration is when the configuration of n̂ over a 2d space wraps
around the S2; the Berry curvature thus accumulates to 2π, a Dirac quantized flux of Berry
curvature. From this we can identity the Berry curvature fp := dap + 2πsp as the skyrmion
density, and define a topological theta term in 2d. The hedgehog defect is a skyrmion around
a single cube, and hence counted by the Berry curvature monopole mc = dfc/2π = dsc. If we
use W forbid

3 to forbid the hedgehogs, there will be a dual (d− 3)-form U(1) global symmetry,
and we can explicitly see on the lattice that it has the celebrated mixed anomaly with the
0-form SO(3) global symmetry of the S2. 31

31This anomaly can be seen by introducing an SO(3) background gauge field and finding that any consistent
modification to the definition of the hedgehog breaks the dual U(1). Alternatively, it can be seen by
introducing a dual U(1) background and finding that along its background Dirac string there is a q = 1
Berry phase integral (40), extending the SO(3) global symmetry to SU(2) according to footnote 28. Below
we focus on the first route.
The SO(3) background gauge field appears in W1 as trVl → tr(VlV †

l ), where the background field Vl ∈
SU(2). But since the background should really be SO(3) ∼= PSU(2) rather than SU(2), somehow Vl and
−Vl must be equivalent. In W1 we can absorb this sign ambiguity into eial . But then in W2, the flux fp is
ambiguous by π. The resolution is to introduce a 2-form Z2 background Sp ∈ Z mod 2 that absorbs this
ambiguity, so that the modified flux fp−πSp is unambiguous (note that the 2Z ambiguity in Sp needs to be
absorbed by sp) and can be used in W2. What has happened is that the 2-form Z2 background Sp effectively
reduces the 1-form SU(2) background Vl to PSU(2) ∼= SO(3), just like in (33) for dynamical gauge fields.
Interestingly, the skyrmion number

∮
2d
(f − πS)/2π becomes half-quantized. This is true even if we have

demanded Sp to be Z2 closed, i.e. dSc = 0 mod 2, because the
∮
2d

can be around a non-contractible 2d
surface. In fact,

∮
2d
S/2 :=

∑
p Sp/2 mod 1 characterizes the second Stiefel-Whitney class of the SO(3)

background. The flux fp − πSp is no longer a U(1) gauge flux, but a spin-c gauge flux associated with the
SO(3) background. Therefore in 2d we can have a non-trivial Z2 topological theta term coupled to this
half-quantized spin-c flux, realizing the celebrated Haldane quantum spin chain phase [73,74].
In W3, dfc/2π = dsc is no longer a good hedgehog, since a 2Z ambiguity in Sp must be absorbed by

sp. The unambiguous hedgehog defect should become mc := d(f − πS)c/2π = dsc − dSc/2; this is still an
integer if we have demanded dSc = 0 mod 2. In fact, it is better to describe the condition dSc = 0 mod 2
along the lines of footnote 26, i.e. to introduce a 2Hc ∈ 2Z background to form 2Z → Z → Z2, such
that the combination dSc − 2Hc ∈ Z is unambiguous and is enforced to be 0 everywhere. Then the good
hedgehog is mc := dsc − Hc. While Hc = dSc/2 shows Hc is closed, it might not be exact in Z since in
general Sp/2 /∈ Z; this characterizes the third integral Stiefel-Whitney class of the SO(3) background. Note
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It is straightforward to generalize this construction to CPN nlσm. The spinon uv will
become an (N + 1)-component complex unit vector taking value in S2(N+1)−1, and in a
S2(N+1)−1 nlσm the link is weighted by u†v′uv + c.c.. Gauging the diagonal U(1) phase global
symmetry leads to the spinon-decomposed CPN nlσm, and the U(1) gauge field is then
Villainized. Generalizations can also be made to capture the π2 of spaces beyond CPN .

A more interesting direction of generalization is to consider RP 2 ∼= S2/Z2. In Section
2.3 we have capture its π1, and now we can capture its π2 inherited from the S2. The
spinon decomposition becomes Z2 ⋉ U(1) → SU(2) → RP 2, where the gauge group is no
longer abelian. Upon further Villainizing the U(1) part, the π1 ∼= Z2 will act on the π2 ∼= Z
by flipping the sign, leading to a non-trivial 2-group structure [75]. We will discuss such
interplay between different πn’s in subsequent works.

For now, we want to return to and think more closely about the geometrical intuition
behind the CP 1 representation, and in particular its relation to continuum nlσm. Under-
standing this will turn out important for motivating our main constructions in this work.

Recall in the Villain model in Section 2.1, we motivated the introduction of γl ∈ R by
thinking about the link l as being embedded in the continuum and the γl representing the
length a path in S1 emanating from θv and gradually reaching some θv′ . Now, the paths in
S2 emanating from n̂v can take all kinds of shapes and form an infinite dimensional space,
and our task is to understand why it is sufficient for our purpose to “truncate away the
unimportant details of how a generic path wiggles” and only consider the rotational paths
parametrized by a finite dimensional space SU(2).

The intuitive explanation is the following. As we have seen above, what really matters
for the defining the topological operators is the Berry phase around a closed loop, given by
half of the solid angle bounded; the skyrmion density and hedgehog defect are defined from
the Berry curvature. Thus, the wiggling details of a path in S2 are indeed unimportant, and
we can represent many different wiggling paths by a same representative rotational path, as
long as the solid angle bounded between the original wiggling path and the representative
rotational path is 0, for example:

(44)

that demanding the third integral Stiefel-Whitney class to vanish is a non-local demand, in contrast to the
previous closedness condition dSc = 0 mod 2 which is local. When the third integral Stiefel-Whitney class is
indeed non-trivial, if we still use W forbid

3 for W3, the dual U(1) global symmetry is explicitly broken, leading
to a vanishing partition function, because there is no solution of sp that can possibly make mc = dsc −Hc

vanish everywhere. This is the familiar fact that a spin-c gauge field cannot be free from monopole if the
associated third integral Stiefel-Whitney class is non-trivial.
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Topologically, the space of all paths interpolating from n̂v to n̂v′ , though infinite dimensional,
can be easily seen to have a π1 ∼= Z, if we think of a path as a rubber band and wrap it
around the sphere. When effectively reduced to the rotational paths from n̂v to n̂v′ , the
space becomes U(1), which keeps the π1 topological information.

This intuitive explanation can be casted into mathematical terms, allowing us to relate
the algebraic motivation (37) and the geometrical intuition. Let P∗X and Ω∗X be the pointed
path space and pointed loop space of X respectively, i.e. the spaces of (parameterized) paths
and loops starting from a given point. The space of all paths emanating from a given starting
point is by definition P∗X, while the space of all paths given both the starting and ending
point is homeomorphic to Ω∗X, where the loop is formed by returning from the ending point
to the starting point via some standard choice of path. Then obviously, for the Villain model,

P∗S
1 length−−−−→ R ∋ γl, Ω∗S

1 length−−−−→ 2πZ ∋ 2πml (45)

by taking the length of the image of the path. Hence the Villainization fibre bundle 2πZ→
R → S1 can be naturally recognized as Ω∗S

1 → P∗S
1 → S1 after taking the length or

ignoring the reparametrization.

For S2, we not only need to think about the continuum paths traced out by the links, but
also the continuum surfaces—i.e. paths between paths—swept out by the plaquettes. The
intuitive discussion above suggests that the important information on a continuum surface
swept out by a plaquette is its solid angle, i.e. the integral of the continuum Berry curvature
over the surface. This means the continuum field is reduced to the lattice field via

Ω2
∗S

2 → P∗Ω∗S
2

∫
2d Berry
−−−−−−→ 2πZ→ R

↓ ↓
Ω∗S

2 → P∗S
2 U(1)→ SU(2)
↓ ↓
S2 S2 .

(46)

The space of (topologically trivial) 2d surfaces emanating from a given path between two
given points is homeomorphic to P∗Ω∗S

2; an element of it, geometrically a 2d surface ((topo-
logically trivial and with open boundary) on S2, is thought of as being swept out by a pla-
quette embedded in the continuum. Integrating such a surface with the continuum Berry
curvature results in a value in R; in particular Ω2S2, the space of closed 2d surface on S2,
indeed maps to 2πZ, the quantized total Berry phase determined by the winding number
around the sphere. This explains the map at the top row, which are fields on the plaquettes.
Induced from that, a loop on S2, i.e. an element of Ω∗S

2, formed by an arbitrary path and
a standard choice of path connecting two given points, is then mapped to the U(1) Berry
phase bounded by these two paths (the 2πZ part is not determined because which side is
the bounding surface is not chosen); the dependence on the standard choice of path leads to
the gauge transformation of the Berry connection. Consequently, an arbitrary path from a
given starting point has an induced map to an SU(2) rotational path in the way pictured in
(44); we can say SU(2) ∼= P∗S

2×U(1)/Berry, where the latter space means two elements of
P∗S

2 × U(1) are considered equivalent if the the two paths in P∗S
2 share the same starting
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and ending points, and moreover they bound a Berry phase that is equal to the difference
in the two U(1) phases.

In our main problem later, we will no long have the familiar language of Lie groups and
fibre bundles, but such a picture of “truncating away the unimportant details” from the
infinite dimensional space of continuum fields is what we need in order to understand how
to think about and work with the more flexible yet unfamiliar categorical structures.

3 Difficulty beyond the Known Examples

The examples reviewed in Section 2 have all been worked out before. Yet what we
uncovered through our review is the relation between the examples. They are not scattered;
rather, they are organized by the same rationale, capable of capturing the π1 and π2 of target
spaces (or gauge groups), and moreover the rationale makes connection to the continuum.

With this, we can now understand why similar efforts trying to capture πn≥3 (such as
skyrmion in pion nlσm and instanton in Yang-Mills) onto the lattice have not been successful.
It is not because of bad luck. It will become clear in this section that it is mathematically
impossible to achieve this goal within the familiar languages of Lie groups and fibre bundles.
More flexible mathematical structures become necessary. These structures are not so easy
to come up with by regular attempts; or even if one comes up with them by good physical
intuition, the structures might seem “not mathematically nice enough” to be convincing. In
fact, more systematic mathematical considerations will naturally lead to these structures,
which will end up being physically intuitive.

Let us now think about S3 nlσm, which can describe the pion vacua. The skyrmion
configuration is now over the 3d space, characterized by π3(S

3) ∼= Z, and represents the
baryons over the pion vacua [76]. The hedgehog defect in 4d represents the non-conservation
of baryons, which we might want to be able to forbid on the lattice. Over a 2d space, we can
also define a U(1) phase, the Wess-Zumino-Witten (WZW) term, just like the Berry phase
in S2 nlσm. Of course, S3 also has higher πn’s (e.g. the 4d WZW term is due to π5), but in
this work we will only focus on the physics due to π3, the smallest non-trivial πn.

In the continuum, for a field g(x) ∈ SU(N) (with |SU(2)| ∼= S3, here |G| means the
manifold of a Lie group G), the WZW curvature, a 3-form analogue of the Berry curvature,
is defined as tr[(g−1dg)3]/6(2π)2, which integrates to an integer—the skyrmion number—
over a closed 3d manifold. The WZW curvature can be written as the exterior derivative of
the WZW curving, a 2-form analogue of the Berry connection, which will not be globally
well-defined if the skyrmion number is non-zero. Integrating the WZW curving over a closed
2d manifold yields the WZW term. We will review some technical details at the beginning
of Section 4.

We show below that it is mathematically impossible to naturally define these π3 related
topological operators in S3 nlσm on the lattice, if we use the usual Lie group or fibre bundle
approaches. Of course, our original motivating problem is SU(N) lattice Yang-Mills theory,
not |SU(N)| lattice nlσm (with |SU(2)| ∼= S3 the pion effective theory). The relation
between the two is like the U(1) gauge theory in Section 2.2 versus the S1 nlσm in Section
2.1. They are, roughly speaking, related by “putting everything in one higher dimension”.
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Thus, if we have demonstrated the said impossibility for S3 lattice nlσm, the same must also
be true for SU(N) lattice Yang-Mills.

Before our full analysis of the problem, let us first discuss the role played by global
symmetry. We are bringing this up because in the S1 nlσm, the Villainization involved
elevating S1 to R, the universal cover of the U(1) global symmetry, and in S2 nlσm, the
spinon decomposition involved elevating S2 to SU(2), the universal cover of the SO(3)
global symmetry. This might generate a misleading impression that looking at (the universal
cover of) the global symmetry is the key. But this is not true. For |SU(N)| nlσm (with
|SU(2)| ∼= S3), denoting a field by g, the continuous part of the global symmetry is SU(N)L×
SU(N)R/Z(SU(N)) ∼= PSU(N)C × SU(N)′R, manifested as

g → hLgh
−1
R = hCgh

−1
C h′−1

R , (47)

(hL, hR) ∼ (hLz, hRz), i.e. (hC , h
′
R) ∼ (hCz, h

′
R) for any g ∈ SU(N), z ∈ Z(SU(N)) ,

and the universal cover of it is SU(N)L×SU(N)R. But now we see that SU(N)→ SU(N)×
SU(N)→ SU(N) is a trivial bundle, unlike in the examples of S1 and S2 before ((15) and
(37)). It does not serve the desired purpose of “transmitting the desired π3 to the π2 in the
layer above”.

Now we are ready to see the problem in full. Based on the rationale of how we captured
π1 and π2 before, it seems in order to capture π3 ∼= Z we naively need some sequence of fibre
bundles of the form

2πZ→ R
↓

U(1)→ ???
↓
?? → ?

↓
S3 .

(48)

Moreover, we can even have an interpretation of what the top layers represent: The 2πZ on
the cubes sum over to the skyrmion number, the R on a cube represent the WZW curvature
on lattice, and the U(1) on a plaquette the WZW curving on the lattice; these are all desired.
It seems all we need is to fill out the question marks. But this is impossible. Look at the
“??” slot. Topologically what we want is π3(S

3)
∼−→ π2(“??”)

∼−→ π1(U(1))
∼−→ π0(Z). So in

particular we want π2(“??”) ∼= Z. On the other hand, it is a link variable, so we traditionally
want it to be a group-valued variable, so that the variable can be composed when we compose
consecutive links. The contradiction is, finite dimensional Lie groups always have trivial π2,
so this rationale fails.

What if we relax the requirement that the “??” slot should be a group, and hope that
we somehow can still make sense of it as a link variable? The familiar examples of finite
dimensional fibre bundles in physics are mostly principal or associated bundles, i.e. the
transition functions between the fibres are described by Lie group actions, so we still en-
counter the same failure. In fact, after knowing our final resolution in Section 5.4 and
looking back, it can be shown [34] at full generality that any finite dimensional fibre cannot
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serve the purpose of transmitting the topological information from the layer below to above,
π3(S

3)
∼−→ π2(“??”)

∼−→ π1(U(1)).

Obviously the same failure occurs if we want to use this rationale to capture on the lattice
any non-trivial πn≥3 of general spaces.

Now, if we still want to resolve our problem, we are left with two possibilities:

1. To work with infinite dimensional spaces.

2. To work with more flexible, finite dimensional structures beyond groups and fibre
bundles.

Our very reason to be interested in lattice theories is the finite dimensionality of the local
d.o.f. in the path integral, so of course our final resolution will take the second route. How-
ever, it is important make connection to the first route, because the first route just points
to the continuum theory itself.

Indeed, if we think of the lattice as being embedded in the continuum, the continuum field
over the vertices, links, plaquettes and cubes organize into a fibre bundle sequence structure
similar to that on the left panel of (46):

Ω3
∗S

3 → P∗Ω
2
∗S

3

↓
Ω2

∗S
3 → P∗Ω∗S

3

↓
Ω∗S

3 → P∗S
3

↓
S3

(49)

where every layer except for the bottom is infinite dimensional, as is expected for a continuum
theory. 32 At the top layer, similar to (46), we indeed can map a 3d volume in S3 (the image of
the continuum field over the region of a lattice cube) to R by integrating over the continuum
WZW curvature, leading to

Ω3
∗S

3 → P∗Ω
2
∗S

3

∫
3dWZW
−−−−−−→ 2πZ→ R

↓ ↓
Ω2

∗S
3 U(1)

(50)

where the right-hand-side reproduces the desired structure in (48). The problem is, unlike in
(46), this is not sufficient to reduce the P∗Ω∗S

3 slot to anything finite dimensional, because
this slot is expected to become a U(1) bundle over Ω∗S

3, but the base Ω∗S
3 is still infinite

dimensional. So more has to be done to truncate away the unimportant details there in
order to obtain something finite dimensional. More exactly, after the previous integral with

32Along two consecutive links, the two paths in S3 compose by concatenation in the obvious way—some
reparametrization of the new path is needed but that does not affect anything to be discussed below. For
more systematically treatment, see Section 5.
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continuum WZW, the remaining fibre bundle sequence structure in the lower layers is

U(1)→ P∗Ω∗S3×U(1)
WZW

↓
Ω∗S

3 → P∗S
3

↓
S3

(51)

where P∗Ω∗S
3 × U(1)/WZW means, two elements in P∗Ω∗S

3 × U(1) are considered equiv-
alent, if the two surfaces in P∗Ω∗S

3 share the same boundary, and moreover they to-
gether bound a volume whose WZW phase is equal to the difference between the two U(1)
phases [34, 35]. Our task is to recast this structure into a perspective that is more general
than groups and fibre bundles—the perspective of category theory, and find a topologically
equivalent but finite dimensional representative.

There is another idea, less geometrical and more algebraical, on what kind of infinite
dimensional spaces we may want to use. In (15), R is the universal (i.e. 1-connected) cover
of S1, and in (37), SU(2) is the 2-connected cover of S2. 33 Then in (48) we might want the
“?” slot to be the 3-connected cover over S3. But 3-connected covers are in general infinite
dimensional. Then the task would be to find finite dimensional structure that effectively
plays the role of a 3-connected cover.

Naturally, the geometrical/continuum idea and the algebraic idea come to confluence. In
fact, the structure (51) already plays the effective role of a 3-connected cover [34, 35] in the
category theory sense. So no matter which idea we take, we are led to the task of finding a
finite dimensional equivalence of this structure. Thus, the task has now become a well-posed
mathematical problem—and whose answer turns out to be already known [32] in terms of
multiplicative bundle gerbe [33]. The task of finding more general topological operators for
more general continuous-valued lattice fields can be turned into well-posed mathematical
problems in the same manner, and such relevance to physics provides a good motivation to
study these more general mathematical problems.

4 Main Construction

In this section we will introduce the construction that allows us to define the 2d WZW
term (not the 4d one) and 3d skyrmion in S3 lattice nlσm, as well as the 3d CS term
and 4d instanton in SU(N) lattice Yang-Mills—which all originate from π3 ∼= Z. The
derivation process and the resulting structure lies in higher category theory, as mentioned
before. However, to explicitly present the resulting structure, no knowledge of category
theory is required—in the end, structures are described by a set of rules; the familiar Lie
groups are also described by a set of rules, except the “rules of the game” we need now
are more flexible than those for a group; anyways, these rules are all that is needed for a
computer to carry out Monte-Carlo numerics. Therefore, in this section, we will first state

33m-connected cover means a space whose πm>n are the same as the original given space while πm≤n
vanish. m-connected covers over a given space form the Whitehead tower.
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these rules and explain the physical intuition behind, while the derivation and the systematic
understanding in terms of higher category theory will be deferred to Sections 5 and 6.

We have explained in Section 3 that any fibre bundle covering S3 or more generally
|SU(N)| cannot fulfill our goal. So let us now motivate what kind of covering, if not fibre
bundle, we might need. Continuum theory provides a good hint. Consider an S3 or more
generally |SU(N)| nlσm in the continuum, parametrized by g(x) ∈ SU(N). How do we show
the continuum integral of the WZW curvature

∮
3d
tr[(−ig−1dg)3]/6(2π)2 is an integer, which

can be interpreted as the skyrmion number? We can first diagonalize g = UeiλU−1, and find

1

6
tr[(g−1dg)3] = d

(
tr[λ(U−1dU)2]− 1

2
tr[eiλ(U−1dU)e−iλ(U−1dU)]

)
= d

(
tr[dλ(U−1dU)]− 1

2
tr[eiλ(U−1dU)e−iλ(U−1dU)]

)
. (52)

The parenthesis is the WZW curving (whose integral over a closed 2d surface gives the WZW
term), and the two lines correspond to two different gauge choices. Note that neither λ nor U
is uniquely defined, since g is invariant under λ→ λ+2πκ for any Z-valued diagonal matrix
κ, and under U → UV for any V that commutes with eiλ, which means V must be diagonal
unless g has eigenvalue degeneracy. 34 The WZW curving is in general not everywhere
continuous, just like the Berry connection. If we cut the closed 3d space into many patches,
labeled by α, β. . . ., at the 2d boundary between two patches α and β, the transformations
above are allowed, constituting the transition functions καβ and Vαβ for the WZW curving.
Substituting into the two gauge choices of the WZW curving above, we have respectively∮

3d

i

6(2π)2
tr[(g−1dg)3] =

∑
patches α<β

∫
2d between α,β

tr

[
καβ

i(U−1
β dUβ)2

2π

]

=
∑

patches α<β

∫
2d between α,β

tr

[
dλα
2π

iV−1
αβ dVαβ
2π

]
. (53)

From either expression we can see the result is an integer: In the first line, recall κ is
a diagonal integer matrix, so after projecting i(U−1dU)2 to the diagonal elements by κ,
the integrand is some linear sum of 2d Berry curvatures with integer coefficients, hence
integrating to an integer; in the second line, each diagonal component of dλ/2π picks up
some winding number (recall λ will well-defined mod 2π) upon integration, and so does each
diagonal component of iV−1dV/2π, hence also leading to an integer. More explicitly, further
using Stoke’s theorem, either form above reduces to∮

3d

i

6(2π)2
tr[(g−1dg)3] =

∑
patches α<β<γ

∫
1d between α,β,γ

tr

[
καβ

iV−1
βγ dVβγ
2π

]
(54)

=
∑

patches α<β<γ<δ

tr
[
καβ nβγδ

]
0d between α,β,γ,δ

∈ Z (55)

34g is also invariant under eiλ → σ−1eiλσ, U → Uσ where σ ∈ SN permutes the eigenvalues (the Weyl
group). This will not come up in the calculation here.
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where nβγδ := i(lnVdiag
βγ − lnVdiag

βδ + Vdiag
γδ )/2π is an integer diagonal matrix once we fix the

logarithm branch cut convention. 35 36 In the same manner, we can also show that for a
continuum Yang-Mills theory, the integral

∮
4d
trf 2/2(2π)2 gives an integer. The integrand

is the exterior derivative of the CS 3-form, and at the 3d patch boundaries the CS 3-forms
differ by the WZW curvature (plus some extra term, see e.g. [7]), and then the computation
essentially reduces to that in the above.

Through this computation in the continuum, we can spot the appearance of some covering
that is not a fibre bundle. The diagonalization of g that we performed in order to find a
useful explicit presentation of the WZW curving corresponds to the Weyl map

T × SU(N)/T → SU(N) (56)

where T ∼= (S1)N−1 is the maximal torus parameterized by eiλ, and SU(N)/T is parameter-
ized by U with the diagonal V action mod out. But the Weyl map is not a fibre bundle over
SU(N), because when two eigenvalues in eiλ happen to be degenerate, the space of V that
commutes with eiλ is enlarged to include non-diagonal matrices, but only the space of diag-
onal ones is being mod out. Thus the Weyl map violates the local triviality condition for a
fibre bundle. When we express the WZW curving (52) by λ and U , we are further extending
the covering into RN−1×SU(N)→ T ×SU(N)/T → SU(N), but since the diagonalization
/ Weyl map is already not a fibre bundle, nor is it after this further extension.

While diagonalizing SU(N) does not lead to a fibre bundle, diagonalization is familiar
enough to make sense of and work with. This is indeed how we will construct our non-
fibre-bundle finite dimensional structure to resolve our problem on the lattice. 37 We will
first present the construction for S3 lattice nlσm, which can be generalized to |SU(N)|
nlσm. Next, similar to how we went from S1 nlσm in Section 2.1 to U(1) gauge theory in
Section 2.2, roughly speaking “putting everything in one higher dimension” will lead to the
construction for SU(N) lattice Yang-Mills. How to actually carry out this step is not as
obvious as in the U(1) case, and interestingly, if we carry out this step in the “literal” way,
a troublesome issue that requires solving some generalized version of Yang-Baxter equation
will come up. 38 Fortunately, if we carry out this step in a way that better appeals to

35In this derivation we have been consecutively using Stoke’s theorem to reduce quantities onto the inter-
sections between more and more patches. Mathematically, such a structure is known as a Deligne-Beilinson
double cochain in the context of Deligne-Beilinson double cohomology (see e.g. [33]), where one direction of
the cohomology is the (de Rham) d, and the other direction is the (Čech) transition between patches. For
U(1) gauge theory such a description is presented in details in e.g. [51]. Here, instead of U(1) gauge connec-
tion 1-form, in |SU(N)| nlσm we have U(1)-valued WZW curving 2-form, and later in SU(N) Yang-Mills
theory we have U(1)-valued non-abelian CS 3-form, but the idea is similar.

One might also note the resemblance between Deligne-Beilinson double cohomology and BRST double
cohomology (in particular, the structure we have described resembles the BRST descent equations). Their
correspondence is via the notion of ananatural isomorphism to be introduced in Section 5.2.

36Just like the Berry connection is widely used in studying the topological and geometrical effects in the
momentum space / Brillouin zone (as opposed to the real space), the WZW curving is also useful—though
less well-known—in the same context, and is especially necessary when the system is interacting [77].

37As we cut the continuum spacetime into fine enough patches, the resulting Čech nerve can be viewed as
a lattice, where each patch is seen as a lattice vertex. So the fact that diagonalization is useful on continuum
patches indeed suggests that it is useful on the lattice as well.

38It might seem surprising that some kind of Yang-Baxter equation is involved in Yang-Mills theory. In
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the relation with the continuum theory—which will involve some techniques similar to the
traditional work [7] but under a shifted mindset—then the generalized Yang-Baxter equation
issue will be automatically resolved. In fact, our construction recovers [7] if we assume the
gauge field strength is weak (which [7] requires) and take the saddle point approximation.

4.1 S3 non-linear sigma model: Wess-Zumino-Witten, skyrmion
and hedgehog

In the traditional S3 nlσm, the dynamical S3 d.o.f. at each vertex is parametrized by
gv ∈ SU(2) ∼= S3. Across each link there is a link weight W (trDgl+ c.c.) where Dgl=⟨v′v⟩ :=
gv′g

−1
v ∈ SU(2), andW is a positive, increasing function. Note that trDgl is indeed invariant

under the SO(4) ∼= SU(2)L × SU(2)R/Z2 global symmetry (47) as (DhL)l = 1 = (DhR)l.
Now we want to topologically refine the traditional theory, so that we can naturally define the
topological operators such as WZW term and skyrmion. We will now describe the structure
and the desired properties of the path integral weights, i.e. “the rules of the game”, using
geometrical intuitions, without referring to the formal mathematics behind. 39

The hint from continuum, which we discussed above, suggests that we should perform
diagonalization in order to find some useful cover over SU(2). In the continuum, e.g. in
getting (52), we diagonalized g(x) itself. On the lattice, it turns out more natural to diag-
onalize Dgl ∈ SU(2) instead of gv ∈ S3. It is desired that whatever we do should mani-
fest the SO(4) ∼= SU(2)L × SU(2)R/Z2 global symmetry (47). Under this transformation,
Dgl → hLDglh

−1
L , the eigenvalues remain unchanged. This strongly suggests it is good

to consider the diagonalization of Dgl rather than the diagonalization of gv; in particular,
diagonalizing gv and gv′ does not lead to a diagonalization of Dgl = gv′g

−1
v . 40

On each lattice link l, we will construct a non-fibre-bundle cover over SU(2) ∋ Dgl. First,
let us consider covering SU(2) by two patches, SU(2)\{−1} and SU(2)\{+1}, although this
is slightly different from what we will use in the end. The disjoint union of the two patches,
SU(2)\{−1} ⊔ SU(2)\{+1}, which covers SU(2), is indeed not a fibre bundle over SU(2).
To understand why we choose patches in such way, let us diagonalize Dgl =: Uleiλlσ

zU−1
l .

(Note the difference with the convention in (52): there we are diagonalizating g while here
Dgl, moreover there λ is a diagonal matrix while here a number, the coefficient of σz.) The
first patch contains those Dgl elements such that λl ∈ [0, π), while the second patch contains
those Dgl elements such that λl ∈ (0, π]. 41 Thus:

Sections 5.3 and 5.4 we will explain why the appearance of Yang-Baxter equation is completely natural when
we pass from a nlσm to a gauge theory.

39In mathematical terms, what we will describe is a concrete construction of a bundle gerbe over SU(N),
following [78] but with some necessary technical modifications (see footnote 43), then turned multiplicative
[33] using some geometrical intuition which gives a concrete implementation of the procedure in [79] yet
again with some necessary extra technical modifications (see footnote 45). See Sections 5 and 6 for formal
discussions.

40That fact that gv ∈ S3 is not naturally a group element while Dgl ∈ SU(2) is naturally a group element
already suggests it is better to diagonalize Dgl. In the continuum, there is no nice counterpart of Dgl, since
g−1dg is only a Lie algebra element, not a Lie group element.

41λ ∈ (−π, 0) is equivalent to λ ∈ (0, π) upon exchanging the two eigenvalues.
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• The patches are defined using only the eigenvalues of Dgl, ensuring the patches to
remain invariant under the SO(4) ∼= SU(2)L × SU(2)R/Z2 transformation (47) which
transformsDgl by conjugation. In other words, if a patch contains some group element,
the patch must contain the entire conjugacy class of that group element.

• The special points ±1 are where the eigenvalues of Dgl become degenerate. These are
indeed special loci in the diagonalization, because the ambiguity Ul → UlVl enhances
from U(1) to SU(2) at these loci. It is anticipated that these special loci require special
treatments in what we will do later.

In our actual construction, the link d.o.f. will take value in a non-fibre-bundle cover over
SU(2) ∋ Dgl given by Y := (SU(2)\{−1}) ⊔ (SU(2)\{+1} × S2), and what this extra S2

does on top of the second patch will be explained later. Let us denote an element yl ∈ Y
by yl = (Dgl,ml, n̂l), where ml = + means yl belongs to the SU(2)\{−1} patch (so ml = +
implies Dgl ̸= −1), ml = − means yl belongs to the SU(2)\{+1} patch (so ml = − implies
Dgl ̸= +1), and n̂l ∈ S2 is only going to be meaningful when ml = − (i.e. when ml = +, n̂l
will not appear anywhere in the theory and can be ignored).

