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Abstract

In the absence of directional motion it is often hard to recognize athermal fluctuations. Probabil-

ity currents provide such a measure in terms of the rate at which they enclose area in the reduced

phase space. We measure this area enclosing rate for trapped colloidal particles, where only one

particle is driven. By combining experiment, theory, and simulation, we single out the effect of

the different time scales in the system on the measured probability currents. In this controlled

experimental setup, particles interact hydrodynamically. These interactions lead to a strong spa-

tial dependence of the probability currents and to a local influence of athermal agitation. In a

multiple-particle system, we show that even when the driving acts only on one particle, probabil-

ity currents occur between other, non-driven particles. This may have significant implications for

the interpretation of fluctuations in biological systems containing elastic networks in addition to a

suspending fluid.

∗Electronic address: roichman@tauex.tau.ac.il
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I. INTRODUCTION

How do you determine that a system is out of thermal equilibrium? Naturally, if you

observe the system evolving in time or you see directional motion, the answer is trivial.

However, if the system fluctuates around a steady state, it is not straightforward to distin-

guish between thermal and athermal fluctuations. For example, we know that living systems

are far from thermal equilibrium, however, it may be hard to determine if some observed

fluctuations in them stems from thermal noise or from biological activity [1–4]. There have

been several approaches to address this issue in living systems [5–7] and in synthetic and

biomimetic systems, such as in vibrated granular beds [8] and reconstituted biopolymer

networks [9, 10]. One approach is to look for violations of the fluctuation-dissipation theo-

rem [1, 5, 6, 11, 12]. However, this entails not only measuring the spontaneous fluctuations in

the steady state but also requires the application of some external perturbation to measure

the system’s non-equilibrium response.

Alternative non-invasive approaches based on stochastic thermodynamics search for en-

tropy production or irreversibility in the fluctuations [13–17]. Here we build on these ap-

proaches, which allow, in a model-free manner to quantify deviations from equilibrium using

any two measured degrees of freedom. Specifically, we consider nonequilibrium probability

currents in a reduced phase space of the system; The phase space of a complex system

is generally high dimensional, yet one can consider the projection onto a two-dimensional

plane spanned by any two measurable quantities. During the system’s temporal evolution,

its trajectory in this reduced phase space will encircle an area. The rate at which this area

increases – the area enclosing rate (AER) – serves as a measure to quantify nonequilibrium

probability currents.

As proof of principle, this approach was applied to a simple theoretical model of two

masses connected with springs and in contact with two different heat baths [4]. This ap-

proach has gained considerable attention via applications to biological [18, 19], climate [20]

and electronic systems [21, 22]. However, the direct connection between the underlying

activity in the system and its manifestation in the AER is not fully understood.

We use holographic optical tweezers to tune the nonequilibrium driving of a colloidal sys-

tem, and measure the AER as a function of driving strength and interparticle separation. In

this system, particles are coupled via long-ranged hydrodynamic interactions, and are driven
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by stochastic repositioning of the optical traps at a constant rate. Such stochastic reposi-

tioning of optical traps have been previously used to study Brownian particles in an active

bath [23], heat fluxes between hydrodynamically interacting beads in optical traps [24, 25],

and the conditions for the validation of a quasi fluctuation-dissipation theorem [12]. Using

experiments, analytical theory and numerical simulations, here we show how hydrodynamic

interactions give rise to algebraic scaling of the AER with particle separation. We relate the

amplitude and rate of trap repositioning to the strength of nonequilibrium fluctuations in

the system, and their subsequent effect on the AER. The dynamics of this system is governed

by three time scales: the trap repositioning rate, the hydrodynamic relaxation rate, and the

measurement rate. We show that the interplay between these scales is crucial for optimal

observation of the probability currents, as measured by the AER. Finally, we show that in a

multiple-particle system, even when the driving acts on one degree of freedom, probability

currents occur also between other, non-driven degrees of freedom.

This article is organized as follows. After the introduction in Section I, we present the

experimental details in Section II and the details of numerical simulations in Section III. In

Section IV we compare the results from numerical simulations with that from experiments

for a system of two particles. Section V recalls the theoretical framework for calculating

the AER starting with the Langevin equation while Section VI extends the framework to

include hydrodynamic interactions. In Section VII we present results for the AER in case of

a system of two hydrodynamically interacting particles where one of the particles is optically

driven, and in Section VIII we extend our analysis to a system of three particles. Finally

we discuss our results in Section IX.

II. EXPERIMENTAL DESIGN

Our experimental setup, schematically shown in Fig. 1a, consists of two or three colloidal

particles (silica, diameter d = 1.5± 0.08 µm) suspended in double distilled deionized water

and trapped optically. We trap each particle in a separate optical trap and we independently

and dynamically control the position of each trap with trap positioning precision of 10 nm.

The motion of the colloidal particles in the experiments is three-dimensional, but we focus

only on the one-dimensional projection of their motion along the line connecting the traps,

which we define as the x-axis. See Ref. [26] for a theoretical study of the effects of the motion
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of two interacting beads on a plane. Each optical trap creates an effective potential that

is usually approximated by a parabolic form, U(x) = k
2
(x − xtrap)2, with xtrap the position

of the trap, x the position of the particle, and k the effective stiffness of the trap, which

we control by modifying the laser intensity. In our setup, one of the particles is driven

randomly by rapidly switching the location of its optical trap along the x-axis. That trap’s

new position is updated at regular time intervals τ and drawn from a normal distribution,

p(xtrap) ∼ exp
[
− (xtrap − x0)2 /(2b2

0)
]

centered at the particle’s reference position x0. We

vary the nonequilibrium driving strength by changing the standard deviation b0 in the driven

trap’s position distribution. The interaction between the particles is governed by the distance

r between the average positions of neighboring traps. Fig. 1b corresponds to a setup with

r = 4d and b0 = 73 ± 10 nm.

FIG. 1: (a) Schematic illustration of our two-particle experimental setup. One particle is in a

trap that remains at xtrap,2 = x0,2 throughout the experiment. The second particle is driven by

a trap with a position xtrap,1(t) that is regularly switched along the x-axis around an average

position x0,1. The trajectories of the particles are plotted below the traps. As a result of the

driving, the trajectory of the driven particle is stretched along the x-axis. (b) The area enclosing

rate (AER) is defined as the growth rate of the area enclosed by the trajectory in the phase space

spanned by the x motion of the two particles; x1(t) and x2(t). Here we show in gray a short

portion (100 s) of the full phase-space trajectory, and in blue, the trajectory smoothed over a 25 s

window, to highlight the average circulation in phase space. Areas swept in the counterclockwise

direction are colored light blue and clockwise in orange. Experimental parameters are r/d = 4 and

b0 = 73 ± 10 nm.

We use a home-built holographic optical tweezers setup [27–29] to project and switch the
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location of the optical traps. The setup is based on a continuous-wave laser operating at a

wavelength of λ = 532 nm (Coherent, Verdi 6W) with a Gaussian beam profile. The laser

beam is projected on to a spatial light modulator (Hamamatsu, LCOS-SLM, X10468-04)

and is thus imprinted with a phase pattern. The beam is then relayed to the back aperture

of a 100x oil immersion objective (NA 1.42) mounted on an Olympus IX 71 microscope. An

optical trap is formed at a position prescribed by the phase pattern at the sample plane of

the microscope. Switching the trap location is done by changing the phase pattern at a rate

of 1/τ = 36± 1 Hz.

