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Abstract

We study brick wall quantum circuits enjoying a global fermionic symmetry.
The constituent 2-qubit gate, and its fermionic symmetry, derive from a 2-
particle scattering matrix in integrable, supersymmetric quantum field theory
in 1+1 dimensions. Our 2-qubit gate, as a function of three free parame-
ters, is of so-called free fermionic or matchgate form, allowing us to derive
the spectral structure of both the brick wall unitary UF and its, non-trivial,
hamiltonian limit Hγ in closed form. We find that the fermionic symmetry
pins Hγ to a surface of critical points, whereas breaking that symmetry leads
to non-trivial topological phases. We briefly explore quench dynamics for this
class of circuits.
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1 Introduction

1.1 Brick wall circuits with global fermionic symmetry

A particularly fascinating interface of quantum information and quantum many-body
physics is the study of quantum circuits that represent the (unitary) time evolution of
systems in quantum particle or material physics. In their most basic form these circuits
take the form of a ‘brick wall’ circuit whose properties are set by the choice of a 2-qubit
gate that represents a single brick in the wall. Studies of this type have typically opted
for one of two extreme choices: either one assumes randomly chosen 2-qubit unitaries
([1] and references therein), or, on the opposite, one picks a structured 2-qubit gate that
leads to a degree of analytical control of the unitary brick wall (UBW) circuit.

Indeed, if the 2-qubit gate is chosen to be a so-called R-matrix satisfying a Yang-
Baxter identity, one can arrange a corresponding UBW circuit such that, as an operator,
it commutes with a large number of conserved charges. See [2–4] where this procedure was
proposed and analyzed and [5–7] where such circuits, and an array of physical phenomena
related to ‘integrable trotterization’, were studied. Ref. [8] in particular has implemented
these ideas for the R-matrix of the XXX integrable spin-1/2 Heisenberg magnet and ana-
lyzed its conserved charges, both analytically and in realizations on quantum computing
hardware. We point out other experiments exploiting similar concepts [9, 10].

In this paper we make a different choice for a highly structured brick in the wall:
we will analyze UBW circuits built from 2-qubit gates with a free fermionic structure,
known as ‘matchgates’ in the quantum information literature. This structure gives a
high degree of analytical control, allowing us to make precise statements on the spectral
structures associated with our circuits, both for the brick wall unitary UF and for a class
of hamiltonians Hγ that we associate with these circuits. At the same time, it leads a
rich structure for the quantum dynamics of UF and the phase diagram of Hγ.

The construction and analysis of these fermionic UBW circuits poses various chal-
lenges and open questions, which we address in this paper. First, a consistent interpreta-
tion of the qubit states |0⟩ and |1⟩ as fermionic states |b⟩ and |f⟩ requires that we equip
the multi-qubit Hilbert space with a graded tensor product. Having made this interpre-
tation, it is natural to consider a fermionic symmetry that rotates |b⟩ into |f⟩ and that
commutes with the brick wall unitary UF. We will denote such a symmetry as a global
fermionic symmetry. In section 1.2 below we use a connection with supersymmetric par-
ticle scattering theories in 1+1 dimensions to identify a 3-parameter class Š(α, γ, θ) of
2-qubit gates which are of free fermionic form and satisfy a global fermionic symmetry.
In this connection, θ corresponds to the difference in rapidity of the particles scattering
in 1+1D, γ corresponds to the logarithm of the ratio of the masses m1 and m2 of the
particles on even and odd lines, and α corresponds to the strength of the interactions in
the 1+1D scattering theory.

A second challenge is to understand the implications of the free fermionic structure
and the global fermionic symmetry for the hamiltonians Hγ associated to our circuits.
Interestingly, these hamiltonians take the form of staggered versions of the Kitaev chain
model, describing the pairing of spinless fermions on a 1D lattice. We will find that
the global fermionic symmetry precisely pitches these hamiltonians to critical points,
separating a variety of topological phases in the BDI class.
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A third challenge is to understand (quench) dynamics set by UF(α, γ, θ). In this,
a particular role is played by the mass ratio m1/m2 : we find that, in a large part of
parameter space, the UBW dynamics has a characteristic drift velocity

vd = 2
m1 −m2

m1 +m2

, (1.1)

on a scale where v = 2 is the maximal velocity set by the circuit geometry (2 steps left
or right over one odd and one even layer of the circuit).

It is interesting to compare our findings for the case of unequal masses (m1,m2) to
the results in a recent study of Zadnik et al. [11], which analyzes a family of quantum
UBW circuits constructed out of SU(2)-symmetric unitary gates In these circuits, the
odd and even qubit lines carry SU(2) representations (s1, s2). The authors point out
non-trivial transport properties of this system due to the presence of individually broken
time-reversal and space-reflection symmetries, but a combined PT symmetry. These
properties include a drift velocity with value

vd =
C1 − C2

C1 + C2

, (1.2)

with Ci = si(si + 1) the Casimir of the corresponding SU(2) representation.
Further motivation for our study is given by a growing interest in the study of Quan-

tum Cellular Automata (QCAs), our finite depth quantum circuit being an example.
QCAs are quantum generalisations of cellular automata, and they can be interpreted as
regularizations of continuous quantum field theories on discrete spacetime obeying strict
causality and unitarity (see [12, 13] and references therein). We build on this connec-
tion by studying the consequences of global fermionic constraints on a supersymmetric
quantum field theory regularized on a lattice.