Note that while ml is a two-valued label, it by no means forms a Z2 group, as there is
no sensible group composition. And of course, the whole space Y itself is not a group and
cannot compose, either. We will see why this is not a problem.

In the lattice path integral, we will replace the traditional link weight W (trDgl + c.c.)
(note trDgl + c.c. = 4 cosλl) by some link weight W1(λl,ml) over Y , with ml = ± summed
over (pretending there are no other weights that depend on ml for now):

W (trDgl + c.c.) ≈
∑
ml=±

W1(λl,ml) . (57)

(At this point there is no dependence on n̂l, so
∫
d2n̂l/4π yields a trivial factor 1.) This

is similar in idea to (7) and (41), but a new aspect is worth emphasizing: W1 is not only
smooth over Y , but moreover, each patch of Y now has an open boundary, andW1 smoothly
vanishes towards the open boundaries of Y (indicated by the hollow circles above), ensuring
the smoothness in λl after summing over ml.

We shall develop some intuition for what yl = (Dgl,ml, n̂l) means geometrically. If we
think of the lattice link as a path embedded in the continuum, then along it the continuum
field g(x) traces out a path in S3 interpolating from gv to gv′ . The infinite dimensional
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details of how the path wiggles are unimportant, while the useful homotopy information is
to be kept in yl. Clearly the Dgl = gv′g

−1
v part of yl indicates the relative position of the

starting and the ending point. As long as Dgl ̸= −1, there is a unique shortest geodesic from
gv to gv′ , given by {Uleiλ

′σzU−1
l gv|0 ≤ λ′ ≤ λl}. Then ml = + represents the contributions

from all those continuum paths that are “close enough” to the geodesic. On the other hand
ml = − represents the contributions from all other continuum paths. Schematically:

How to define “close enough” in detail is also unimportant, but when Dgl → −1, fewer and
fewer paths are considered “close enough” till none is (indeed, when Dgl = −1 there is no
unique shortest geodesic), and when Dgl → +1, more and more paths are considered “close
enough” till all paths are. This explains the qualitative behavior of W1(λl,ml) illustrated in
(57).

It is helpful for both intuitive and practical purposes to pick a representative path for a
given yl ∈ Y . Clearly, for the ml = + patch, the most natural choice of the representative
path for yl = (Dgl,+) is the shortest geodesic, {Uleiλ

′σzU−1
l gv|0 ≤ λ′ ≤ λl}. On the other

hand, a good choice of the representative path for the ml = − patch is less obvious, and
that is why we will need the n̂l ∈ S2 d.o.f.: For yl = (Dgl,−, n̂l), the choice of representative
path is to first go from gv to −gv via {eiλ′′n̂l·σ⃗gv|0 ≤ λ′′ ≤ π}, and then go from −gv to gv′
via the shortest geodesic {Uleiλ

′σzU−1
l gv|π ≥ λ′ ≥ λl}. 42 We illustrate the representative

paths (one with ml = +, one with ml = − and some choice of n̂l) by picturing SU(2) ∋ Dgl
as a 3d ball centered at 1 and with radial coordinate λ, so that whole the surface at λ = π
is identified to a single point −1:

. (58)

From this interpretation of n̂l, we can see that under the SO(4) global symmetry transfor-
mation (47), not only does Ul → hLUl, but also n̂l → RhLn̂l, i.e. n̂l · σ⃗ → hL(n̂l · σ⃗)h−1

L , so

42Upon reversing the orientation of the link (i.e. exchanging gv and gv′), the representative path for
ml = + only reverses the running direction but the trajectory of the path remains the same. On the other
hand, the trajectory of the representative path for ml = − changes. This is not a major issue: we can either
fix some ordering of the vertices and hence the orientations of the links, or introduce an extra two-valued
random variable to decide which orientation of the link is to be used when choosing the representative path.
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that the representative path transforms covariantly. 43

After introducing the link variable yl ∈ Y and the link weight W1, we now move on to
the plaquette. In the known examples in Section 2, the link variables always form a group,
whose group composition is useful on the plaquette. Now we want to emphasize it is not
necessary for the link variables to be composable—indeed, for our construction now Y is not
composable (even if we have chosen some representative paths, the space of these paths is not
closed under concatenation). We want to show the plaquette variable can still be well-defined
as long as we have specified the link variables around, without being able to compose them.
From the discussions in Section 3, it is clear that the new d.o.f. on the plaquette should be
U(1)-valued, effectively representing the WZW curving over the plaquette.

In the continuum, the WZW curving (52) is in general not continuously defined every-
where (just like the Berry connection), and correspondingly, on the lattice, the WZW curving
U(1) d.o.f. on the plaquette forms a non-trivial U(1) bundle over the space of the vertex and
link variables around the plaquette (just like in Section 2.4, the Berry connection U(1) d.o.f.
on the link forms a non-trivial U(1) bundle over the space of the vertex d.o.f. at the ends
of the link). We will first describe the non-trivial U(1) bundle topologically, which might
appear a little abstract. Then we will describe the properties that the plaquette weight W2

should have, in order to realize such non-trivial U(1) bundle in a manageable and intuitive
manner, and to prescribe the desired dynamical properties.

Consider a plaquette with vertex and link variables labelled as the following.

The WZW curving U(1) d.o.f. takes value in a U(1) bundle over the space of (y21, y32, y43, y14)
(note this space is not Y 4, because the Dgl parts are not independent, as they have to satisfy
DDgp = 1). Since the ml’s are discrete, this can be equivalently stated as that, for each
given combination of the ml’s, the WZW curving d.o.f. takes value in a U(1) bundle over
the space of the allowed gv’s (and n̂l’s, if some ml = −).

• First, consider the case where all four ml’s take + (so that the n̂l’s are ignored). Then
the allowed gv’s do not form (S3)4, but a space with π2 ∼= Z formed by carving out
some parts from (S3)4: First, g1 is chosen freely from S3 and nothing should depend on
this first choice due to the SO(4) global symmetry—if we want we can freely set g1 to 1

43Our introduction of n̂l ∈ S2 is the technical deviation from the bundle gerbe introduced in [78], which
used the simpler Y = (SU(2)\{−1}) ⊔ (SU(2)\{+1}). This is because relating an element in Y to a
continuum path is not an issue under consideration in [78]. This issue is under consideration (though not
very transparently) in the later work [79], but there it suffices to fix, say, n̂l = x̂. Here, we do not want to fix
any choice that breaks the SO(4) global symmetry, so we let n̂l take all possible directions. (Whether this
extra S2 ∋ n̂l can be viewed as some reminiscent of the more general bundle gerbe construction introduced
in [80,81] should be further investigated.)
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using the symmetry. Next, g2 is chosen from S3\{−g1} ∼= D3 since m21 = +. Likewise
g3 is chosen from S3\{−g2} ∼= D3 since m32 = +. Finally, and most non-trivially, g4
is to be chose from S3\{−g1,−g3} since m43 = + = m14. Generically g3 ̸= g1, and in
such generic case the space S3\{−g1,−g3} ∋ g4 is homotopic to S2, which has π2 ∼= Z,
and supports a non-trivial U(1) bundle homotopic to U(1) → S3 → S2 for the WZW
curving (note the S3 here is not the original S3 in which g lives). Actually, the presence
of the g3 = g1 spot will not alter the fact that the space formed by the allowed gv’s has
π2 ∼= Z, and the U(1) bundle can be extended to this spot. 44

• Now, say we change from m14 = + to m14 = −, keeping other ml = +. Then the
carved-out part has changed, because the previous condition g4 ∈ S3\{−g1,−g3} now
becomes g4 ∈ S3\{+g1,−g3}. This space of allowed g4, though changed, again has
π2 ∼= Z. Moreover, there is now the n̂14 ∈ S2 d.o.f. which also has π2 ∼= Z. The
WZW curving U(1) bundle is determined by the following conditions (the reasoning
behind these conditions will become intuitive when we explain the plaquette weight
(59)): Generically g3 ̸= −g1, and in such generic case, for any fixed n̂14, the space
S3\{+g1,−g3} ∋ g4 is homotopic to S2, over which the WZW curving U(1) d.o.f.
forms a non-trivial U(1) bundle homotopic to U(1) → S3 → S2; on the other hand,
for any fixed g4, we have the space S

2 ∋ n̂14, over which the WZW curving U(1) d.o.f.
also forms a non-trivial U(1) bundle U(1) → S3 → S2. The bundle can be extended
to the g3 = −g1 spot.

• Similarly for other combinations of the ml’s.

(Apparently, the same idea applies when the plaquette is not a square but has other numbers
of links around.)

It seems these U(1) bundles over such bizarre base spaces are extremely difficult to
parametrize, let alone to prescribe a reasonable weight W2 over them. But the intuitive
relation to the continuum makes the task much more manageable than it might seem. It is
useful to borrow the ideas from the discussions below (41) and (42). We denote the WZW
curving d.o.f. by eiWp ∈ U(1). We let the plaquette weight take the form

W2(e
iWpµ∗

gv∈∂p,ml∈∂p,n̂l∈∂p
+ c.c.) (59)

where W2 is positive and increasing. Here the function µ∗ plays the role of u†n̂v′un̂v in (42).

Similar to the discussion there, we can simultaneously take care of the topology of the U(1)
bundle and the desired dynamical properties of the weight by requiring suitable properties
for the complex function µ. The WZW curving maximizes the weightW2 when e

iWp = µ/|µ|,
which is well-defined when |µ| ̸= 0. On the other hand, as |µ| approaches 0, the weight W2

becomes less and less sensitive to the value of the WZW curving eiWp . By thinking the

44The space for g3 where g3 ̸= g1 is homotopic to S2, because g3 ̸= −g2 due to m32 = +, and −g2 ̸= g1
due to m21 = +. The space for (g3, g4) under the additional assumption that g3 ̸= g1 is thus homotopic to
S2 × S2. Now we include the spot g3 = g1. At this spot, the space for g4 is homotopic to a point. Thus,
the total space for (g3, g4) is homotopic to such a space: start with S2 × S2 (which represents g3 ̸= g1),
drag/collapse S2 × {north pole} ⊂ S2 × S2 to a single point (which represents g3 = g1).
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plaquette as being embedded in the continuum, it is easy to picture the following desired
properties for µ:

• The phase µ/|µ| is given by the continuum WZW curvature integrated over such a
pyramid: The four base corners are at the gv’s and the tip is at 1; the neighboring
base corners are connected to each other by the aforementioned representative paths
for the given ml’s and n̂l’s, while the tip is connected to each base corner by the
shortest geodesic; the four triangles on the side and the quadrangle at the base are
then wrapped with some standard choice of interpolating surfaces (discussed below),
forming a pyramid. Which side is called the “inside” of the pyramid does not matter,
since the two choices only differ by a 2π phase. An illustration of the pyramid in
S3 ∋ gv, assuming each ml = +, looks like

. (60)

45 Similar to the case of Berry connection in (43), here only the base quadrangle surface
is physical, while the tip and the four triangles on the side are just some gauge choice;
a gauge change can be absorbed by a redefinition of eiWp . When six plaquettes piece up
to a cube, we can compute the lattice WZW curvature over the cube, eidWc , in which
the dependence on the gauge choices (the tip and the triangles on the sides) cancel
out.

Fluctuations of eiWp away from µ/|µ| can be thought of as capturing the fluctuation of
the interpolating surface at the base quadrangle away from the standard choice (recall
the equivalence relation explained below (51)), just like the fluctuation of the Berry
connection in the case of S2 nlσm (recall (42), (43) and (44)).

• How to choose the standard interpolating surfaces in detail is not so important as long
as the choice is “reasonable”, approaching some notion of minimal surface when the
gv’s are close to each other and all ml = +. For concreteness we will discuss one choice

45Our use of geometrical concatenation of the representative paths and surfaces is a technical deviation
from [79], which uses pointwise multiplication and Mickelsson product. This is because strictly speaking,
what we are constructing as the target space is not a multiplicative bundle gerbe—only if we ignore gv ∈ S3

but keep Dgl ∈ SU(2) subjected to DDgp = 1 will the structure reduce to a multiplicative bundle gerbe
(see Section 5.4 for details, in particular (120) versus (124)). Therefore, for us it is natural to consider paths
in S3 with arbitrary starting points, and natural to consider their concatenation. On the other hand, [79]
considered paths in SU(2) with the starting point fixed at, say, the origin.
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for the interpolating surface later. For now we explain the general idea of how topology
is taken into account. It is easy to see that the choice of interpolating surface cannot
be made continuously everywhere over the space of variables gv∈∂p,ml∈∂p, n̂l∈∂p in µ,
and singularities will be developed. Topology is taken into account by treating the
singularities appropriately:

– When the choice of the interpolating surface for any of the side triangles of the
pyramid becomes singular, the phase µ/|µ| also becomes singular. But this does
not matter because the side triangles are gauge choices anyways, just like the
singularity in the case of Berry connection (when either of n̂v and n̂v′ approaches
−ẑ in (42)). Such singularity is unavoidable, indeed because we want the WZW
curving to take value in a non-trivial U(1) bundle over the space of the vertex
and link variables.

– On the other hand, when the choice of the interpolating surface for the base
quadrangle becomes singular, we require |µ| → 0, so that W2 becomes insensitive
to the value of the WZW curving eiWp , and this agrees with our intuition, just
like in the case of Berry connection (when n̂v = −n̂v′ in (42)). More generally,
we want |µ| = 1 when all ml = + and all gv equal, and |µ| decreases as the
base quadrangle loop becomes larger and larger, until |µ| = 0 when the choice of
interpolating surface becomes singular.

• For concreteness we will discuss a reasonable choice for the standard interpolating
surfaces. The choice is of course non-unique, and what choice is the best for numerical
purpose can only be determined via future numerical investigations.

First we further cut the base quadrangle into two triangles by connecting g2 and g4 via
the shortest geodesic (we will see that the special case of g2 = −g4 will naturally have
|µ| = 0), so that we have six triangles, four on the sides of the pyramid, and two on
the base.

– First consider a triangular loop such that all three edges are given by the shortest
geodesics, that is, when any ml involved in this triangle takes +. Just like two
points in S2 determine a great circle as long as the two points are not opposite,
three points in S3 (the three vertices of the triangle) determine a great sphere as
long as the three points are not on a same geodesic circle. 46 The great sphere
is cut into two pieces by the edges of the triangular loop, and one piece is always
smaller than the other given that the three points are not on a geodesic circle,
and we pick the smaller piece to be the interpolating surface.

46To see this, denote the three points by p1, p2, p3 ∈ SU(2). The below would be most easily pictured
by setting p1 = 1 though we will keep it general. Two points p1, p2 determine a geodesic circle ℓ21 (which
is generated by diagonalizing Dp21, letting the eigenvalue take any value between 0 and 2π, and then
multiplying the matrix back on p1). Similarly p1, p3 determine a geodesic circle ℓ31, which is distinct from
ℓ21 assuming the three points are not on a same geodesic circle. Now ℓ21 can be rotated to ℓ31 by an SO(2)
rotation living in the SO(3) ⊂ SO(4) that keeps p1 unchanged. Letting this SO(2) rotation take angles from
0 to 2π generates the desired great sphere.
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Here we drew one of the triangles at the base of the pyramid, and we placed g1
at the origin to make it easier to illustrate what a great sphere means.

In the special cases where the three points lie on a same geodesic circle, either the
triangular loop is degenerate (i.e. one point lies on the shortest geodesic between
the other two points) or the triangular loop itself is the geodesic circle. Obviously,
for the former kind, we will take the interpolating surface to be trivial. On the
other hand, for the latter kind, the choice of the interpolating surface will become
singular, and this is the topological issues we discussed before—if the triangle loop
is a side triangle of the pyramid, it is fine that the interpolating surface becomes
singular since it is merely a gauge choice; while if the triangular loop is on the
base, we will let |µ| = 0.

– Next consider a triangular loop such that one edge is flipped from ml = + to ml =
−. It seems it is a consistent, though perhaps crude, approximation to just set
h = 0 whenever any ml∈p = −. In that case, the description of the interpolating
surface below will not be needed, and the n̂l ∈ S2 variable can be ignored, so that
the theory will be simplified. Whether this crude approximation is good enough
to describe the physics of the nlσm is subjected to numerical investigation. For
now we suppose we do not simply set h = 0 when some ml∈p = −.
Since the representative path for ml = − is in general not a geodesic but two
segments of geodesics, such “triangular loop” really looks like a quadrangular
loop. The choice of the interpolating surface is illustrated as

which is the union of two interpolating surfaces: one for the triangular formed
by connecting g1, g2, e

i(π−0+)n̂14·σ⃗g1 with the shortest geodesics, and another for
the triangular loop formed by connecting g2, g4,−g1 with the shortest geodesics.
The idea is that, when m14 = − and g4 → −g1, the interpolating surface would
approach that of when m14 = + and g4 → ei(π−0+)n̂14·σ⃗g1 → −g1 from the n̂14

direction.
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The treatments when the choice of interpolating surface becomes singular is the
same as before.

When more ml = −, the idea is the same.

This describes the crucial topological and dynamical properties of the plaquette weight W2

that probabilistically weighs the WZW curving d.o.f. eiWp .

In 2d, we can readily define the WZW phase at level k ∈ Z as

W k
WZW := eik

∮
2dW := eik

∑
pWp . (61)

Notably, a k ̸= 0 WZW phase makes the SO(4) global symmetry anomalous, although it
does not directly break the symmetry. That is, if a non-trivial SO(4) background gauge field
is introduced, the definition of the WZW phase will become ambiguous. This can be seen on
the lattice explicitly. However, to explain the details, we need to discuss how a topologically
refined nlσm is coupled to a topologically refined non-abelian gauge field, and we will leave
the detailed discussion to future works. 47

Beyond 2d, the last step, of course, is to Villainize the lattice WZW curvature eidWc ∈
U(1) to the skyrmion density

Sc := dWc/2π + sc ∈ R (62)

by introducing an sc ∈ Z dynamical variable on each cube. We have a cube weight W3(Sc)
that is positive and decreases with |Sc|. The total skyrmion number over a 3d surface is
then defined as

∮
3d
S =

∑
c sc ∈ Z. A topological theta term can hence be defined. In 4d or

above, we can define the hedgehog like defect dSh = dsh (where h labels hypercubes), which
represents the non-conservation of baryon number in the context of pion vacua effective
theory in 4d spacetime. Again we can introduce a fugacity weight W4(dSh) for these defects,
or forbid them using

W forbid
4 (dS) =

∫ π

−π

dϕ̃h
2π

eiϕ̃hdSh . (63)

48 If we indeed use W forbid
4 , then there is the (d − 4)-form dual U(1) global symmetry

eiϕ̃h → eiϕ̃heiα̃h , ed
∗α̃c = 1, which in d = 4 is interpreted as the baryon conservation U(1).

Again there is a mixed anomaly between the original SO(4) global symmetry and this dual

47Briefly speaking, the main task is to generalize the definition of the µ function to situations where
the global symmetry background is non-trivial, and this is done using some technique to be introduced in
Section 4.2, in relation to non-abelian CS phase factor. After doing so, we will find that under local gauge
transformation of the background gauge field, the phase of this generalized µ function will transform. InW2,
we can absorb this phase transformation of µ into eiWp , but then the WZW phase factor would not remain
invariant unless k = 0.

48Very recently, [82] also discussed defining and forbidding defects in lattice nlσm beyond the previously
known examples (Villain and spinon-decomposition), by discretizing the target space (e.g. the S3 here).
Here what we showed is that the same can be done without discretizing the target space—the vertex d.o.f.
still takes value in S3 itself rather than some discrete points on S3, and the SO(4) global symmetry is still
manifest. See footnote 132 for more discussions.
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U(1) global symmetry. Just like the anomaly mentioned below (61), we will leave the detailed
discussion of this anomaly to future works. 49

Piecing up the discussions above, the lattice S3 nlσm refined to include skyrmion reads

Z =

[∏
v′

∫
gv′∈SU(2)

]∏
l′

∑
ml′=±

∫
d2n̂l′

4π

[∏
p′

∫ π

−π

dWp′

2π

]∏
c′

∑
sc′∈Z


∏
l

W1(λl,ml)
∏
p

W2(e
iWpµ∗

gv∈∂p,ml∈∂p,n̂l∈∂p
+ c.c.)

∏
c

W3(Sc)
∏
h

W4(dSh) (64)

for d ≥ 4. 50 For d = 3, there is no W4, but we can additionally consider a topological theta
term

ZΘ =

[∏
v′

∫
gv′∈SU(2)

]∏
l′

∑
ml′=±

∫
d2n̂l′

4π

[∏
p′

∫ π

−π

dWp′

2π

]∏
c′

∑
sc′∈Z


eiΘ

∑
c Sc

∏
l

W1(λl,ml)
∏
p

W2(e
iWpµ∗

gv∈∂p,ml∈∂p,n̂l∈∂p
+ c.c.)

∏
c

W3(Sc) (65)

for any Θ ∈ U(1). For d = 2, there is no sc and W3, but we can additionally consider a
WZW term

ZkWZW =

[∏
v′

∫
gv′∈SU(2)

]∏
l′

∑
ml′=±

∫
d2n̂l′

4π

[∏
p′

∫ π

−π

dWp′

2π

]

eik
∑
pWp

∏
l

W1(λl,ml)
∏
p

W2(e
iWpµ∗

gv∈∂p,ml∈∂p,n̂l∈∂p
+ c.c.) (66)

49One picture to describe the mixed anomaly is that the instanton of the SO(4) background gauge field
is charged under the dual U(1). As we sketched in footnote 47, under gauge transformation of the SO(4)
background, the local WZW curving variable eiWp must transform accordingly to keep W2 invariant. Then
the remaining situation essentially becomes that of the gauge transformation of a Villainized 2-form U(1)
gauge field, constituting of eiWp ∈ U(1) and sc ∈ Z. A Villainized 3-form U(1) background will be introduced
as the refinement of the SO(4) global symmetry background (similar to Section 4.2, but here the fields are
not dynamical). This consists of eiCc ∈ U(1), interpreted as the CS d.o.f. of the lattice SO(4) background
gauge field, and Ih ∈ Z, such that dCh/2π+ Ih is the background instanton density. In W3, dWc/2π+ sc →
dWc/2π + sc −Cc/2π where Cc absorbs the aforementioned 2-form U(1) gauge transformation of dWc, and
in W4, dsc → dsh − dCh/2π − Ih which is no long exact, hence violating the dual U(1) global symmetry.

An alternative picture is, if we introduce a background gauge field for the dual U(1) global symmetry, it
is easy to see the Dirac string part of this U(1) background will couple to eiWp , generating a WZW phase
whose level is the Dirac string charge. (This is similar to the second perspective mentioned at the beginning
of footnote 31.) Then by footnote 47, this makes the SO(4) global symmetry anomalous.

50We emphasize again that in this paper we are only concerned with the topological physics due to π3 ∼= Z.
In the physical d = 4 spacetime, the actual S3 ∼= |SU(2)| pion vacua effective theory contains a non-trivial 4d
WZW term due to π5(S

3) ∼= Z2, and there are also topological effects due to π4(S
3) ∼= Z2; for SU(N > 2), the

pion-kaon vacua effective theory contains a non-trivial 4d WZW term due to π5(|SU(N > 2)|) ∼= Z [83, 84].
Hopefully our general framework to be sketched in Section 6 will lead to natural lattice definitions of these
terms in future works.
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for any k ∈ Z.
We have described the crucial properties that the weight factors (and most particularly

the µ function in W2) should have, but how to optimize the weight factors in detail for
best numerical performance is subjected to numerical investigation, and is indeed beyond
the scope of the present work. Since some d.o.f. can no longer be group elements, the
W2 weight no longer has a simple analytic description in terms of the trace of some group
element or so, and might need to be stored as a somewhat complicated function. 51 In
practical implementation, if the phase µ/|µ| slightly deviates from the value we described,
there should be no crucial problem. Moreover, as a crude approximation, it is even consistent
to set µ = 0 when any of the ml∈∂p involved is −; if this indeed works well numerically, then
the implementation will be greatly simplified (and the n̂l ∈ S2 can be entirely ignored).

Finally, we briefly explain how to generalize to nlσm with target space T = |SU(N)|
beyond N = 2. Again we diagonalize Dgl = Uleiλ

a
l τaU−1

l , where τa (a = 1, · · · , N − 1) is
a set of generators for the root lattice, and the space of eigenvalues is parametrized by λal
in the Weyl alcove, which for SU(N) is an (N − 1)-dimensional simplex (this generalizes
λl ∈ [0, π] for N = 2). Each of the co-dimension 1 faces of the simplex—there are N of
them—corresponds to a pair of adjacent eigenvalues becoming degenerate (this generalizes
λl = 0 and λl = π for N = 2). We cover SU(N) by N patches, each removing one pair
of eigenvalue degeneracy, i.e. each removing one face of the Weyl alcove. Each patch can
be labeled by the corner of the Weyl alcove that is opposite to the face being removed,
which for SU(N) turns out to be an element of the ZN center (this generalizes the labels
ml = ± = ±1 for the patches λl ∈ [0, π) and λl ∈ (0, π] respectively for N = 2), though
this does not mean the ml labels are going to be able to compose like a Zn group. For the
ml = 1 patch, the representative path is given by connecting a straight line in the Weyl
alcove from the origin to the point that represents λal , and then conjugating this path by Ul
before multiplying by gv on the right. For any other ml patch, the representative path has
two segments, one segment is given by connecting a straight line in the Weyl alcove from
the corner that labels ml to the point that represents λal , and then conjugating this path
by Ul before multiplying by gv on the right; the other segment is given by the edge of the
Weyl alcove connecting the origin to the corner that labels ml, and then conjugating this
edge by an arbitrary element in SU(N)/U(N − 1) where U(N − 1) is the subgroup that
commutes with this edge (this generalizes the n̂l ∈ SU(2)/U(1) ∼= S2 for N = 2), before
multiplying by gv on the right. Thus we have described the non-fibre-bundle cover Y over
SU(N) and the representative paths. The rest is essentially the same as N = 2. We weigh
the lattice WZW curving eiWp by constructing a suitable function µ, which involves suitably
choosing interpolating 2d surfaces and integrating the continuum WZW curvature over the
resulting pyramid—the closeness of the continuum WZW curvature is crucial here because
that makes the integral independent of the choice of the interpolating 3d volume out of the
N(N − 1)/2-dimensional space of SU(N). Finally we Villainize the lattice WZW curvature.

51Some automated optimization program might be useful, for instance W2 might be implemented as the
output of some machine learning task.
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4.2 SU(N) lattice gauge theory: Chern-Simons, instanton and
Yang monopole

From the experience with Villainized S1 lattice nlσm and Villainized U(1) lattice gauge
theory introduced in Sections 2.1 and 2.2, it is intuitive to expect that, now that we have
topologically refined the |SU(N)| lattice nlσm, the topologically refined |SU(N)| lattice
gauge theory can be obtained by “putting the d.o.f. on cells of one higher dimension”.
What this really means is the following: Traditionally, the lattice instanton is defined by
interpolating the lattice gauge field to a continuum gauge field [7], and the problem is the
interpolation choice will run into singularities or discontinuities as we vary the lattice gauge
field (and the treatment in [7] is to disallow strongly fluctuating gauge fields); now what we
have learned from the topological refinement of |SU(N)| nlσm is how to consider different
possibilities of the interpolation of the |SU(N)| matter field at each level of lattice cell, and
we are going to apply the idea to the different possibilities of interpolating the SU(N) gauge
field at each level of lattice cell, which is one dimension higher compared to the counterpart
in nlσm.

Again we will focus on SU(2) in the below, since the generalization to SU(N) using the
Weyl alcove is straightforward.

Traditionally, we have a lattice gauge connection gl ∈ SU(2) on each lattice link, and
Dgp ∈ SU(2) is the gauge flux around the plaquette p. We first describe how to refine the
gauge flux on the plaquette. Recall in the case of nlσm, on the link we refined Dgl ∈ SU(2)
to yl ∈ Y , and the patches were chosen to be invariant under conjugation to manifest the
SO(4) global symmetry. Now, in gauge theory, on the plaquette we also refine Dgp ∈ SU(2)
to yp ∈ Y , and the patches being invariant under conjugation is desired because lattice gauge
flux transforms by conjugation under gauge transformation and under changing the choice
of the starting point. The plaquette weight W2 for gauge theory has the same qualitative
properties as the link weight (57) for nlσm.

In nlσm, an element yl = (Dgl,ml, n̂l) has been pictured as choosing an interpolating
path from gv to gv′ , that will be used in designing the plaquette weight. Now in gauge theory,
an element yp = (Dgp,mp, n̂p) can be interpreted as choosing a way of interpolating the gauge
field over the plaquette, that will be useful later in the cube weight. When mp = + (which
requires Dgp ̸= −1), the interpolation is the following. Consider the holonomy around a
portion of the plaquette, indicated by the shaded area:

. (67)

As the portion increases its size in either direction (indicated by the arrows), the holonomy
around it interpolates along the shortest geodesic from 1 to Dgp.

52 This essentially agrees
with how the gauge field on the link is interpolated into the plaquette in [7]. When mp = −

52Note this description of the plaquette interpolation is independent of the gauge choice except at the
starting point of the loop (as indicated at the lower left corner of the plaquette), and gauge transformation
at the starting point acts by conjugation on the holonomy around the shaded area of any size.
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and some n̂p is given, as the size of the portion increases, the holonomy interpolates in the
alternative way as explained by (58) in the case of nlσm.

On the cube, there is a U(1) dynamical field eiCc which is interpreted as the lattice version
of the CS 3-form. Similar to the WZW curving d.o.f. in the case of nlσm, here the CS d.o.f.
forms a non-trivial U(1) bundle over the gl and yp on the links and plaquettes around the
cube, and is weighed by some W3(e

iCcν∗gl∈∂c,mp∈∂c,n̂p∈∂c + c.c.) in analogy to (59). Just like the

µ function in (59), here the ν function has the following properties: Its phase ν/|ν| is given
by interpolating the gauge fields on the plaquettes around the cube into the inside of the
cube via some standardized procedure (as mentioned above, when all mp = +, the plaquette
interpolation is the same as that in [7], then we can also use the cube interpolation in [7];
when some mp = −, some other interpolation into the cube will be used, similar to the nlσm
case) 53 and then taking the continuum CS integral over the cube. Since the continuum CS
term is gauge dependent, the phase ν/|ν| will also be gauge dependent, but under gauge
transformation it only changes by a lattice exterior derivative. 54 Fluctuations of eiCc away
from ν/|ν| is interpreted as effectively capturing the fluctuations of the gauge field inside the
cube away from the standard interpolation. Singularity in the phase ν/|ν| due to singularity
in the gauge dependence of the continuum CS term does not matter since such singularity
will always drop out, while singularity in the choice of the standard interpolation of gauge
field into the cube should occur at where |ν| decreases to 0.