The motion of the particles is recorded by a CMOS camera (FLIR, Grasshopper, GS3-

U3-2356M) at 120 fps. We use conventional video microscopy [30] to extract the trajectories

of the particles with 20 nm spatial resolution. To enhance the AER measurement, we trap

particle 1 in a stiff trap that ensures its immediate response to the trap’s displacement,

while particle 2 is placed in a soft trap that allows a large displacement in response to a

mechanical perturbation. In Fig. 2 the position distribution of both particles is compared

between static conditions (blue) and when particle 1 is driven (orange). We obtain the

effective stiffness k of each trap by employing the equipartition theorem for the non-driven

case, i.e. 1
2
k〈∆x2〉 = 1

2
kBT , where kBT is the average thermal energy at room temperature,

and 〈∆x2〉 is the measured variance of the position of each particle in its trap.

FIG. 2: Position distribution within the traps of the driven particle 1 (a) and the non-driven par-

ticle 2 (b) in a two-particle experiment with driving strength b0 = 110 ± 10 nm and dimensionless

trap separation r/d = 4. Both distributions are wider when particle 1 is driven (orange) than they

are when both traps are static (blue).

We consider the phase space projected onto the two-dimensional space spanned by the x
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displacements δx1 = x1−x0,1 and δx2 = x2−x0,2 of each particle from its mean trap position.

Plotting the average two-dimensional probability density and current (Fig. 3a) we observe a

non-vanishing probability current. We calculate the time-averaged AER from the dynamical

trajectories by summing the triangular areas defined by every two consecutive points on the

system’s trajectory and the origin in this phase space (Fig. 1b), and dividing by the duration

of the measurement. The area enclosed by the trajectory, A12, has positive contributions for

counterclockwise circulation and negative contributions for clockwise circulation. In Fig. 3b

we show the evolution of the AER as a function of averaging time for several different

experiments performed in the same conditions. Clearly, A12 reaches a steady value after

approximately 80 s. Hence, all our measurements of the AER include trajectories of at

least this duration. It is difficult to infer the plateau values from the main panel of Fig. 3b.

Therefore, the figure includes an inset which zooms in on the long-time behavior, and clearly

shows that the plateau value is non-zero. From the distribution of the steady state values

that we obtain (see Fig. 3b, inset), we estimate the error of our measurement of the AER to

be 10 nm2/ms. This is also the value of A12 that we measure for systems with no driving.

FIG. 3: Probability currents in two-particle experiments with b0 = 110 ± 10 nm and r/d = 4. (a)

phase space projected onto the two-dimensional space spanned by the displacements δx1 = x1−x0,1

and δx2 = x2−x0,2 of the two particles from their corresponding mean trap positions, color coded

for probability density. The arrows indicate probability currents. The data is taken by averaging

over 13 experiments, each of duration ∼500 s, hence a total of 780,000 frames, (b) The AER of

several experiments in the same conditions, plotted vs averaging time. The inset shows a close

up view of the AER at long averaging times, showing the variations between repetitions of the

experiment and highlights that the AER for all the experiments saturates at non-zero values.
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III. DESCRIPTION OF NUMERICAL SIMULATIONS

In this section we briefly describe the details of numerical simulations, before we present

the comparison of our experimental results with extensive two-dimensional Stokesian dy-

namics simulations [31] in the following section. This simulation protocol is well suited to

calculate the thermal motion of many particles subjected to external forces and interacting

via hydrodynamic interactions and hard-core repulsion [29]. Our simulations consider two-

dimensional motion, and use the Rotne–Prager approximation [32] for the hydrodynamic

interactions between the particles, as given by Eq. (14) below. The trap repositioning is

done only for particle 1 and only along the x-axis which connects the particles. The simu-

lations were performed with a simulation time step of 10−5 s for typical durations of 600 s.

Similar to the experiments, we used a diameter d = 1.5 µm for the particles, and the dy-

namic viscosity of water is given by η = 0.89× 10−3Pa · s. The homemade simulation code

is based on previous simulations [29], and is publicly available [33].

IV. COMPARISON OF RESULTS FROM EXPERIMENTS AND NUMERICAL

SIMULATIONS

In this section we present the comparison of experimental results with those from nu-

merical simulations. The minimal system exhibiting nonequilibrium probability currents

requires two degrees of freedom. Thus, we consider the one-dimensional motion of two col-

loidal particles, optically trapped and driven as described above. We note that this system

is reminiscent of the mass-spring model considered in [17] and discussed below. However,

here particles influence one another via hydrodynamic interactions, and they are driven by

the colored noise resulting from the stochastic trap repositioning at regular time intervals.

Figure 4 shows results from simulations and experiments for a fixed average distance of

r = 2d between the traps, and varying driving amplitudes b0. The trap stiffnesses obtained

from the experiments and used in the simulations were k1 = 2 pN/µm, k2 = 0.5 pN/µm.

As seen in the figure, the experiments and simulations indicate a b2
0 scaling of the AER

with the driving amplitude. For weaker driving, the experimental AER is below the noise

level, which we estimate from experiments without driving. Simulations predict AER which

is higher by a factor of 5-10 compared to experiments. We suggest that proximity of the
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FIG. 4: AER vs. driving strength for two particles separated by a distance of r = 2d in experiments

(green) and simulations (blue). The horizontal dotted line indicates the noise level, obtained from

the AER measured in experiments without driving, and the dashed lines are guides to the eyes

showing the b20 scaling of AER with driving strength.

particles to the boundary walls could explain the smaller values of AER observed in the

experiments. The experiments were performed at a distance of ∼ 2 µm from the bottom

wall while the height of the sample cell was ∼ 20 µm, and the distances between the spheres

were 3−8 µm. Under these conditions, momentum is absorbed by both the bottom and top

glass walls [34]. This leads to a weaker hydrodyamic interaction between the particles [35]

and consequently a lower AER. In order to check for other sources which might lower the

AER in the experiments, we ran simulations replacing the parabolic traps with Gaussian

traps mimicking the experiments, however, this resulted in AER values very close to the

ones obtained with parabolic traps. We also performed simulations considering the effect of

the size and spherical shape of the particles [36], however these too could not explain the

discrepancy.

The simulations and experiments presented in Fig. 5 show a 1/r decay of the AER with

the distance r between the traps. Similar to Fig. 4, we again see that the simulations

give larger AER than the experiments. For each trap separation r we measure somewhat

different trap stiffnesses, and we show here results of simulations, in which we used traps

with stiffnesses same as in Fig. 4. Note that the simulations presented here use the same

measurement frequency of 120 fps as the experiments, in order to properly describe all the

time scales in the experiments, even though the numerical time step in the simulations is

much smaller.
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FIG. 5: AER vs. the normalized distance between two particles for driving strengths b0 = 55 nm (a)

and b0 = 110 nm (b), in experiments (green) and simulations (blue). The horizontal dotted line

indicates the noise level, obtained from the AER measured in experiments without driving, and

the dashed lines are guides to the eyes showing the 1/r scaling of AER with distance.

In the following sections, we present theoretical analysis explaining the 1/r decay of AER

with distance and its b2
0 increase with driving amplitude. This analysis will allow us to reveal

the relations between the different time scales in the system and their effect on the AER.

We will also discuss three-particle systems, where one particle is driven, and non-zero AER

exists also in the phase space defined by the two non-driven particles. In our experimental

system, this AER with three particles is below the noise level, but we clearly observe it in

simulations.

V. THEORETICAL FRAMEWORK – FROM LANGEVIN EQUATION TO AER

In this section we will recall previous results on how to compute the AER starting with

a Langevin equation driven by white noise [21, 37]. This will set-up the framework we

subsequently use to obtain analytical results of the AER. We will also recall previous results

on the AER for a mass-spring model [4, 17] and highlight that the theoretical results for

this system are incapable of explaining the experimental results presented in Section III.