1.2 2-Qubit gates from supersymmetric particle scattering

A context where solutions to a Yang-Baxter equation arise in a natural way is that of
factorizable particle scattering in massive integrable quantum field theories (QFT) in
1+1 dimensions. These theories describe (massive) particles in 1+1D, whose many-body
scattering processes factor into 2-body processes as a consequence of integrability. In the
early 1990’s a great number of non-trivial such S-matrices were identified through the
study of QFT’s arising from relevant, integrable perturbations of conformal field theories
(CFT), or from direct analysis of integrable QFT’s such as the sine-Gordon model. A
highlight of the former approach has been the identification of the S-matrices for massive
particles arising from the magnetic perturbation of the Ising CFT, with the masses and
the scattering matrices all organized by an underlying E8 symmetry [14].

In 1+1D QFT context the notion of a fermionic symmetry of a 2-body scattering
matrix takes the form of space-time supersymmetry [15]. It expresses the 1+1D super
Poincaré algebra, in the form

Q2 = P , Q2
= P , P0 = P + P , P1 = P − P̄ (1.3)

with the energy P0 and momentum P1 operators taking values

p0 = m cosh(θ), p1 = m sinh(θ) (1.4)
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for on-shell particles with mass mi and rapidity θi. In such supersymmetric QFT’s,
particles come in doublets (bi, fi) of mass mi, giving rise to (asymptotic) particle states

|Ai1(θ1) . . . Ain(θn)⟩ (1.5)

with Ai = bi, fi. A particularly natural choice for the representation of the supercharges
satisfying the algebra of eq. 1.3 is, in matrix form,

Q = σx, Q = σy, QL = σz, (1.6)

with QL representing the parity operator. On a 2-particle state the supercharges then
act as

Ql =
√
m1 e

θ1/2Q⊗ I +
√
m2 e

θ2/2QL ⊗Q (1.7)

and similar for Qr (in terms of Q instead of Q). Note that the operator QL in the second
term expresses the fermionic nature of the supercharges.

The paper [15] identified the most general 2-body S-matrix commuting with this par-
ticular representation of space-time supersymmetry. Written on the basis |bi(θ1)bj(θ2)⟩,
|bi(θ1)fj(θ2)⟩, |fi(θ1)bj(θ2)⟩, |fi(θ1)fj(θ2)⟩, it takes the form

Š(θ) = f(θ)


1− t t̃ 0 0 t+ t̃

0 1 + t t̃ t− t̃ 0
0 −t+ t̃ 1 + t t̃ 0

−t− t̃ 0 0 1− t t̃

+ g(θ)


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 . (1.8)

We point out how the left matrix in eq.1.8 corresponds, in statistical mechanics terms, to
the R-matrix of an 8-vertex model in the presence of an external magnetic field [16–18].
The dependence on θ = θ1 − θ2 and the different masses is through the parameters

t = tanh

[
θ + γ

4

]
, t̃ = tanh

[
θ − γ

4

]
, with γ = log

(
mi

mj

)
. (1.9)

The functions f(θ) and g(θ) are related as

f(θ) =
α

2i

√
mimj

cosh(θ/2) + cosh(γ/2)

cosh(θ/2) sinh(θ/2)
g(θ). (1.10)

The parameter α > 0 sets the strength of the Bose-Fermi mixing interactions: for α = 0
the transformations |b⟩ → |f⟩ and |f⟩ → |b⟩ are not allowed, and the scattering matrix
reduces to a graded permutation, Š = Π. The overall normalization g(θ) provided in
[15] is particular to the 1+1D scattering context and not important here. For Š(θ) to be
unitary we choose g(θ) as

g(θ) = i

(
1 + 2α2 cosh(θ) + cosh(γ)

sinh2(θ)

)−1/2

. (1.11)

The paper [15] showed that, without any further restrictions, these scattering ma-
trices satisfy the Yang-Baxter relation. The same paper identified concrete examples of
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integrable supersymmetric perturbations of supersymmetric CFT, with S-matrices given
by eq. 1.8. The simplest, featuring a single doublet (b, f), starts from a CFT with
central charge c = −21/4, and provides a supersymmetric analogue of the scattering
theory arising from a perturbation of the CFT going with the Yang-Lee edge singularity
at c = −22/5 [19]. A later paper [20] confirmed this identification with the help of a
Thermodynamic Bethe Ansatz (TBA) procedure.

Back to the subject of the current paper: taking Š(θ) (properly normalized) as our
fundamental 2-qubit gate, we build and analyze a class of UBW circuits that are naturally
endowed with a graded tensor product structure, integrability and a global fermionic
symmetry having its origin in space-time supersymmetry in 1+1D.

Before delving into this, we remark that, if we wish to study UBW circuits with open
boundary conditions (OBC), we will need boundary operators that respect the fermionic
symmetry. Such boundary reflection operators were found and studied in [21]. On the
1-particle states |b(θ)⟩, |f(θ)⟩ they take the concrete form

K(θ) =

√
2

cosh(θ)

(
cosh(θ/2− iπ/4) 0

0 cosh(θ/2 + iπ/4)

)
(1.12)

and satisfy

Q(−θ)K(θ) = K(θ)Q(θ), (1.13)

with Q = Ql +Qr. Thus, the boundary reflection operators ”commute” with the sum of
the left and right supercharges.