The above are the key requirements for the ν function in the cube weight. For con-
creteness, we will present in a separate work one particular way to construct the standard
interpolations and the ν/|ν| phase in detail, with some highly technical aspects borrowed
from [7]. Of course, in actual practice, what detailed design works the best is subjected to
numerical investigations. And just like in the case of nlσm, we guess it might be a consistent
approximation to just let ν = 0 whenever any mp∈∂c = −, and this would largely simplify
the implementation. How good this approximation is in capturing the physics is, again,
subjected to numerical investigations.

In 3d, we can define the non-abelian CS phase with level k ∈ Z on lattice as

W k
CS := eik

∮
3d C := eik

∑
c Cc . (68)

If the 3d space has boundary, Dirichlet boundary condition is required to avoid gauge de-
pendence on the boundary. Unlike the abelian CS (24) which depends on the traditional
link gauge field explicitly, here the non-abelian CS only depends on the link gauge field

53An important requirement of the procedure is that, just like in the previous footnote, the description of
the standard interpolation into the cube must be stated in terms of holonomies, so that the description is
gauge independent except at the starting point of the loop.

54One practical way to take the continuum CS integral over a cube is, in analogy to (60) (which takes the
continuum WZW curving integral over a plaquette), to consider a hyperpyramid formed by the cube and
an extra fictitious point, such that the straight Wilson lines from that extra fictitious point to any point
on the cube is fixed to be trivial—this can be viewed as a gauge choice, just like the choice of the side
triangles in (60). Then we interpolate the gauge flux over the hyperpyramid and take the continuum integral
exp

[
i
∫
tr(F ∧ F )/(4π)

]
over the hyperpyramid (and for this step we can borrow the method of [7]). This

idea is parallel to one way of define a 3d CS in the continuum—by considering a fictitious 4d bulk with the
original 3d manifold as its boundary [16].
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probabilistically through the weights W2,W3, constituting a CS-Yang-Mills theory. (Even in
the continuum CS theory, a Yang-Mills term with tiny coefficient is secretly understood in
the regularization of the eta-invariant [60].)

In 4d, on the hypercube, we Villainize eidCh by introducing an integer d.o.f. ιh ∈ Z, so
that the non-abelian instanton density is defined as

Ih :=
dCh
2π

+ ιh (69)

(cf. (24)). 55 There is a hypercube weight W4(Ih) that is positive and decreasing with |Ih|.
The total instanton number

I :=

∮
4d

I =
∑
h

Ih =
∑
h

ιh ∈ Z . (70)

A topological theta term can hence be defined in d = 4. 56 In d ≥ 5, the instanton non-
conservation defect dI ∈ Z is the Yang monopole, which can be suppressed by some W5, or
forbidden by W forbid

5 which contains a (d− 5)-form U(1) Lagrange multiplier, manifesting a
(d− 5)-form dual U(1) global symmetry.

Piecing up the discussions above, the SU(2) lattice gauge theory refined to include in-
stanton and topological theta term reads

ZΘ =

[∏
l′

∫
gl′∈SU(2)

]∏
p′

∑
mp′=±

∫
d2n̂p
4π

[∏
c′

∫ π

−π

dCc′
2π

]∏
h′

∑
ιh′∈Z


eiΘI

∏
p

W2(λp,mp)
∏
c

W3(e
iCcν∗gl∈∂c,mp∈∂c,n̂p∈∂c + c.c.)

∏
h

W4(Ih) (71)

55Our definition of instanton density reduces to that in [7], if we consider weak enough field strength, and
use the saddle point approximation on the new local weights W4,W3,W2, i.e. always choose those new d.o.f.
ιh, e

iCc ,mp(= +) that maximize W4,W3,W2. We will discuss this comparison to [7] in greater details in a
separate work; for now let us briefly explain the idea.
In [7], the gauge field (assumed weak field strength) on the links is interpolated via a standard procedure

into the plaquettes and the cubes. This corresponds to choosing mp = + (which maximizes W2 when the
field strength is weak) and choosing eiCc = ν/|ν| (which maximizes W3). Let us explain the latter point.
In [7] there was no explicit mention of CS, but the instanton density has been expressed as a sum of terms on
the cubes around the hypercube, and these terms are effectively playing the role of Cc. A practical difference
is that, in [7], the gauge fields in different hypercubes are under different gauge choices (referred to as the
“complete axial gauge” in each hypercube), and hence the CS on a cube c has two gauge choices—one each

hypercube on the two sides of that cube (let us thus denote the CS value as C(gauge of h)
c where c ∈ ∂h);

while here, the CS on a cube uses only one gauge, which is good for defining the CS phase W k
CS in 3d (which

is not part of the consideration in [7]). Note that ei2πIh = eidCh is gauge independent. However, if the

logarithm of it is defined as 2πIh = dC(gauge of h)
h following [7], then gauge choice on h determines the Z

part of Ih; this allows for a non-zero value of
∮
4d
I in [7]. On the other hand, we defined 2πIh = dCh+2πιh

with some new dynamical integer ιh. For weak enough field strength, if we take the value of ιh that minimizes
Ih (hence maximizes W4), then the value of Ih will agree with that defined by [7].

56Just like in the abelian case (footnote 22), one can also let the theta become local and dynamical, but
then for consistency we will need to introduce the Villainization integer field for this theta, that lives on the
dual lattice link and couples to the CS density. We then obtain the lattice axion theory.
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for d = 4; for d ≥ 5 there is no topological theta term, but there can be a weight W5 or
W forbid

5 for the Yang monopole dI. For d = 3, there is no ιh andW4, but we can additionally
consider a CS term

ZkCS =

[∏
l′

∫
gl′∈SU(2)

]∏
p′

∑
mp′=±

∫
d2n̂p
4π

[∏
c′

∫ π

−π

dCc′
2π

]

W k
CS

∏
p

W2(λp,mp)
∏
c

W3(e
iCcν∗gl∈∂c,mp∈∂c,n̂p∈∂c + c.c.) (72)

for any k ∈ Z. The generalization from SU(2) to SU(N) is straightforward using the Weyl
alcove parameterization introduced at the end of Section 4.1.

An important aspect of SU(N) Yang-Mills theory is the 1-form Z(SU(N)) ∼= ZN global
symmetry gl → gle

iβl for βl ∈ (2π/N)ZN such that eidβp = 1 (which we gauged in (33)
to obtain the Villainized PSU(N) gauge theory). Since this transformation leaves Dgp
invariant, it would not interfere with yp and W2. Moreover, since in the continuum the CS
integral also respects this 1-form global symmetry, the ν function—which is defined using
the continuum CS integral—respects this symmetry on the lattice, hence so does the lattice
CS and the lattice instanton density.

This 1-form global symmetry should have a self-anomaly in the presence of a non-trivial
CS weight in 3d, and have a mixed anomaly with the dual (d − 5)-form U(1) that forbids
the Yang monopole in d ≥ 5; we will leave to future works to investigate how to see these
anomalies explicitly on the lattice. 57

Now that we have explained the topologically refined SU(N) lattice gauge theory, let us
look back and discuss some important conceptual issue regarding the relation between the
topological refinement of the |SU(N)| nlσm and that of the SU(N) gauge theory, which is
obviously more involved than the relation between Villainized S1 nlσm and Villainized U(1)
gauge theory.

Recall the link variable in nlσm is geometrically interpreted as sampling some represen-
tative path in SU(N); when two links are joined together on the lattice, their associated
representative paths also concatenate in the obvious manner. But such kind of concate-
nation interpretation becomes subtle in gauge theory. In gauge theory, the SU(N) is the
space of holonomy around some loop. In our refinement at the plaquette level, we deform
the loop with one parameter, so that the loop increases its size to wipe over the plaquette,

57Let us explain what we should anticipate. To see these anomalies, we need to introduce the 2-form ZN
background gauge field. What we anticipate (and should further verify) is that there should be no way to
define a ν function whose phase is invariant under the 1-form ZN gauge transformation when the associated
2-form background is non-trivial. Suppose this is indeed so, then the remaining is straightforward: In d = 3,
without a CS weight, this transformation of ν/|ν| can be absorbed by a transformation of eiCc , leaving the
theory invariant; but when the CS level is non-trivial, the theory will not be left invariant, manifesting
the said self-anomaly. Related to this, in d ≥ 5 with W forbid

5 , if we introduce a non-trivial Villainized
background for the dual (d− 5)-form U(1) on the dual lattice, its background Dirac string field (which is a
(d− 3)-form integer field on the dual lattice) will couple to eiCc , i.e. a CS weight—which makes the 1-form
ZN anomalous—is attached on the Dirac string, manifesting the said mixed anomaly.
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and throughout the process the holonomy indeed traces out a representative path in SU(N).
Now consider two plaquettes p, p′ joined at a shared vertex. Each plaquette has been asso-
ciated with a path in SU(N), one path connecting 1 and Dgp and the other connecting 1
and Dgp′ :

(73)

Now that the two plaquettes p, p′ are joined together, do their associated paths somehow
get joined together, too? There are two ways to increase the shaded area to fill up the two
plaquettes, one filling up p first and then p′, the other filling up p′ first and then p. Suppose
we choose the lower left corner of p (see picture below) as the starting point of the loop, then
the holonomy around p′ (or around any portion of p′) needs to be conjugated by suitable
Wilson lines. The two ways of filling lead to two different paths in SU(N), though they
share the same starting and ending points:

(74)

Unlike joining two links in nlσm where there is a natural ordering of which link comes first,
when joining two plaquettes there is no natural choice of ordering, 58 so there is no way
to determine which of the two ways of composing the representative paths is “the better
choice”. 59 (Similar issue happens when the two plaquettes are joined together at a shared

58We have encountered this when discussing higher form symmetries / degrees of freedom in Section 2.3.
59Using Mickelsson product (as in [35] and [79]) instead of geometrical concatenation does not help with

this problem.
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edge instead of a shared vertex, or even more generally, joined together by a finite length
Wilson line. The case of shared vertex pictured above is what will be relevant below.)

Why this issue worths any discussion? Because this is the underlying reason why passing
from the topologically refined lattice |SU(N)| nlσm to SU(N) gauge theory is not as simple
as passing from Villainized S1 nlσm to Villainized U(1) gauge theory. And the root of this
lies in some important subject in category theory—delooping and Yang-Baxter equation.

Recall in |SU(N)| nlσm, the WZW curving d.o.f. on the plaquette is interpreted as
sampling some 2d surface in SU(N) (and two surfaces are consider equivalent if they bound
a volume over which the WZW integral vanishes—recall the discussion below (51)), 60 and
the skyrmion density over the cube is interpreted as (the WZW integral over) some 3d volume
in SU(N). However, in gauge theory, it would not be very useful to think of the CS d.o.f.
on the cube as some kind of 2d surface in SU(N) and think of the instanton density over a
hypercube as some kind of 3d volume in SU(N).

To understand this point, let us suppose we do think in this way and see what difficulties
we run into. First consider the six plaquettes around a cube, which are joined together
and leave no 1d boundary behind. Moreover, we can choose some ordering of filling up the
plaquettes (such as the ordering we used in (35)), and once this ordering is fixed, the paths
associated with each plaquette should join together (after conjugations by suitable Wilson
lines) unambiguously and form some hexagonal loop in SU(N):

. (75)

61 Suppose we interpret the CS d.o.f. on the cube as sampling some surface bounded by this
hexagon (trying to mimic what happens for the WZW curving d.o.f. in nlσm). So far there
is no problem. Next let us consider the eight cubes around a hypercube, we expect the eight
associated hexagonal surfaces to glue up (again after conjugations by suitable Wilson lines)
into some closed surface, which will bound some volume whose WZW integral is interpreted
as the lattice instanton density. But a careful inspection shows the eight hexagonal surfaces
do not glue up to a closed surface, but a truncated octahedron

(76)

on which the quadrangle loops are left unfilled with surfaces. These quadrangle loops pre-
cisely come from (74). While we have fixed the ordering of filling up the plaquettes around

60In particular, some standard choice of surface (for the base of the pyramid in (60)) is used in defining
µ/|µ|, and the deviation of WZW curving d.o.f. eiWp away from µ/|µ| captures the fluctuation of the surface
away from the standard choice (up to the said equivalence relation).

61If we have used a simplicial complex as the lattice, then a each tetrahedron will give rise to a quadrangle
loop in SU(N).
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each cube, in a hypercube there are still pairs of plaquettes which do not belong to a same
cube but nonetheless join at a shared vertex, 62 and for each such pair, both orderings of
filling up the two plaquettes will come up when we try to join the cubes around a hypercube,
leading to the open quadrangle loops on the truncated octahedron. 63

Can we fix some standard choice of surfaces to fill up such unfilled quadrangle loops, so
that the truncated octahedron that the hypercube associates with becomes a closed surface?
64 We can do so, but a further constraint must be satisfied in the standard choices that we
make. Since the WZW integral over the volume bounded by the truncated octahedron is to
be interpreted as the lattice instanton density over the hypercube, we need to ensure that dI
as well as

∮
4d
I result in an integer. This requirement is equivalent to stating that when ten

hypercubes piece up to a 5d-hypercube, we want the ten associated truncated octahedrons
in SU(N) to piece up to a closed 3d volume without any 2d surface leftover. This is a
highly non-trivial constraint imposed on the standard choice of quadrangle surface. In fact,
this constraint is a generalized version of Yang-Baxter equation, and specifying a standard
choice for the quadrangle surface is an example of braiding data in category theory, as we
will discuss in Sections 5.3 and afterwards.

It is in general a very difficult task to find non-trivial solutions to a Yang-Baxter equation.
This is why, in our construction for lattice gauge theory, we do not take the perspective
described here. That is, we do not think of the lattice CS d.o.f. on the cubes as sampling some
surface in SU(N) and the instanton density over the hypercube as some volume in SU(N).
This means we do not literally take the geometrical interpretation of those fields in the nlσm
and “put them on lattice cells of one higher dimension” to get the geometrical interpretation
of the fields in the gauge theory. Instead, in our construction of gauge theory, the geometrical
interpretation is about how to interpolate the gauge fields on the links into the plaquettes
and the cubes, much like in the previous work [7], except we consider different possibilities
of interpolations in a manner guided by category theory. This interpretation makes better
intuitive connection to the continuum gauge theory, and the Yang-Baxter equation issue
never explicitly comes up—we can view it as being automatically solved. The reason behind
this will be explored in Section 6.2.

62These pairs of plaquettes are those that pair up in defining the cup product in footnote 20.
63If we have used a simplicial complex as the lattice, then the five tetrahedra in each 4-dimensional simplex

will give rise to five filled faces on a cube in SU(N), with the last face of the cube remaining unfilled due to
the issue (74)—and the two plaquettes involved are, indeed, those that pair up in the cup product.

64Between two choices of surfaces to fill up the unfilled loop (74), their difference is, again, truncated to a
U(1) value, the WZW integral of the volume bounded between the two choice of surfaces.
Importantly, a close inspection shows this U(1) now forms a trivial bundle over the space of choices of

the paths around. Briefly speaking, this is because the four paths around are really only determined by two
paths, one associated with p and the other associated with p′, as shown in (74). In Section 4.1, there is a
non-trivial constraint on the space of the link variables (see footnote 44), that gives rise to a non-trivial π2
for the space of links variables, which then leads to the non-trivial WZW curving U(1) bundle; by contrast,
here, the corresponding constraint will be automatically satisfied, so that the space of the possible choices
of paths in (74) has trivial π2, and therefore any U(1) bundle on it is necessarily trivial.
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5 Category Theory Foundation

In this section we first explain how to cast the previously known examples in Section 2
in the language of category theory, and then we will see how our construction in Section 4
will be naturally motivated from there.

We will begin by introducing some basics of category theory so that we can setup our
notations and eventually lead the discussion towards the concepts that we will need for
our construction. However, this section is not intended as a piece of comprehensive and/or
rigorous introductory material to the subject of category theory itself. A gentle introduction
to the category theory is [37], which contains some physics oriented perspectives. For more
comprehensive and rigorous treatment, one may consult textbooks and reviews of different
levels and with different emphases. The online wiki nLab is a very useful source of information
on this subject.

5.1 Strict categories, and the known examples

We begin with strict higher categories. Being “strict” implies they are straightforward
to define and easy to understand, but not as powerful as the more general higher categories
in being descriptive. It is not surprising that the previously known examples introduced in
Section 2 are all described in terms of strict higher categories.

A 0-category C is just a set C0.
65 The elements in it are often called “objects” in

the context of category theory. Often times C0 can be endowed with extra structures, for
examples it can be a group, a topological space or smooth manifold, etc.

A 1-category, which is what a “category” usually refers to, has two sets: the set C0 of
objects, and the set C1 of all “morphisms”, or relations, between objects. Of course the two
sets should not be independent. There are some maps between them:

• Intuitively, C1 should have a “source map” s and a “target map” t to C0, so that
s(f) = a, t(f) = b means f is a morphism (relation) from object a to object b, which

we can denote as b
f←− a. 66 Because of these two maps, we will often denote a category

C as C1 ⇒ C0. We use C1|b,a to denote the subset of C1 where the source and the

target are restricted to a and b respectively. 67

65Rigorously speaking, there are large versus small categories, where large categories can involve collections
such as proper classes which are logically “larger” than any possible set (e.g. the collection of all sets is a
proper class, which is not a set and cannot be taken to be an element of any set). However, such issue does
not seem very important in physics. The categories that are directly involved in our detailed construction
are all small categories.

66Usually the arrow is drawn from left to right. In this paper we will often use the convention from right
to left, because when we compose functions or operations this is the conventional order of action.

67Usually the notation is Hom(a, b) or HomC(a, b). Here we emphasize that we prefer to primarily view
the morphisms altogether as a whole set C1, rather than to primarily view the morphisms between each
given pair of objects, Hom(a, b), as a set. Of course these two views are equivalent for now, but the former
view will be more suitable for generalization via internalization, which will be important for our work, while
the later view is more suitable for generalization via enrichment, which we will not focus on (though also
important in general).
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• Morphisms (relations) should be able to compose, i.e. there is a map ◦ from C1×s,t
C0
C1

to C1 (where the fiber product notationX×u,vZ Y := {(x, y) ∈ X×Y |u(x) = v(y) ∈ Z}),
or say from C1|c,b × C1|b,a to C1|c,a for every a, c ∈ C0. This specifies how c

g←− b and

b
f←− a are composed to some c

g◦f←−− a. Moreover, when composing three morphisms, the
composition should be associative. (Sometimes we might omit the “◦” in composition.)

• There is a map i from C0 to C1, which for each a ∈ C0 specifies an “identity morphism”
1a := i(a) ∈ C1|a,a ⊆ C1, such that under composition, f ◦ 1a = f for any f with
s(f) = a, and 1a ◦ g = g for any g with t(g) = a.

If C0 and C1 are endowed with some extra structure, then it is natural to require these
maps to respect the extra structure. Particularly, if C0 and C1 are both manifolds, then it is
natural to require these maps to be smooth—apparently this will be an important point in
our application, and this point will be systematically formulated in terms of internalization
in Section 5.2.

A morphism b
f←− a is invertible if there exists an a

f−1

←−− b such that f−1 ◦ f = 1a,
f ◦ f−1 = 1b.

68 Now, we are ready to see that in category theory, a group can at least be
perceived in two ways: as a 0-category (set) G endowed with the some extra structure that
makes it a group, or as a 1-category BG, where BG0 has only a single object, and every
morphism in BG1 is invertible, BG := (G⇒ ∗). Such relation between G and BG is a simple
example of delooping (from G to BG) and looping (from BG to G), a concept that will be
important in our application when elevating the construction for nlσm to the construction
for gauge field. (The notation BG is also conventionally used to denote the classifying space
of G. This is not a coincidence. The classifying space, which we will denote as |BG| and
is usually infinite dimensional, can be obtained from the category BG via the procedure of
geometric realization which we will introduce in Section 5.4. Often times one can think of
the space |BG| and the category BG as essentially containing the same information.)

More generally, a 1-category where every morphism in C1 is invertible, but not necessarily
with only a single object in C0, is called a groupoid. (It is therefore said that the notion
of groupoid is the “horizontal categorification” of the notion of group. More generally, a
1-category with a single object—but not necessarily with every morphism invertible—can
be viewed as the delooping of a monoid, and thus the notion of 1-category is the “horizontal
categorification” of the notion of monoid.) An intuitive example of a groupoid is an action
groupoid X×G⇒ X, where there is a set X and a group G acting on X, so that a morphism

(x, g) ∈ X ×G is depicted as gx
(x,g)←−− x or more simply gx

g←− x.

Groupoids are very common in our application. For some examples:

1. Given a continuum manifold M we can define its free path space PM. 69 Now
we consider P̄M, which is PM with equivalence up to “thin homotopy”, i.e. up to
reparametrization and identifications like

68It is also possible that only one of these two conditions can be satisfied, or both conditions can be
satisfied but with two different “f−1”s. Therefore in general we should define the notions of left inverse f−1

L

and right inverse f−1
R of f .

69Compared to the pointed path space P∗M we introduced before, the free path space PM does not fix
a starting point for the paths. They are related by the fibre bundle P∗M→ PM→M.
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,

so that the concatenation of paths is associative, and has identity path for each point
and inverse path for each path. 70 We thus defined the path groupoid P̄1M := (P̄M⇒
M). 71

A closely related concept is the fundamental groupoid Π1M (we will explain this name
in the next subsection), which is like the path groupoid except the identification of
paths is not only under thin homotopy, but any homotopy (any interpolation). Clearly,
if M is 1d, then Π1M = P̄1M, because any homotopy between paths is necessarily
thin.

2. A lattice keeping only the vertices and the links but ignoring plaquettes and higher
cells forms a groupoid L̄1 ⇒ L̄0, where L̄0 is the set of all vertices, and L̄1 is the set of
all lattice paths obtained by joining links, and each path indeed has an inverse path.

3. ForM = S1, the path groupoid is S1×R ⇒ S1, which is at the same time an example
of action groupoid. Apparently this structure will be related to the d.o.f. used in the
Villain model.

4. Another example of action groupoid is S2 × SU(2) ⇒ S2, which will apparently be
related to the spinon decomposition.

Having introduced 0- and 1-category, it is not hard to envision that higher categories
involve more layers of higher morphisms equipped with suitable maps in-between. But
now there arise definitions of different levels of strictness. The more strict ones are easier to
define, but the less strict ones are more flexible and thus have higher descriptive power. Here
we first introduce the strict higher categories, which are sufficient to describe the known
examples in Section 2; in Section 5.3 we briefly introduce more flexible higher categories
which are commonly used in describing topological phases and generalized symmetries; for

70More exactly, a path is a smooth function γ(τ) ∈ M, τ ∈ [0, 1]. Composition, i.e. concatenation, is
defined by (γ′ ◦ γ)(τ) equals γ(2τ) if 0 ≤ τ ≤ 1/2 and γ′(2τ − 1) if 1/2 ≤ τ ≤ 1. To ensure the smoothness
around the concatenation point, we need a “sitting instant” condition that γ(τ) stays constant for |τ−0| < ϵ,
|τ − 1| < ϵ for some small ϵ.

The “thin homotopy” identification is that, two paths γ1 and γ2 are considered identified if they are
related by a “thin homotopy”, i.e. there is a 2-parameter interpolation γ̃(τ, λ) from γ1(τ) to γ2(τ), such
that everywhere the differentials (∂τ γ̃, ∂λγ̃) fails to be full rank, i.e. spans a less than 2 dimensional vector
space tangent toM (so the image of γ̃(τ, λ) inM has zero area, hence “thin”); moreover, γ̃ itself satisfies
the sitting instant condition in both τ and λ. See e.g. [43].

71We would like the spaces PM, P̄M (as well as any maps involved) to be “smooth”. But PM, P̄M are
in general infinite dimensional, and the suitable generalization of “smooth” to the infinite dimensional case
would be “diffeological”. We will discuss this in Section 5.2.
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our construction in Section 4, we will need an even more flexible version of higher categories
to be introduced in Section 5.4.

A strict 2-category has C0 and C1 and the said maps between them that form a 1-
category, but in addition, there is a set C2 of “2-morphisms” between pairs of 1-morphisms
which share the same source and target objects. Pictorially a 2-morphism φ takes a globular
shape

. (77)

Thus C2 has a source and a target map to C1, such that when further taking the source or
target map to C0, we require ss(φ) = st(φ), ts(φ) = tt(φ). There are maps ◦v from C2×s,t

C1
C2

to C2 and ◦h from C2 ×ss,tt
C0

C2 that define the vertical and horizontal compositions

(78)

which are required to satisfy vertical and horizontal associativity, as well as interchangeabil-
ity, i.e. in each kind of these situations,

(79)

the composition result is unique regardless of the order of composition, similar to the associa-
tivity requirement for 1-morphisms. Finally there is a map i from C1 to C2 that specifies, for
each 1-morphism f , the identity 2-morphism i(f) = 1f under vertical composition. On the

other hand, in horizontal composition, when g′
φ′
⇐= f ′ is given by f ′ 1f ′⇐== f ′, it is conventional

to collapse its globular shape in the pictorial notation:

(80)

and such a horizontal composition is called a left whiskering. Similar for right whiskering.
A strict 2-groupoid is a strict 2-category in which each 1-morphism is invertible as in a
1-groupoid and moreover each 2-morphism is also invertible.

The generalization to strict n-categories should be obvious. Now we emphasize two very
useful and illuminating points of view:
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• A strict m-category can be naturally seen as a special kind of strict n-category for
arbitrary n ≥ m, such that all k-morphisms for k > m are identity morphisms, i.e.
Ck = {1u|u ∈ Ck−1} ∼= Ck−1 for k > m. We may as well take n towards infinity. This
view point will be very useful in understanding many discussions below.

• While in a 1-category, the 1-morphisms between two given objects forms a set C1|b,a,
in a strict n-category, the q-morphisms between two objects for 1 ≤ q ≤ n form a strict
(n − 1)-category, sometimes called the hom-category between a and b, which we will
denote as C|b,a, with (C|b,a)0 = C1|b,a. 72

Some examples of strict higher categories—more particularly, strict higher groupoids—
that will appear in our lattice theory application include:

1. Given a d-dimensional continuum manifoldM we can define a strict path d-groupoid
P̄dM := (P̄dM ⇒ · · · ⇒ P̄M ⇒ M), where PkM is the space of “k-paths”, the
interpolation between two elements of Pk−1M that share the same source and target
in Pk−2M, starting with P0M =M and P1M = PM, and P̄k is Pk with identification
under thin homotopy, in order for this d-groupoid to be strict. 73 Geometrically, if
k ≤ d, a generic element in P̄kM wipes over a k-dimensional surface inM.

Being strict makes this category easy to think of, but then not so powerful in capturing
the full homotopy information. 74 However, it is still sufficient for many physical
application purposes. This perspective of continuum manifold is useful for relating
lattice QFT to continuum QFT.

2. A d-dimensional lattice gives rise to a strict d-groupoid L̄ = (L̄d ⇒ · · · ⇒ L̄1 ⇒ L̄0).
The L̄1 ⇒ L̄0 part has been introduced before, while L̄i for i ≥ 2 is roughly speaking
i-dimensional surfaces (including degenerate ones) on the lattice, but the source and

72This can be phrased in terms of enrichment, which roughly speaking means the hom-set C1|b,a in a
1-category is replaced by some structure richer than merely a set. Thus, a strict n-category is a 1-category
enriched by strict (n − 1)-category. In this paper we will not have much emphasis on the enrichment
perspective, though it is generally important in category theory.

73Similar to footnote 70, there are the higher dimensional versions of the sitting instant requirement and
the thin homotopy (non-full rank interpolation) equivalence. We can take the notion of e.g. “strong 2-track”
in [85] and generalize it to higher dimensional paths.

74Any strict higher groupoid constructed out of a manifold, regardless of the detailed construction, is
incapable of capturing the full homotopy information of that manifold [36, 86]. (In general, the information
of Whitehead product and beyond will be lost. Our particular construction also losses all the homotopy
n-type information for n > d.) We will mention more about this in footnote 94. In order to capture the
full homotopy information, suitable notion of weak higher category must be used, and in Section 5.4 we will
introduce one such notion, simplicial weak category, that is widely used.
If we want to define a path n-groupoid that captures the full homotopy n-type information for some finite

n, there are some other particular constructions. For instance, in order to construct a weak path 3-groupoid
that captures the full homotopy 3-type information, in [85], identification of 2-paths under a “laminated”
condition, which is more stringent than thin homotopy, is taken, so that some 2-paths identified under thin
homotopy now become distinct under this laminated condition, and the path 3-groupoid becomes a less strict
kind of category—a Gray 3-category, which will be introduced in Section 5.3. Holonomies valued in Gray
3-categories can hence be considered.
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target have to be specified. In L̄2, two elements that wipe over the same plaquette(s)
can still be different, but related by whiskering, e.g.

.

Likewise for L̄i, i > 2. We will denote by L̄≤m (where m ≤ d) the m-category obtained
from L̄ by keeping up to L̄m and ignoring the higher morphisms (or equivalently,
keeping only the identity higher morphisms).

Just like the strict path n-groupoid for a continuum manifold, the strict d-groupoid
L̄ does not capture the full homotopy information of the manifold that the lattice is
discretizing, but it is sufficient for many physical applications.

3. We can ask whether BG can be delooped once more into a strict 2-groupoid B2G :=
(G ⇒ ∗ ⇒ ∗). This is only well-defined when G is abelian, due to the requirement of
interchangeability between vertical and horizontal compositions. 75 Obviously, when
G is abelian, it can be delooped arbitrarily many of times into BnG. And obviously,
this will be related to what we discussed in Section 2.3, that higher form gauge fields
must be abelian.

4. More generally, a strict 2-groupoid with a single object, but not necessarily with a
single 1-morphism, is called a strict 2-group. It can be proven that strict 2-groups
always take the “crossed module” form BG := (G ⋉ H ⇒ G ⇒ ∗) where G,H are
groups with a homomorphism t̃ from H to G [43, 86,87]:

(81)

(more general compositions can be derived using the associativity and interchangeabil-
ity conditions, with the fact that (1, 1) ∈ G ⋉ H is the identity for both the verti-
cal and the horizontal composition), and this is the delooping of an action groupoid
G := (G ⋉ H ⇒ G) equipped with some extra structures (that make G a group, to

75This is the basic example of the Eckmann-Hilton argument.
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which H has a homomorphism t̃, along with a G action back on H). The interchange-
ability between vertical and horizontal compositions requires ker(̃t) to be abelian. It
is apparent that the case of U(1) × R ⇒ U(1) ⇒ ∗ will be related to the d.o.f. in
Villainized U(1) gauge theory, and it deloops the groupoid S1 ×R ⇒ S1 that we have
discussed before.