Consider a system with N degrees of freedom, which evolves with time according to the

following Langevin equation of motion

d ~δx

dt
= V ~δx+ F~ξ, (1)
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with the column vectors

~x =


x1

x2

...

xN

 , ~δx =


δx1

δx2

...

δxN

 , ~ξ =


ξ1

ξ2

...

ξN

 (2)

denoting all the coordinates, their deviations from their equilibrium positions, and uncor-

related Gaussian white noise with unity variance, namely 〈ξi(t)ξj(t′)〉 = δijδ(t − t′). The

N × N matrix V captures the deterministic dynamics, and the N × N matrix F provides

the amplitude of the noise. Equation (1) allows each of the different noise terms to act on

all coordinates. Note that at first we present the analysis of the AER assuming the noise is

white, and originates from thermal fluctuations, while the driving in our experiments and

simulations contains a characteristic time scale τ of trap repositioning. In Section VII we

present the analysis of AER taking into account the colored nature of the noise [38]. We

refer the interested reader to Ref. [39] for studies of the nonequilibrium steady-state dis-

tribution of the position of a damped particle confined in a harmonic trapping potential

and experiencing active noise with short-time correlations. In Eq. (1) we may consider ~x

to contain all degrees of freedom of the system. Then for n particles in d dimensions, the

dimension of all vectors and matrices above is N = nd.

The Langevin equation (1) corresponds to the following Fokker-Planck equation, which

gives the time evolution of the probability density ρ( ~δx, t) of the system,

dρ( ~δx, t)

dt
= ∇ · [V ~δxρ( ~δx, t)] +∇ ·D∇ρ( ~δx, t), (3)

where

D =
1

2
FFT (4)

is the diffusion matrix, and the superscript T denotes the transpose of a matrix. The steady-

state solution is a Gaussian distribution with covariance matrix C obtained by solving the

Lyapunov equation [4]

VC + CVT = −2D. (5)

The mean AER in the phase space projection spanned by δxi and δxj is then given by the

(i, j) element of the matrix A, which is given by [21, 37],

A =
1

2

(
VC−CVT

)
. (6)
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FIG. 6: Schematic diagram of two particles connected with springs.

Note that A is antisymmetric, Aij = −Aji, and the diagonal elements of A are trivially

zero.

While non-zero AER is a signature of broken detailed balance and therefore the non-

equilibrium nature of the system, the necessary and sufficient condition for detailed balance

to be broken is [40]

B = VD− (VD)T 6= 0. (7)

In case of a system at equilibrium with a symmetric matrix V together with a diagonal matrix

D with identical diagonal elements—i.e. all the particles are at the same temperature—

B = 0, and therefore detailed balance is satisfied.

To demonstrate how this general framework is employed, we consider the simple mass-

spring system [4, 17] schematically shown in Fig. 6, where particle 1 is in contact with a

heat bath at temperature T + ∆T , which is different from the temperature T of the heat

bath that particle 2 is in contact with. The particles themselves are connected to each other

and to rigid walls at the ends via springs with stiffnesses kj as shown in the figure.

The deterministic response matrix V is given by

V =
1

γ

−(k1 + k2) k2

k2 −(k2 + k3)

 , (8)

with γ the friction coefficient. The diffusion matrix is

D =
kB
γ

T + ∆T 0

0 T

 . (9)

The noise matrix F is obtained by the Cholesky decomposition of D = 1
2
FFT as

F =

√
2kB
γ

√T + ∆T 0

0
√
T

 . (10)

12



We note that there are several ways to decompose D but the final result in terms of AER

does not depend on which decomposition is used. The Cholesky decomposition is widely

used because of the important property that the existence of Cholesky decomposition of

a matrix means that the matrix is positive definite which ensures that the eigenvalues are

positive. In the case of the diffusion matrix, this ensures that the diffusion coefficients are

non-negative.

The matrix B is obtained as

B =
k2kB∆T

γ2

0 −1

1 0

 . (11)

Solving Eq. (5) gives the covariance matrix, the elements of which are

C11 =
kB
Z1

[
T (2k2

2 + k2
3 + k1k2 + k1k3 + 3k2k3) + ∆T (k2

2 + k2
3 + k1k2 + k1k3 + 3k2k3

]
(12a)

C12 = C21 =
kBk2

Z1

[T (k1 + 2k2 + k3) + ∆T (k2 + k3)] (12b)

C22 =
kB
Z1

[
T (k2

1 + 2k2
2 + 3k1k2 + k1k3 + k2k3) + ∆Tk2

2

]
, (12c)

with Z1 = 2k1k
2
2 + k2

1k2 + k1k
2
3 + k2

1k3 + k2k
2
3 + 2k2

2k3 + 4k1k2k3.

Finally the AER is obtained from Eq. (6) as [4]

A =
k2kB∆T

γ(k1 + 2k2 + k3)

 0 1

−1 0

 . (13)

The AER scales linearly with the temperature difference ∆T , and for identical springs

k1 = k2 = k3, it does not depend on the stiffness of the springs. We present extension of

these results to a system of three particles in Appendix B. Note that the AER is independent

of the distance between the particles, which does not enter the equations of motion. The

mass-spring model therefore cannot be used to explain the experimental system we have

because in our system we observe distance dependence of the AER as seen in Fig. 5. We

note that, however, for a heterogeneously driven large elastic network of beads, tracking a

pair of beads can result in measures of broken detailed balance that scale as a power law

with the distance between beads [41].
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VI. THEORY FOR TRAPPED COLLOIDS SUSPENDED IN FLUID

In order to account for the distance dependence of the AER, which could not be explained

by the mass-spring model in the previous section, in this section we consider a system of n

spherical particles interacting hydrodynamically in a liquid with drag coefficient γ = 3πdη,

where η is the dynamic viscocity of the liquid. Similarly to the analysis in the previous

section, also here we will assume for now that the system is driven by white noise. To

use the general prescription presented above for calculating the AER, we need to identify

the matrices V and F entering the Langevin equation (1). For this physical system, the

hydrodynamic interactions can be calculated within the Rotne–Prager approximation [32]

that is suitable for well separated particles. The hydrodynamic interaction tensor is then

given by [29, 32]

Rαβ
ij =


δαβ
γ

if i = j

3d
8γrij

(
δαβ +

rαijr
β
ij

r2ij

)
+ d3

16γr3ij

(
δαβ − 3

rαijr
β
ij

r2ij

)
if i 6= j

, (14)

where i, j are indices referring to particles, and α, β denote spatial coordinates. The diameter

of the particles is d, while rij denotes the distance between particles i and j. The tensor

Rαβ
ij serves as a mobility tensor, namely, if a force fβj is applied on particle j in direction

β, the resulting velocity of particle i in direction α is vαi = Rαβ
ij f

β
j . As shown below, this

enters both the deterministic response matrix V and the noise matrix F. All our results

from simulations are from two-dimensional motion using the Rotne Prager tensor given by

Eq. (14). The choice of the Rotne-Prager tensor ensures momentum conservation in the

simulations. Our analytical results however consider the Oseen tensor which keeps only

terms up to order 1/r in the interaction tensor. The good agreement of analytical and

simulation results presented in the subsequent sections validate that considering interaction

tensor up to order 1/r is sufficient for the studies presented here. We also verified that

simulations using interaction terms up to order 1/r are sufficient.

In our analytical derivations, we consider the effects of hydrodynamic interactions on the

one-dimensional motion of particles along the direction between them. The particles are

in harmonic potentials of generally different stiffnesses ki. The equilibrium positions of the

particles are separated by a distance r. The schematic for such a system of particles is shown

in Fig. 7. For this one-dimensional situation, the Rotne-Prager tensor for hydrodynamic

14



FIG. 7: Schematic diagram of a one-dimensional array of particles in harmonic potentials.

interaction reduces from Eq. (14) to R = H/γ, where the elements of H are given by

Hij =

1, if i = j

3d
4rij

, if i 6= j,
(15)

and we have kept terms only up to order 1/r.