1.3 Free fermion structure and matchgate condition

It has been observed and employed early on [20, 22–24] that the matrix Š(θ) in eq. 1.8,
parameterized by α and γ and viewed in the context of a statistical mechanics model,
satisfies a ‘free fermion condition’. In the language of quantum information, it is said
that the corresponding 2-qubit gate is a so-called matchgate. Following the definition in
[25], a matchgate is a 2-qubit gate which in the computational basis takes the form

G(A,B) =


p 0 0 q
0 w x 0
0 y z 0
r 0 0 s

 A =

(
p q
r s

)
B =

(
w x
y z

)
, (1.14)

where A and B are both elements of SU(2) or U(2) and they have the same determinant.
Our matrix Š(θ) is precisely of this form.

The free fermion or matchgate condition guarantees that the matrix Š(θ) can be
written as the exponent of a bilinear in free fermion creation and annihilation operators,
see eq. 2.18 below.

This observation explains the fact that Š(θ) satisfies the Yang-Baxter relations. It
also confirms the original observation that the scattering matrix Š(θ) can be understood
in fermionic language. Naturally the map between bosonic qubits (spins) and spinless
fermions is a Jordan-Wigner transformation. This is a concern in particular in the case
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}

(a) PBC circuit

}
}

(b) OBC circuit

Figure 1: PBC/OBC single-layer circuits for a 4-site system

where periodic boundary condition (PBC) are imposed, as the matrix Š(θ)L1 (see figure
1a) connecting the outer qubits numbered as L and 1 depends on the total parity of the
state carried by qubits 2, . . . , L− 1. See section 2.2 for a discussion of this point.

The free fermion or matchgate condition also implies that (under mild conditions, see
[25]) UBW circuits based on Š(θ) can be simulated efficiently in polynomial time on a
classical computer [25–27]. In addition, the unitary operator represented by a UBW can
be represented as

UF(θ) = exp[iE(θ)] = exp

[
i
∑
j

ϵj(η
†
jηj −

1

2
)

]
, (1.15)

where η†j and ηj are linear combinations of the 1-particle creation and annihilation op-

erators c†j and cj, and the ϵj are 1-particle energies. Explicitly analyzing this expression

in a momentum basis, and computing the dispersion relations ϵkj , is among the most
important goals of this paper.

We remark that the matrices Š(θ) , which we identified by imposing a global fermionic
symmetry, are not the most general matrices satisfying a free fermion or matchgate
condition. We point out [28] for a recent analysis of quantum circuits with underlying free
fermionic structure. We can thus study the breaking of the global fermionic symmetry,
inherited from the SUSY CFT, without leaving the space of free fermion (matchgate)
gates. As explained below, we will find that, typically, imposing the global fermionic
symmetry will force a gapless dispersion and hence critical behaviour in the corresponding
quantum dynamics. Breaking that symmetry typically leads to topologically non-trivial
phases protected by a gap.

UBW circuits based on an R-matrix of XXZ type similarly have a free fermion point.
That point enjoys a U(1) symmetry, allowing to solve for the dispersions ϵki by solving a
quadratic equation [5]. In our situation only a Z2 symmetry (the fermion parity) survives,
implying that our dispersions obey quartic equations at best. This then translates into a
richer dependence of the ϵki on the momentum k. As an example, we identify situations
with two critical modes, one with dispersion linear in k and the other with cubic (∝ k3)
dispersion for a specific choice of parameters.

1.4 Organization of the paper

Section 2 presents a number of preliminaries needed to set up the fermionic brick wall
circuits. We present the graded tensor product structure underlying fermionic quantum
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circuits, define the brick wall unitaries UF for periodic and open boundary conditions,
and specify the action of global fermionic symmetries QL and QR. We present an explicit
free fermion form of the scattering matrix Š(θ) and define the hamiltonian Hγ.

Section 3 is devoted to a detailed analysis in the hamiltonian limit described by Hγ,
while section 4 presents the spectral analysis of the unitary UF for periodic boundary
conditions. For both these cases we manage to express the single-layer dispersions ϵki in
terms of α, γ, θ and k in closed-form (section 3) or close-to-closed form (section 4). In
section 5 we explore quench dynamics of UF, starting from the all-0 state or from a state
with a single seed ‘1’ in the background of the all-0 state. Using a TEBD algorithm, we
track the polarizations σz

i after applying Nl layers of UF. We back this up by analytical
reasoning based on the free fermionic spectral structure found in section 4, and reproduce
the equilibrium values of the polarizations from a free fermion generalized Gibbs ensemble
(GGE).

Section 6 has some conclusions and a brief outlook on further research. Appendix A
presents a graded extension of the Floquet Baxterization theorem for integrable quantum
circuits, appendix B provides some of the details of our analysis of the spectral structure
ofHγ in section 3, and appendix C discusses quench dynamics ofUF with PBC, exploiting
the free fermionic structure.
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2 Brick wall circuits: preliminaries

Quantum brick wall circuits have been studied in depth in recent years. Here we propose
their fermionic extension, meaning that we treat our multi-qubit register as a graded
Hilbert space and trade the Pauli spin operators for their fermionic counterparts.