(Even more generally, a strict 2-category with single object can be viewed as the
delooping of a 1-category equipped with extra structure, and a 1-category with such
extra structure is called a strict monoidal category.)

5. The strict 2-groupoid S2 × SU(2)× R ⇒ S2 × SU(2) ⇒ S2

will apparently be related to the spinon decomposition of S2 nlσm. The structure (37) is
contained in the maps involved in the definition of this strict 2-category. In particular,
given source and target objects, (S2×SU(2))|n̂′,n̂

∼= U(1), and given source and target
1-morphisms, (S2 × SU(2) × R)|(n̂,V),(n̂,Veiθn̂·σ⃗) ∼= Z. Unwinding more structurally in
order to compare with (37), we have

(S2 × SU(2)× R)[2] ⇒ S2 × SU(2)× R
↓ (s,t)

(S2 × SU(2))[2] ⇒ S2 × SU(2)
↓ (s,t)

(S2)2 ⇒ S2

(82)

where (S2 × SU(2))[2] := (S2 × SU(2)) ×(s,t),(s,t)
(S2)2 (S2 × SU(2)) ∼= S2 × SU(2) × U(1)

and (S2 × SU(2) × R)[2] := (S2 × SU(2) × R) ×(s,t),(s,t)
S2×SU(2)×U(1) (S

2 × SU(2) × R) ∼=
S2 × SU(2)× R× Z.

6. The structure (51) is captured by the strict 2-groupoid P̄2S
3×U(1)/WZW ⇒ P̄S3 ⇒

S3. (Here we have identified paths related by thin homotopy, while in (51) we did not;
this does not matter because our purpose is to capture the WZW evaluation, which is
indeed unaffected by any thin homotopy.) Including the Villainzation layer above (51),
the structure is captured by the strict 3-groupoid (P̄2S

3×U(1)/WZW )×R ⇒ P̄2S
3×

U(1)/WZW ⇒ P̄S3 ⇒ S3. As mentioned there, the problem of using this structure
for a lattice theory is that P̄S3 is infinite dimensional. Our task is to find a finite
dimensional 3-category in Section 5.4 which is equivalent to this infinite dimensional
strict 3-category in a suitable sense. Understanding such “equivalence in a suitable
sense” is why higher category theory is necessary; otherwise, without category theory,
it is hard to move beyond (51).

65



So far we have described the general structure of strict higher categories. But more
interesting is the relation between structures.

Given two 0-categories, i.e. sets, we would think about functions mapping between them,

D
F←− C. Just from this notation, we realize a deep, interesting point, that all 0-categories

together form a 1-category Set, or say 0Cat, where the objects in Set0 are sets, and the
morphisms in Set1 are functions between sets. 76 This point of view is not only important
purely mathematically, but is directly useful for the concept of internalization in Section 5.2,
which will in turn underlie our construction of lattice d.o.f..

It is then natural to ask what maps between two 1-categories. The notion of functor
naturally comes up (although for our application we will need a more general notion of
functor, i.e. anafunctor, which we will explain in Section 5.2): A functor F from 1-category

C to 1-category D, again denoted as D
F←− C, involves a function F0 from C0 to D0 and a

function F1 form C1 to D1, pictorially

(83)

such that the source and target maps, the composition, and the identity specifications are
all preserved. 77 (In the special case when C and D are BG and BH, a functor between
BG and BH apparently is a group homomorphism between G and H.) Similar to functions
between 0-categories, functors between 1-categories can be composed in the obvious manner,

(E
G◦F←−− C) := (E

G←− D
F←− C), and the composition is associative.

A fundamental reason that makes the notion of 1-category more powerful than the notion
of set (0-category) is, now that we have two layers, there is a new kind of relation from C
to D that has no counter-part in 0-categories: We can also consider a map from C0 to D1.
But then what would C1 map to? Recall we may view a 1-category as a special kind of
2-category which only has identity 2-morphisms, i.e. D2 = {1h|h ∈ D1} ∼= D1, therefore C1

must somehow map to this D2. This leads to the notion of natural transformation. We can

76The issue mentioned in footnote 65 appears here. To equate “all 0-categories” to “all sets”, we should
really mean “all small 0-categories”. The same is understood in further discussions below. (Set itself is a
large 1-category because the collection of all sets is not a set but a proper class. If we want—though often
there is no intrinsic problem to work with large categories—we can always further restrict “all sets” to sets
whose cardinalities are not too large, so that the collection of them is still a set, and the collection thus
becomes a small 1-category. But all these should not matter in physics, because we do not expect sets with
unlimitedly large cardinalities to be directly involved in physics anyways.)

77It is common to abbreviate both F0 and F1 as just F , but keeping the subscript in mind is helpful for
generalizing towards the crucial notion of anafunctor in Section 5.2.
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think of a natural transformation Φ pictorially as

(84)

where the top and bottom surfaces reduce to two functors F,G mapping from C to D, and
there is a function Φ1 mapping from C0 to D1 such that it reduces to F0 and G0 when
taking the source and target in D. Moreover there is a Φ2 mapping from C1 to D2, where
D2 only contains identity 2-morphisms. More exactly, f ∈ C1 is mapped to the rectangular
shape on the left, which should represent a 2-morphism in D2, and since the only available
2-morphisms in a 1-category are identity 2-morphisms, we conclude the only possibility is
Φ2(f) = 1Φ1(c′)◦F1(f) = 1G1(f)◦Φ1(c) ∈ D2, which in turn implies Φ1(c

′)◦F1(f) = G1(f)◦Φ1(c).
Therefore, Φ2 does not contain any more information than what is already contained in
F1, G1,Φ1, rather it provides a consistency constraint between these three functions. Such a
Φ is said to be a natural transformation from functor F to functor G. Thus, apparently we
should denote a natural transformation as

.

The vertical composition of natural transformations is obvious; with a little extra effort
horizontal composition can be defined, too (called Godemant product). From here, we see
all 1-categories together form a strict 2-category Cat, or say 1Cat.

A natural transformation Φ−1 from G to F is the inverse (under vertical composition)
of Φ if (Φ−1)1 = (Φ1)

−1—and this may or may not exist for a given Φ. Just like how the
equivalence (equipotence) between two sets is established by the existence of an invertible
function between them, we can say two functors are equivalent if there is an invertible
natural transformation (also called natural isomorphism) between them, though the two
functors may not be equal.

With this notion of equivalence between functors, now we can define the notion of “in-

verse” for a functor at two levels of strictness. Intuitively we can define the inverse C
F−1

←−− D

of D
F←− C by strictly requiring C

F−1◦F←−−−− C = 1C and D
F◦F−1

←−−−− D = 1D. If two categories
are related by invertible functors in such a strict sense, the two categories are strictly isomor-
phic at each level (we will colloquially say they are the same). However, often a less strict
notion is more useful, especially when the strict inverse does not exist. We say a functor
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C
F̄←− D is an inverse of a functorD

F←− C, if the composed functor C
F̄◦F←−− C has an invertible

natural transformation to 1C , and D
F◦F̄←−− D also has an invertible natural transformation

to 1D. We say the existence of such pair F, F̄ establishes a natural equivalence between the
1-categories C and D.

This is the first scenario where the flexibility of category theory manifests—and we will
need more kinds of flexibility later in order to arrive at the lattice construction we desire. It
can be seen that the definition of natural equivalence between 1-categories looks remarkably
similar to the definition of homotopy equivalence between topological spaces, whose contrast
with the strict notion of homeomorphism shows the power of flexibility. Indeed, a homotopy
between two manifolds induces a natural equivalence between their fundamental groupoids.

It is easy to prove that an equivalent—but often more useful in practice—way to state
natural equivalence between C and D is to say F is “essentially surjective and fully faithful”.

“Essentially surjective” means while D0
F0←− C0 might not be surjective, any d ∈ D0 must be

related via some invertible morphism to (in generalization of being strictly equal to) some
F0(c). “Fully faithful” means for any a, b ∈ C0, the restriction of F1 to C1|b,a is a bijection
between C1|b,a andD1|F0(b),F0(a). From these conditions we can construct an inverse functor F̄
that is also essentially surjective and fully faithful. 78 Thus, the map between two naturally
equivalent 1-categories is still bijective in the traditional sense at the morphism layer given
the source and the target, but becomes more flexible at the object layer.

It can be readily seen how functors and natural transformations are useful in lattice QFT:

1. In traditional lattice nlσm, a field configuration is a function from L̄0 to T .

2. In traditional lattice gauge theory, a field configuration is a functor from L̄≤1 to BG.
A gauge transformation is a natural transformation, which is invertible since all mor-
phisms are invertible in BG. Hence field configurations that are related by gauge
transformations are indeed equivalent as functors.

3. In Villainized S1 nlσm, a field configuration is a functor from L̄≤1 to the action groupoid
S1×R ⇒ S1. 79 More generally, a field configuration in a Villainized nlσm is a functor
from L̄≤1 to T̃ 2/Γ ⇒ T , where T̃ , the universal cover of T , is a Γ bundle over T for
some discrete group Γ, and the mod Γ is by a Γ action on both T̃ ’s, so T̃ 2/Γ ∼= T × T̃ .

4. Consider two 1d lattice loops, but with different numbers of vertices. We feel they
should be equivalent in some suitable sense, since they both discretized a 1d space(time)
circle. Indeed, as 1-categories they are naturally equivalent, and both naturally equiv-
alent to a lattice loop with a single vertex, i.e. BZ—and this Z in the 1-morphism
captures the π1 of a loop. Readily from here, we can feel that natural equivalence

78There is an important caveat in this construction, which we will discuss in the next subsection, that
makes the use of anafunctor necessary in many situations, in generalization of ordinary functor.

79What we called a Z gauge transformation in Section 2.1 when viewing Villainization as gauging a Z
symmetry from an R-valued theory is not a natural transformation. In fact it does not act on this description,
because eiθ ∈ S1 and γ ∈ R are already physically meaningful variables. The categorical nature of the Z
gauge transformation will be explained below (90) after we introduce anafunctor.
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is related to the invariant information under renormalization (coarse graining of lat-
tice), and the notions of “same” versus “naturally equivalent” are, roughly speaking,
respectively suitable for discussing UV versus IR. We will see more and more of such
intuition in the proceeding.

With the last example, we can introduce the concept of skeletal category, which means in
such a category, if two objects are related by an invertible morphism, then these two objects
must be the same object. Starting with a generic category, we can arrive at a skeletal
category naturally equivalent to the original category, by identifying objects that are related
by invertible morphisms. We will often use a skeletal category to represent its natural
equivalence class, calling it the skeleton of the class, In the last example above, BZ is the
skeleton.

Now we can systematically understand what it means for a lattice path integral to be
local, especially in situations like Villainization (recall the discussion we had at the end of
Section 2.1). Locality just means each field configuration sampled in the path integral is a
functor from the lattice to some target category (possibly a higher category, which we will
discuss later)—in generalization of the usual notion of target space—so that each vertex is
mapped to some field valued in C0, each link is mapped to some field valued in C1, and so
on. But the path integral is in general not locally factorizable, because in general C1 does
not factorize into the form C0×C0×X—either not of this form as a set, or not of this form
as a manifold though as a set—and likewise for higher morphisms; however, C1 does have
the source and target maps to C0, which can be viewed as local constraints (for example
the eiγl = eidθl constraint in the Villain model). In practice, when sampling the fields, we
parametrize C1 by C ′

0 × C ′
0 ×X using some large enough C ′

0 and X (for example we write
γl = dθl + 2πml ∈ R in the Villain model, with θv, θv′ ∈ (−π, π] and ml ∈ Z).

While the descriptions above are somewhat nice and systematic, they are not completely
satisfactory. For instance, can we say a field configuration in traditional lattice nlσm is a
functor from L̄ to T , instead of from L̄0 to T , where the subscript 0 means ignoring the
higher dimensional lattice cells? It turns out the statement becomes incorrect, because L̄1

contains all lattice paths, meanwhile, since T is a 0-category, T1 = {1θ|θ ∈ T } only contains
identity 1-morphisms, thus a functor from L̄ to T must have a constant field over each
connected component of the lattice, which is certainly not what we want in general. The
correct statement is:

1. In traditional lattice nlσm, a field configuration is a functor from L̄ to the pair groupoid
ET := (T 2 ⇒ T ), which means the field on a link l = ⟨v′v⟩ is just specified by the
fields on v and v′ together, no more and no less.

It is not hard to see ET is naturally equivalent to the trivial category for any T ; what
this means physically will be discussed in the next subsection—but apparently this does not
mean the traditional lattice nlσm is a trivial theory, since it is not. (Similar to the relation
between the category BG and the classifying space |BG|, the category EG is also related to
the universal bundle |EG| via the procedure of geometric realization. 80 Just like the space

80More generally the space |ET | can be defined in the same way, although we will not make use of it
except for when T = G.
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|EG| is a G bundle over |BG|, in a suitable sense the category EG is also a G bundle over
BG. 81 And the fact that EG is naturally equivalent to the trivial category is related to the
fact that |EG| is contractible.)

Can we generalize this to the cases of traditional lattice gauge theory and Villainized
lattice nlσm mentioned above? Obviously, doing so will involve the notions of functor and
natural transformation for 2-categories. Therefore we shall first discuss those notions.

For strict 2-categories, it is not hard to see we can define functors, natural transformation
between functors, as well as a new kind of relation called modification between natural
transformations, which maps C0 to D2 (and C1, C2 to D3, D4 which contain only identity 3-
and 4-morphisms). But now, even for functors and natural transformations, there arise the
possibility of having definitions at different levels of strictness. In the below we will discuss
these different levels of strictness and see how they arise in the familiar lattice theories.

A strict 2-functor F is such that it has functions Fk (k = 0, 1, 2) that map Ck to Dk and
strictly preserve all the source, target, composition and identity maps. A strict 2-natural
transformation is basically the same as a natural transformation for 1-category, i.e. Φ2 still
maps C1 to the subset of identity morphisms {1h|h ∈ D1} ⊆ D2.

However, even between two strict 2-functors, now we can have a more general notion of
lax 2-natural transformation, where Φ2 can map C1 to D2 in the generic way, i.e. Φ2(f) ∈ D2

(the rectangular surface on the left of (84)) does not have to be any 1h ∈ D2|h,h ⊂ D2, and
there are consistency constraints, whose details we will omit, provided by Φ3 that maps
C2 to D3 which contains only identity 3-morphisms. (It is sometimes desired to require
Φ2(f) to be an invertible 2-morphism which is not necessarily an identity 2-morphism, and
such a “slightly stricter” version of lax 2-natural transformation is called a pseudo 2-natural
transformation.)

For 2-functors, there is also the more generic notion of lax 2-functor, where the composi-
tion of 1-morphisms and the assignment of identity 1-morphisms do not have to be preserved

strictly, but only up to some 2-morphisms, i.e. we can specify F1(g ◦ f)
φg,f⇐=== F1(g) ◦ F1(f),

1F0(a)
ψa⇐== F1(1a) in generalization of having equalities in the middle, and these 2-morphisms

must be chosen to satisfy certain consistency constraints—whose details we will omit, but
they finally come from the fact that D3 contains identity 3-morphisms only. (Again, it is
sometimes desired to require φg,f and ψa to be invertible 2-morphisms, and such a 2-functor
is called pseudo 2-functor.) The definition of lax 2-natural transformation between two lax
2-functors also requires some changes compared to when the 2-functors are strict, though
the spirit is the same.

And thus we can envision that, more generally, for strict n-categories, there are (n, q)-

81This means we have a functor from the 0-category G to the 1-category EG and then a functor from EG
to BG, such that any 1-morphism 1g̃ ∈ G1 is mapped to (g̃, g̃) ∈ EG1 = G2, which is in turn mapped to
the identity g̃g̃−1 = 1 ∈ BG. Alternatively, the pull-back category (which we did not systematically define)
EG×BG EG :=

(
{((g1, g2), (g′1, g′2))}|g2g−1

1 = g′2g
′−1
1 }⇒ {(g, g′)}

)
has a functor to the 0-category G, given

by g′−1g = g̃ ∈ G0 = G, and consistently, g′−1
2 g2 = g′−1

1 g1 = g̃ for 1g̃ ∈ G1
∼= G, specifying the G action on

EG, just like |EG|×|BG| |EG| has a function to G, specifying the G action on |EG|. The mathematical idea
and physical interpretation behind this will become clearer as we proceed (in particular as discussed below
(112)).
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transfors which map Ck to Dk+q (so q = 0 are n-functors and q = 1 are n-natural transforma-
tions), such that the maps for k+q ≤ n contains information that defines the transformation,
and the map for k+q = n+1 provides consistency constraints. The transfors can be defined
at different levels of strictness. The collection of strict n-categories along with their strict
(n, q)-transfors (0 ≤ q ≤ n) form a strict (n + 1)-category, but often it is desired to include
laxer transfors, which will in general result in a less strict (n + 1)-category. Plunging more
deeply into this is beyond our scope.

After these introductions, we are ready to explain how the known examples of lattice
theories in Section 2 are described by strict higher categories (more particularly, strict higher
groupoids where all morphisms are strictly invertible, hence all “lax” below are automatically
“pseudo”):

1. In traditional lattice nlσm, a field configuration is a functor from L̄ to the pair groupoid
ET := (T 2 ⇒ T ), which means the field on a link l = ⟨v′v⟩ is just specified by the
fields on v and v′ together.

A generic natural transformation is going to change the fields on the vertices and links
(since Φ1(v ∈ L̄0) can be any element in ET1), therefore physically we do not demand
the path integral weight to be invariant under natural transformation.

2. In traditional lattice gauge theory, a field configuration is a functor from L̄ to BEG :=
(G2 ⇒ G ⇒ ∗), which means the field on the plaquette bounded by two Wilson lines
is just specified by the two Wilson lines together, or equivalently, it can be specified
by one Wilson line along with the holonomy.

If G is a discrete group (as is often the case in the effective theory of topological phase,
which we will discuss more in Section 5.3), then it is physically possible to forbid the
gauge flux, in which case only identity 2-morphisms are left, so that the target category
becomes just BG. But for continuous group it is not so physical to demand so.

A gauge transformation is a strict 2-natural transformation. The holonomy around a
plaquette or a non-contractible loop remains invariant (up to conjugation by Wilson
lines) because the image of Φ2 in a strict 2-natural transformation only contains identity
2-morphisms. On the other hand, a generic lax 2-natural transformation changes the
holonomy. Therefore, physically we demand the path integral weight to be invariant
under strict 2-natural transformation, but not under generic lax 2-natural transforma-
tion.

3. In Villainized S1 nlσm, a field configuration is a functor from L̄ to S1 × R × Z ⇒
S1 × R ⇒ S1, where the Z in the 2-morphism represents the vorticity; in particular,
it comes from (S1 × R)[2] := (S1 × R)×(s,t),(s,t)

(S1)2 (S1 × R) ∼= S1 × R× Z. If vortices are
forbidden, i.e. only identity 2-morphisms are allowed, then the target category can be
reduced to the action groupoid S1 × R ⇒ S1. More generally, a field configuration
in a Villainized nlσm is a functor from L̄ to T̃ 2/Γ × Γ ⇒ T̃ 2/Γ ⇒ T (note that
T̃ 2/Γ ∼= T ×T̃ ); if the Γ vortices are forbidden, only the identity 2-morphisms are left.

Again, in a nlσm, physically we do not demand the path integral weight to be invariant
under 2-natural transformation.

71



4. In Villainized U(1) gauge theory, a field configuration is a functor from L̄ to the
delooping of the target category above, U(1) × R × Z ⇒ U(1) × R ⇒ U(1) ⇒ ∗,
where the Z in the 3-morphism represents the monopole. If monoples are forbidden,
i.e. only identity 3-morphisms are allowed, then the target category can be reduced
to the 2-group U(1) × R ⇒ U(1) ⇒ ∗. More generally, a field configuration in a
Villainized gauge theory is similar, as long as we replace U(1) × R by G ⋉H, and Z
by H/G = ker(̃t) which must be abelian as explained before.

Now it becomes particularly interesting to ask if the path integral weight should be
invariant under natural transformations at some certain level of strictness.

As a Villainized gauge theory, the path integral weight should be invariant under strict
3-natural transformations only, i.e. those where Φk+1 maps Ck to identity (k + 1)-
morphisms in Dk+1 for k > 0, and to generic 1-morphisms for k = 0. This are the
usual gauge transformations on the lattice.

One can ask what if we impose a stronger requirement that the path integral weight
is invariant under 3-natural transformations that are less strict? In particular, let us
consider invariance under those laxer 3-natural transformations where Φk+1 maps Ck
to identity (k + 1)-morphisms in Dk+1 for k > 1 and generic (k + 1)-morphisms for
k = 0, 1. This is what is called 2-group gauge theory that has been studied relatively
early on as an application of category theory in physics [29–31,41–43]. In this case the
flux is no longer gauge invariant up to conjugation, but the ker(̃t)-valued monopole
in the 3-morphism is still physically well-defined. We will discuss more about this in
Section 5.3.

From here, we can see that in general, even for the same target category, by demanding
invariance of the path integral weight under natural transformations of different levels
of strictness, we can still get different theories. As usual, by tuning the path integral
weight, we may access different phases of a theory; as we demand the path integral
weight to remain invariant under laxer and laxer natural transformations, the accessible
phases of a theory becomes more and more limited. This is why the Villainized U(1)
gauge theory can access both the confined and the Coulomb phases (for d ≥ 4 [53]),
while the 2-group gauge theory with the same target category only represents the
confined phase [29–31]. We will discuss more about this in Section 5.2.

5. Obviously, when both G and H in the target category above are abelian, we can deloop
the category arbitrarily many times, and obtain Villainized higher form gauge theories.

6. In spinon decomposed S2 nlσm, a field configuration is a functor from L̄ to S2×SU(2)×
R×Z ⇒ S2×SU(2)×R ⇒ S2×SU(2) ⇒ S2, where the Z in the 3-morphism represents
the hedgehog (see (82)). If hedgeogs are forbidden, i.e. only identity 3-morphisms are
allowed, then the target category reduces to S2 × SU(2)× R ⇒ S2 × SU(2) ⇒ S2.

Again, in a nlσm, physically we do not demand the path integral weight to be invariant
under 3-natural transformation.
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7. Consider two smooth functions f, g from manifold M to manifold N . Function f
determines a d-functor F from the strict path d-groupoid P̄dM to the strict path d-
groupoid P̄dN (where d is the max of the dimensions ofM,N ), because knowing how
every point onM maps to N determine how every path, surface and so on onM maps
to that on N . Likewise for g. A homotopy from f to g determines a lax d-natural
transformation from F to G. Homotopy equivalence betweenM andN implies natural
equivalence between P̄dM and P̄dN . 82

8. L̄ and L̄′ for two lattices that discretize the same space or two homotopically equivalent
spaces are naturally equivalent, where the natural equivalence is again established by
lax d-natural transformations.

From these discussions we can experience that category theory is a natural language for
organizing our thoughts about lattice QFT and potentially their relation to continuum QFT.
To describe the known lattice QFTs in Section 2, we only used strict higher categories; so
we may indeed anticipate that the generalization problem discussed in Section 3 might find
its resolution when the more flexible higher categories are taken into consideration.

To go towards this direction, next we shall motivate the introduction of anafunctors
as a necessary (and actually familiar and intuitive, as we shall see) generalization of the
ordinary functors, whenever we are concerned with the continuity/smoothness of spaces and
functions—which is indeed the very problem our work aims at.

5.2 Internalization and anafunctor

Let us start with a motivating problem. In the above we have seen that the homotopy
between two manifolds implies natural equivalence of their strict path d-groupoids; the same
holds when both manifolds are discretized into lattices. But an obvious question to ask is:
Consider the strict d-groupoid of a lattice and the strict path d-groupoid of the manifold
that the lattice is discretizing, are they also naturally equivalent in some suitable sense?

The subtlety here lies in that the manifold is not only a set of points, but has the extra
structure of being smooth. So, as mentioned before, it is intuitive to require whatever maps
that are involved to be smooth maps. This intuition can be more systematically phrased in
terms of internalization. Consider all the sets and functions involved in defining a category
C = (C1 ⇒ C0),

(85)

where the functions satisfy some consistency constraints (such as si = ti = 1C0 , associativity,
etc.). While this diagram represents a category C, if we stare at this diagram, we realize it
also represents a few objects and a few morphisms within some larger category—and this

82But the converse is not necessarily true, because any strict groupoids cannot capture the full homotopy
information of the manifold. See footnote 94. To establish the converse, weak higher groupoids are needed,
see Section 5.4 for one construction.
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“larger category” is Set, because C0, C1 and C1 ×s,t
C0
C1 are indeed sets, and s, t, i and ◦ are

indeed functions. So this diagram, along with the diagrams that describe the consistency
constraints (which are straightforward to draw, and we omitted here), define a category C
by picking certain objects and certain morphisms from the 1-category Set of sets. We say
C is “a category internal to the ambient category Set”—which is what we often mean by
default when we say “a category”. 83

With this perspective in mind, it is easy to generalize to 1-categories internal to other
ambient 1-categories. For example, let the ambient 1-category be Manifold instead, where
the objects are finite dimensional smooth manifolds, and the morphisms are smooth maps
between them (so Manifold is a subcategory of Set). Then we can pick some objects and
morphisms fromManifold to form the same diagram as above, satisfying the same consistency
constraints (which are also presented as diagrams), and this will define a 1-category internal
to Manifold, which means C0 and C1 are smooth manifolds, and all maps involved are smooth
maps. 84 This is the systematic description of the intuition before. Likewise we can define
the internalization of higher categories or other structures in Manifold. A familiar example is
a group internal to Manifold, which is, apparently, a Lie group; similarly, a groupoid internal
to Manifold is a Lie groupoid. 85

We can also consider more general ambient categories, as long as products of the form
X ×u,vZ Y are defined in the ambient category. 86 87 In particular, when discussing the
relation between lattice and continuum, we will often need the spaces of paths, surfaces and
so on in a manifold (such as in defining the strict path d-groupoid), and these spaces are
infinite dimensional. Therefore we will need a notion of “smoothness” for infinite dimensional
spaces. A notion suitable for our usage would be “diffeological”, whose detailed definition
we will not get into (see e.g. [79]) since we are not aiming at a comprehensive and rigorous
mathematical exposition in this work. The category Difflg with diffeological spaces as objects
and diffeological maps as morphisms will often be used as the ambient category, generalizing
Manifold by including the infinite dimensional cases. In the below, we may colloquially
use the familiar word “smooth” to mean diffeological when the space involved is infinite
dimensional.

83More precisely, C defined by such a diagram in Set must be a small category. So the answer to the
self-referencing question of whether Set can be defined by such a diagram within Set is “No”.

84s, t must be surjective submersions to ensure that, by transversality, C1 ×s,t
C0
C1 and C1 ×s,t

C0
C1 ×s,t

C0
C1

also exist as smooth manifolds (the latter space is for describing the consistency condition of associativity).
85In the above we drew the diagram that defines a category. To draw the diagram for a groupoid, we

have an additional arrow from C1 to C1 (satisfying suitable constraints) that assigns inverses. Further, to
define a group, we require C0 to be the manifold with a single point—if we break away from the set theoretic
language, such a “single point manifold” can be described as being a terminal object in Manifold, i.e. it is
an object such that all objects in Manifold has a unique morphism to it (so it is easy to see that a terminal
object is unique up to unique invertible morphisms).

86This is to require the ambient category to admit finite limits. Limit is a crucial general concept in
category theory which we, nevertheless, did not introduce.

87The ambient category can also be a higher category. In that case, some equality signs in the consistency
constraints can be replaced by invertible 2- or higher morphisms in the ambient category (where “invertible”
itself may also be defined in a weak sense). Some of our discussions below can be phrased in this language, for
example multiplicative bundle gerbe crucial to our main construction can be described as 2-group internalized
in the bicategory of Lie groupoids [32]. But we will not go deeply into the details.
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The problem we face is, the definitions of functor and natural transformation introduced
in Section 5.1 are designed for categories internal to Set, but when applied to categories
internal to Manifold or Difflg—as we do—i.e. when requiring the maps involved in the
definitions of functor and natural transformation to be smooth, the definitions would become
too restrictive to capture many interesting situations. So we must generalize the definitions.

Let us consider the simplest example in our motivating problem: Is L̄ for a 1d lattice
loop (in the extreme case where the lattice loop has only one vertex and one link, we get
L̄ = BZ, the skeleton) naturally equivalent to the path groupoid P̄1S

1 = (S1 × R ⇒ S1)
of the circle that it is discretizing? Indeed, we can have an essentially surjective and fully
faithful functor from L̄ to P̄1S

1, for instance

where we indicated how the lattice vertices map to points on the circle, and then the links are
mapped to paths on the circle in the obvious way. Conversely, there must be an essentially
surjective and fully faithful functor from P̄1S

1 to L̄ that is an inverse of the functor above.
One such inverse functor is

where we indicated how the points on the circle map to the lattice vertices, and then the
paths on the circle are mapped to the paths on the lattice depending on the starting and
ending point and the winding, in the intuitive way. This is all good if the categories are
internal to Set, but now that we want them to be internal to Manifold, 88 there is a problem:
The inverse functor obviously involves discontinuous functions.

A familiar treatment allows us to avoid such discontinuity, and will lead us towards the
definition of anafunctor soon. Instead of thinking about the circle itself, we cover the circle
with some patches (open charts) Uα, and map each patch to a lattice vertex.

88The lattice L̄0 and L̄1 are discrete, but discrete topology is a special case of topology.
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More particularly, given the patches we can form a category F , where F0 = ⊔αUα, the disjoint
union of the patches, and F1 contains two kinds of basic morphisms: one is the paths within
each patch, and the other is the identification morphisms, specifying which points on different

patches will be identified when mapped toM (denoting the map as ⊔αUα
Π−→M), i.e. there

is a morphism from x ∈ Uα to y ∈ Uβ whenever Π(x) = Π(y) ∈ S1; moreover, these two
kinds of basic morphisms can be composed, up to the intuitive identification

.

Such a category F has a surjective (rather than just essentially surjective) and fully faithful
functor to each of P̄1M and L̄, and moreover all maps involved are smooth. In the below, we
will extract the essence behind this familiar treatment to define the notions of anafunctor,
ananatural transformation, and ananatural equivalence. The example here will turn out to
be an ananatural equivalence between the lattice L̄ and the continuum P̄1M, established by
an invertible anafunctor F .