Here we first consider the exactly solvable situation, in which particle 1 is in contact with

a heat bath at temperature T + ∆T while the other particle(s) are in contact with a heat

bath at temperature T , as depicted for two particles in Fig. 8a. Subsequently, in Section VII,

we will consider the experimental situation, depicted for two particles in Fig. 8b, in which

all the particles are in contact with a heat bath at ambient temperature T , and the trap

of particle 1 is regularly repositioned, according to the experimental protocol described in

Section II. The former case corresponds to a Langevin equation driven by white noise for

FIG. 8: Schematic diagram of two particles in harmonic traps. (a) particle 1 is in contact with a

heat bath at temperature T + ∆T and particle 2 is in contact with a heat bath at temperature T .

(b) both particles are in contact with a heat bath at temperature T , and the trap of particle 1 is

stochastically repositioned.
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which we use the analytical expressions of the AER presented above, while the latter case

corresponds to a Langevin equation with colored noise, for which we use the prescription

of Ref. [38] to analytically calculate the AER. The two-temperature and the colored noise

are separate out-of-equilibrium issues. We present the two-temperature case as an example

to compare between the mass-spring system and the system of optically trapped particles.

The colored noise case, on the other hand, mimics the experimental system where the trap

position of one of the particles is repositioned periodically thereby driving the system out

of equilibrium.

For the white-noise case, the dynamics is given by Eq. (1) with the drift matrix

V =
1

γ
HṼ, (16)

where the elements of Ṽ are given by Ṽij = −kiδij. The noise matrix F is obtained from

the Cholesky decomposition of twice the diffusion matrix D. It is not clear how to de-

fine a system with two temperatures and hydrodynamic interactions, since temperature

implies the fluctuation-dissipation relation and with hydrodynamic interactions, it is non-

local. Nonetheless, if we try to relate this to masses and springs, there are multiple ways to

define D, and we consider the following choice,

D =
kB
γ

 T + ∆T J(T + ∆T )

J(T + ∆T ) T + J2∆T

 , (17)

where J = 3d
4r

is the dimensionless parameter quantifying the distance between the particles.

As detailed in Appendix C, following the prescription of Section V we arrive at the

detailed balance matrix

B =
J(1− J2)k2kB∆T

γ2

 0 1

−1 0

 , (18)

and the AER matrix

A =
J(1− J2)k2kB∆T

(k1 + k2)γ

 0 1

−1 0

 , (19)

where J = 3d
4r

is the dimensionless parameter quantifying the distance between the particles.

Note that here and in what follows we apply the prescription in Section V assuming that

J is constant. This assumption is valid only when r >>
√
〈∆x2〉. This is always true in

the cases we consider because
√
〈∆x2〉 ≈ b0. The largest driving strength we consider, i.e.

16



b0 = 110 nm is much smaller than the shortest distance between the trap positions, i.e.

r = 2d = 3 µm.

The AER scales linearly with the temperature difference ∆T , as in the mass-spring model

discussed above. Crucially, for hydrodynamic interactions, to leading order the AER scales

linearly with J and hence as 1/r, as we observe in experiments and simulations. The

∆T scaling is expected and identical to that obtained for the corresponding mass-spring

model as seen in Eq. (13) [4]. However, the algebraic decay with distance resulting from

the hydrodynamic interactions is different from the springs model, for which there is no

dependence on particle separation.

VII. THEORY FOR OPTICALLY-DRIVEN COLLOIDAL PARTICLES

In this section we consider a system of hydrodynamically interacting two particles where

particle 1 experiences nonequilibrium driving which results from the stochastic repositioning

of its trap as depicted in Fig. 8b, and thus mimics our experimental set up. This is different

from the situation analyzed above, which considered only white noise. Due to the reposi-

tioning of the trap, the noise in our experiments is colored, and we employ the prescription

discussed in Ref. [38], as outlined below. We consider the one-dimensional motion of two

particles, and write the Langevin equation of motion as

d ~δx

dt
= V ~δx+

1

γ
H~f, (20)

For two particles ~δx =

δx1

δx2

 is the δx-displacements of the particles, V = − 1
γ
H

k1 0

0 k2


sets the deterministic force applied on each particle, H =

1 J

J 1

 is the mobility matrix

relating the force on each particle to the velocity of each particle, with J = 3d
4r

the dimen-

sionless strength of the hydrodynamic interactions. The stochastic active force acting on

the particles is ~f =

fa(t)
0

, only the first element of which is non-zero since only the trap

of particle 1 is repositioned.

The system also experiences thermal fluctuations, but they obey detailed balance, and

thus do not generate probability currents in phase space. Moreover, these fluctuations are
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uncorrelated with the active forces that arise from trap repositioning, thus there are no

probability currents resulting from the interaction between the thermal fluctuations and the

active fluctuations. Therefore, for calculating the AER, we consider only the fluctuations

resulting from the active force, and do not include thermal fluctuations in the analysis. This

is similar to the results presented above for white noise, where the AER depends only on

the temperature difference ∆T and not on the ambient temperature T .

The active driving force is the deterministic force pulling particle 1 toward its stochasti-

cally varying trap position, xtrap(t), which is updated at time intervals τ . The total force on

particle 1 at time t is −k1[x(t) − xtrap(t)]. The first term, −k1x(t) is included in the first,

deterministic term V ~δx in Eq. (20), while the second term, k1xtrap(t) is the stochastic active

force that appears in the second term 1
γ
H~f in Eq. (20). Thus we identify the active force as

fa(t) = k1xtrap(t). Consider two arbitrary times, t1 ≤ t2 along the overall time evolution of

the system, measured from the beginning of the experiment. We have non-zero contribution

to the force correlation function only if t2 is before the next repositioning event, namely only

for t2 − t1 + t < τ . The two-time correlation function of the active force is thus

〈fa(t1)fa(t2)〉 =

∫ τ

0

dt

τ
θ (s+ t− τ) f(t1)f(t2) =

k2
1

τ

∫ τ−s

0

dt〈x2
trap〉 = k2

1b
2
0

(
1− s

τ

)
, (21)

where s = t2 − t1 ≥ 0.

Comparing Eq. (20) to Eq. (1), we identify fa(t) =
√
γk1b0ξ(t), and therefore the noise

correlation is 〈~ξ(t1)~ξ(t2)〉 = 1G(s), where

G(s) =
k1

γ

(
1− s

τ

)
, 0 ≤ s ≤ τ (22)

Considering only the non-equilibrium part, in Eq. (1) the lower triangular noise matrix

is given by

F =

√
k1

γ
b0

1 0

J 0

 , (23)

from which we obtain the diffusion matrix

D =
k1b

2
0

2γ

1 J

J J2

 . (24)
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A. Infinite Imaging Rate

Following the colored noise analysis in Ref. [38], the spreading matrix S(s) is generally

defined as

S(s) = 2

∫ ∞
0

dteVtG(t+ s). (25)

Upon using Eq. (22) for G(s), we obtain for s ≥ 0

S(s) =
2k1

γτ

[
V−1e(V(τ−s))V−1 − (τ − s)V−1 − (V−1)2

]
. (26)

Solving the Lyapunov equation using Eq. (C3) for the drift matrix and Eq. (24) for the

diffusion matrix, we obtain the equal-time white-noise equivalent covariance matrix Cw as

Cw =
b2

0

2(k1 + k2)

k1 + k2(1− J2) k1J

k1J k1J
2

 (27)