2.1 Graded tensor product

In order to properly introduce what we will call a graded brick wall we first need to outline
the main properties of graded vector spaces, the content of this subsection is mainly taken
from [29]. We will focus on 2 dimensional graded vector spaces V g ∼= C(1|1) ∼= C⊕C with
basis {e0, e1}. A graded space is characterized by a parity function p : V g → Z2 that
acts on the basis space as:

p(e0) = 0 , p(e1) = 1 . (2.1)

Naturally the permutation operator defined on graded spaces is different than the usual,
thus we will denote it with Π. On two vectors v, w ∈ C(1|1) acts in the following way:

Π(ei ⊗ ej) = (−1)p(ei)p(ej)ej ⊗ ei ∀i, j ∈ Z2 (2.2)

The last necessary notion about graded vector spaces is the graded tensor product. The
parity operator is essential to define the tensor product in graded spaces, in fact taken
two vectors v, w ∈ C(1|1) then their tensor product will live in the space C(1|1)⊗C(1|1) and
it will be:

v ⊗ w = viei ⊗ wjej = (ei ⊗ ej) viwj(−1)p(ei)p(ej) . (2.3)

To make the notation lighter from now on we will refer to the basis {e0, e1} as {0, 1}.
The graded tensor product can be extended on the space of endomorphisms End(H),
with H ∼=

⊗
i V

g
i . Given H ∼= V g

1 ⊗ · · · ⊗ V g
N , a local operator on the subspace V g

i is
defined as: (

Ôi

)a
b
= (−1)

∑
j<i p(aj)(ai+bi)1 ⊗ · · · ⊗ 1 ⊗ Ôi ⊗ 1 ⊗ · · · ⊗ 1 , (2.4)

where a = (a1, . . . , an) and b = (b1, . . . , bn) are, respectively, two vectors in the com-
putational basis ai, bj ∈ {0, 1} (e.g. for 4 qubits a = (0, 1, 1, 0)), that denote the rows
and columns of the matrix representation of the operator. Each element of the these
two vectors will label the state of the subspace V g

i . This formalism is also used in the
definition of fermionic MPS [30]. Using this notation we can extend the parity operator
to End(H) with H ∼=

⊗
i V

g
i as:

Definition 2.1 (Operator parity). Given an operator S ∈ End (V g
1 ⊗ · · · ⊗ V g

n ) its parity
is defined as:

p (Sa
b) =

n∑
i=1

p(ai) + p(bi) mod 2 . (2.5)
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It is important to stress that parity is a property only of the states and operators defined
on graded Hilbert spaces, for the purpose of writing down a quantum circuit of graded
operators we need to work with their representation into a non graded space. The repre-
sentation can be easily found by evaluating the graded tensor product of a generic local
operator. Any operator on the Z2 graded space can be written as a linear combination of
an even an an odd part Ô = αÔe + βÔo. The representation of the even part is simply:

Ôe
i = 1 ⊗ · · · ⊗ 1 ⊗ Ôe

i ⊗ 1 ⊗ · · · ⊗ 1 , (2.6)

while for the odd part p(Ô) = 1,

Ôo
i = σz ⊗ · · · ⊗ σz ⊗ Ôo

i ⊗ 1 ⊗ · · · ⊗ 1 . (2.7)

Therefore in our brick wall there will be strings of σz operator that appear in the ungraded
representation of the odd graded operators. Although seemingly a complication, the non
locality that will characterize our circuit is the same we have to deal with once we take a
Jordan-Wigner transformation. The boundary term (−1)N̂ that naturally appears in the
Jordan-Wigner transformation will be cancelled by the string of σz given by the graded
tensor product. This peculiar feature makes our system fermionic and it shows how the
supersymmetry present in the field theory translates into what we call global fermionic
symmetry.

2.2 PBC: UBW and graded Floquet Baxterization

To set up our brick wall circuits, we assume particles of mass m1 and rapidity θ1 = θ/2
on the odd qubit lines, and particles of mass m2 and rapidity θ2 = −θ/2 on the even
lines, in agreement with [31]. This leads to the following unitary operator, which we will
loosely refer to as a time evolution operator,

UF(α, γ, θ) = UF
o(α, γ, θ)UF

e(α, γ, θ) =

L/2∏
i=1

Š2i,2i+1(θ)

L/2∏
i=1

Š2i−1,2i(θ)

 , (2.8)

where Š(θ) is the unitary gate defined by equation 1.8, with θ = θ1 − θ2. We put
m1m2 = 1, absorbing the overall mass scale in α. We will refer to a single application
of UF(α, γ, θ) as one single layer, comprised of two sublayers (even UF

e(α, γ, θ) and odd
UF

o(α, γ, θ)).
In [31] it was shown that a brick wall circuit of this type is integrable if S = P Š

satisfies the Yang-Baxter equations. Thus a transfer matrix can be constructed as

t(u, θ1, θ2) = Tra

[
L∏
i

Sa,i(u− θj)

]
, j = i mod 2 + 1 , (2.9)

such that is satisfies the following commutation relations

[t(u, θ1, θ2), t(v, θ1, θ2)] = 0 , [UF(θ), t(u, θ1, θ2)] = 0 , ∀u, v ∈ C , (2.10)

The integrability of the brick wall circuit was proved only for standard Hilbert spaces
without grading, therefore we need to extend this result to graded Hilbert spaces. The
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statement and proof of a graded Floquet Baxterization theorem can be found in Appendix
A. Since the scattering matrix 1.8 is free fermionic we will not need the theorem in the
current analysis, but it will be useful for future works on non free-fermionic models.