Before giving the precise definitions, it is helpful to look at another motivating example.
Let us consider a manifoldM with identity morphisms only,M⇒M. What are the possible
functors from M ⇒ M to BG = (G ⇒ ∗)? Somehow we feel there should be different
possibilities, to do with different principal G bundles overM. However, in fact there is only
one possible functor—which maps each point onM to the single object ∗, and the identity
morphism of each point on M to the identity element of G. This is not unexpected—the
definition of functor is suitable for categories internal to Set, and if we viewM as merely a
set rather than a manifold, indeed there should be no distinction of different bundles—as a
set without topology we only haveM×G. In order to define different principal G bundles

overM, one familiar treatment is, again, to coverM by some patches ⊔αUα
Π−→M, and then

specify the transition functions. In the category theory language, given the patches, along
with the aforementioned identification morphisms, we form a category F = (U ×Π,Π

M U ⇒ U)
where U := ⊔αUα. Via the Π, this category F has a smooth, surjective and fully faithful
functor toM ⇒M. Moreover, this category F can now have different smooth functors to
BG, which specify the transition functions. Thus we obtain different principal G bundles.

One step further, we can also take G connections over M into account, if we consider
the path groupoid P̄M = (P̄M ⇒ M) instead of M ⇒ M to begin with. We need an
F̃ such that F̃ 0 is still U , while now in F̃ 1, in addition to the identification morphisms, we
also have paths and their compositions with the identification morphisms, just like in the
S1 example described before. (So for generalM, the space F̃ 1 is now infinite dimensional,
and we need to internalize it in Difflg instead of just Manifold.) Then a smooth (which really
means diffeological) functor from F̃ to BG not only specifies the transitions functions, but
also the parallel transport (Wilson lines), hence the G connection.

Here we used patches and transition functions to describe a principal bundle, but there

is another familiar way to describe a principal bundle, namely the total space E Π−→ M of
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the bundle. It turns out that this corresponds to another choice of the category F ′, given by
F ′ = (E ×Π,Π

M E ⇒ E), which again has a surjective and fully faithful map toM ⇒M via
Π. On the other hand, note that E ×M E ∼= E ×G through the G action on the fibres of E ,
thus F ′ has a smooth functor to BG. Again, if we begin with the path groupoid P̄M⇒M
instead of M ⇒ M, then we need an F̃ ′ such that F̃ ′

0 = F ′
0 = E and in F̃ ′

1 we also need
to include paths in a suitable way so that the functor from F̃ ′ to P̄M is fully faithful (in
particular, F̃ ′

1 = PE/Ω∗G), and then a smooth functor from this F̃ ′ to BG would specify
a total G-connection over E , which reduces to a G-connection overM, with the remaining
components along the fibres being the BRST (or Faddeev-Popov) ghosts [88].

Now we have two ways to describe a principal bundle as a functor from some intermediate
category F coveringM to BG, one is the Cěch way where F0 consists of patches, and the
other is the BRST way where F ′

0 is the total space of the bundle. But if the principal bundle
is the same, the two ways of description must be equivalent in a suitable sense. Likewise if
we also specify the connection. This motivates us to define ananatural transformation in the
below.

Gathering the experience from these familiar treatments, it is now clear that we should

define an anafunctor D
F←− C, in generalization to an ordinary functor, as

D1 ←− F1
f. f.−−→ C1

⇊ ⇊ ⇊
D0 ←− F0 −↠ C0

(86)

where there is an intermediate category F , called the “span”, such that it has a surjective
(rather than just essentially surjective) and fully faithful ordinary functor to C (so that F is
in some sense equivalent to C but “larger in appearance”), and another ordinary functor to
D. 89 The notation F0, F1 here seems to be in conflict with the notation we used for ordinary
functor before, but in fact this is a generalization rather than a conflict—the function F0 in
the ordinary functor can be viewed as a set of order pairs {(c, F0(c))|c ∈ C0}, which is a set
that has a bijective map to C0, and now we are generalizing this to a set with a surjective
map to C0. Pictorially,

(87)

in an ordinary functor, there is a unique red arrow emanating from any given c, but in an
anafunctor, there can be one or more red arrows emanating from a given c, and moreover
they can end at different ds; the collection of all such red arrows emanating from all c is F0.
On the other hand, the collection of all pink surfaces in the middle forms F1; the requirement

89Before the general notion of anafunctor was formulated, it has already had other names in specific
contexts. In particular, anafunctor between Lie groupoids has been known as bibundle or Hilsum-Skandalis
morphism. In this and some related contexts, anafunctor has also been known as Morita morphism, and
ananatural equivalence has been known as Morita equivalence.
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of “fully faithful” is that, given the black arrow f on the right and the two red arrows on the
sides, the pink surface in the middle is uniquely determined, and hence so is the black arrow
h on the left (this aspect is the same for ordinary functors and for more general anafunctors).
90

The composition of anafunctors D
F←− C, E

G←− D can be defined by such a category H
(the arrows here represent ordinary functors)

H
↙ = ↘

E ← G → D ← F → C
(88)

where H0 = F0 ×D0 G0, and H1 is determined by the condition that the ordinary functor
from H to C via F is surjective and fully faithful; the ordinary functors from H to D via F

and via G are required to be equal. Then E
H←− C is the resulting anafunctor. Note that the

composition of anafunctors is not strictly associative, but the two results are equivalent up
to invertible ananatural transformations, which we now introduce. 91

Between two anafunctors D
F←− C, D

F ′
←− C we can define an ananatural transformation.

Consider the category H (the arrows here represent ordinary functors)

F
↙ ↑ ↘

D Φ⇓ H = C
↖ ↓ ↗

F ′

(89)

where H0 = F0 ×C0 F
′
0, and H1 is determined by the condition that the ordinary functor

from H to C via F is equal to that via F ′, and is surjective and fully faithful. (Such an
H is, intuitively, called the strict pull-back of F → C ← F ′, although we skipped the
general definition of pull-back in category theory.) On the left half of the diagram, the two
ordinary functors from H to D via F and via F ′ are in general distinct. If there is an
ordinary natural transformation Φ between these two ordinary functors, then H together Φ
defines are ananatural transformation between the two anafunctors of interest. If Φ is an
invertible ordinary natural transformation, thenH and Φ together is an invertible ananatural
transformation (an ananatural isomorphism), and in this case the two anafunctors F and F ′

are considered equivalent.

Two anafunctors D
F←− C, C

F̄←− D are considered inverse of each other, if their com-
positions F̄ ◦ F and F ◦ F̄ are related to 1C and 1D respectively via invertible ananatural

90This description can be casted in the language of double category, where a category has the objects from
both C0 and D0, and then there are two kinds of morphisms: those black arrows from C1 and from D1, and
those red arrows from F0. Although we will not directly use this language in the below, this perspective is
helpful for understanding and unifying many concepts.

91In the usual set theoretic construction, (X ×Y )×Z and X × (Y ×Z) are unequal as sets, but there is a
bijection between them. Similarly as we involve fibre products now. Thus, the collection of all 1-categories
internal to some ambient category, along with their anafunctors and ananatural transformations, form a
bicategory which we will introduce in Section 5.3.
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transformations; we say they establish an ananatural equivalence between C and D. It is
not hard to see that if C and D are ananaturally equivalent, then there exists some span F
such that there are strictly surjective and fully faithful functors from F to both C and D.

With these definitions, we can see that:

1. In our lattice loop versus circle example, L̄ and P̄S1 ⇒ S1 are ananaturally equivalent,
established by the span given by the patches, as we described.

P̄S1 ⇒ S1 is an example of the fundamental groupoid. More generally, the fundamental
groupoid of a manifoldM is ananaturally equivalent to a skeletal category π̃1(M) ⇒
π0(M), where the elements of π0(M) represent connected components of M, and
the elements of π̃1(M) represents classes of non-contractible loops on M, such that
π̃1(M)|a,a ∼= π1(M, x) is the usual fundamental group based at some point x on a
given connected component a. Hence the name “fundamental groupoid”.

2. In the principal bundle example, we have two choices of the span F for the anafunctor

BG
F←−M, one is the Cěch choice F = (U ×M U ⇒ U) given by the patches, and the

other is the BRST choice F ′ = (E ×M E ⇒ E) given by the total space, and the two
choices of anafunctors are related by invertible ananatural transformation.

If we want to specify connections, then we use BG
F̃←− P̄1M, where F̃ 0 = F0 and F̃ 1

includes paths suitably so that F̃ ⇒ P̄1M is surjective and fully faithful. Likewise for
F̃ ′. And the two anafunctors are again related by invertible ananatural transformation.

What is the fundamental difference between Set and Manifold (or Difflg) that makes the
notion of anafunctor, defined by the diagrams above, necessary when internalized in Manifold

(or Difflg), but not in Set? Let us denote the anafunctor D
F←− C by two ordinary functors

D
Ft

←− F
Fs

−→ C where Fs is surjective and fully faithful. In Set, recall that this means Fs has

an inverse F
F̄s

←− C. With this inverse, we can see the anafunctor D
Ft

←− F
Fs

−→ C of interest is

equivalent (via invertible ananatural transformation) to the ordinary functor D
Ft◦F̄s

←−−− C. But
crucially, the existence of such F̄s requires the axiom of choice; while the axiom of choice can
be imposed (as is usually done) in set theory, it is in general violated upon the introduction
of topology—simply because in general a projection cannot be lifted back to a continuous
section. 92 Therefore, anafunctor is the more useful notion in generic ambient categories,

92The axiom of choice is the statement that, if there is a collection of non-empty sets Sa (a ∈ A), then there
exists a “choice function” f from A to ⊔aSa such that f(a) is an element of Sa (so the image Im(f) contains
exactly one element from each Sa). This statement is obviously true (as f can be explicitly constructed) if
A is a finite set, but when A is an infinite set, whether such f exists depends on whether we impose the
existence as an axiom—and either way is consistent in set theory.
Even if we did impose the axiom of choice in set theory, when we introduce extra structures such as

topology to the sets involved, the axiom of choice may become incompatible with the extra structures. For
a familiar example, suppose Sa are fibres in a fibre bundle E that project to points a on a base manifold A.
Then in general there does not exist a continuous lifting function f from A to E.
Given an essentially surjective and fully faithful ordinary functor F in some ambient category, the axiom

of choice in that ambient category is needed for (and is, in fact, equivalent to) the existence of an essentially
surjective and fully faithful inverse ordinary functor F̄, roughly because F0 is in general non-injective.
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and only in those ambient categories where the axiom of choice is respected can it be reduced
to ordinary functors.

We can envision how n-anafunctor is to be defined for strict n-categories internal to

some ambient category. Still D
F←− C takes the form D

Ft

←− F
Fs

−→ C where Ft and Fs are
ordinary, generally non-strict n-functors, and moreover Fs satisfies the condition that: Given
the source and target (k−1)-morphisms g, f ∈ Fk−1 (it is implied that g, f themselves share
the same source and target (k − 2)-morphisms in Fk−2), the restriction of Fs

k from Fk|g,f to
Ck|Fs

k−1(g),Fs
k−1(f) is a surjection for k < n, and a bijection for k = n. 93 And F establishes

a higher ananatural equivalence between C and D if Ft also has these properties of Fs.

Compositions and ananatural transformations of higher anafunctors are essentially de-
fined by the same diagrams (88), (89) as before. But there is some new ingredient. Consider
two strict 2-categories C and D. Even between two ordinary 2-functors from C to D, we can
have 2-ananatural transformations that are beyond the ordinary 2-natural transformations.
This is because an ordinary 2-natural transformation involves a functor from C1 ⇒ C0 to
D2 ⇒ D1 (in a generic 2-category D2 not only contains identity 2-morphisms), and now we
can consider the possibility that this becomes an anafunctor. This is intuitive if we think
pictorially (along the lines of (87)): In (84), even if the F0 red arrow and the G0 red arrow
emanating from c are unique for each given c (so that F,G are ordinary 2-functors), the
blue surface in between (and hence the black arrow on the left) might still admit multiple
choices. Of course, in a more general 2-ananatural transformation between two anafunctors,
both red arrows and the blue surface emanating from any given c may admit non-unique
choices. We will see how such new ingredient is relevant in our main construction in Section
5.4, in particular in (118).

Coming back to the motivating problem at the beginning of this subsection, we can say
if two manifolds are homotopic, then the strict path d-groupoids of the manifolds, the strict
path d-groupoids of patches covering the manifolds (with the identification morphisms be-
tween different patches), and the strict d-groupoids of the lattices discretizing the manifolds,
are all ananaturally equivalent to each other as strict d-groupoids. 94

Clearly, in physics, not only does the homotopy information of the spacetime (as a con-

93We want to make sure this is a sensible definition. In particular, we shall make sure that, if we view
an n-category as an (n + 1)-category with identity (n + 1)-morphisms only, then “bijection” for k = n can
be replaced by “surjection”, as long as we have “bijection” for k = n + 1. This is indeed true. Given
ϕ, ψ in Fn, the restriction Fn+1|ϕ,ψ is empty if ϕ ̸= ψ and has a unique element 1ψ if ϕ = ψ; likewise for
Cn+1. So, first of all, for k = n+ 1, the map from Fn+1|ϕ,ψ via Fs

n+1 to Cn+1|Fs
n(ϕ),Fs

n(ψ) is automatically
injective; then the only non-trivial requirement is that it is also surjective. It being surjective means,
whenever Cn+1|Fs

n(ϕ),Fs
n(ψ) = {1Fs

n(ϕ) = 1Fs
n(ψ)}, we have Fn+1|ϕ,ψ = {1ψ = 1ϕ}, which indeed establishes

the injectivity for k = n, as desired.
94Using higher category theory to lay the foundation of homotopy theory is an important program in

mathematics [36], and weak higher categories must be used. Roughly speaking, the skeleton (under ananat-
ural equivalence) of a strict n-groupoid (may as well take n → ∞) can be expressed in terms of crossed
complex, which is a generalization of the crossed module introduced before that describes the strict 2-
group [89,90], and it does not contain information about the higher order mappings between the πm’s (such
as the Whitehead product). That is why weak higher category is in general needed to capture the full
homotopy information [36,86].
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tinuum manifold or a lattice) matter. Besides the topological properties, usually we are also
interested in the non-topological correlations of observables at generic energy/length scales.
(For example, how confinement happens in Yang-Mills theory is an important problem at
the intermediate energy scale ΛQCD.) Therefore, we need to care about both the ananatural
equivalence class as well as more details of a category, depending on the problem of interest.
Usually, towards the IR, the ananatural equivalence class becomes more important, because
this is the information that is kept unchanged under coarse graining.

Similar situation is also happening on the side of the target category. The physics of
a path integral is not only determined by the ananatural equivalence class of the target
category; even the physics in the IR limit, i.e. the phase, is not—it might be determined by
the ananatural equivalence class of a subcategory (or a quotient, etc.) of the original target
category. This is because of the presence of the path integral weight, which in general does
not remain invariant under ananatural transformations. This is the distinction between a
generic lattice theory and a topological lattice theory (which should be viewed as an already
coarse grained effective theory in the deep IR limit), where in the latter case the path integral
weight can only take values 0 or 1, or a complex phase of magnitude 1.

The simplest example is, a field configuration in traditional lattice nlσm is a functor from
the lattice L̄ to the pair groupoid ET (since the source category L̄ is discrete, it suffices
to use ordinary functor, which is a special case of anafunctor), and it is easy to check that
EX = (X × X ⇒ X) for any X is (ana)naturally equivalent to the trivial category ∗.
But of course this does not mean a traditional lattice nlσm describes trivial physics—we
know in general it can explore at least two phases by tuning the path integral weight, the
trivial (disordered) phase and the spontaneous symmetry breaking (ordered) phase. In the
topological lattice theory limits:

• If the link weight is 1 for any field configuration, then the path integral is sampling
the functors from L̄ to ET freely, such that the weight is invariant under any natural
transformation. In this case, we know the phase is indeed the trivial phase, as if we
have replaced ET by its ananaturally equivalent skeleton, the trivial category ∗. 95

• If the link weight is a delta function, then only identity 1-morphisms are kept, in which
case the target category becomes T , a subcategory of ET . A functor from L̄ to T
is indeed a completely ordered configuration, where each connected component of the
lattice has a constant field. This is in the ordered phase.

Away from these topological limits, a generic link weight interpolates between these two
cases. The weight does not respect invariance under natural transformation of the field
configuration, but it has not gone as far as to reduce the target category ET to T . Similar
for the traditional lattice gauge theory, where the 0-category T is replaced by the 1-category
BG, and the 1-category ET is replaced by the strict 2-category BEG.

95This can be formulated more mathematically. Consider the functor category ET L̄, whose objects are
the functors from L̄ to ET and whose morphisms are the natural transformations. The path integral weight
is trivial over this functor category, so it is natural ask what this functor category, as a whole, is equivalent
to, and we can check it is ananaturally equivalent to the trivial category—which would have been the case
if the target category was trivial to begin with.
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When a lattice theory is topologically refined, 96 it is useful to consider the ananatural
equivalence class of a target category, even when the path integral weight is non-topological
and does not remain invariant under ananatural transformation. It turns out the (higher
category analogue of) skeleton of the ananatural equivalence class tells us which topological
operators the topological refinement of the lattice theory enables us to explicitly define,
regardless of the detailed dependence of the path integral weight on the target category (in
particularly, regardless of the physical dynamics or fugacity of these topological operators).

1. Consider a Villainized nlσm. For simplicity let us first assume the vortices are forbid-
den. The target category is T̃ 2/Γ ⇒ T (recall T̃ 2/Γ ∼= T × T̃ ), which is ananaturally
equivalent to the skeleton BΓ = (Γ ⇒ ∗), established by

Γ ←− T̃ 2 × Γ −→ T̃ 2/Γ
⇊ ⇊ ⇊
∗ ←− T̃ −→ T

, (90)

where the span has a surjective and fully faithful ordinary functor to the right by
identifying (x, y, γ) ∈ T̃ 2 × Γ with (γ′x, γ′′y, γ′γγ′′−1) ∈ T̃ 2 × Γ for any γ′, γ′′ ∈ Γ
(and this is the categorical nature of what we called the Γ gauge invariance in Section
2.1 where T = S1 and Γ = Z and in Section 2.3 for more general T and Γ), and a
surjective and fully faithful ordinary functor to the left by collapsing T̃ to ∗. The Γ
at the 1-morphism in BΓ is related to the fact that π1(T ) ∼= Γ (we will discuss more
about this in the remaining of the paper). Physically, it means the Villainized nlσm
allows us to explicitly describe Γ-valued windings, regardless of whether it is important
in the dynamics due to the path integral weight.

It is particularly illuminating to think about the deep IR limit, where the lattice is so
coarse grained such that, the L̄1 ⇒ L̄0 part becomes the skeleton of the fundamental
groupoid, π̃1(M) ⇒ π0(M). If we also reduce the target category to its skeleton BΓ,
then a field configuration is a homomorphism from the non-contractible loops to Γ, as
expected.

When the vortices are not forbidden, the target category is (T̃ 2/Γ)× Γ ⇒ T̃ 2/Γ ⇒ T
(recall (T̃ 2/Γ) × Γ = (T̃ 2/Γ)[2] := (T̃ 2/Γ) ×(s,t),(s,t)

T 2 (T̃ 2/Γ)), which is ananaturally
equivalent to BEΓ = (Γ2 ⇒ Γ ⇒ ∗). The extra Γ at the 2-morphism describes the
vortices. This category is in turn ananaturally equivalent to the trivial category, which
physically suggests that the theory describes a trivial phase if the plaquette weight
is sufficiently insensitive (just like in the traditional lattice gauge theory mentioned
above).

2. A Villainized gauge theory is similar as long as we replace the 0-category T by the
1-category BG—or we can say, as long as we take T = G and deloop everything said
above. In particular, Γ must be abelian. “π1(T ) ∼= Γ” stays “π1(G) ∼= Γ”, but “a
homomorphism from π1(M) to Γ” becomes “a homomorphism from π2(M) to Γ”.

96We have not yet defined “topological refinement” mathematically, but we already have the experience
what this means from the previous sections. An important goal of the remaining parts of this paper is to
lead towards a suitable definition.
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3. If G itself abelian, we can further deloop arbitrarily many times.

4. Consider the spinon decomposed S2 nlσm. For simplicity let us first assume the hedge-
hogs are forbidden. The target category is S2×SU(2)×R ⇒ S2×SU(2) ⇒ S2, which
is ananaturally equivalent to the skeleton B2Z = (Z ⇒ ∗⇒ ∗), established by

Z ←− SU(2)2 × R2 × Z −→ S2 × SU(2)× R
⇊ ⇊ ⇊
∗ ←− SU(2)2 × R −→ S2 × SU(2)
⇊ ⇊ ⇊
∗ ←− SU(2) −→ S2

, (91)

where the span has a surjective (at the lower morphisms given any source and target)
and fully faithful (at the top morphism) ordinary functor to the right by identifying
(U ,U ′, a, a′, s) ∈ SU(2)2×R2×Z with (Ueiασz ,U ′eiα

′σz , a+α−α′ +2πk, a′ +α−α′ +
2πk′, s+k−k′) ∈ SU(2)2×R2×Z for any k′ ∈ Z and α, α′ ∈ R (this is the categorical
nature of the 1-form Z gauge invariance and the R mod 2πZ gauge invariance in Section
2.4), and a surjective and fully faithful ordinary functor to the left by collapsing SU(2)
and R to ∗. Similar to the Villainization case, the Z in the 2-morphism is related to
the fact that π2(S

2) ∼= Z, and physically it means the spinon decomposition allows us
to explicitly describe Z-valued skyrmions.

When the hedgehogs are not forbidden, the target category has the space of 3-morphisms
being S2×SU(2)×R×Z, where the extra Z (compared to the space of 2-morphisms)
describes the hedgehogs. The target category is ananaturally equivalent to B2EZ,
which is in turn ananaturally equivalent to the trivial category, and this physically
suggests the theory can describe the trivial phase if the cube weight is sufficiently
insensitive.

From these discussions, it becomes clear that to tackle the main problems we aim at, for
nlσm we need a topological refinement for T = S3 so that the target category is internal to
Manifold (which implies finite dimensional) and ananaturally equivalent to B3Z (when baryon
non-conserving hedgehogs are forbidden) or B3EZ (when baryon non-conserving hedgehogs
are allowed); then, for Yang-Mills theory we take T = SU(N) and suitably deloop the refined
target category, to obtain one that is ananaturally equivalent to B4Z (when Yang monopoles
are forbidden) or B4EZ (when Yang monopoles are allowed). To satisfy all these conditions,
it turns out we have to work with more flexible higher categories, in generalization to the
strict higher categories that we have been working with so far.

5.3 Weak categories

Let us introduce some weak categories that are more flexible than the strict ones, but
not as flexible as what we will finally need. In particular we will focus on the weak 2- and
3-categories called bicategories and tricategories. They have been extensively used in the
study of topological phases and generalized symmetries, which we will briefly mention but
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not go deeply into. We will mainly emphasize the conceptual aspects which will lead us
towards our final construction in the next subsection.

In this subsection we will ignore topology, so that all the structures are internalized in
Set. In fact, our very reason to go towards even more flexible definitions of categories in the
next subsection is to take topology into account.

From the definitions of lax 2-natural transformation and lax 2-functor, we have learned
that, when non-trivial 2-morphisms are available, we may replace the equality signs that
appear in some consistency conditions between 1-morphisms by more general (i.e. possibly
non-identity) 2-morphisms between 1-morphisms. Now, we note that even in the definition
of category itself, there are some equality signs describing consistency conditions between
1-morphisms—the associativity condition (h ◦ g) ◦ f = h ◦ (g ◦ f), and the unital condition
f ◦ 1a = f = 1b ◦ f . These equality signs can be understood as identity 2-morphisms,
which are the only 2-morphisms available in a 1-category. However, if we have a 2-category
with more general 2-morphisms, it is possible to relax these conditions on 1-morphisms, by
replacing the equality signs (identity 2-morphisms) with more general 2-morphisms:

h ◦ (g ◦ f)
αh,g,f⇐==== (h ◦ g) ◦ f, f

λLf⇐== 1b ◦ f, f
λRf⇐== f ◦ 1a (92)

where αh,g,f is called the associator for h, g, f , and λLf and λRf are the left and right unitors
for f ; we require these 2-morphisms to be invertible under vertical composition. We expect
the associators and unitors to satisfy suitable consistency conditions which ultimately follow
from the fact that the only available 3-morphisms are identity 3-morphisms. It is helpful
to explain the details of these conditions, because over the process we will develop some
important perspectives.

To begin, we picture an associator as

(93)

which looks like a tetrahedron but with one edge becoming a slit filled with the associator
2-morphism.

• The most crucial point to read-off from this picture is that, the composition ◦ should
be thought of as a generalized kind of 2-morphism, or say a 2-cell, which has a trian-
gular shape that takes two source 1-morphisms to one target 1-morphism, rather than
the previous globular shape (77) which takes one source 1-morphism to one target
1-morphism. Let us denote by [g ◦ f ] the triangular shape 2-morphism that takes g, f
to g ◦ f .
To appreciate the importance of this point of view, let us consider such a situation
(which will actually appear in our discussion soon). It is possible that, as 1-morphisms,
h◦(g◦f) and (h◦g)◦f are equal. In that case, however, we can still have an associator
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αh,g,f which is not the identity 2-morphism. What would the associator mean if the two
1-morphisms are equal already? The point of view above explains it: While h ◦ (g ◦ f)
denotes a 1-morphism, we shall also view the process as a 2-morphism, denoted as
[h ◦ (g ◦ f)], that takes three source 1-morphisms h, g, f to one target 1-morphism
which we called h ◦ (g ◦ f); likewise for [(h ◦ g) ◦ f ]. Thus, regardless of whether
h◦ (g ◦f) and (h◦g)◦f are equal as 1-morphisms, [h◦ (g ◦f)] and [(h◦g)◦f ] may still
be different as 2-morphisms, and the difference is captured by the associator αh,g,f . So
(93) means

[h ◦ (g ◦ f)] = αh,g,f ◦v [(h ◦ g) ◦ f ] , (94)

where the equality is as 2-morphisms taking three sources to one target. This is what
the picture (93) really means.

In particular, the “equality as 2-morphisms” is because there is no non-identity 3-
morphisms—in the picture, the bounded 3d volume represents the equality sign in the
formula above. 97

• Since the only available 3-morphisms are identity 3-morphisms, it is easy to see that the
2-morphisms satisfy strict associativity under consecutive vertical compositions, and
strict interchangeability between vertical and horizontal compositions. On the other
hand, the associativity under consecutive horizontal compositions is slightly modified.

Replacing the arrows for h, f, g in (93) by slits h′
φ⇐= h, g′

ψ⇐= g, f ′ ρ⇐= f under consecu-

tive horizontal compositions, it is not hard to see in the end we will be left with a 3d
volume bounded by four slits, which represents the equality between 2-morphisms

(φ ◦h (ψ ◦h ρ)) ◦v αh,g,f = αh′,g′,f ′ ◦v ((φ ◦h ψ) ◦h ρ) . (95)

• When four 1-morphisms j, h, g, f are consecutively composed, starting with the upper
left in the diagram below, by using associators and whiskering, we conclude that the
two results at the lower right must be equal as 2-morphisms, as indicated by the blue
equal sign. Since their triangular parts are the same, the equality becomes that of the

97Our perspective becomes closer and closer to that of a simplicial set, which is indeed what we will get to
in the next subsection. Intuitively, it becomes more and more similar to a lattice theory (which is desired),
or to a high dimensional tiling game with certain rules, such as what kind of tiles are available and which
ones can join together. This is indeed the nature of it.
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vertical compositions of the (whiskered) associators.

(96)

This is often called the “pentagon equation” of the associators (the pentagon refers to
the five red equal signs, at which associators are introduced).

The pentagon equation can also be thought of as five tetrahedra (93) piecing up to
a 4d simplex, where the slits are taken care of by filling in two extra 3d volumes
representing the whiskerings. And the existence of such an equation is simply because
the only available 4-morphisms are identites ones.

• In (93) or (94), if g = 1b is some identity 1-morphism, by applying the unitors and
suitable whiskerings, we obtain

1h ◦h (λLf )−1 = αh,1b,f ◦v ((λRh )−1 ◦h 1f ) (97)

which is often called the “triangle equation”, similar to the pentagon equation above.

This explains how a single, simple fact that all available 3- and higher morphisms are identi-
ties lead to a set of seemingly complicated consistency conditions satisfied by the associators
and the unitors—so these conditions can be thought of as being derived, rather than being
imposed at will. Such a 2-category is called a weak 2-category, or a bicategory. Between weak
2-categories, it is generally impossible to define strict 2-functors, so we must use pseudo or
lax 2-functors and 2-natural transformations.

There is a coherence theorem for 2-categories stating that every weak 2-category is nat-
urally equivalent to some strict 2-category (and this is not true for higher categories), but
practically there are many advantages to work with weak 2-categories [37, 87].

In our main construction we do not directly use bicategories. However, they are widely
used in both mathematics and theoretical physics. Here we briefly review some applications
in physics related contexts. Most of these applications concentrate on bicategories with a
single object. (A bicategory with a single object can be viewed as the delooping BM of
a 1-category M equipped with suitable extra structures; such an M is called a monoidal
category.)
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One major application is on the classification of 2-groups [91]. It is proven that every 2-
group (recall we ignore topology for now) is naturally equivalent to a skeletal weak 2-group
K ⋉ A ⇒ K ⇒ ∗ where A is abelian, and being skeletal at the 1-morphism level means
s((k, a)) = t((k, a)) = k; 98 the unitor is trivial, and the associator α̃ : K3 → A (where
αk,k′,k′′ = (kk′k′′, α̃k,k′k′′) ∈ K ⋉ A) is well-defined as an element of the group cohomology
H3

group(K;A). This classification is important in physics because, as we have seen before,
the phase of a system is characterized by the natural equivalence class of the target category
of the low energy effective theory (which might be different from that of the original target
category in a UV lattice theory), and thus the phases of those systems described by 2-group
symmetries or 2-group gauge theories at low energies are classified using the skeletal weak
2-groups [31, 39, 40]. In particular, given a strict 2-group G ⋉ H ⇒ G ⇒ ∗, the naturally
equivalent skeletal weak 2-group has A = ker(̃t), K = coker(̃t), forming the exact sequence

∗ → A → H
t̃−→ G → K → ∗; the associator arises from the fact that, as groups, in general

H ̸= A× (H/A) and G ̸= K × (H/A). 99 (Conversely, by the coherence theorem mentioned
above, given a weak skeletal 2-group, there always exists a naturally equivalent strict 2-
group; more particularly, given A and K in the exact sequence, the “2-extension problem”
of finding the possible choices of H and G is indeed classified by H3

group(K;A), the data
encoded by the associator.) In the Villainized gauge theories we discussed, K is trivial (as
we said, our work is interested in generic dynamics, rather than just the low energy phases,
therefore we not only care about the natural equivalence class of the target category, but
also the target category itself, so K being trivial does not mean the theory is trivial), but
there are physical applications with non-trivial K [29–31, 39, 40], including studies on the
possible low energy phases after Yang-Mills confinement and/or Higgsing.