Finally, using the spreading matrix at time s = 0, from Eq. (26) we obtain the AER as [38]

A =
1

2

[
SVCw −CwV

TST
]
. (28)

Up to leading order in J , the AER reads

A =
Jb2

0k1

(k1 + k2)τ

1 +
k2 exp

(
−k1τ

γ

)
− k1 exp

(
−k2τ

γ

)
k1 − k2

 0 1

−1 0

 . (29)

The scaling of the AER as seen in Eq. (29) can be intuitively expected because given a

typical displacement b0 of particle 1, the typical displacement of particle 2 resulting from

hydrodynamic coupling should be Jb0. Then the area is given by the product of the two

displacements and thus |A12| ∝ Jb2
o. Figure 9 shows how our simulations with fast imaging

perfectly agree with this theoretical result of the AER. We choose k1 = 10 pN/µm, k2 =

4 pN/µm, γ = 0.0126 pN ·s/µm and vary τ in the simulations. Figure 9, therefore, describes

the effect of varying the trap repositioning rate 1/τ on the AER. The AER peaks close to

k1τ/γ = 1, i.e. when the relaxation time γ/k1 is comparable to the trap repositioning time

τ . In the subsequent sections we present several results for the AER, albeit restricted to

the case k1τ/γ � 1, i.e. for slow repositioning which is relevant to our experiments. In our

experimental set-up, 1/τ = 36 Hz, and k1 = 2 pN/µm, thus k1τ/γ = 4.4. In the subsequent

simulations we choose 1/τ = 36 Hz, same as in our experimental set-up. To ensure that all

subsequent simulations are in the slow repositioning limit, we will use k1 = 10 pN/µm, for

which k1τ/γ = 22.
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FIG. 9: AER vs. k1τ/γ for two particles separated by a distance of r = 2d, and a driving strength

of b0 = 110 nm. Simulations at very fast imaging rate of 104 fps are compared with the theoretical

Eq. (29). The simulations are with fixed k1 = 10 pN/µm, k2 = 4 pN/µm and γ = 0.0126 pN ·s/µm

while τ is varied to get different values of k1τ/γ.
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FIG. 10: Simulation results of AER for a system of two particles with hydrodynamic interactions.

(a) AER vs. driving at interparticle distance r = 2d, (b) AER vs. distance at driving strength

b0 = 110 nm. Dashed line is Eq. (29), and simulation results are shown for two imaging rates, as

indicated in the legend.

B. Finite Imaging Rate

In Fig. 10a we show the AER as a function of the driving amplitude with a fixed average

separation of r = 2d between the particles. The simulation results at a high imaging rate of

104 fps agree very well with the analytical expression given by Eq. (29). Interestingly, we see

that the measured AER is significantly smaller in simulations with the experimental imaging

rate of 120 fps. This is because a lower imaging rate corresponds to temporal coarse-graining
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in phase space, thereby reducing the measured area. Figure 12 in Appendix A shows how the

AER increases with imaging rate to eventually saturate for fast imaging. Figure 10b, which

plots the AER as a function of average distance between the particles for a fixed driving

amplitude of b0 = 110 nm, exhibits the same effect of the imaging rate. It also shows

excellent agreement between the theoretical prediction and the results from simulations at

high imaging rate of 104 fps.

VIII. AER FOR A PAIR OF NON-DRIVEN PARTICLES WHEN A THIRD PAR-

TICLE IS DRIVEN

So far we considered the direct effect of driving. Namely, we probed the AER between

a driven particle and another particle, which responds to the driving via the hydrodynamic

interactions between them. In extended systems, one expects nonequilibrium fluctuations

to propagate. The minimal system for studying this propagation is of three particles, where

the first particle is driven, and we measure the AER in the phase space projection of the

other two particles. In this section we address the question whether the AER computed from

non-driven particles can detect non-equilibrium signatures of a system where there may be

untracked driven particles. This is specifically crucial for biological systems where it is not

always possible to track all degrees of freedom.

Let us first consider a system of three particles, where particle 1 is in contact with a

heat bath at temperature T + ∆T , which is different from the temperature T of the heat

baths that particles 2 and 3 are connected to. As discussed in the previous section, the

AER depends only on the temperature difference ∆T , and therefore in what follows we set

T = 0. The particles are in optical traps of generally different stiffnesses kj, and interact

hydrodynamically.

We present the drift, diffusion, noise and the covariance matrices in Appendix D. The

resultant detailed-balance matrix has non-diagonal elements given by

B12 =
J [4k2 + 2Jk3 − J2(4k2 + k3)] kB∆T

4γ2
(30a)

B13 =
J [4k3 + 8Jk2 − J2(4k2 + k3)] kB∆T

8γ2
(30b)

B23 =
J2 [2(k3 − k2) + J(4k2 + k3)] kB∆T

4γ2
. (30c)

21



Note that for three particles connected with springs (see Appendix B), B23 = 0, while here

B23 6= 0.

Keeping terms up to the lowest order in J , the non-diagonal elements of the AER are

obtained as

A12 =
Jk2kB∆T

γ(k1 + k2)
(31a)

A13 =
Jk3kB∆T

2γ(k1 + k3)
(31b)

A23 =
J2 [2(k3 − k2) + J(4k2 − k3)] (k1k2 + k1k3 + k2k3)kB∆T

4γ(k1 + k2)(k1 + k3)(k2 + k3)
. (31c)

The full expressions for arbitrary J are given in Appendix D. As expected, the AER is

proportonal to the temperature difference ∆T between the heat baths. The AER A12 in the

subspace of particle 1 and particle 2, and A13 in the subspace of particle 1 and particle 3 are

inversely proportional to the distance between the particles. Equation (31c) gives non-zero

AER A23 also in the subspace of the non-driven particles, namely, particle 2 and particle 3,

while only particle 1 is driven. The AER in this subspace decays faster with distance than

in the subspace of driven–non-driven pairs. Interestingly, when k2 6= k3 it decays as 1/r2

but when k2 = k3 it decays as 1/r3 in the leading order in J . The detailed-balance matrix

B, as seen from Eq. (30) exhibits the same scaling behaviour with J and ∆T .

Let us now consider the experimentally relevant case, namely, a system of three particles,

with particle 1 driven by stochastically repositioning its trap, and where we follow the

motion of all three particles along the line connecting them. We could not obtain closed

form expressions of the AER for this case, and in what follows, we use the matrix equation

(28) to numerically obtain the exact values of the AER for any set of parameter values.

Within the framework presented in Section VII, i.e. with hydrodynamic interactions

and colored noise driving, and considering only the non-equilibrium contributions, the lower

triangular noise matrix is given by

F =

√
k1

γ
b0


1 0 0

J 0 0

J
2

0 0

 , (32)
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from which the diffusion matrix is

D =
k1b

2
0

2γ


1 J J

2

J J2 J2

2

J
2

J2

2
J2

4

 , (33)

and the drift matrix is given by

V = −1

γ


k1 Jk2

J
2
k3

Jk1 k2 Jk3

J
2
k1 Jk2 k3

 . (34)

Solving the Lyapunov equation using Eq. (34) for the drift matrix and Eq. (33) for the

diffusion matrix, we obtain the elements of the equal-time white-noise equivalent covariance

matrix Cw, up to leading order in J , as

(Cw)11 =
b2

0 [4k1k2 + 4k1k3 + 4k2k3 + 4k2
1 − J2(4k1k2 + k1k3 + 5k2k3)]

8(k1 + k2)(k1 + k3)
(35a)

(Cw)12 = (Cw)21 =
Jb2

0k1

2(k1 + k2)
(35b)

(Cw)13 = (Cw)31 =
Jb2

0k1

4(k1 + k3)
(35c)

(Cw)22 =
J2b2

0k1

2(k1 + k2)
(35d)

(Cw)23 = (Cw)32 =
J2b2

0k1(k1k2 + k1k3 + 2k2k3)

4(k1 + k2)(k1 + k3)(k2 + k3)
(35e)

(Cw)33 =
J2b2

0k1

8(k1 + k3)
, (35f)

The full expressions for arbitrary J are given in Appendix E. We follow the procedure for

colored noise, as described in Section VII, to obtain the theoretically predicted AER using

Eq. (28).