The scattering matrix is defined on the tensor product of graded Hilbert spaces, thus
in equation 2.8 there is an implicit graded tensor product. Since p(Š) = 0 there will be no
sign correction for all operators but ŠL,1(θ). In fact the single site odd parity elements,
which, for Š, can be written as linear combinations of σx and σy, will be of the form:

σα
1

(
L−1∏
i=2

σz
i

)
σβ
L , α , β = x, y (2.11)

These terms under a Jordan-Wigner transformation become nearest neighbour interac-
tions without any sign correction of the form (−1)N̂ , as previously discussed.
The global fermionic symmetry of the brick wall circuit is inherited from the supersym-
metry of the scattering matrix in equation 1.8. Generalising the supercharges to a L
particle space in the following way

QL(γ, θ) =

L/2∑
i=1

Ql
2i−1,2i(γ, θ) , QR(γ, θ) =

L/2∑
i=1

Qr
2i−1,2i(γ, θ) , (2.12)

where

Ql
2i−1,2i(γ, θ) = e

γ+θ
4

( ∏
j<2i−1

σz
j

)
σx
2i−1 + e−

γ+θ
4

(∏
j<2i

σz
j

)
σx
2i , (2.13)

Qr
2i−1,2i(γ, θ) = e

γ−θ
4

( ∏
j<2i−1

σz
j

)
σy
2i−1 + e−

γ−θ
4

(∏
j<2i

σz
j

)
σy
2i . (2.14)

we find

QL/R(θ)UF(θ) = QL/R(θ)Uo
F(θ)U

e
F(θ) ,

= Uo
F(θ)Q

L/R(−θ)Ue
F(θ) ,

= Uo
F(θ)U

e
F(θ)Q

L/R(θ) ,

= UF(θ)Q
L/R(θ) . (2.15)

The strings of σz in 2.14 show the fermionic nature of the operators, each single term
in the two sums 2.12 becomes local after a Jordan-Wigner transformation. A single
operator does not commute with the time evolution operator, therefore the support of
the two operators QL/R(γ, θ) is the whole chain.

2.3 OBC: UBW and fermionic symmetry

A unitary brick wall circuit with open boundary condition (OBC) and global fermionic
symmetry can be realized by employing the boundary scattering operatorsK(θ) displayed
in eq. 1.12. However, for the general case with m1 ̸= m2 this will take a circuit with L
layers rather than 1 layer.
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Let us illustrate this for the case L = 4, see also fig. 1b. The natural definition of a
UBW circuit with OBC is

UOBC
F (α, γ, θ) =

[
K1(−θ/2)Š2,3(α, γ, θ)K4(θ/2)

] [
Š1,2(α, γ, θ)Š3,4(α, γ, θ)

]
. (2.16)

A layer is made of two sublayers (see figure 1b), where in the second sublayer the particles
at sites 1 and 4 reflect off the open boundaries. For equal masses, γ = 0, one quickly
checks that UOBC

F (α, γ, θ) commutes with QL(θ) +QR(θ).
However, for m1 ̸= m2 the operator U

OBC
F (α, γ, θ) leaves the system in a configuration

where sites 1 and 2 have a particle of mass m2 while sites 3 and 4 have a particle of
mass m1. On such a state QL(θ) + QR(θ) (which assumes that the particles alternate
between m1 and m2 along the chain) is not an appropriate operator. To return to the
original configuration of particle masses and rapidities, we need an extended UBW which
comprises not 1 but L = 4 layers,

UOBC,extended
F (α, γ, θ) =[

K1(−θ/2)Š2,3(α, γ, θ)K4(θ/2)
] [

Š1,2(α, 0, θ)Š3,4(α, 0, θ)
]

×
[
K1(−θ/2)Š2,3(α,−γ, θ)K4(θ/2)

] [
Š1,2(α,−γ, θ)Š3,4(α,−γ, θ)

]
×
[
K1(−θ/2)Š2,3(α,−γ, θ)K4(θ/2)

] [
Š1,2(α, 0, θ)Š3,4(α, 0, θ)

]
×
[
K1(−θ/2)Š2,3(α, γ, θ)K4(θ/2)

] [
Š1,2(α, γ, θ)Š3,4(α, γ, θ)

]
. (2.17)

This operator, by construction, commutes with QL(γ, θ) +QR(γ, θ).

2.4 Free Fermi form of the scattering matrix

The hidden free fermionic (or matchgate) structure that we discussed in section 1.3 guar-
antees that the 2-body scattering operator, which furnishes our basic 2-qubit gate, can be
written in free fermionic form. We display this form in this section and shall extend it to
the many-body UBW in section 4 below. We start by expressing Š(α, γ, θ) in exponential
form

Ši,i+1(α, γ, θ) = exp[iEi,i+1]. (2.18)

The two-site exponent Ei,i+1 can be written as a linear combination of tensor products
of Pauli matrices, resulting in

Ei,i+1 =
a11
2

(
σz
i + σz

i+1

)
+
a12
2

cos(ϕ)
(
σx
i σ

x
i+1 + σy

i σ
y
i+1

)
− a12

2
sin(ϕ)

(
σx
i σ

y
i+1 − σy

i σ
x
i+1

)
+
b12
2

(
σx
i σ

y
i+1 + σy

i σ
x
i+1

) (2.19)
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The coefficients are found to be the following

a11 =

√
2 cosh

(
θ
2

)√
2α2 + cosh(θ) + 1

arccos

 2α cosh
(
γ
2

)√
2α2(cosh(γ) + cosh(θ)) + sinh2(θ)

 ,

a12 = arccos

 2α cosh( θ
2
)√

2α2(cosh(γ) + cosh(θ)) + sinh2(θ)

 ,

ϕ =
1

2
arccos

(
sinh2(θ)− 4α2 sinh2(γ

2
)

sinh2(θ) + 4α2 sinh2(γ
2
)