It can also be noted that, when A = U(1) , we may use the associator as the Dijkgraaf-
Witten phase [16] for a 3d topological order with K lattice gauge field (recall we ignore
topology here, so K is discrete, and thus we may forbid its flux, as is assumed in discrete
Dijkgraaf-Witten theory), or as the WZW phase for a 2d symmetry protected topological
order with K global symmetry [20]. But in these applications, it is better not to view α as an
associator 2-morphism, but (equivalently) as a non-identity 3-morphism, i.e. (94) becoming

[h ◦ (g ◦ f)]
αh,g,f

⇚ [(h ◦ g) ◦ f ] . (98)

This is because physically we want to associate the Dijkgraaf-Witten phase αh,g,f to the 3d

98So this is an example of the situation we explained before, that k ◦ (k′ ◦ k′′)
αk,k′,k′′
⇐===== (k ◦ k′) ◦ k′′ has

the same source and target 1-morphisms, but the associator is still meaningful.
99While we will not rigorously prove the natural equivalence here, we can explain how the associator arises

in more details. Let gk ∈ G denote a chosen lift of k ∈ K. We have gkk′ = t̃(βk,k′)gkgk′ where βk,k′ ∈ H; it is
in general impossible to simultaneously make all t̃(βk,k′) = 1 as G ̸= K × (H/A) in general. When three ele-
ments in K are composed, we have gkk′k′′ = t̃(βkk′,k′′ )̃t(βk,k′)gkgk′gk′′ = t̃(βk,k′k′′)(gk t̃(βk′,k′′)g

−1
k )gkgk′gk′′ .

In the language of strict 2-group we write gkk′
βk,k′
⇐=== gkgk′ , and gkk′k′′

βkk′,k′′βk,k′
⇐======== (gkgk′)gk′′ and

gkk′k′′
βk,k′k′′ (kβk′,k′′ )
⇐=========== gk(gk′gk′′). Thus we find α̃k,k′,k′′ := (βk,k′k′′βk′,k′′)

−1(βkk′,k′′(
kβk,k′)) satisfies

t̃(α̃k,k′,k′′) = 1, i.e. α̃k,k′,k′′ ∈ A. The pentagon equation and the facts that in general β /∈ A but has
an ambiguity parametrized by A implies α̃ ∈ H3

group(K;A).
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tetrehedron; moreover this will make better connection to the cases of continuous-valued
d.o.f. to be discussed in the next subsection. (More general topological orders will also be
mentioned there, and further discussed in Section 7.)

Now let us briefly introduce weak 3-category, or tricategory. In our main construction,
when we go from S3 nlσm to SU(2) gauge theory (which, as we can tell now, is some kind
of delooping process) in Section 4.2, recall there is a potential issue involving Yang-Baxter
equation that we could have had encountered. Now we can understand the origin of this
problem in terms of tricategory.

When non-identity 3-morphisms are available, the consistency conditions between 2-
morphisms in a strict or weak 2-category can be relaxed by replacing equalities (identity 3-
morphisms) with more general invertible 3-morphisms. These consistency conditions include
the unital law for identity 2-morphisms, the interchangeability, the vertical associativity, the
modified horizontal associativity (95), the pentagon equation (96), and the triangle equation
(97).

Let us first look at the case where a 3-category is almost like a strict 3-category, except
the interchangeability of 2-morphisms—the last diagram of (79)—is weakened. Such weak 3-
categories are called Gray 3-categories. There is a coherence theorem for 3-categories stating
that every weak 3-category is naturally equivalent to some Gray 3-category, but not to any
strict 3-category in general. Such a level of strictness, that makes the n-categories “as strict
as possible” but still able to be equivalent to the generic weak n-categories, is called “semi-
strict”. For n = 2, semi-strict is strict. For n = 3, semi-strict can be Gray; but there are
also other options.

In a Gray 3-category, in the last diagram of (79), composing vertically first and then
horizontally and composing horizontally first and then vertically may result in different 2-
morphisms, but we may specify an invertible interchanger 3-morphism between them. (Even
when the two resulting 2-morphisms are equal, a non-identity interchanger is still meaningful,
just like the associator case we discussed before.) But practically it is more convenient to do
the following. We first define vertical composition and left and right whiskerings, and then
use the whiskerings and vertical composition to define two kinds horizontal compositions
(instead of defining one kind),

(99)

and then introduce the interchanger 3-morphism ρψ,ϕ that relates these two kinds of hori-
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zontal compositions:

ψ ◦lr ϕ
ρψ,ϕ

⇚ ψ ◦rl ϕ . (100)

It is not hard to see that ρψ,ϕ◦vχ is given by the composition of 3-morphisms (in the third
direction other than horizontal and vertical)

ψ ◦lr (ϕ ◦v χ)
1t(ψ)◦hϕ◦vρψ,χ

⇚ (ψ ◦rl χ) ◦lr ϕ = (ψ ◦lr ϕ) ◦rl χ
ρψ,ϕ◦v1s(ψ)◦hχ

⇚ ψ ◦rl (ϕ ◦v χ) (101)

where we used the assumption that all composition rules other than interchangeability are
strict. From this we can further derive that, when three 2-morphisms are consecutively
“horizontally composed”, there will be 3! = 6 different definitions related by six interchangers
(with suitable 2-whiskerings), and they satisfy a consistency constraint. Such a “hexagon
equation” 100 constraint is in fact the Yang-Baxter equation; it is due to the fact that the only
available 4-morphisms are identities, just like the pentagon equation (96) for the associators
comes from the fact that the only available 3-morphisms are identities.

If we go beyond Gray 3-category by weakening more composition rules (such as the
associativities of 1- and/or 2-morphisms), then the form of (101) and hence the form of the
Yang-Baxter equation will change, but the spirit is the same—all constraints come from the
fact that the only available 4-morphisms are identities.

One major application of weak 3-category in physics occurs in delooping, which, as we
have seen, is important for gauge theory. Recall a (delooped) group BG can be delooped
to a 2-category B2G only if G is abelian, due to the interchangeability condition. If we
really do want to deloop, we may discard elements of G by only keeping its center Z(G)
and deloop to B2Z(G). However, if we have a (delooped) strict 2-group G ⋉H ⇒ G ⇒ ∗,
we may deloop it to a Gray 3-category not by discarding information, but by specifying
more information—the interchanger (even if G is abelian, specifying an interchanger is still
meaningful, for reason explained before). The same is true for more general 2-categories. 101

In physics, delooping occurs in two common ways. One is when we take T = G in the
target category of a nlσm and deloop it to the target category of a gauge theory, as we have
seen before. Another is when we start with a gauge theory, but look at the gauge invariant
(up to conjugation) fluxes, so that G-valued link d.o.f. (as 1-morphisms) are ignored, and we
only look at the G-valued plaquette fluxes (as 2-morphisms). The second way is commonly
seen in the study of anyons. 102 Here we will focus on the first way.

100This is different from what is usually called the “hexagon equation” in topological order. There, the
“hexagon equation” is a generalized version of (101), when the associators are non-identity.
101Of particular interest in topological order (see e.g. [38, 92]) is a (possibly weak) 2-categories with a

single object, which is by definition a delooped monoidal category. By further specifying the interchanger,
it can be further delooped to a weak 3-category. In this context, a monoidal category with the interchanger
specified (so that it can be delooped twice) is called a braided monoidal category, and the interchanger is also
called braiding. But there are different choices of braiding/interchanger specification. A construction called
Drinfeld center turns a monoidal category to a larger one by essentially including all possible consistent ways
of braiding specifications, and this larger monoidal category will naturally be braided. In a suitable sense,
the Drinfeld center is the generalization of the notion of “center” for usual groups.
102Given a Dijkgraaf-Witten theory with K gauge field (which we mentioned above), an anyon type is
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Consider the strict 2-groupoid P̄2S
3 × U(1)/WZW ⇒ P̄S3 ⇒ S3 which, as we said in

Section 5.1, re-expresses the structure (51)—which describes WZW curving of S3 nlσm in
the continuum. 103 Now we view the space S3 as a group SU(2) and try to deloop the
category to understand CS in SU(2) gauge theory in the continuum. We note that the
1-category part P̄SU(2) ⇒ SU(2) cannot be delooped because the interchangeability would
not be satisfied, as Ω̄∗SU(2) = {γ ∈ P̄SU(2)|t(γ) = s(γ) = some fixed g} is non-abelian
under concatenation. 104 More explicitly, when we attempt to deloop to something like
“P̄SU(2) ⇒ SU(2) ⇒ ∗”, we can define the vertical composition as the concatenation of
paths, and define the left/right whiskering as the group multiplication of a group element on
the left/right of a path in the group. Then the two horizontal compositions in (99) indeed
yield two different 2-morphisms. This is nothing but what we have already seen in (74).
Fortunately, originally we also have non-trivial 2-morphisms, P̄2S

3 × U(1)/WZW , which
will become 3-morphisms after delooping to P̄2S

3 × U(1)/WZW ⇒ P̄S3 ⇒ S3 ⇒ ∗, so
we can choose suitable elements from P̄2S

3 × U(1)/WZW as interchangers, which explains
what we discussed below (76). (But a crucial point emphasized there is that practically we
did not have to really make effort to choose these interchangers that satisfy the Yang-Baxter
equation. The reason will be discussed in Section 6.2.)

5.4 Simplicial weak categories, and our construction

The crucial perspective brought to us by (93), that we should think of the composition
◦ of 1-morphisms as a 2-morphism of triangular shape rather than globular shape, opens
up an obvious new possibility: Can we consider 2-categories with more general triangular
shaped 2-morphisms?

The simplest case is to consider triangular shaped 2-morphisms obtained by vertically
composing ◦ and a globular shaped 2-morphism:

. (102)

If this covers all the cases, then of course we achieve nothing new. We want to consider
scenarios where a triangular shaped ψ cannot be naturally decomposed into an ordinary
composition ◦ and a globular shaped ϕ.

Continuity/smoothness requirement makes such more general scenarios necessary. Sup-
pose the space of all triangular shaped 2-morphisms ψ form a fibre bundle (or some more

described by an element of the Drinfeld center (see the previous footnote), which specifies the flux as
well as the charge (the charge comes from the braiding specification) of an anyon. Likewise for defects
in symmetry protected topological order. The cases of more general topological orders, as well as some
conceptual questions, will be discussed in the next subsection and in Section 7.
103At the beginning of this subsection we said we will ignore smoothness in this subsection. Although this

example involves smoothness, the issue we will describe now is largely independent of smoothness.
104Since we are talking about concatenation, this is unrelated to whether G itself is non-abelian or not.

The same problem exists for e.g. G = U(1)2 too.
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general covering) over the space C1 ×s,t
C0
C1 of the two source 1-morphisms g, f . Being able

to define a unique ◦ in a continuous manner means this bundle (or more general covering)
has a continuous section. But then we can conceive scenarios in which the bundle has no
continuous section—so that there is no good way to define a unique composition “◦” that is
continuous in its two source 1-morphisms; rather, we should just think about generic trian-
gular shaped 2-morphisms, interpreted as non-unique compositions, such that the different
compositions can be related by globular shaped 2-morphisms:

. (103)

(The composition of a triangular shaped 2-morphism and a globular shaped 2-morphisms
appended on one of the source 1-morphisms, rather than appended on the target 1-morphism
as shown above, should also be specified.)

This can be casted in terms of anafunctor—which, as we have seen in Section 5.2, also
becomes necessary when continuity/smoothness is required. Recall the hom-category C|b,a
introduced in Section 5.1, with (C|b,a)0 = C1|t=b,s=a the space of objects, and (C|b,a)1 =
C2|tt=b,ss=a (the globular shaped 2-morphisms between 1-morphisms in C1|t=b,s=a) the space
of 1-morphisms. The composition ◦ along with ◦h forms an ordinary functor from C|c,b×C|b,a
to C|c,a. However, once continuity/smoothness is taken into consideration, we should also
consider anafunctor to capture more interesting possibilities, and “the triangular shaped 2-
morphisms” are nothing but the objects of the span F in this anafunctor. (In more compact
notations, C≥1 from a 2-category is a 1-category, ◦ and ◦h form an ordinary functor from
C≥1 ×s,t

C0
C≥1 to C≥1, while more generally we need an anafunctor.)

A problem familiar in topological order exemplifies the necessity to introduce such gen-
erality. When we introduced (93), continuity/smoothness was not part of the consideration.
Once continuity/smoothness is taken into account, we may want the associator αh,g,f to
be continuous/smooth in h, g, f . But this requirement is too restrictive to capture many
interesting cases. For instance, recall the symmetry protected nlσm [20] mentioned in the
previous subsection, where the associator α̃h,g,f specifies an element of the group cohomology
H3

group(K;U(1)) and serves as 2d WZW phase. When K is discrete, everything is fine. When
K is a Lie group, it is well-known that to suitably define H3

group(K;U(1)), we should not only
consider those α̃ that are continuous from K3 to U(1), but also those that are only piecewise
continuous (Borel), in order to capture many interesting cases. 105 While such definition of
group cohomology is mathematically consistent, the discontinuity makes the corresponding
lattice model unphysical. Part of the problem here is indeed that we have defined a unique
notion of composition. What we will explain below, (124), that leads to the construction
in Section 4.1 for the 2d WZW phase of lattice S3 nlσm, is the resolution to this kind of
problem. (If we go to 3d and gauge the global symmetry K by introducing dynamical gauge
field, we obtain a Dijkgraaf-Witten theory [16]. But K is a Lie group now, so unlike the

105More mathematically, H3
group(K;U(1)) defined under this piecewise continuous condition, rather than

the strictly continuous condition, is isomorphic to H4(|BK|;Z).
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cases of finite groups, it is unphysical to demand the K gauge field to be flat. Then the
problem indeed becomes that of defining K CS [16] on the lattice, and the resolution will be
(126) in the below, that leads to the construction in Section 4.2.)

With these motivations in mind, we are now ready to introduce the notion of simplicial
weak category, 106 which is sufficiently weak so that it is powerful enough to fulfill our goal.

We first define a simplicial set—which is not a single set, but a collection of sets related
in a “simplicial fashion”. To begin, we still have a set C0 of objects, pictured as points, and
a set C1 of 1-morphisms (or 1-cells), pictured as arrows between objects. But now C2 is a set
of 2-morphisms (or 2-cells) not of globular shape between two 1-morphisms, but of triangular
shape between three 1-morphisms. Likewise, C3 is a set of tetrahedral shape 3-morphisms
(or 3-cells) between four 2-morphisms, and so on. Thus, just like the source and target maps
in Section 5.1:

• We have k+1 maps ∂i (i = 0, 1, · · · , k) from Ck to Ck−1, called the face maps. We may
think of ∂i as removing the ith vertex from a k-simplex to obtain a (k − 1)-simplex.
For example for k = 2:

. (104)

Moreover, we would like to be able to view a (k−1)-cell as some special kind of k-cell, much
like the identity maps in Section 5.1:

• We have k maps δi (i = 0, 1, · · · , k − 1) from Ck−1 to Ck, called the degeneracy maps.
There are k of them, because we may think of δi as repeating the ith vertex of a
(k − 1)-simplex to obtain a k-simplex. For example for k = 2:

. (105)

The face maps and degeneracy maps satisfy some pictorially obvious constraints (sometimes
called simplicial identities), such as ∂1∂0ψ = ∂0∂2ψ and ∂0δ1f = δ0∂0f(= δ0b) in the diagrams
above. We may truncate at some k ≤ n if we want, which means all higher cells are essentially
expressing identities.

106There is a potential confusion of terminology. Here we mean “weak category modeled by simplicial set”,
rather than “simplicial object internalized in some category of weak categories”. This will be clear from our
definition below.
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Just like (85), a simplicial set can thus be viewed as a diagram

(106)

internalized in the ambient category Set. Now, if we internalize the same diagram in the
ambient category Manifold instead, we get a simplicial set whose Ck are manifolds, and whose
maps in between are smooth maps. Such a simplicial set is called a simplicial manifold—
which must not be confused with a manifold discretized into a simplicial complex.

Sometimes we may want to impose some additional conditions on a simplicial set so that
it becomes more like a usual category. Consider such a “horn”,

(107)

which means two 1-cells are about to compose. In a usual category, there is a unique
composition [g ◦ f ]. We motivated by saying we want more possibilities. But the definition
of simplicial set also allows the scenario where we end up with less possibility—as there
might just exist no 2-cell ψ that satisfies ∂0ψ = g, ∂2ψ = f . Sometimes we may want to
avoid such scenario. For many of our applications, we will impose the Kan condition that,

• For any “horn” formed by k many (k− 1)-cells that looks like k out of the k + 1 faces
of a k-cell, there indeed exists at least one k-cell that takes them as k out of its k + 1
faces. The k-cell, possibly non-unique, can be viewed as one way of composing these
(k − 1)-cells, and the result of this particular composition is the remaining face.

Such a simplicial set is called a Kan complex, which is a simplicial version of higher groupoid
where all cells are “invertible”, because the condition does not distinguish between “source”
and “target”—given a k-cell, we can view any k faces of its as source and the remaining one
face as target. 107 In our application we will also consider Kan complexes internalized in
Manifold, sometimes called Kan simplicial manifolds.

Note that we did not need to separately include globular shaped higher cells. This is
because the role played by globular shaped n-cells can be effectively covered by simplicial
shaped n-cells. For instance for n = 2:

. (108)

107If we impose other (often less stringent) conditions in replacement of Kan condition, then we get other
kinds of simplicial weak categories, such as quasi-category.
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Now it appears that simplicial weak categories are weakened to such an extent that they
become conceptually simple to understand again. The strict categories and strict functors
in Section 5.1 were easy to understand because the rules are all dictated by strict equality
signs. As we began to involve lax functors, anafunctors, bicategories and tricategories, the
rules became a little harder to follow, because there are some weakened rules as well as some
strict equalities. But now, as we further weaken the rules and arrive at simplicial set, all the
rules are essentially of the form “given the (k− 1)-cells around, which k-cells are we allowed
to fill-in”, much like some kind of tiling game, so the concept becomes simple to comprehend
again. Different simplicial sets just have different details in the “rules of the game”.

The analogue of an ordinary functor between simplicial sets is obviously a simplicial map
such that each Ck is mapped to Dk with the face maps and degeneracy maps preserved. On
the other hand, when internalized in Manifold, we should use the analogue of anafunctor to
map between simplicial manifolds; roughly speaking, the idea is the essentially the same as
what we described below (87), but applied to higher dimensional cells as well. We will see
how this works in our main construction below.

And it is not hard to sense that being “simplicial” is not of crucial importance here. We
can as well consider “cubical sets/manifolds”, whose definition is obvious from the name. A
simplicial set and a cubical set might be equivalent (contain the same essential information)
in a suitable sense, essentially seen by dividing an n-cube into multiple n-simplices.

Let us relate the previously discussed categories to the more general notion of simplicial
weak categories.

• Given a strict n-category, or a weak one with globular shaped higher morphisms, such
as those introduced in Section 5.3, we can naturally build an associated simplicial set
or simplicial manifold essentially by (102), (93) and analogues for higher morphisms,
known as the nerve of the category. (By appending an extra ◦ triangle to (102) we
can build an associated cubical set or cubical manifold.) The nerve of a category C is
commonly denoted as N (C), but in the below, by a slight abuse of notation, we will
often use just C to denote the nerve.

This covers all the examples discussed from Section 5.1 to 5.3.

• For a manifold M, the collection ∆mM of singular simplicial m-cells (those which
we use as the basis for singular m-chain in singular homology) for all m form a Kan
complex SM internal to Difflg, with SMm = ∆mM. This is more powerful than
the strict path groupoid P̄n→∞M, in that SM captures all the homotopy information
of M; in fact, SM is one way to realize the notion of the (fully fledged rather than
strict) fundamental groupoid Πn→∞M [86]. Likewise we can consider singular cubical
m-cells.

• A cubic lattice with given branching structure 108 is naturally a cubical set with Cm
the set of all m-dimensional cubes, and a lattice in the form of a simplicial complex
with given branching structure is naturally a simplicial set with Cm the set of all m-
dimensional simplices. We will denote the cubic/simplicial set as L. Note that L

108I.e. an ordering of vertices, which is needed when defining cup product.
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is not the nerve of the strict d-category L̄ that we introduced before. In particular,
L captures the full homotopy d-type information of the manifold that the lattice is
discretizing, while the strict L̄ does not.

An interesting subtlety is noteworthy. L as defined above (say, in the simplicial case) is not
a Kan complex, because two consecutive links on a simplicial complex might not be two
edges of any triangle. As a consequence, L does not fully contain the nerve of L̄, as the
later is a Kan complex—any two consecutive links can be composed to a lattice path in L̄
made of two links. Likewise for higher dimensional cells. Of course, we can enlarge L into
a Kan complex that contains L̄, by including into L1 the lattice paths with more than one
link, and into L2 the “degenerate triangles” representing the composition of paths, and so
on. 109 But it turns out that we do not want such enlargement when we describe a lattice
field configuration, i.e. a simplicial map from L to some target Kan simplicial manifold to
be introduced below. Indeed, recall the explicit description in Section 4; the d.o.f. in the
path integral only live on the actual lattice cells in L without the enlargement. We want to
understand more deeply why this is the case in the future.

Before we move on, we can finally introduce the procedure of geometric realization, which
has been mention before. Given a simplicial set C (or a category C, and then take its nerve),
we can construct such a simplicial complex that the m-dimensional simplices are labeled by
elements of Cm, and these simplices are geometrically glued together according to the face
maps and degeneracy maps of C to form a topological space |C|, the geometric realization
of C, which is in general infinite dimensional. 110 If C is a simplicial manifold to begin with,
then the topology on Cm is also inherited onto the set of m-dimensional simplices, on top
of the topology of each simplex (thus, the set of m-dimensional simplices, before the gluing,
has a topology of Cm × (one m-dimensional simplex)).

One may note that the procedure of taking the geometric realization of a simplicial
set/manifold and the procedure of taking the singular simplicial complex of a topological
space seem to be some kind of inverse of each other. The former is a functor from the
category of simplicial sets to the category of topological spaces, while the later is a functor
form the category of topological spaces to the category of simplicial sets. In fact, these two
functors are not inverses of each other in any sense; rather, the later functor is a right adjoint
functor to the former, which is an important generalization of the notion of inverse. This
means given any simplicial set C and any topological space X, the hom-set of simplicial
maps from C to SX is isomorphic to the hom-set of continuous functions from |C| to X.
111 While this is in general a crucial mathematical point, in the below we will only briefly
mention this fact near the end of the section.

109This is to enlarge L by pulling back L → L ∩ L̄ ← L̄ in the category of simplicial sets.
110Sometimes the geometric realization is only defined up to homotopy equivalence. For example, |BZ|

constructed by this procedure is infinite dimensional, but it is homotopic to a circle, so we may as well say
S1 is a realization of |BZ|. In most cases there are only infinite dimensional realizations.
111Adjunction is a central concept of category theory that we nevertheless did not introduce at length. An

adjoint functor is more general than an inverse functor, and is motivated by adjoint operators familiar in
linear algebra (indeed, a linear operator has adjoint even if it might not be invertible). The definition we

give above is equivalent to the following definition. D
F←− C and C

G←− D form an adjoint pair (with G

the left adjoint to F and F the right adjoint to G) if there are natural transformations 1C
ε⇐= G ◦ F and
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Now we tackle our main problem. Everything discussed below will be internalized in
Manifold, or Difflg when necessary. Let us think more closely what we really want when we
say we want to define the skyrmion that counts π3 ∼= Z. The continuum expression of the
skyrmion density in fact represents the generator of H3(T ;Z). 112 This is related to π3 via
the universal coefficient theorem and the Hurewicz theorem, which in the case of T = S3

imply H3(S3;Z) ∼−→ Hom(H3(S
3;Z);Z) and H3(S

3;Z) ∼←− π3(S
3) respectively. Now let us

understand the topological classes from the perspective of anafunctor.

We begin with the simple case H1(T ;Z) ∼= H0(T ;U(1)); for this case we may keep
T = S1 in mind as the basic example. H0(T ;U(1)) classifies the U(1) functions on T :

U(1) ← T . (109)

To relate this to H1(T ;Z), recall we can represent the basic Z bundle over U(1) as an
anafunctor from U(1) to BZ:

Z ←− R×U(1) R −→ U(1)
⇊ ⇊ ⇊
∗ ←− R −→ U(1)

(110)

(where R ×U(1) R ∼= R × Z). Composing this anafunctor with some function U(1) ← T
(viewed as a special case of anafunctor) according to (88), we obtain an anafunctor

Z ←− T̃ ×T T̃ −→ T
⇊ ⇊ ⇊
∗ ←− T̃ −→ T

, (111)

where T̃ := R×U(1) T and T̃ ×T T̃ ∼= T̃ ×Z, that represents a Z bundle over T , classified by
H1(T ;Z)—here “classify” means up to ananatural isomorphism between anafunctors, which
agrees with the usual classification of fibre bundles. This looks almost like the Villainzation
process with Γ = Z. More exactly, consider the 2-anafunctor (we may often omit the “2-”
or “higher” in the below) from ET to B2Z:

Z ←− T ×
(
T̃ ×T T̃

)
−→ T × T

⇊ ⇊ ⇊
∗ ←− T × T̃ −→ T × T
⇊ ⇊ ⇊
∗ ←− T −→ T

. (112)

1D
η
=⇒ F ◦ G, where ε and η are not necessarily invertible but only required to satisfy a weaker condition

that under natural transformation composition, (1F ◦h ε) ◦v (η ◦h 1F ) = 1F , and (ε ◦h 1G) ◦v (1G ◦h η) = 1G.
112More precisely, as mentioned in footnote 35, the continuum WZW curving and the transition functions

introduced from (52) to (55) form the generator of the Deligne-Beilinson double cohomology H2
DB(T ;U(1)),

where the double cochain has a de Rham exterior derivative coboundary operator and a Čech transition
function coboundary operator. H2

DB(T ;U(1)) contains the topological classification information in H3(T ;Z)
as well as the flat 2-holonomy information [33]. (The case of H1

DB(X;U(1)) is presented in details in e.g. [51].)
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The right column is nothing but the target category ET used in traditional lattice nlσm. The
left column is the category characterizing the desired topological defects—the vortices on the
plaquettes—which we want the topological refinement to capture. The middle column, as we
described before, is the desired target category for the topological refinement, the Villainized
nlσm. (Also, as discussed below (90), the target category, i.e. the middle column in (112), is
ananaturally equivalent to BEZ; this BEZ maps to the left column B2Z by picking up the
holonomies.) We can see (112) reduces to (111) by ignoring a T on each entry and dropping
the bottom row; physically this amounts to fixing the d.o.f. on one vertex and looking at
the physics on the links and plaquettes in the same connected component of the lattice.
113 Formally, each column of (111) is the over-category (or under-category) over some fixed
object from the corresponding column in (112); the notion of over-/under-category is like
the hom-category we introduced before, but with only the target/source object, instead of
both, being specified. 114

When T in the above is itself a Lie group G, we can deloop the above and obtain the
Villainized gauge theory.

Next, consider H2(T ;Z); for this case we may keep T = S2 in mind as the basic example.
H2(T ;Z) classifies the U(1) bundles on T . Often times (including our Sections 2 and 3) we
would represent a U(1) bundle as U(1)→ E → T , but this has two disadvantages: the map
U(1) → E is non-canonical, and moreover it obscures the relation between a U(1) bundle
and a U(1) function. It is more natural to represent a U(1) bundle as an anafunctor

U(1) ←− E ×T E −→ T
⇊ ⇊ ⇊
∗ ←− E −→ T

(113)

where the map U(1)← E ×T E ∼= E ×U(1) represents the U(1) action on E and is therefore
canonical, and moreover this is obviously a “higher version” of the U(1) function (109)—we
can say a U(1) function is a U(1) 0-bundle, while a U(1) bundle is a U(1) 1-bundle. To
relate this to H2(T ;Z), we deloop the anafunctor (110), and compose it on the left of this
anafunctor, and obtain

Z ←− E × R× Z −→ T
⇊ ⇊ ⇊
∗ ←− E × R −→ T
⇊ ⇊ ⇊
∗ ←− E −→ T

. (114)

Obviously we should call such an anafunctor a Z 2-bundle over T . Then, following the
discussion below (112), clearly the target category to use for topological refinement would

113With global symmetry over T , it is natural and familiar to do so. But even if the global symmetry is
slightly broken, the topological considerations here should not be spoiled.
114An important point to note is, H1(T ;Z) classifies anafunctors from T to BZ, but not anafunctors from
ET to B2Z (the latter classification is trivial since ET is trivial). In (112), which describes what happens
in the lattice theory directly, we are not considering generic anafunctors from ET to B2Z, but only those
of a special form—those which reduce to (111) when taking the over- or under-category. Similar for the
discussions below.
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be the span of the anafuctor

Z ←− T × E × R× Z −→ T × T
⇊ ⇊ ⇊
∗ ←− T × E × R −→ T × T
⇊ ⇊ ⇊
∗ ←− T × E −→ T × T
⇊ ⇊ ⇊
∗ ←− T −→ T

, (115)

in agreement with what we have seen for spinon decomposed lattice S2 nlσm, where T = S2,
E = SU(2), and the B3Z column on the left represents the hedgehog defect. (Also, as
discussed below (91), the target category, i.e. the middle column above, is ananaturally
equivalent to B2EZ; this B2EZ maps to the left column B3Z by picking up the holonomies.)