We simulate a system of three particles, with particle 1 driven along the x-axis as before,

and we measure the AER between all pairs of particles using a high imaging rate of 104 fps.

Figure 11a shows the AER as a function of driving amplitude for all pairs of particles. The

simulations were performed with an average distance of r = 2d between each pair of neigh-

bouring particles. A repositioning rate of 1/τ = 36 Hz was used, while the trap stiffnesses

were k1 = 10 pN/µm, k2 = 4 pN/µm, k3 = 5 pN/µm. The simulation results show a clear

scaling of AER with b2
0 in agreement with the theoretical predictions according to Eq. (28).
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FIG. 11: AER for a system of three particles in a harmonic potential with hydrodynamic interac-

tions between the particles. (a) AER vs. driving for r = 2d, (b) AER vs. distance for b0 = 110 nm.

Moreover, noting that particle 1 is driven and that the average distance between particle 1

and particle 3 is twice that between particle 1 and particle 2, we see that A13 is smaller

than A12 because of the 1/r dependence due to hydrodynamic interactions. Remarkably,

we observe non-zero AER A23 also for the non-driven pair of particles, albeit the values are

much smaller than for the driven-non-driven pairs. This non-zero AER for the non-driven

pair of particles is too small to be detected in the experiments, but the simulations clearly

exhibit it.

Figure 11b shows the AER as a function of average distance between neighboring particles

for all pairs of particles. The simulations were performed with a fixed driving amplitude

of b0 = 110 nm. Consider the results from the simulations with the stiffnesses same as in

Fig. 11a. These results are labelled k2 6= k3 in Fig. 11b. We observe that the measured AER

between the driven-non-driven pairs follow the scaling of A12,A13 ∝ 1/r, while A23 ∝ 1/r2

which agree very well with the theoretical predictions according to Eq. (28), and is the same

as in the two-temperature case, as given by Eq. (31). Interestingly, when k2 = k3, as with the

two-temperature case, A23 ∝ 1/r3, that is, it decays much faster than when the stiffnesses

are unequal. This is exactly what we observe in the simulation results labeled k2 = k3 in

Fig. 11b, where we chose k2 = k3 = 4 pN/µm. This fast decay with distance makes it

difficult to experimentally detect the non-zero AER for non-driven pairs of particles.

Despite this agreement in the functional dependence on distance in the two-temperature

case and in the experimental driving protocol, the ratios between the prefactors of r in A

are different for the two cases. From Eqs. (31a) and (31b) we see that for the case of heat
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baths at different temperatures A12

A13
= k2(k1+k3)

k3(k1+k2)
. With r = 8d – which is large enough such

that the leading order in J gives the dominant contribution to the AER – and the other

parameters same as used in the simulations presented in Fig. 11b this leads to A12

A13
= 1.7

which differs from A12

A13
= 2.2 resulting from numerically evaluating the colored noise case

given by Eq. (28). Similarly, A12

A23
= 4k2(k1+k3)(k2+k3)

J(k1k2+k1k3+k2k3)(2(k3−k2)+J(4k2−k3))
which is obtained

using Eqs. (31a) and (31c). Again with r = 8d and the other parameters same as used in

the simulations presented in Fig. 11b this leads in case of k2 6= k3 to J · A12

A23
= 6.5 whereas

numerically evaluating the colored noise case given by Eq. (28) results in J · A12

A23
= 17.5. In

the case of k2 = k3 we obtain for the two temperature case J2 · A12

A23
= 1.6 which is different

from J2 · A12

A23
= 3.7 in the colored noise case.

IX. DISCUSSION

We have studied the AER to quantify probability currents in a system of hydrodynami-

cally coupled colloidal particles, in which one particle is optically driven. Using this model

system, we could identify and decouple the contributions of different experimental parame-

ters, such as driving strength and frequency, interparticle distance, and imaging frequency.

We found that due to hydrodynamic interactions between the particles, the AER decays

algebraically with inter-particle separation; this contrasts with the fixed AER in elastic

systems with local driving. It is, therefore, essential to understand the nature of coupling of

the tracked degrees of freedom which are used to measure the AER. For example, a stronger

signal would be obtained from objects that are directly connected. Tracer particles attached

directly to a biopolymer network, such as actin, would report on motor activity, such as

myosin, significantly better and to much larger distances than if embedded in the fluid. We

also demonstrate that the AER peaks when the driving time scale τ is comparable to the

relaxation time scale γ/k. This result is in accord with previous work [23] showing that

heat dissipation, another measure of distance from thermal equilibrium, peaks under similar

conditions. This result implies that if driving frequency (or relaxation time) can be tuned

in the system, one may be able to extract the typical relaxation time (or driving frequency),

or alternatively enhance the AER measurement signal in this manner. Another method

to ensure proper measurement of the AER is to use an imaging rate that is fast enough

compared to the driving and the relaxation time scales.
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It is interesting to note that driving one particle can generate probability currents among

other non-driven particles. This means that a single active agent can propagate its activity

within a series of interacting objects via probability currents. The theoretical approach

used in our analysis to calculate the expected AER due to hydrodynamic interactions can

be adapted to other interaction types and to larger numbers of particles. This tool could

serve as a means to design a system that propagates activity via probability currents in an

optimal manner.

Here we focused on the AER as an obervable to detect and quantify non-equilibrium

dynamics. It is closely related to the cycling frequency and the entropy production rate

which have also been employed as non-equilibrium measures [15, 18]. The cycling frequency

is defined as the rate at which a trajectory revolves in coordinate space and its elements are

given by [18]

ωij =
1

2

(
VC−CVT

)
ij√

det(C[i,j])
=

Aij√
det(C[i,j])

, (36)

where C[i,j] is a 2 × 2 matrix with elements {{Cii,Cij}, {Cji,Cjj}}. Thus the cycling

frequency differs from the AER only by the normalization factor given by the determinant

of the Covariance matrix. The entropy production rate (EPR), on the other hand, for a

linear system is related to the AER via the relation [15]

EPR = Tr(AC−1ATD−1). (37)

The advantage that the AER and the cycling frequency have over the EPR is due to the fact

that they can be computed directly from the raw single particle tracking data. Moreover

they can be computed for any two degrees of freedom, while the EPR requires measuring all

the degrees of freedom in the system. Indeed the AER can be leveraged, in case of multidi-

mensional systems, to perform a dissipative component analysis to identify the components

which contribute the most to EPR, and provide lower bounds on the EPR [15].

We showed that the AER can be a useful observable to detect signatures of non-

equilibrium dynamics in a system of two or more particles. In case of a single particle,

if it is driven such that it exhibits directional motion (say if the trap driving it moves in cir-

cles, rather than along a line) then there would clearly be an observable current in physical

space, and we won’t need to search for probability currents in phase space. However, for

single-particle systems, if currents are noisy and hard to observe, in principle, one can still
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detect and quantify them with the AER in physical space. Indeed, Ref. [17] considered prob-

ability fluxes to quantify nonequilibrium motion of a beating flagellum of Chlamydomonas

reinhardtii by decomposing its motion into different modes.
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Appendix A: AER dependence on frame acquisition rate

Figure 12 shows how the AER varies with the frame acquisition rate, and highlights that

at small frame rate the estimated AER values are lower than the steady state value and only

for fast imaging do the estimated AER values converge. This is because a lower imaging

rate corresponds to temporal coarse-graining in phase space, thereby reducing the measured

area.