)
,

b12 =

√
2α√

2α2 + cosh(θ) + 1
arccos

 2α cosh
(
γ
2

)√
2α2(cosh(γ) + cosh(θ)) + sinh2(θ)

 . (2.20)

Now we can use the Jordan-Wigner transformation to express our exponent in terms
of spinless fermionic operators,

c†i =
∏
j<i

σz
jσ

−
i , ci =

∏
j<i

σz
jσ

+
i , σz

i = 1 − 2c†ici . (2.21)

This leads to

Ei,i+1 = −a11
(
c†ici + c†i+1ci+1 − 1

)
+ a12

(
eiϕc†ici+1 + e−iϕc†i+1ci

)
+ ib12

(
c†ic

†
i+1 − ci+1ci

)
.

(2.22)

This form makes clear that we can consider free fermionic 2-qubit gates that venture
outside the space parametrized by α, γ, θ, where a global fermionic symmetry is enforced.
Using the Jordan-Wigner transformation we can also express the supercharges 2.14 in
terms of spinless fermionic operators as follows:

Ql
2i−1,2i(γ, θ) = e

γ+θ
4

(
c†2i−1 + c2i−1

)
+ e−

γ+θ
4

(
c†2i + c2i

)
, (2.23)

Qr
2i−1,2i(γ, θ) = ie

γ−θ
4

(
c†2i−1 − c2i−1

)
+ ie−

γ−θ
4

(
c†2i − c2i

)
. (2.24)

We will later see that considering perturbations outside the space parametrized by α, γ,
θ breaks the criticality, and give rise to topological phases in the hamiltonian limit of the
UBW.

2.5 UBW and hamiltonian limit

While we loosely think of UF(α, γ, θ) as a time evolution operator, with θ taking the
role of time, we should realize that the eigenvalues of Ei,i+1 depend on θ in a non-linear
fashion. A standard picture of quantum mechanical time evolution arises in the limit of
small θ and for γ = 0. Since UF(α, γ = 0, θ = 0) is the identity operator, the behaviour
of UF in this limit is fully captured by its logarithmic derivative, which we call H0(α)
(section 3.1).
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For γ ̸= 0 the θ → 0 limit of UF(α, γ, θ) is not the identity and we should prepend a
circuit representing UF(α, γ, 0)

−1 before we can extract a logarithmic derivative, which
we will call Hγ(α, γ) (sections 3.2 and 3.3).

The global fermionic symmetry ofUF(α, γ, θ) carries over to bothH0(α) andHγ(α, γ).
We will find that this implies that these hamiltonians are critical for all α, γ.
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3 Brick wall circuit in the hamiltonian limit

For general α, γ, we can write the following expansion of the Floquet time evolution
operator for θ → 0,

UF(θ) = exp[iE(θ)]
θ→0
= UF(0) + iUF(0)Hγ θ + o(θ2) , (3.1)

defining Hγ as the logarithmic derivative of UF(0)
−1UF(θ) in θ = 0. We first we look at

the simpler case with γ = 0.

3.1 γ = 0

For γ = 0 the scattering matrix (S-matrix) becomes the identity operator, Š(α, 0, 0) = 1,
thus the only relevant operator will be its first order derivative,

Š(α, 0, θ)
θ→0
= 1 + i


1
2α

0 0 −i
2

0 0 1
2α

0
0 1

2α
0 0

i
2

0 0 − 1
2α

 θ + o(θ2) . (3.2)

The logarithmic derivative in equation 3.1 can be analytically derived,

H0(α) =
∂

∂θ
E(θ)

∣∣∣∣
θ=0

=

L/2∑
i=1

(
Š

′

2i−1,2i(α, 0, 0) + Š
′

2i,2i+1(α, 0, 0)
)
. (3.3)

The resulting hamiltonian depends only on the parameter α, and can be written in the
spin basis as

H0(α) =
1

2α

L∑
i=1

σz
i +

1

4α

L∑
i=1

(
σx
i σ

x
i+1 + σy

i σ
y
i+1

)
+

1

4

L∑
i=1

(
σx
i σ

y
i+1 + σy

i σ
x
i+1

)
. (3.4)

We remark that the tensor product underlying the hamiltonian 3.4 is a graded tensor
product, thus the boundary terms of the form σα

L ⊗g σ
β
1 are non-local in the spin rep-

resentation. They take the form σα
Lσ

z
2 . . . σ

z
L−1σ

β
1 . It is natural to do a Jordan-Wigner

transformation and look at the resulting spinless fermionic chain. Normally using the
Jordan-Wigner comes at the cost of a phase when closing the boundary, here that does
not happen thanks to the graded tensor product. In fermionic language the hamiltonian
becomes

H0(α) =
1

2α
− 1

α

L∑
i=1

c†ici +
1

2α

L−1∑
i=1

(
c†ici+1 + c†i+1ci

)
+
i

2

L−1∑
i=1

(
c†ic

†
i+1 − ci+1ci

)
. (3.5)

The resulting model is the well known Kitaev chain [32], here realized with chemical
potential µ = 1

α
and hopping strength t = 1

2α
. Although the hamiltonian depends on the

parameter α, it is always critical. Seemingly the only way to break away from criticality
is by breaking the global fermionic symmetry inherited from the brick wall circuit. In
the hamiltonian limit the commutation relations eq. 2.15 become[

H0(α),Q
L(0, 0)