After these discussions, it becomes obvious that if we want T = S3 and capture the
physics due to H3(T ;Z), we shall begin with a U(1) 2-bundle on T , i.e. an anafunctor

U(1) ←− L×Y×T Y L −→ T
⇊ ⇊ ⇊
∗ ←− L −→ T
⇊ ⇊ ⇊
∗ ←− Y −→ T

. (116)

In particular, we will let Y be a surjective submersion covering T , so that Y ×T Y exists as
a manifold, and L is a U(1) bundle over Y ×T Y , and thus U(1)← L×Y×T Y L

∼= L× U(1)
is the U(1) action on L. Such a construction for U(1) 2-bundle over T is called a bundle
gerbe over T [34] (with basic idea from [93]); the Lie groupoid part L ⇒ Y in the span is
the analogue of the total space E for a 1-bundle. 115

Just like the equivalence of two 1-bundles (113) is established by an invertible ananatural
transformation, the same is true for 2-bundles. More explicitly, to establish the equivalence
of two 1-bundles (113), we use an invertible ananatural transformation (89) that involves a
function

BU(1)1 = U(1)
↖

H0 = E ×T E ′
, (117)

meaning that two equivalent U(1) bundles only differ by a U(1) function (which in physics
is just gauge transformation). Now, to establish the equivalence of two 2-bundles (116), we

115Just like a U(1) bundle can be presented as U(1) → E → T but with the map from U(1) to E non-
canonical, a U(1) 2-bundle can also be presented in a similar way, except each entry becomes a Lie groupoid,
i.e. there is a (non-canonical) anafunctor from BU(1) to L⇒ Y and then the projection from L⇒ Y to T ,
such that at the 1-morphism layer we have U(1)→ L→ Y ×T Y as a U(1) bundle.
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use an invertible 2-ananatural transformation that involves an anafunctor

B2U(1)2 = U(1)
⇊ ↖

B2U(1)1 = ∗ (Σ×T Σ)×Y×T Y ′×T Y×T Y ′ (L×T L
′) −→ L×T L

′

↖ ⇊ ⇊
Σ −→ Y ×T Y

′

(118)

which means two equivalent U(1) 2-bundles only differ by a U(1) 1-bundle Σ over Y ×T Y
′,

and moreover two Σ’s along with L and L′ can together “piece up” to a trivialized U(1)
bundle over Y ×T Y

′ ×T Y ×T Y
′. (By “piece up” we mean the two Σ’s and L and L′ each

pulls-back to a U(1) bundle over Y ×T Y
′×T Y ×T Y

′, and then we take the tensor product
of these four U(1) bundles into one U(1) bundle. The same when we say “piece up” of U(1)
bundles in the below.) We can illustrate this as

(119)

where y1, y2, y
′
1, y

′
2 all project to a same element in T , and a U(1) value specifying the trivi-

alization (the upper left of (118)) is assigned to the quadrangle as a function of σ1, σ2, ℓ, ℓ
′.

This anafunctor (118) in the 2-ananatural transformation is often called a stable isomorphism
between the two bundle gerbes [94].

Originally, in [34] Y was restricted to be a fibre bundle over T , and with such restriction
it can be proven that, in order for the principal 2-bundle to be non-trivial in H3(T ;Z), 116

Y must be infinite dimensional (hence internalized in Difflg rather than Manifold). One such
example is the tautological bundle gerbe, with Y = P̄∗T , Y ×T Y ∼= P̄∗T × Ω̄∗T , and L ∼=
P̄∗T ×

(
P̄∗Ω̄∗T × U(1)/WZW

)
, which realizes the generator of H3(T ;Z). 117 (The identity

map from Y to L makes use of the naturally trivial element of
(
P̄∗Ω̄∗T × U(1)/WZW

)
,

i.e. we take the trivial surface in P̄∗Ω̄∗ and the identity in U(1).) This puts (51), which we
would expect from continuum QFT, in the present context, because this is nothing but the
over-/under-category of an object in the strict 2-groupoid P̄2T × U(1)/WZW ⇒ P̄T ⇒ T
which describes (51) as we said in Section 5.1.

Later, Y that are more general surjective submersions covering T (as opposed to having
to be fibre bundles over T ) have been considered, and such Y can be finite dimensional. This
explains Section 3. A particularly nice choice of finite dimensional Y for T = S3 ∼= |SU(2)|
is Y = (SU(2)\{−1}) ⊔ (SU(2)\{+1}); then Y ×T Y has four patches, given by Y ×T Y =
(SU(2)\{−1})⊔ (SU(2)\{±1})⊔ (SU(2)\{±1})⊔ (SU(2)\{+1}), and L is the U(1) bundle

116Non-trivial means the bundle gerbe (L ⇒ Y ) is “non-exact”, which means it is not stably isomorphic
to any (L′ ⇒ Y ′) such that the U(1) bundle L′ over Y ′ ×T Y

′ is formed by piecing up (i.e pulling-back and
then taking tensor product) of two copies of some U(1) bundle E′ over Y ′.
117It does not matter whether we take identification under thin homotopy or not. We can as well take
Y = P∗T , since the WZW evaluation over a surface will be the same.
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over it such that, over the (SU(2)\{−1}) and (SU(2)\{+1}) patches which are topologically
trivial, the U(1) bundle is necessarily trivial, while over the (SU(2)\{±1}) ∼= S2 × [0, 1]
patches, the U(1) fibre forms S3 over the S2 [78]. 118 119 (The identity map from Y to L is
choosing a trivialization section over the (SU(2)\{−1}) ⊔ (SU(2)\{+1}) part of Y ×T Y .)
Why this choice is “nice” and why, in our actual construction in Section 4, we used a slightly
more complicated Y with an extra S2 multiplied to the second patch will be discussed
later. This finite dimensional bundle gerbe is stably isomorphic to the infinite dimensional
tautological bundle gerbe; we will demonstrate and make use of the stable isomorphism
below (the stable isomorphism basically follows from our geometrical interpretation of Y in
Section 4.1).

Clearly, a next step we want to take is to compose on the left of (116) the twice delooping
of (110), manifesting the fact that (116) is classified byH3(T ;Z). However, this Villainzation
step is so straightforward that we can postpone it. For now, there is another much more non-
trivial task. From the earlier discussions we know another next step to take is to construct
the anafunctor that represents the topological refinement for the target category of the
actually lattice model, such that taking the over-/under-categories of which should reduce
the anafunctor to (116). That is, roughly speaking, we want some well-defined structure
that has a T multiplied to the middle and right columns of (116), and moreover append one
row below with a T at the middle and the right.

It turns out a closely related problem has been well-studied in the literature: When T
is the space of a Lie group G, for example SU(2), what is the delooping of (116)? Since
delooping is roughly speaking appending a row below (116) with ∗, this problem is obviously
related to our problem of interest, which just has an extra factor of T on the middle and
right columns. Physically this extra factor of T represents the d.o.f. on a single vertex; if
we fix it using global symmetry and look at the links, plaquettes and cubes in the same
connected component on the lattice, the problem reduces to that of delooping (116).

The delooping of (116) with T = G is known as a multiplicative bundle gerbe [33]. It is
an anafunctor but with a simplicial manifold as span:

U(1) ←− Λ(4) −→ G3

⇊ ⇊⇊ ⇊⇊

∗ ←− Λ −→ G2

⇊ ⇊⇊ ⇊⇊
∗ ←− Y −→ G
⇊ ⇊ ⇊
∗ ←− ∗ −→ ∗

. (120)

Here the right column is just the category BG presented as a simplicial manifold by taking the
nerve (with triangular 2-cells being the group composition ◦, which forms (G×G)×◦,id

G G ∼=
118The non-trivial bundle part of L can be interpreted as the following [78]. When g ̸= ±1 ∈ SU(2),

the diagonalization g = UeiλσzU−1 is non-degenerate, so U ∈ SU(2) is well-defined up to a eiκσ
z ∈ U(1)

action on the right, parametrizing an S2. The SU(2) ∋ U is the desired U(1) bundle over the S2. (Note the
SU(2) ∋ U is not the SU(2) ∋ g that we started with.)
119The generalization to T ∼= SU(N > 2) in terms of the Weyl alcove is as explained at the end of Section

4.1.
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G2, and so on). In the middle column, Λ is the manifold of all triangular shaped 2-cells, and

is a U(1) bundle over the triangular loop (Y ×Y )◦Π
2,Π

G Y (where we have denoted the covering

Y → G as Π, and (Y ×Y )◦Π
2,Π

G Y is the submanifold of Y 3 that satisfies theG composition rule
after the Π projection), representing the non-unique multiplicative structure on Y . We will
explain later how to construct Λ given L from (116). Λ(4) is the manifold of all tetrahedral
shaped 3-cells formed by four triangular shaped 2-cells:

Λ(4) := ((Λ×∂2,∂2Y Λ)×(∂1,∂1),(∂2,∂1)
Y×Y Λ)×(∂0,∂0,∂0),(∂2,∂1,∂0)

Y×Y×Y Λ (121)

∼= ((Λ×∂2,∂2Y Λ)×(∂1,∂1),(∂2,∂1)
Y×Y Λ)× U(1) . (122)

The second line expresses the fact that the four U(1) bundles Λ can together piece up to a
trivialized U(1) bundle over the manifold of the six 1-cells around the tetrahedral 3-cell, and
the trivialization is specified by the map from Λ(4) to U(1),

(123)

which will later be interpreted as assigning the lattice WZW curvature.

Why it becomes necessary here for the span to be a simplicial manifold in general? Since
we are delooping (116), we want to introduce some notion of composition on Y , as well
as some notion of horizontal composition on L (the original composition of L becomes the
vertical composition). This corresponds to an ordinary functor (◦h ⇒ ◦) from (L ⇒ Y )2 to
(L⇒ Y ). But to capture the general interesting cases, we should consider anafunctors, and
this leads to the use of simplicial manifold, as explained at the beginning of this subsection.
The globular shaped 2-cells in L can be viewed as special kind of triangular shaped 2-cell
in Λ. The (Λ ⇊

⇊ Y ⇒ ∗) part of the span is a generalized notion of Lie 2-group, modeled
as a simplicial manifold—it has a single object and moreover satisfies the “invertibility”
condition, i.e. the Kan condition. And (120) can be rephrased as a Lie 2-group extension
of BG (which is a Lie group, i.e. a Lie 1-group, a special case of Lie 2-group) by B2U(1),
i.e. there is an anafunctor from B2U(1) to (Λ ⇊

⇊ Y ⇒ ∗), and then the projection to BG,
forming a short exact sequence in a suitable sense [32]. 120

Multiplicative bundle gerbes (120), or say Lie 2-group extensions by B2U(1), are classified
by the cohomology of the classifying space, H4(|BG|;Z) [32,33]. 121 This classification maps
to the H3(T = |G|;Z) that classifies (116) by forgetting about the multiplicative structure.
(At the level of the ordinary singular cohomology, H4(|BG|;Z) maps to H3(T = |G|;Z) by
120More systematically, consider the ambient bicategory formed by Lie groupoids, anafunctors and ananat-

ural transformations (which are automatically invertible since morphisms in Lie groupoids are invertible in a
suitable sense). A Lie 2-group is a 2-group internalized in this ambient bicategory [32], hence compositions
are in general given by anafunctors. A Lie 2-group extension is a short exact sequence in this ambient
bicategory.
121We will soon see the intuition behind this when we introduce bundle 2-gerbe on |BG| [33].
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transgression, which is familiar in the CS and WZW context [33]. 122) For G = SU(N), the
transgression is an isomorphism, H4(|BG|;Z) ∼−→ H3(T = G;Z) ∼= Z. On the other hand,
the relation of H4(|BG|;Z) to the group cohomology H3

group(G;U(1))
∼= H4

group(G;Z) will be
discussed later.

What we really want for the topologically refined lattice model is slightly different from
the multiplicative bundle gerbe (120). We want

U(1) ←− T × Λ(4) −→ T ×G3

⇊ ⇊⇊ ⇊⇊

∗ ←− T × Λ −→ T ×G2

⇊ ⇊⇊ ⇊⇊
∗ ←− T × Y −→ T ×G
⇊ ⇊ ⇊
∗ ←− T −→ T

(124)

where the target space T ∼= |G|, for example T = S3 ∼= |SU(2)|. 123 The right column is the
target category ET ∼= EG used in traditional lattice nlσm, presented as a simplicial manifold
by taking the nerve, and as in Section 4.1, we represented (g1, g2) ∈ T 2 as (g1, g2g

−1
1 ) ∈ T ×G,

(g1, g2, g3) ∈ T 3 as (g1, g2g
−1
1 , g3g

−1
2 ) ∈ T ×G2, and so on. The left column B3U(1) is nothing

but the lattice WZW curvature eidWc . The middle column is what we want for the target
category of the topologically refined lattice nlσm, before the last simple step of Villainization
(i.e. composing the trice delooping of (110) on the left of (124)). The construction of Λ in
(124) does not have to be exactly the same in details as that in (120), but they need to be
topologically equivalent in the sense that we want both (124) and (120) to implement the
second Chern class, i.e. generator of H4(|BG|;Z).

Now we come to the crucial technical point of how to construct the multiplicative struc-
ture Λ, given a finite dimensional bundle gerbe (L⇒ Y ) from (116).

It is, again, helpful to begin with what we expect from the continuum QFT, which,
although involving infinite dimensional spaces of fields, gives us the crucial intuition of what
we really want. Let (L′ ⇒ Y ′) be the tautological bundle gerbe, which as mentioned before
is the over-/under-category of an object in the strict 2-groupoid P̄2T × U(1)/WZW ⇒
P̄T ⇒ T . Now in (124), clearly what we shall use is simply the nerve of the same strict
2-groupoid, i.e. T × Y ′ is free path space P̄T , and T × Λ′ is just ∆2T × U(1)/WZW , i.e.
the information of the difference between two triangular surfaces in T that share the same
boundary is collapsed to a U(1) value, the WZW integral over the volume bounded between
the two surfaces. Then the map from T ×Λ′(4) to U(1) is just to evaluate the WZW integral

122The transgression map is constructed in the following intuitive way. A singular n-cochain ϕ on |BG|
can be pulled-back to an n-cochain φ in |EG|. Since |EG| is contractible, Hn(|EG|;A) must be trivial, so
φ = dρ for some (n−1)-cochain ρ in |EG|. Restricting ρ to some fibre F ∼= |G|, we have some (n−1)-cochain
ϱ in |G| that satisfies dϱ = 0, since dρ = φ is constant on the fibre F . Thus ϱ defines a class in Hn−1(G;A).

The transgression map can be refined to a map from H3
DB(|BG|;U(1)) to H2

DB(G;U(1)) [33], which is
essentially the familiar calculation of how the gauge transformation of CS 3-form is given by WZW curving
2-form, with the transition functions suitably taken care of (as briefly mentioned below (55)).
123The cases where T is not isomorphic to some Lie group G will be discussed in future works. A particularly

physically relevant case is when T = S2 and we want to capture both the π2 and π3 physical effects.
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over an element of ∆3T , a tetrahedral volume in T . These are all intuitively expected if we
think of the lattice as being embedded in the continuum.

Now that we have an infinite dimensional choice for the span in (124), we can use the
stable isomorphism between the infinite dimensional (L′ ⇒ Y ′) and some finite dimensional
(L⇒ Y ) to induce a finite dimensional span for (124). The general idea is illustrated as

(125)

where each 0-cell is an element from T ∼= |G|, each black 1-cell is from T ×Y , each blue 1-cell
is from T × Y ′, whose multiplicative structure is represented by the blue 2-cell from T ×Λ′,
and each pink 2-cell between the black and blue 1-cell is from T ×Σ—recall Σ is the stable
isomorphism between Y and Y ′. Now, we see the T × Λ′ and the three T × Σ can together
piece up to a U(1) bundle over the space of the three black 1-cells, and this is the desired
T × Λ. (The same idea can be applied to multiplicative bundle gerbe (120), as long as we
ignore each T in the above. This is the transgression-regression method introduced in [79].
We will remark about this in the below.) In the special cases where the groupoid (L ⇒ Y )
can be embedded in (L′ ⇒ Y ′) by an ordinary functor while preserving the map from Y to
G, the construction can be described by a simplified equivalent statement: The pull-back of
the U(1) bundle T × Λ′ over the space of the blue triangular loop T × ((Y ′ × Y ′) ×T Y

′)
directly gives rise to the desired U(1) bundle T × Λ over the space of the black triangular
loop T × ((Y × Y )×T Y ); this is because when (L⇒ Y ) can be embedded in (L′ ⇒ Y ′), a
natural choice of the stable isomorphism is the pull-back of L′ along the embedding.

Obviously, the “geometrical interpretation of Y ” described in details in Section 4.1 is
nothing but such an embedding of T × Y into PT ∼= T × P∗T = T × Y ′. Now we can
explain why we do not completely follow [78] which uses Y = (SU(2)\{−1})⊔(SU(2)\{+1}),
but use Y = (SU(2)\{−1}) ⊔ (SU(2)\{+1} × S2) instead. While we can establish a stable
isomorphism between (SU(2)\{−1})⊔(SU(2)\{+1}) and P∗S

3, there is no canonical choice
for the stable isomorphism, in particular for the upper left trivialization arrow in (118). 124

124To understand this, it may be helpful to consider the simpler case of U(1) bundle over S2. We can
present the same U(1) bundle using three different but equivalent anafunctors (113): the total space SU(2)
(with SU(2) ×S2 SU(2) ∼= SU(2) × U(1) specifying the U(1) action on the fibre), the pointed path space
P∗S

2 (with P∗S
2 ×S2 P∗S

2 ∼= P∗S
2 × Ω∗S

2 mapping to U(1) by the area, or say Berry phase, bounded by
the loop in Ω∗S

2), or the patches U = (S2\{−ẑ}) ⊔ (S2\{+ẑ}) (with a U(1) transition function of winding
number 1). For our current purpose, let us focus on the patches U versus the pointed path space P∗S

2. There
is no canonical choice for the transition function in the U anafunctor, for example we can choose where the
pre-image of 1 ∈ U(1) lies. Accordingly, the ananatural isomorphism (117) between the U anafunctor and
the P∗S

2 anafunctor is also non-canonical. The intuitive understanding is, while the (S2\{−ẑ}) patch can
be canonically embedded in P∗S

2 as the shortest geodesic from +ẑ to the desired point in (S2\{−ẑ}), the
(S2\{−ẑ}) patch does not have a canonical embedding; we may consider a non-canonical embedding where
we first go from ẑ to −ẑ along some fixed longitude—whose choice is non-canonical—and then go from −ẑ
to the desired point in (S2\{+ẑ}) via the shortest geodesic. However, if we use (S2\{−ẑ})⊔ (S2\{+ẑ}×S1)
instead, where the extra S1 labels which longitude to use, then the embedding becomes canonical; in terms
of the transition function, the S1 specifies which longitude is the pre-image of 1 ∈ U(1).
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On the other hand, for (SU(2)\{−1})⊔ (SU(2)\{+1}× S2), the geometrical interpretation
in Section 4.1 is a canonical embedding into P∗S

3, leading to a canonical stable isomorphism.
The intuitive explanation is that, (SU(2)\{−1}) ⊔ (SU(2)\{+1}) is like (SU(2)\{−1}) ⊔
(SU(2)\{+1}×S2) with the n̂ ∈ S2 d.o.f. fixed to some given direction, hence the embedding
into P∗S

3 is not rotationally covariant, which is what we mean by non-canonical. For [78],
the multiplicative structure and the stable isomorphism to tautological bundle gerbe was
not part of the consideration (while in [79], the stable isomorphism to the tautological
bundle was the main point, but being canonical, more particularly rotationally covariant,
was not part of the consideration), but for our application we would like there to be a
canonical, physically natural (covariant under global symmetry) stable isomorphism, that
induces the multiplicative structure from the continuum tautological bundle gerbe onto the
finite dimensional bundle gerbe. 125

This is the derivation for our construction in Section 4.1—as long as we compose the trice
delooping of (110) on the left of (124), completing the last simple step of Villainzation. (Of
course, here we described the derivation in terms of simplicial manifolds, while in Section
4.1 we used cubical manifolds because the lattice is cubic, but the idea and the essential
topological information are the same.)

Let us make two further remarks in relation to the mathematical literature.

• The first remark is on the detailed difference between our construction of the multiplica-
tive structure in (124) versus the construction in [79] of the multiplicative structure in
(120), although both implement the generator of H4(|BG|;Z). Recall our construction
started out with an infinite dimensional choice (motivated by the continuum QFT),
a U(1) bundle T × Λ′ over T × Y ′ = P̄T for T = |G| in (124), before reducing the
infinite dimensional choice to a finite dimensional one. On the other hand, [79] started
out with another infinite dimensional choice, a U(1) bundle Λ′′ over Y ′′ = P∗G in (120)
(note that identification under thin homotopy must not be taken on Y ′′ here, and we
will see why soon), before reducing it to a finite dimensional one. In either case, the
infinite dimensional choice can be viewed as the nerve of an infinite dimensional globu-
lar 2-groupoid internal to Difflg, so let us just compare the difference between the two
choices of globular 2-groupoids.

For our construction, the 2-groupoid is just P̄2T × U(1)/WZW ⇒ P̄T ⇒ T as said
before, and the compositions of 1-morphisms and 2-morphisms (before modding out
WZW) are given by obvious geometrical concatenations. On the other hand, for [79],
the 2-groupoid is P∗G ⋉ (P∗Ω∗G × U(1)/WZW ) ⇒ P∗G ⇒ ∗. Since there is no
“concatenation” for paths with starting points fixed at 1 ∈ G, the composition of
1-morphisms is given by pointwise group multiplication, which is why thin homotopy
cannot be taken. For 2-morphisms, in [79] the Mickelsson product is used for horizon-
tal composition and geometrical concatenation is used for vertical composition before
modding out WZW (while in [35] the Mickelsson product is used for both horizontal
and vertical compositions).

125It seems this extra S2 may be some reminiscent (though not the same as) of the extra data in the more
general bundle gerbe construction introduced in [80,81]. But we are not sure about this yet and this should
be further investigated.
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When reducing to finite dimensional spans in (124), and respectively (120), through
the process (125), this detailed, though non-topological, difference will be carried over.

• The second remark is on other choices of finite dimensional Y . This discussion will lead
to the relation to Segal double cohomology [95], which is a smooth version of group
cohomology for Lie groups.

Our choice of Y is nice in that the patches are invariant under conjugation, which is
important for manifesting the global symmetry, as explained in Section 4.1. However, if
we do not care about the global symmetry but only the topology, then we can choose Y
to be some finely cut patches, such that each of Y, Y [2] := Y ×GY, Y [3] := Y ×GY ×GY
and so on is a disjoint union of contractible spaces. In this case, the U(1) bundle L over
Y ×T Y is automatically trivial, and we can choose an arbitrary trivialization. While
such choice of Y has the disadvantage of not manifestly respecting the global symmetry
(hence not suitable for our construction of lattice QFT), it has an advantage that we
can now consider the space Kn,m as the pull back of Gn (viewed as the (n+ 1)-cells of
the nerve of BG) along the covering of Y [m] over G, and then consider smooth mappings
from Kn,m to U(1), which forms a Segal double cochain complex Cn,m

Segal(G;U(1)); now it
is not hard to check that a multiplicative bundle gerbe corresponds to a class (in partic-
ular, we want to realize the generator) in the Segal double cohomology H3

Segal(G;U(1))
(where a representative element involves one element from each of Cn,m

Segal(G;U(1)) that
satisfies n+m = 3), which is in turn isomorphic to H4(|BG|;Z) [32, 96].
The Segal double cohomology is a generalization of the usual group cohomology, with
the advantage that we only consider those mappings from Kn,m to U(1) that are
smooth, which is why Segal double cohomology was reinvented under the name dif-
ferentiable group cohomology [96]. 126 In comparison, in the usual group cohomology,
in order for Hn

group(G;U(1)) to be isomorphic to Hn+1(|BG|;Z), we must in general
include mappings from Gn to U(1) that are only piecewise continuous (Borel), which
makes the lattice model thus built manifestly discontinuous [20].

Therefore, in summary, in order to generalize the group cohomology based lattice
models to the cases of Lie groups while making things smooth, we want to use Segal
double cohomology in generalization of group cohomology, and further, in order for
things to manifestly respect global symmetry, we want to go beyond Segal double
cohomology and consider more generic multiplicative bundle gerbes that realize the
anafunctor (120).

Now that in the second remark above we mentioned the relation to the usual group
cohomology, let us further discuss the relation between our (124) for continuous-valued field
nlσm and the previous group cohomology treatment for discrete-valued field nlσm [20]. In
fact, (124) encompasses the previous discrete cases. When G is discrete and T = |G|, we can
simply use Y = G and Λ = G2 × U(1) (of the form (102)), and Λ(4) ∼= G3 × U(1)4; then we
map G3×U(1)4 to U(1) (assigning the WZW curvature) by multiplying the four U(1) phases

126Indeed, very recently Segal double cohomology (differentiable group cohomology) has been used to
carefully study anomalies of Lie group symmetries [97].
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along with an extra U(1) phase that depends on G3—the associator from Hn
group(G;U(1))

seen in the previous section. In practice, since the extra U(1) in Λ (and hence the extra
U(1)4 in Λ(4)) does not contain topological information, it is usually discarded, leaving only
the associator. This explains why in (98) we said it is more natural to view the associator
as a non-identity 3-morphism.

Related to this, the Dijkgraaf-Witten theory [16] with discrete gauge group—so that the
flat connection condition can be (and is indeed) imposed—is encompassed by (120), with Y,Λ
and the relevant discussions the same as the nlσm discussed in the previous paragraph. This
is quite different from the case of continuous gauge group, where the flat connection condition
becomes unphysical—so that we cannot start with BG but must start with BEG—and we
need more involved treatment to be introduced in (126) below.

We can further note that, more general topological orders with discrete d.o.f. beyond
group theory are also encompassed by lattice models with simplicial sets as target categories.
We have in mind the Turaev-Viro theory [17] and generalizations (see e.g. [38]). Given the set
of 1-cell link variables, the “admissible conditions” in the Turaev-Viro theory determine the
set of 2-cells; they together form a discrete simplicial set that generalizes the right column
BG (for discrete G in Dijkgraaf-Witten theory) in (120). Then, the functor to B3U(1)
specifies the F-symbols on the 3-cells. Usually, topological orders are phrased in terms of
modular tensor categories (see e.g. [38, 92]) instead of simplicial sets. In Section 7 we will
discuss this again in hope for a future unification of the usage of category theory in UV
dynamical QFT and in IR topological QFT.

Finally we discuss the construction for lattice Yang-Mills theory. Clearly, what we need
is a suitable definition for delooping (124) with T = G, resulting in an anafunctor from the
nerve of BEG (the target category of traditional lattice gauge theory) to B4U(1):

U(1) ←− G4 × Λ̃(5) −→ G10

⇊ ⇊⇊⇊ ⇊⇊⇊

∗ ←− G3 × Λ̃ −→ G6

⇊ ⇊⇊ ⇊⇊

∗ ←− G2 × Y −→ G3

⇊ ⇊⇊ ⇊⇊
∗ ←− G −→ G
⇊ ⇊ ⇊
∗ ←− ∗ −→ ∗

. (126)

Here G3 is the three 1-cells around a triangular 2-cell, and we can equivalently say G3 ∼=
G2 ×G where the last G is the holonomy around the 2-cell, and Y covers this holonomy G;
likewise, G6 is the six 1-cells around a tetrahedral 3-cell, and we can say G6 ∼= G3×G3 where
the last G3 ∼= G3 ×G G are the holonomies around four 2-cells around the tetrahedral 3-cell,
and Λ̃ is a suitable U(1) bundle over the four triangular 2-cells Y 3×GY covering the G3×GG;
five such tetrahedral 3-cells piece up to a 4-cell with Λ(5), which maps to the U(1) at the

upper left that represents the eidCh = ei2πIh on the lattice. The G3×Λ̃ ⇊
⇊ G2×Y ⇊
⇊ G⇒ ∗ part

of the span is a weak 3-group, modeled as a Kan simplicial manifold with a single object,
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that extends BEG (in particular its holonomy part) by B3U(1).

To complete the construction, we perform the last Villainization step by composing on
the left of this anafunctor the quarce (i.e. four times) delooping of (110), such that the Z at
the top represents the Yang monopole. The d.o.f. in the span thus becomes a weak 4-group,
modeled as a Kan simplicial manifold with a single object, that extends BEG by B4Z.

Section 4.2 essentially described how the intuitions from continuum QFT, partially in-
volving ideas from the previous efforts [7], help us construct such a structure (126) (except
there we used cubical cells rather than simplicial cells); issues like the Yang-Baxter equation
consistency constraint from the delooping are automatically resolved, as we will explore why
in Section 6.2. As far as we are aware of, such a structure (126) seems not to have been
formally introduced in the mathematical literature. We speculate that (126) should, in some
suitable sense, be a finite dimensional realization of CS bundle 2-gerbe.

Let us briefly explain our speculation. A CS bundle 2-gerbe, introduced in [33] along
with multiplicative bundle gerbe, is basically a multiplicative bundle gerbe over the G fibre
of the universal bundle |EG| over |BG|—and |BG| is most often infinite dimensional. In
terms of anafunctors, the universal bundle

G ←− |EG| ×|BG| |EG| −→ |BG|
⇊ ⇊ ⇊
∗ ←− |EG| −→ |BG|

(127)

(where |EG| ×|BG| |EG| ∼= |EG| × G) is an anafunctor from |BG| to BG. Note that the
right column of a multiplicative bundle gerbe (120) is indeed BG (taken the nerve). So
a CS bundle 2-gerbe can be viewed as the composition of the multiplicative bundle gerbe
anafunctor (120) on the left of the universal bundle anafunctor (127). Now, our rough idea
is to replace the infinite dimensional space |BG| appearing in (127) by a finite dimensional
structure. Intuitively, the choice should be BG; however, in (126) the starting point really is
(the nerve of) BEG rather than BG. To resolve this, our vague thought is that, to go from
BG to |BG|, we use geometric realization, which is a functor from the category of simplicial
sets to that of topological spaces. Now we want to “revert the process”, and mathematically
this would mean to consider a functor from the category of topological spaces to that of
simplicial sets, such that the functor is right adjoint to geometric realization. As mentioned
before, taking the singular simplicial complex of a topological space is the desired right
adjoint. Upon doing so, we are led to consider S|BG| in place of just |BG|, and (127)
should lift to an anafunctor from S|BG| to (the nerve of) BEG, where the 1-cell G in BEG
represents the Wilson line along a path in |BG| (an element of ∆1|BG| = S|BG|1) using the
universal connection on the universal bundle |EG|, and the 2-cell G3 represents the Wilson
lines along the three edges of a triangular region in |BG| (an element of ∆2|BG| = S|BG|2),
in general with non-trivial holonomy. This is our rough idea of how the CS bundle 2-gerbe,
that involves (127), might be related to the target category (126) we used in Section 4.2 to
define CS on the lattice. We hope a more rigorous understanding can be developed in future
works.
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6 Sketching a Relation between Continuum QFT and

Lattice QFT

From the Villain model to our constructions, and from the explicit descriptions in phys-
ical terms to the systematic derivations in categorical terms, we have seen the geometrical
intuition from the continuum played a crucial role. This is natural, because the very pur-
pose of our work is to realize in lattice QFT those topological operators that are present in
continuum QFT.

In Section 5.4 we derived our constructions in Section 4. We started from the desired al-
gebraic information H3(T ;Z) or H4(|BG|;Z), and the geometrical intuition from continuum
is to facilitate the realization of the desired algebraic information. In this section, we want
to reverse the emphasis. We want to begin with the geometrical picture from continuum
QFT and come up with a corresponding lattice QFT, such that the algebraic information is
to facilitate a suitable truncation of the geometrical details. This should lead to a systematic
relation between continuum QFT and lattice QFT.