FIG. 12: AER vs. imaging frame rate for two particles separated by a distance of r = 2d and

different driving strength b0 as shown in the legend.

Appendix B: AER for three particles connected with springs

We consider three particles, where particle 1 is in contact with a heat bath at temperature

T + ∆T , which is different from the temperature T of the heat bath that particles 2 and 3

are connected to. Again, we set T = 0. The particles themselves are connected to each other

and to rigid walls at the ends via springs with spring constants kj. This is an extension of

the two-particle case considered in Ref. [4].

The matrix V is given by

V =
1

γ


−(k1 + k2) k2 0

k2 −(k2 + k3) k3

0 k3 −(k3 + k4)

 , (B1)
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while for the diffusion matrix we choose the form

D =
kB
γ


∆T 0 0

0 0 0

0 0 0

 , (B2)

and write the noise matrix as

F =

√
2kB
γ


√

∆T 0 0

0 0 0

0 0 0

 . (B3)

Solving the Lyapunov equation, we obtain the elements of the covariance matrix,

C11 =
kB∆T

Z3

(
2k2

2k
3
3 + 2k3

2k
2
3 + k2

2k
3
4 + 2k3

2k
2
4 + k2

3k
3
4 + 2k3

3k
2
4 + 4k1k2k

3
3 + k1k

3
2k3+ (B4a)

k1k2k
3
4 + k1k

3
2k4 + k1k3k

3
4 + 4k1k

3
3k4 + 3k2k3k

3
4 + 8k2k

3
3k4 + 5k3

2k3k4+

6k1k
2
2k

2
3 + 2k2

1k2k
2
3 + k2

1k
2
2k3 + 3k1k

2
2k

2
4 + k2

1k2k
2
4 + k2

1k
2
2k4 + 4k1k

2
3k

2
4+

k2
1k3k

2
4 + 2k2

1k
2
3k4 + 11k2k

2
3k

2
4 + 10k2

2k3k
2
4 + 14k2

2k
2
3k4 + 9k1k2k3k

2
4+

16k1k2k
2
3k4 + 11k1k

2
2k3k4 + 4k2

1k2k3k4

)
C12 =

k2kB∆T

Z3

(
2k2

2k
2
3 + 2k2

2k
2
4 + 3k2

3k
2
4 + 2k2k

3
3 + k2k

3
4 + k3k

3
4 + 2k3

3k4 + 2k1k2k
2
3+ (B4b)

k1k
2
2k3 + k1k2k

2
4 + k1k

2
2k4 + k1k3k

2
4 + 2k1k

2
3k4 + 6k2k3k

2
4 + 8k2k

2
3k4+

5k2
2k3k4 + 4k1k2k3k4

)
C13 =

k2k3kB∆T

Z3

(
2k2k

2
3 + 2k2

2k3 + k2k
2
4 + 2k2

2k4 + k3k
2
4 + 2k2

3k4 + 4k2k3k4

)
(B4c)

C22 =
kB∆T

Z3

(
2k2

2k
3
3 + 2k3

2k
2
3 + k2

2k
3
4 + 2k3

2k
2
4 + k1k

3
2k3 + k1k

3
2k4 + 5k3

2k3k4+ (B4d)

+k1k
2
2k

2
3 + k1k

2
2k

2
4 + 4k2

2k3k
2
4 + 5k2

2k
2
3k4 + 3k1k

2
2k3k4

)
C23 =

k3kB∆T

Z3

(
2k2

2k
2
3 + k2

2k
2
4 + 2k3

2k3 + 2k3
2k4 + k1k

2
2k3 + k1k

2
2k4 + 3k2

2k3k4

)
(B4e)

C33 =
kB∆T

Z3

(
2∆Tk2

2k
3
3 + 2k3

2k
2
3 + k1k

2
2k

2
3 + +k2

2k
2
3k4

)
, (B4f)

where Z3 = 6k1k
2
2k

3
3 + 6k1k

3
2k

2
3 + 4k2

1k2k
3
3 + 2k2

1k
3
2k3 + 2k3

1k2k
2
3 +k3

1k
2
2k3 + 2k1k

2
2k

3
4 + 4k1k

3
2k

2
4 +

k2
1k2k

3
4 +2k2

1k
3
2k4 +k3

1k2k
2
4 +k3

1k
2
2k4 +k1k

2
3k

3
4 +2k1k

3
3k

2
4 +k2

1k3k
3
4 +4k2

1k
3
3k4 +k3

1k3k
2
4 +2k3

1k
2
3k4 +

k2k
2
3k

3
4 + 2k2k

3
3k

2
4 + 2k2

2k3k
3
4 + 6k2

2k
3
3k4 + 4k3

2k3k
2
4 + 6k3

2k
2
3k4 + 8k2

1k
2
2k

2
3 + 4k2

1k
2
2k

2
4 + 4k2

1k
2
3k

2
4 +

8k2
2k

2
3k

2
4 + 4k1k2k3k

3
4 + 12k1k2k

3
3k4 + 12k1k

3
2k3k4 + 4k3

1k2k3k4 + 15k1k2k
2
3k

2
4 + 18k1k

2
2k3k

2
4 +
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28k1k
2
2k

2
3k4 +10k2

1k2k3k
2
4 +18k2

1k2k
2
3k4 +15k2

1k
2
2k3k4 and we note that the remaining elements

of C can be obtained from the symmetry of C.

The detailed-balance matrix is obtained as

B =
k2kB∆T

γ2


0 −1 0

1 0 0

0 0 0

 , (B5)

and the AER matrix has non-diagonal elements given by

A12 = −k2kB∆T

γQ1

(k1k2 + 2k1k3 + k1k4 + 3k2k3 + 2k2k4 + 3k3k4 + 2k2
3 + k2

4) (B6a)

A13 = −k2k3kB∆T

γQ1

(k2 + 2k3 + k4) (B6b)

A23 = −k
2
2k3kB∆T

γQ1

, (B6c)

where Q1 = k2
1k2 + 2k2

1k3 + k2
1k4 + 2k1k

2
2 + 8k1k2k3 + 4k1k2k4 + 4k1k

2
3 + 4k1k3k4 + k1k

2
4 +

6k2
2k3 + 4k2

2k4 + 6k2k
2
3 + 8k2k3k4 + 2k2k

2
4 + 2k2

3k4 + k3k
2
4.

Appendix C: Covariance matrix for a system of two particles in contact with heat

baths at different temperatures

We consider the diffusion matrix to be given by

D =
kB
γ

 T + ∆T J(T + ∆T )

J(T + ∆T ) T + J2∆T

 , (C1)

where J = 3d
4r

is the dimensionless parameter quantifying the distance between the particles.