]
= 0,

[
H0(α),Q

R(0, 0)
]
= 0 . (3.6)
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The two operators can be transformed into fermionic operators with a Jordan-Wigner
transformation resulting into

QL(0, 0) =
L∑
i=1

γ2i−1 , QR(0, 0) =
L∑
i=1

γ2i . (3.7)

where γ2i−1 = c†i + ci and γ2i = i(c†i − ci) are Majorana fermions.
The two topological phases present in the Kitaev chain are distinguishable on an open

chain because in the non-trivial phase there are two unpaired Majorana fermions on the
edges. In the critical point these edge modes are delocalized throughout the chain, and
they can be identified with the two global fermionic symmetry operators in equation
3.7. In order to access non-trivial topological phases it is necessary to break the global
fermionic symmetry: this leads to the opening of a gap in the spectrum and to the
appearance and localization of gapless Majorana modes to the edges of the system (when
considering open boundary conditions).

3.2 γ ̸= 0 - Spectrum and global fermionic symmetry

Now considering the more general case for γ ̸= 0, the resulting hamiltonian will be much
more complex, since the scattering matrix in θ = 0 is no longer the identity operator,

Š(α, γ, θ)
θ→0
=

1

cosh
(
γ
2

)

1 0 0 0
0 1 sinh

(
γ
2

)
0

0 − sinh
(
γ
2

)
1 0

0 0 0 1

+
1

cosh
(
γ
2

)


i
2α

0 0 1
2

0 0 i
2α

0
0 i

2α
0 0

−1
2

0 0 −i
2α

 θ + o(θ2).

(3.8)

We find the following expression for Hγ

Hγ =

L/2∑
i=1

[
Š
(0)
2i−1,2i

]†
Š
(1)
2i−1,2i

+

L/2∑
i=1

[
Š
(0)
2i−1,2i

]†[
Š
(0)
2i+1,2i+2

]†[
Š
(0)
2i,2i+1

]†
Š
(1)
2i,2i+1Š

(0)
2i−1,2iŠ

(0)
2i+1,2i+2 ,

(3.9)

where Š
(0)
i,i+1 = Ši,i+1(α, γ, 0) and Š

(1)
i,i+1 =

∂
∂θ
Ši,i+1(α, γ, θ)

∣∣∣
θ=0

.

Again applying the Jordan-Wigner transformation 2.21 we find a free fermionic hamil-
tonian which is written explicitly in equation B.1 in Appendix B. Similar hamiltonians
have been studied in recent years [33, 34] unveiling a multitude of topological phases. In
this subsection we analyze the spectrum of Hγ and its global fermionic symmetry. As for
γ = 0 we will find that the global fermionic symmetry protects criticality and pitches Hγ

precisely at a critical surface. This is illustrated in the next subsection, where we add
terms breaking the global fermionic symmetry and observe non-trivial topological phases
in the BDI class.
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Analyzing this hamiltonian B.1 in momentum space we observe a folding of the Bril-
louin zone from [−π, π] to [−π/2, π/2] and a symmetry for k ↔ −k. The folding,
k → π − k, is due to the 2-site translational symmetry of the hamiltonian, while the
k → −k symmetry has its origin in the particle-hole and charge conjugation symmetries.
For general momenta 0 < k < π/2 the hamiltonian takes the form

Hγ
k =N1

(
c†kck + c†−kc−k − 1

)
+N2

(
c†k−πck−π + c†π−kcπ−k − 1

)
+H

(
c†kck−π + c†π−kc−k

)
+H∗

(
c†k−πck + c†−kcπ−k

)
+ S1

(
c†kc

†
−k + c†π−kc

†
k−π + c−kck + ck−πcπ−k

)
+ S2

(
c†kc

†
π−k − ck−πc−k

)
+ (S2)

∗
(
cπ−kck − c†−kc

†
k−π

)
.

(3.10)

The explicit expression of the various parameters can be found in appendix B. Hγ
k acts

on a block of 16 states generated by the 1-fermi operators with momentum k, −k, k − π
and π − k. Two of these states, |k, k − π⟩ and |−k, π − k⟩ are annihilated by Hγ

k, there
is an irreducible block with 6 states with 0, 2 or 4 particles and there are two 4×4 blocks
with 1 and 3-particle states. Diagonalizing the latter gives dispersion relations of the
single-particle (BdG) excitations. We find the dispersions ±(ϵkγ)1,2 with

(ϵkγ)1,2 =
1√
2

√√√√√ν0 + ν1 cos(2k)±

√√√√ 6∑
j=0

µj cos (2j k), (3.11)

The coefficients νj, µj are given in appendix B. Figure 2 shows these dispersion rela-
tions for various choices of α and γ.
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Figure 2: Dispersions ±ϵkγ for Hγ. From the left: α = 0.1, 1, 10.