To motivate in another way, traditionally, we are familiar with the idea that a lattice
QFT in the UV leads to a continuum QFT when renormalized towards the IR. However,
there are also many situations—such as lattice QCD—in which we want to do the reverse,
i.e. we want to find a lattice QFT that suitably describes some given continuum QFT. For
TQFT, such a connection has been well-developed [16,19,20], simply because the UV and the
IR really are not that different if the QFT is topological. Now we want to explore whether
such a connection can be drawn for more general QFTs with dynamical d.o.f..

At this stage, such a broader picture, extending beyond our primary goal of arriving at
the constructions in Section 4, is only a sketched one. We however do believe this is a good
starting point for more systematic exploration of the relation between continuum QFT and
lattice QFT.

6.1 Non-linear sigma models

When we say “a field configuration” in a continuum nlσm, we simply mean a smooth
function from the spacetime manifold to the target manifold,

M→ T . (128)

The path integral is intended to integrate over the space of all such functions. But this space
is infinite dimensional and the path integral is not well-defined.

Let us ask what we intend to mean when we say “a field configuration” in a lattice nlσm.
Of course, in traditional lattice nlσm, it is just a function from the lattice vertices, L0,
to the target manifold T . As we have seen in the previous sections, it is helpful to think
of the lattice as being embedded in the continuum, then we can say, traditionally, a field
configuration on the lattice is just a sampling of the continuum field at certain points onM,

L0 ↪→M→ T . (129)
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So a lot of information in the continuum field configuration is obviously lost after the sam-
pling.

To resolve this problem, it turns out useful to think not only ofM the manifold itself, but
also its higher path spaces, which together form a higher (or infinite) groupoid. The realiza-
tion is non-unique. We can use the singular simplicial complex (· · ·∆2M ⇊

⇊ ∆1M⇒M), or

the cubical analogue (· · · P2M ⇊
⇊ PM⇒M) where P means taking the path space without

any thin homotopy identification, 127 or the weak higher category (· · · P2M⇒ PM⇒M)
where PnM ⊂ PnM is the space of interpolation of two elements of Pn−1M that share
boundaries in Pn−2M. 128 These realizations can capture the full homotopy informa-
tion of M; while for many physical applications, such as those considered in the present
work which only concern the lowest non-trivial πn, using the strict higher path groupoid
(· · · P̄2M ⇒ P̄M ⇒M) would also be sufficient. 129 Similarly for the target manifold T .
We then have the simplicial map (assuming we used the simplicial realization, but we can
also use the other realizations mentioned before; same below)

. . . → . . .
⇊⇊ ⇊⇊
∆2M → ∆2T
⇊⇊ ⇊⇊

∆1M → ∆1T
⇊ ⇊
M → T

(130)

induced fromM→ T , simply because the paths, surfaces and so on are all made of points.
This simplicial map contains exactly the same amount of information as the original function
M→ T .

The reason why we make things seemingly more complicated by including the higher
path spaces is so that we can make better connection to the lattice. While L0 ↪→ M
is sampling some points in the continuum and lost the interpolation information, (L1 ⇒
L0) ↪→ (∆1M⇒M) is sampling some paths, hence retrieving more information about how
the field interpolates from point to point. We can repeat this for higher dimensional cells
(assuming the lattice is also a simplicial complex), until the d-dimensional cells completely

127P2M has four rather than two arrows to PM, because a path between two paths in general swipes out
a square shape rather than a globular shape (which would be the case if we require the end points to be
fixed—and that would be what we denoted as P2M.
128This higher category is weak because without identification under thin homotopy, there is no identity in

the strict sense, and composition is not strictly associative [36].
129See footnote 94.
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fills up the continuum manifold. We obtain

Ld ↪→ ∆̄dM → ∆̄dT
↓···↓ ↓···↓ ↓···↓
. . . ↪→ . . . → . . .
⇊⇊ ⇊⇊ ⇊⇊
L2 ↪→ ∆2M → ∆2T
⇊⇊ ⇊⇊ ⇊⇊
L1 ↪→ ∆1M → ∆1T
⇊ ⇊ ⇊
L0 ↪→ M → T

(131)

where we have truncated theM column and the T column to the dth layer by taking iden-
tification of d-cells up to thin (d + 1)-homotopy. After the truncation, the L column and
the M column become ananaturally equivalent, 130 which roughly speaking means the d-
dimensional lattice captures all the essential information of this truncated path d-groupoid
ofM. We indeed do not expect the lattice theory to be able to capture those information
that we truncated away—which, we believe, are physically unimportant anyways, as those
truncated information are either unimportant UV details within each lattice cell (geometri-
cally a tiny region), or higher homotopy information in T that seem not to be accessible by
a d-dimensional QFT even in the continuum.

The above describes a functor from the lattice L to a target category, the T column, so
it is almost interpretable as a lattice field configuration. Except there is one problem—the
configuration is still essentially a continuum configuration, in the sense that, in general, the
higher layers ∆1T ,∆2T , · · · , ∆̄dT in the target category are infinite dimensional spaces that
came from the continuum picture (130), 131 which is undesired for a lattice theory.

What we gained is that now it becomes clear how the vague physical problem of defining a
desired “topologically refined” lattice QFT should be turned into a well-posed mathematical
problem:

Ld ↪→ ∆̄dM → ∆̄dT ETd

↓···↓ ↓···↓ ↓···↓ ↓···↓
. . . ↪→ . . . → . . . . . .
⇊⇊ ⇊⇊ ⇊⇊ ⇊⇊

L2 ↪→ ∆2M → ∆2T
equiv up to−→
what we care

ET2

⇊⇊ ⇊⇊ ⇊⇊ ⇊⇊

L1 ↪→ ∆1M → ∆1T ET1

⇊ ⇊ ⇊ ⇊
L0 ↪→ M → T T

(132)

We want to reduce the third column, the simplicial path d-groupoid of T , which in general
involves infinite dimensional spaces, to an ananaturally equivalent (perhaps up to whatever

130Established by taking as the span the pullback of a Čech nerve overM (such that each patch is labeled
by a lattice vertex) wtih theM column itself.
131Except for when T = S1, in which case we are basically done by now.
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topological information we care about) but finite dimensional Kan simplicial manifold ET
with ET0 = T . A topologically refined lattice nlσm field configuration is a functor (a simpli-
cial map) from the lattice L to the target category ET, which covers ET , the target category
of traditional lattice nlσm. Moreover, if T admits a global symmetry action G × T → T ,
then the action extends to an automorphism of simplicial manifold G×ET→ ET. We make
three crucial remarks:

• By “up to what we care about”, we mean, if d > n but we only care about up to the πn
physics in a nlσm, then we can first further reduce the third column to a fundamental
n-groupoid by taking identification in ∆nT under any (n + 1)-homotopy, and then
demand ET to only be ananaturally equivalent to this fundamental n-groupoid. In
practice, for n = 2, we realize this by integrating the continuum Berry curvature over
a 2d surface in ∆2T , as we did in (46). Similarly, for n = 3, in practice we first
further reduce the third column to a fundamental 3-groupoid by integrating the WZW
curvature over a 3d surface in ∆3T , as we essentially did in (51).

• We demand ET0 = T because we still want to keep the ordinary vertex observables
that take value in T , acted on by the global symmetry in the ordinary way. If we do
not demand this, that we will lose the dynamical information. For instance, suppose
d = 1 and T = S1, we have (∆̄1T ⇒ T ) = (S1 × R ⇒ S1) (which is already
finite dimensional and can be readily used as ET), but recall in (90) we said this is
ananaturally equivalent to BZ = (Z ⇒ ∗). In the Villain model, we use S1 × R ⇒ S1

as the target category, rather than BZ, because we want to keep the dynamics of the
S1 d.o.f..

• The lattice nlσm field configurations constructed according to (132) forbid topological
defects, simply because the construction started from smooth field configurations in
the continuum, which do not contain defects. In many situations this is desired, if we
want the lattice nlσm to represent a continuum nlσm which does not contain defect up
to any accessible energy scale; by comparison, in a traditional lattice nlσm, the effects
from defect fluctuation cannot be forbidden because the defects are not well-defined
on the lattice. 132

In other situations, we might want to include the effects of defects on the lattice
(meanwhile still being able to explicitly define the defects; otherwise we can just use
the traditional lattice nlσm). To do so, we need a minimal enlargementET′ ofET, such
that ET′ contains the ET in (132) as a subcategory, and ET′ is ananaturally equivalent
to a trivial category; moreover, ET′ is the smallest category that satisfies these two
properties. The rationale behind these properties is the same as that explained below
(90) and (91) through examples.

132A recent work [82] also considered forbidding defects in a lattice nlσm. The construction in [82] is by
discretizing the target space T into a simplicial complex, so the target category is also a simplicial set.
However, ET0 is thus not T , but only some discrete points in T , so the local dynamics of the continuous-
valued d.o.f. is lost, and moreover the original continuous global symmetry on T cannot act on ET anymore.
By comparison, the target category we constructed in (132) has the ordinary T d.o.f., with ordinary global
symmetry action.
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(Interestingly, the algebraic perspective in Section 5.4 constructs target categories that
allow defects by default, and an extra step is needed if we want to forbid defects. While
the geometrical perspective in this section constructs target categories that forbid
defects by default, and an extra step is needed if we want to allow defects.)

This explains our basic idea of how higher category theory leads to a more systematic
understanding of what it means to “discretize a continuum QFT”. At this stage, the con-
nection is only built at the level of field configurations in the path integral. In future works,
it is important to also cast the path integral weight into this language.

6.2 Gauge theories

Now we attempt to suggest a reasonable systematic relation from continuum gauge theory
to lattice gauge theory. Further work is needed to complete the understanding.

In the continuum, there are two ways to think about a gauge field configuration,

P̄M G
⇊ −→ ⇊
M ∗

M→ |BG| (133)

where the first way, shown on the left, is the anafunctor description explained in Section 5.2,
while the second way, shown on the right, makes use of the universal gauge connection on
|BG| [16]. The advantage of the first way is that the target category is finite dimensional
and the anafunctor is readily the Wilson lines, and thus a field configuration in traditional
lattice gauge theory is just a sampling

L1 ↪→ P̄M G
⇊ ⇊ −→ ⇊
L0 ↪→ M ∗

. (134)

133 The advantage of the second way is that a gauge theory can now be seen as a nlσm valued
in |BG|, so that we can connect the problem to what we already know for nlσm, albeit there
is a difference that |BG| is in general infinite dimensional.

If we view a continuum gauge field in the second way, then we are almost done. Following

133Although the functor from the path groupoid P̄M to BG is an anafunctor, the functor from the lattice
to BG can be an ordinary functor, because the lattice is discrete.
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the reasoning that led to (132), we have

Ld ↪→ ∆̄dM → ∆̄d|BG| BEGd

↓···↓ ↓···↓ ↓···↓ ↓···↓
. . . ↪→ . . . → . . . . . .
⇊⇊ ⇊⇊ ⇊⇊ ⇊⇊

L2 ↪→ ∆2M → ∆2|BG|
equiv up to−→
what we care

BEG2

⇊⇊ ⇊⇊ ⇊⇊ ⇊⇊

L1 ↪→ ∆1M → ∆1|BG| G
⇊ ⇊ ⇊ ⇊
L0 ↪→ M → |BG| ∗

(135)

where the desired topologically refined target category on lattice is a finite dimensional Kan
simplicial manifoldBEG that is ananaturally equivalent (perhaps up to whatever topological
information we care about) to the simplicial path d-groupoid of |BG|. But instead of the
T0 = T condition in (132), here we require (BEG1 ⇒ BEG0) = BG = (G ⇒ ∗), because
unlike T in actual nlσm, |BG| is already infinite dimensional in general; and we know BEG
should cover the target category of traditional lattice gauge theory, BEG, whose two lowest
layers indeed form BG. (And see the discussions below (127).) Again, the target category
constructed by (135) forbids topological defects; the way to include topological defects is the
same as that discussed below (132).

It is currently unclear to us how to think about the problem of topological refinement if
we, instead, begin with viewing a continuum gauge field in the first way in (133). It seems
we can think of (130) but with T = G and the corresponding column delooped; the lowest
two layers would indeed agree with the first way in (133). However, no matter whether
realization we use—the simplicial ∆nG, the cubical PnG, the weak PnG, or even the strict
P̄nG—the delooping is quite non-trivial, as we have seen through simpler examples (in which
some Yang-Baxter equation constraint on the interchanger/braiding will come up) at the end
of Section 4.2 and the end of Section 5.3.

The final target category we want for (135), BEG, should indeed be a suitable delooping
of T in (132) for T = G. However, the actual construction in Section 4.2 did not directly
use the delooping of the third column (the simplicial path d-groupoid of T ) in (132), despite
some similarities in treatments. Instead, we used the continuum CS 3-form, and the Yang-
Baxter equation issue due to delooping never really came up. Let us try to sketch a tentative
answer to why. The continuum CS 3-form on a manifoldM can be viewed as the pullback of
the universal CS 3-form on |BG|. Therefore, it seems in Section 4.2, in constructing BEG,
“a suitable delooping of T for T = G”, we are already essentially using the perspective
(135) to a certain extent, even though the infinite dimensional classifying space |BG| did
not explicitly come up. We should understand this better in future works.
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7 Further Thoughts

This final section is for our further, scattered thoughts. We will begin with some near
term problems. Then we will discuss some long term prospects.

Numerical implementation. Actual numerical implementation in the near future is
definitely the primary aim of this paper. Our constructions in Section 4 for S3 nlσm and
SU(N) gauge theory on lattice serve to introduce the key concepts that allow the topological
operators to become well-defined. For actual numerical implementation, there should be
better ways to practically construct the suitable (and, desirably, numerically optimized) path
integral weights, especially theW2(e

iWµ∗+c.c.) in nlσm andW3(e
iCν∗+c.c.) in gauge theory,

either through some clever analytical method, or some automated optimization program such
as some form of machine learning or so. While the actual implementation takes some extra
efforts, the traditional fundamental obstacle to defining topological operators on the lattice
should have been lifted by now with the key concepts we introduced.

Even aside of explicitly defining the topological operators, it is still interesting to compare
our construction to the traditional lattice QFT. In traditional lattice QFT, in order to bet-
ter converge to the continuum limit, Symanizk improvement has been introduced [8,98–102].
Roughly speaking, the Symanzik improvement introduced extra tuning parameters by go-
ing beyond nearest neighbor coupling; for gauge theory, this means to consider the gauge
holonomy around more than one plaquette. By constrast, even without going beyond near-
est neighbor coupling, our topological refinement introduces extra tuning parameters by
weighing the higher morphisms in the target category, which roughly represent the inter-
polations of fields if we think of the lattice as being embedded in the continuum. It seems
the extra weights introduced in the latter way are physically better interpretable. For the
simplest example, consider the vortex fugacity weight introduced in the Villainized S1 nlσm
(12), which obviously controls the likelihood of vortices; this is important for setting up the
renormalization analysis for the BKT transition [9–11,48] (we will discuss more about renor-
malization later). Moreover, summing over the Villain integer variable ml with non-trivial
vortex fugacity weight will indeed generate beyond-nearest neighbor couplings between the
traditional S1 variables eiθv (compared to (7) when the vortex fugacity weight is trivial),
although the result cannot be expressed analytically. Similarly, integrating out the Berry
connection field (along with its Dirac string field) with non-trivial Maxwell weight in the
spinon-decomposed S2 nlσm (38) will generate beyond-nearest neighbor coupling between
the traditional S2 variables. Based on this, we expect that, in general, the higher morphism
weights from the topological refinement will (at least partly) play the role of Symanzik im-
provement, in a physically more interpretable manner; and since the topological operators
are explicitly controlled, it is interesting to understand whether there is a relation to the
numerical problem of topological freezing. These problems are in their own right worthwhile
to be studied numerically.

Generalizations. There are some directions of generalization that worth working out.

1. Throughout this paper we have only been interested in those topological operators
that are captured by the lowest non-trivial πn, for n ≤ 3. We should also consider
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cases with multiple types of topological operators of interest, captured by several non-
trivial πn’s, since they might have non-trivial interplay. Physically relevant examples
include S2 nlσm with both π2 and π3 in consideration [103, 104] (rather than just π2
in Section 2.4), RP 2 nlσm with π1, π2 and π3 in consideration (rather than just π1 in
Section 2.3); we will study these examples in subsequent works. For gauge theories, it
is also important to consider non-abelian gauge groups such as O(N) that have non-
trivial π0, π1 before π3 [16], and for these cases the general multiplicative bundle gerbes
constructed in [80,81] will be useful.

2. Throughout this paper our examples are either pure nlσm or pure gauge theory. We
should also consider the topological operators when we couple lattice nlσm to lattice
gauge field (background or dynamical), especially for those constructed in Section 4.
As mentioned there, this is in particular important for manifesting the anomalies on
lattice. (In Section 2, the anomalies in the known lattices models have been manifested,
with details presented in the footnotes 10 and 31.)

3. Constructions for πn topological operators for n > 3 seem to require some further efforts
on the mathematical side. π5 is particularly physically relevant for the 4d WZW term
in the low energy nlσm of QCD [83,84] (and also π4 if the nlσm is the pion S3). And
there are other examples in strongly coupled theories in both high energy physics and
condensed matter physics.

More general observables and representations of weak higher groups. Consider
our topologically refined SU(N) lattice gauge theory for example. At the end of Section 5.4,
we explained that the target category is a weak Lie 4-group, realized as a Kan simplicial
manifold with single object. Mathematically, there should exist a suitable notion of “repre-
sentations of the weak Lie 4-group”, which should be worked out explicitly.

Physically, this corresponds to answering the following question. Suppose the Yang-Mills
theory lives on a spacetime of dimension d ≥ 4. We know there is a class of observables
living on 1d submanifolds, the Wilson lines, characterized by representations of G, where G
is the 1-morphisms of the Lie 4-group. There is a class of observables living on (oriented) 3d
submanifolds, the CS terms, characterized by the integer CS levels, which are representations
of U(1), where U(1) is the new d.o.f. in the 3-morphisms of the Lie 4-group. There is a class of
observables living on (oriented) 4d submanifolds, the topological theta terms, characterized
by the theta angles, which are representations of Z, where Z is the new d.o.f. in the 4-
morphisms of the 4-group. But can we also characterized some observables living on 2d
submanifolds? The new d.o.f. in the 2-morphisms of the weak 4-group do not form a group
in the ordinary sense, so they do not have representation in the ordinary sense, but since the
whole structure forms a weak 4-group, it is reasonable to anticipate that we can organize
observables living on submanifolds from 1d to 4d into some notion of representation of the
weak 4-group.

Similarly, we should also ask, for a nlσm that lives in d ≥ 3, on 0d submainifolds there are
the order parameters, on 2d submanifolds there are WZW levels, on 3d submanifolds there
are topological theta terms, then how shall we characterize some observables living on 1d
submanifolds, so that all these observables together form a coherent categorical structure?
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Hamiltonian formalism. It is natural to ask if the topologically refined lattice
constructions we introduced on the Euclidean spacetime lattice have corresponding versions
on the spatial lattice in the Hamiltonian formalism. While we expect there to be, it takes
further efforts to work out the details. In particular, for ordinary group valued operators,
their canonical operators are characterized by the representations, so now the weak higher
group representation problem described above might become particularly relevant.

There is an extra issue to be noted as the d.o.f. of interest are continuous-valued—even
when the d.o.f. are ordinary groups, such as in Villainization. We emphasized that the
d.o.f. in the target category in general do not factorize; on the other hand, a lot of times
in the Hamiltonian formalism it is desired that the physical Hilbert space factorizes locally
on the spatial lattice. If we indeed demand so, there is a familiar treatment when the d.o.f.
are discrete-valued [18, 19]: We can let the physical Hilbert space be an enlarged, locally
factorized one, and then have energy penalty terms in the Hamiltonian, such that a low
energy subspace is exactly the desired, non-factorized Hilbert space, and moreover all higher
energy states have a finite gap above this low energy subspace. However, when the d.o.f. are
continuous-valued, under the same treatment there is no such gap because the energies of the
states vary continuously (unless we use a Hamiltonian with discontinuous matrix elements,
but such unphysical treatment will lead to other problems). Suitably modified treatment has
been developed in the case of Villainized U(1) gauge theory [64, 65], in order to ensure the
emergence of a low energy subspace with the desired non-factorized properties, meanwhile
having a finite gap separated from the higher energy states. We expect similar issue occurs
for more general target categories, if we want a locally factorized physical Hilbert space.

The above are more or less well-defined problems that we believed can be resolved in the
near future. In the below, we sketch some directions that we believe worth explorations for
the long term. The discussions below are highly speculative at this point.

Renormalization. As we have seen, a field configuration in a lattice QFT is a functor
from the lattice to a target category, where the latter is constructed based on the target
space of the desired continuum QFT, either from the more algebraic perspective described
in Section 5.4, or the more geometric perspective described in Section 6. The path integral
is to integrate over the space of all such functors; at least in the examples that we have seen,
the measure to use for the integral is obvious, due to the global symmetry or gauge group.
On the other hand, the integrand, i.e. the path integral weight, still awaits to be casted in
this categorical language. Of course, the weight is a suitably constructed map from the space
of field configuration functors to the non-zero complex numbers C∗. But what is meant by
“suitable” needs to be clarified.

Locality is a crucial requirement. In the constructions we presented, the weight is a
product of factors contributed by individual vertices, links, plaquettes, and so on, therefore
a map from the space of n-morphisms of the target category, for each n, to C∗ is involved.
But more general weights are also legitimate—those short ranged but beyond nearest neigh-
bor couplings (we have mentioned this when discussing numerical implementation at the
beginning of this section). So we need to find a concise way to convey the requirement of
locality in the weight assignment.
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Another layer of the problem is that there are two kinds of weight contributions: the “non-
topological” ones which contributes a positive magnitude, and the “topological” ones which
contributes a U(1) phase, such as the topological theta terms, Berry phase, WZW phase, and
CS phase. As required by reflection positivity [105,106]—the Euclidean version of unitarity—
under orientation reversal of the spacetime, 134 the positive magnitude contributions must
be invariant, while the phase contributions must become complex conjugation. But there are
further distinctions between the two kinds of contributions: The “non-topological” weights
seem to be locally well-defined “outright”, whilst the “topological” weights (such as the
Berry phase, WZW phase, CS phase) may not be well-defined on individual lattice cells
or, more generally, regions with boundaries, in the sense that there will be dependence on
some notion of “gauge” on the boundary conditions, and related to this the U(1) phase
contribution from such a region in general takes value from a non-trivial U(1) bundle over
the space of boundary conditions. (For U(1) CS-Maxwell, see [57] for details.) We need a
concise way to capture these aspects into a complete categorical definition of lattice QFT
with generic dynamics.

Suppose the above can be achieved in the foreseeable future. Then we can try to formulate
renormalization in the categorical language. It can envisioned that there should be a category
of lattice QFTs, whose objects contain information about the (topologically refined) target
category and the path integral weight assignment. The coarse graining of lattice can certainly
be realized in terms of inclusion functors between lattices (with the IR limit being some
notion of skeletal lattice). And we want the coarse graining inclusion functor, as morphisms
in the category of lattices (discrete Kan complexes), to induce certain “renormalization
morphisms” in the category of lattice QFTs.

Perhaps a better way to realize the coarse graining of lattice is by general anafunctor,
rather than ordinary inclusion functor, despite that according to Section 5.2 there seem to be
no necessity to use anafunctor when dealing with discrete spaces. The reason is, over the past
two decades, it has become increasingly clear that a good way to think about renormalization
is to think about an AdSd+1 spacetime, with the extra “radial direction” representing the
renormalization scale [107]. Then, by (87), naturally the lattice links, plaquettes and so on
connecting two consecutive radial slices constitute the span of the anafunctor for one step
of coarse graining. (It is furthermore illuminating to think of the lattice AdSd+1 as a double
category—recall footnote 90.) Then, the problem becomes how this perspective of coarse
graining a lattice is lifted to the level of renormalizing a lattice QFT.

Relation to categories involved in topological quantum field theory. In the long
term, if we have a good categorical understanding of what renormalization is, we can then
discuss what a renormalization fixed point means. Hopefully, we can see how the familiar
categorical description of the IR fixed point emerges from a description of generic QFT after
renormalization.

Even at the present stage, it may be a good idea to begin pondering the difference between
the categories familiar in the topological QFT (TQFT) context versus the categories involved

134It is understood that, if there are extra background structures on the spacetime, such as background
gauge field, branching structure, etc., involved in defining the theory, these background structures are also
transformed under the orientation reversal.
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in the present work for QFT with generic dynamics. They seem to belong to different
branches of the development of category theory. The categories that familiarly describe the
IR physics are equipped with a long list of extra structures and requirements (see e.g. [92]),
in order to reproduce all the desired nice physical properties that an IR fixed point should
have; moreover, the systematically well-studied ones involve discrete-valued d.o.f. only, while
continuous-valued d.o.f. still poses a crucial challenge. In comparison, the categories we used
in the present work are much “simpler” in definition, with less structures and requirements;
moreover, they can, and are primarily designed to, describe continuous-valued d.o.f. with
homotopy properties that are of interest.

While here we cannot launch a full-scale analysis of the problem, we want to bring up
the aspect that we think is crucial. The categories used in TQFT are equipped with—more
precisely, enriched by—complex linear spaces, which will play the role of the quantum Hilbert
spaces. In comparison, the categories we used in this paper have no built-in linear structure,
but we know our constructions do have the quantum mechanical linearity, simply because,
in the end, we are constructing well-defined path integrals. It seems the former case requires
the linear space structure to be built-in because for TQFT there is no distinction between
the UV and the IR, so the same category is to be used to describe both the UV d.o.f. (say,
in constructing a lattice model) and the IR states. While in the latter case, the UV d.o.f.
do not have to a priori incorporate anything about the IR state.

Based on this idea, it seems we can bridge these two kinds of categories by dropping the
built-in linear structure in the former. But the linear structure enrichment plays some crucial
role, so one may wonder how that role is otherwise fulfilled now that we dropped the linear
structure. In particular, let us consider the notion of fusion in a fusion category. The linear
structure allows one to define the notions of simple objects (interpreted as simple anyons)
and direct sums, such that every object is some finite direct sum of simple objects; when we
fuse two simple objects, the result is in general a non-simple object, a key feature of non-
abelian topological order. How do we reproduce this if we give up the linear structure? The
answer is to simply phrase the above is a more intuitive language—what we will usually say
is, when two (simple) anyons fuse, there can be multiple possible fusion channels, giving rise
to multiple possible results of (simple) anyon; there is no mention of non-simple anyon. But
this is literally what a simplicial set does. That is, the role of the linear space in the fusion
process can be played by the non-unique composition (of 1-morphisms) in simplicial weak
categories. This is indeed how, as we mentioned in Section 5.4, the Turaev-Viro theory [17]
and its generalizations (see e.g. [38]), whose construction is traditionally phrased in terms
of unitary fusion categories, can be alternatively (and naturally) viewed, in our language,
as simply having a simplicial set as target category, without having to mention any a priori
built-in linear structure. 135

Interestingly, if we really want to, we can still catch some reminiscence of the linear enrich-
ment. Recall we said in Section 5.4 that when applying (120) to discrete BG for Dijkgraaf-
Witten theory, or replacing BG with more general discrete simplicial set for Tureav-Viro

135The basic d.o.f. in the Turaev-Viro model are link variables, and they are simple objects from a unitary
fusion category, which describes the simple anyons on a gapped (1+1)d boundary of the (2+1)d system [108]
(and the bulk anyons are described by the Drinfeld center of this unitary fusion category, see footnote 101).
In our construction, the 1-morphisms that are being composed non-uniquely are indeed link variables.
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theory, the Λ in the span has an independent U(1) d.o.f.—which is often ignored in the
lattice models. We can recognize this U(1) in the fusion category language as the phase of
the C in the linear enrichment.

When the d.o.f. are continuous rather than discrete, the familiar categorical paradigm for
TQFT runs into difficulties at the definition level, and the difficulties indeed have to do with
the built-in linear structure. On the other hand, as we have seen throughout this paper, the
use of simplicial weak category without reference to the built-in linear structure enrichment
can work for both discrete-valued and continuous-valued d.o.f.. (When the d.o.f. become
continuous, at least one important change is that the extra U(1) d.o.f. in Λ in general forms
a non-trivial U(1) bundle over the space of the continuous d.o.f..) Therefore, we anticipate
that, exploring along this line of ideas might be a fruitful route towards a future unification
of the use of categories in QFT, regardless of whether the QFT is IR TQFT or generic
dynamical QFT, and whether the d.o.f. are discrete or continuous-valued.

Constructive quantum field theory. An ultimate question about a lattice QFT
is whether some suitable notion of continuum limit exists. Numerically there are good
evidences for the convergence in lattice QCD, but one may wonder whether this can be
shown analytically. In fact, this is one possible route towards the program of constructive
QFT, i.e. towards constructively defining what a continuum QFT is. This route has some
crucial advantages compared to other possible routes, aside from being more intuitive: Most
importantly, reflection positivity (see our discussion about renormalization above) is built-
in as long as the lattice QFT itself is a legitimate path integral; moreover, if dynamical
gauge field is involved, the gauge redundancy (for compact Lie group) requires literally no
treatment at the fundamental level [1, 2] (though, if one wants, one can still perform gauge
fixing).

Remarkable partial results have been achieved by Balaban in this regard. Through highly
technical analyses, Balaban showed that, in 3d [109] and 4d [110,111], given a finite size four-
torus Euclidean spacetime, as the lattice spacing decreases towards zero, Wilson’s lattice
Yang-Mills theory [1,2] is renormalized such that the value of the partition function remains
stable within a finite range. This program is, unfortunately, almost not being carried on
since then, perhaps due to its highly involved technicality.

It is natural to ask how our topological refinement of Wilson’s traditional lattice gauge
theory affects the analyses in this program. This is a technically very difficulty yet important
question in the long term.

Since the topological refinement introduces new higher morphisms d.o.f. on the lattice
and new weight factors for them, the renormalization flow is affected. The optimistic hope is,
now that the topologically refined lattice QFT has a more systematic relation to the desired
continuum QFT (Section 6), and moreover the non-perturbative topological operators such
as instantons have become well-defined and explicitly controllable in the path integral, the
renormalization towards the continuum may also be under better control.

Another optimistic hope is, now that we have a categorical understanding (at a prelim-
inary level for now) of what a lattice QFT is in relation to a desired continuum QFT, and
in the future such an understanding may hopefully be extended to cover renormalization,
eventually we may hope for a reorganization of the now highly involved analyses towards the
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continuum limit. Even though the essential technicality most likely will not be eliminated, a
more systematic reorganization, if possible, may help with the progress on the analyses and
the physical understanding of it.
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