The Cholesky decomposition D = 1
2
FFT gives

F =

√
2kB
γ

 √T + ∆T 0

J
√
T + ∆T

√
T (1− J2)

 . (C2)

The drift matrix is

V =
−1

γ

 k1 Jk2

Jk1 k2

 . (C3)
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Solving Eq. (5) gives the covariance matrix, the elements of which are given by

C11 =
kB

k1(k1 + k2)

[
T (k1 + k2) + ∆T (k1 + k2 − J2k2)

]
(C4a)

C12 = C21 =
JkB∆T

k1 + k2

(C4b)

C22 =
kB

k2(k1 + k2)

[
T (k1 + k2) + J2k2∆T

]
. (C4c)

Appendix D: Three colloidal particles driven by temperature difference

The matrix V is given by

V =
−1

γ


k1 Jk2

J
2
k3

Jk1 k2 Jk3

Jk1
2

Jk2 k3

 , (D1)

while we consider the diffusion matrix to be given by

D =
kB
γ


∆T J∆T J

2
∆T

J∆T J2∆T J2

2
∆T

J
2
∆T J2

2
∆T J2

4
∆T

 . (D2)

The Cholesky decomposition of D = 1
2
FFT gives

F =

√
2kB
γ


√

∆T 0 0

J
√

∆T 0 0

J
√

∆T
2

0 0

 . (D3)

Solving the Lyapunov equation, we obtain the elements of the covariance matrix C,

C11 =
kB∆T

4k1Z4

[
16k1k

2
2 + 16k2

1k2 + 16k1k
2
3 + 16k2

1k3 + 16k2k
2
3 + 16k2

2k3 + 32k1k2k3− (D4a)

4J2(8k1k
2
2 − 4k2

1k2 − 2k1k
2
3 − k2

1k3 − 9k2k
2
3 − 9k2

2k3 − 5k1k2k3)+

16J3(k2k
2
3 + k2

2k3 − k1k2k3) + J4(k1k
2
3 + 16k1k

2
2 + 8k1k2k3)

]
C12 =

JkB∆T

2Z4

[
8k1k2 + 8k1k3 + 8k2k3 + 8k2

3 − 4J(k2
3 + k2k3)− 2J2(k2

3+ (D4b)
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−4k1k2 + k1k3 − k2k3) + J3(k2
3 − 4k2k3)

]
C13 =

JkB∆T

2Z4

[
4k1k2 + 4k1k3 + 4k2k3 + 4k2

2 − 8J(k2
2 + k2k3) + J2(4k2k3− (D4c)

4k2
2 − 4k1k2 − k1k3) + 2J3(4k2

2 − k2k3)
]

C22 =
J2kB∆T

Z4

[
4k1k2 + 4k1k3 + 4k2k3 + 4k2

3 − 4Jk2
3 + J2(k2

3 − 4k1k2 − k1k3− (D4d)

4k2k3)]

C23 =
J2kB∆T

2Z4

[
4k1k2 + 4k1k3 + 8k2k3 − 10Jk2k3 − J2(4k1k2 + k1k3)

]
(D4e)

C33 =
J2kB∆T

4Z4

[
4k1k2 + 4k1k3 + 4k2k3 + 4k2

2 − 16Jk2
2 + J2(16k2

2 − 4k1k2− (D4f)

k1k3 − 4k2k3)] ,

where Z4 = 4k1k
2
2 + 4k2

1k2 + 4k1k
2
3 + 4k2

1k3 + 4k2k
2
3 + 4k2

2k3 − 4J2k1k
2
2 − 4J2k2

1k2 − J2k1k
2
3 −

J2k2
1k3− 4J2k2k

2
3− 4J2k2

2k3 + 8k1k2k3− 4J3k1k2k3 and we note that the remaining elements

of C can be obtained from the symmetry of C.

The full expressions of the elements of the AER presented in Eq. (31) are

A12 = −A21 =
JkB∆T

4γQ2

[
16k2

2k3 + 16k1k
2
2 + 16k2k

2
3 + 16k1k2k3 + 8J(k1k2k3+ (D5a)

k1k
2
3)− 4J2(6k1k2k3 + k1k

2
3 + 8k2

2k3 + 8k1k
2
2 + 10k2k

2
3) + 2J3(13k2k

2
3 − 4k1k2k3−

k1k
2
3) + J4(16k2

2k3 + 16k1k
2
2 − 4k2k

2
3 + 8k1k2k3 + k1k

2
3)
]

A13 = −A31 =
JkB∆T

8γQ2

[
(2− J)(16J3k2

2k3 − 16J3k1k
2
2 − 4J3k2k

2
3 − 8J3k1k2k3− (D5b)

J3k1k
2
3 + 24J2k2

2k3 − 8J2k2k
2
3 − 8J2k1k2k3 − 2J2k1k

2
3 + 4Jk2

2k3+

4Jk2k
2
3 − 16Jk1k

2
2 + 20Jk1k2k3 + 4Jk1k

2
3 + 8k2

2k3 + 8k2k
2
3 + 8k1k2k3 + 8k1k

2
3)
]

A23 = −A32 = −J
2kB∆T

4γQ2

(2k2 − 2k3 − 4Jk2 + Jk3)(4k1k2 + 4k1k3 + 4k2k3− (D5c)

4J2k1k2 − J2k1k3 − 4J2k2k3),

where Q2 = −4J3k1k2k3 − 4J2k2
1k2 − J2k2

1k3 − 4J2k1k
2
2 − J2k1k

2
3 − 4J2k2

2k3 − 4J2k2k
2
3 +

4k2
1k2 + 4k2

1k3 + 4k1k
2
2 + 8k1k2k3 + 4k1k

2
3 + 4k2

2k3 + 4k2k
2
3.
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Appendix E: Full expressions of the covariance matrix presented in Eq. (35)

The full expressions of the elements of the equal-time white-noise equivalent covariance

matrix Cw presented in Eq. (35) are

(Cw)11 =
b2

0

8Z2

(
16k1k

2
2 + 16k2

1k2 + 16k1k
2
3 + 16k2

1k3 + 16k2k
2
3 + 16k2

2k3 + 32k1k2k3− (E1a)

32J2k1k
2
2 − 16J2k2

1k2 − 8J2k1k
2
3 − 4J2k2

1k3 − 36J2k2k
2
3 − 36J2k2

2k3−

20J2k1k2k3 + 16J3k2k
2
3 + 16J3k2

2k3 − 16J3k1k2k3 + J4k1k
2
3+

16J4k1k
2
2 + 8J4k1k2k3

)
(Cw)12 =

Jb2
0k1

4Z2

(
8k1k2 + 8k1k3 + 8k2k3 + 8k2

3 − 4Jk2
3 − 4Jk2k3 − 2J2k2

3− (E1b)

8J2k1k2 − 2J2k1k3 + 2J2k2k3 + J3k2
3 − 4J3k2k3

)
(Cw)13 =

Jb2
0k1

4Z2

(
4k1k2 + 4k1k3 + 4k2k3 − 8Jk2

2 + 4k2
2 − 4J2k2

2 + 8J3k2
2 − 8Jk2k3− (E1c)

4J2k1k2 − J2k1k3 + 4J2k2k3 − 2J3k2k3

)
(Cw)22 =

J2b2
0k1

2Z2

(
4k1k2 + 4k1k3 + 4k2k3 − 4Jk2

3 + 4k2
3 + J2k2

3 − 4J2k1k2− (E1d)

J2k1k3 − 4J2k2k3

)
(Cw)23 =

J2b2
0k1

4Z2

(
4k1k2 + 4k1k3 + 8k2k3 − 10Jk2k3 − 4J2k1k2 − J2k1k3

)
(E1e)

(Cw)33 =
J2b2

0k1

8Z2

(
4k1k2 + 4k1k3 + 4k2k3 − 16Jk2

2 + 4k2
2 + 16J2k2

2 − 4J2k1k2− (E1f)

J2k1k3 − 4J2k2k3

)
,

where Z2 = 4k1k
2
2 + 4k2

1k2 + 4k1k
2
3 + 4k2

1k3 + 4k2k
2
3 + 4k2

2k3 − 4J2k1k
2
2 − 4J2k2

1k2 − J2k1k
2
3 −

J2k2
1k3 − 4J2k2k

2
3 − 4J2k2

2k3 + 8k1k2k3 − 4J3k1k2k3, and note that the other elements are

given by the symmetric property of Cw.
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