The spectrum turns out to be gapless for k → 0, since

(ν0 + ν1)
2 =

6∑
j=0

µj =
16

α4 cosh4
(
γ
2

) . (3.12)

This implies that Hγ is critical for all γ and that topological phases are only possible if
the global fermionic symmetry is broken.
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To make this explicit, we zoom in on k = 0, where the hamiltonian Hγ reduces to two
2× 2 blocks on the bases M = {|∅⟩ , |0, π⟩} and N = {|0⟩ , |π⟩},

H0,M
γ =

(
−N0

1+N0
2

2
0

0
N0

1+N0
2

2

)
, H0,N

γ =

(
N0

1−N0
2

2
H0

H0 −N0
1+N0

2

2

)
. (3.13)

with the superscript 0 denoting the value for k = 0. Using that

N0
1 = − 2

α

sinh2(γ
4
)

cosh2(γ
2
)
, N0

2 = − 2

α

cosh2(γ
4
)

cosh2(γ
2
)
, H0 =

√
N0

1N
0
2 , (3.14)

it is found that both these blocks give energies ±(N0
1 +N0

2 )/2 and we conclude that the
1-particle (BdG) energies are

(ϵk=0
γ )1 = 0, (ϵk=0

γ )2 = −N0
1 −N0

2 =
2

α

1

cosh(γ
2
)
. (3.15)

The 1-particle zero-mode going with (ϵk=0
γ )1 = 0 is found to be

(ηk=0
γ )1 =

√
−1

N0
1 +N0

2

(√
−N0

2 c0 −
√

−N0
1 cπ

)
=

1

2
√
L

1

cosh(γ
2
)

(
QL(γ, 0)− iQR(γ, 0)

)
.

(3.16)
This makes explicit that the global fermionic charges constitute a zero mode of Hγ and
that both QL(γ, 0) and QR(γ, 0) commute with Hγ.

In the limit γ → 0, where translational symmetry is restored, the model reduces to
the critical Kitaev chain. This is shown in figure 3. The model exhibits 4 distinct bands
that collapse into 2 in the limit γ → 0.

3 2 1 0 1 2 3

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 3: Folding of the Brillouin Zone of hamiltonian B.1 for α = 1, γ = 0. From the
left: −π < k < π, −π/2 < k < π/2.
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3.3 γ ̸= 0 - Symmetry breaking and topological phases

To study the topological properties of the model it is convenient to write the hamiltonian
Bogoliubov-de Gennes (BdG) form,

Hγ =
1

2

∑
k

Ψ†
kΛkΨk , (3.17)

with Nambu spinors and local hamiltonian

Ψ =


ck
ck−π

c†−k

c†π−k

 , Λk =


N1 H S1 S2

H∗ N2 S∗
2 −S1

S1 S2 −N1 −H
S∗
2 −S1 −H∗ −N2

 . (3.18)

The explicit values of the coefficient can be found in appendix B.
Once a model is written in BdG form, it naturally exhibits particle-hole symmetry.

The symmetry operator is then P = UPK, where K is the complex conjugation operator
and UP = σx⊗1. It can be checked that UPΛ

∗
kU

†
P = −Λ−k. By looking at the coefficients

of the hamiltonian it might seem that time reversal symmetry is absent, since some
have complex values, but that is not the case. The time reversal operator turns out
to be T = UT K, with UT = iσz ⊗ 1, again the symmetry relation can be checked
UT Λ

∗
kU

†
T = Λ−k. We point out that this representation of T is induced by our conventions

yielding a purely imaginary coefficient ∆ = ib12 of the superconducting pairing term, see
eq. 2.22. The connection with the more common representation for real ∆, T = K, can
be established through conjugation of T ,P under the basis rotation G = ei

π
4
(σz⊗1), but we

stress how these two are totally equivalent. Given that both time reversal and particle hole
symmetry are present the hamiltonian limit of eq. 3.1 (differently from the more general
circuit UF(α, γ, θ)) exhibits a chiral symmetry with C = UC = UPUT and UCΛkU

†
C = −Λk.

Since all three symmetry operators square to the identity, P2 = T 2 = C2 = 1, the model
is in the topological insulator class BDI. Moreover, we point out the absence of sublattice
symmetry, caused by the presence of chemical potentials entering as diagonal terms in the
representation of our hamiltonian Λk. This implies the non-existence of SSH-like phases
for our model [33].

In d = 1 the BDI class is characterized by a Z index [35, 36]. Given the symmetries
of the model and the absence of SSH-like phases, which would manifest through localized
fermionic zero-modes, we can only expect the presence of Majorana zero-modes (MZM).
In order to probe this, we employ the chiral index [37], whose absolute value quantifies
the number of MZM which would localize at each end of an OBC instance of the system.
With a unitary rotation we can transform the local hamiltonian into an off-diagonal
operator,

UM =
1

2


1 + i 0 1− i 0
0 1 + i 0 1− i

1 + i 0 −1 + i 0
0 1 + i 0 −1 + i

 UMΛkU
†
M =

(
0 V (k)

V †(k) 0

)
. (3.19)

Our unitary transformation UM is related to the usual rotation U = e−iπ
4
(σy⊗1) taking

a BdG hamiltonian with real ∆ to a purely off-diagonal form through G, as UM = UG.
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By a redefinition of the rotation U by conjugation under G, V = G†UG, one gets, in
analogy with [37]:

V ΛkV
† =

(
0 −iV (k)

iV †(k) 0

)
. (3.20)

Finally, defining the complex function z(k) = det[V (k)]/| det[V (k)]| = exp[iψ(k)], the
winding number is:

W =
1

2πi

∫ π
2

−π
2

dz(k)

z(k)
=

1

2πi
Tr

∫ π
2

−π
2

dk V −1(k)∂kV (k). (3.21)

The winding number can be explicitly calculated by computing the integral above for an
arbitrary choice of the parameters α and γ; as long as our global fermionic symmetry is
in place, numerical evidence shows that W = 0. Therefore the hamiltonian Hγ describes
a topologically trivial model, in agreement with our earlier observation that Hγ is always
gapless.

In order to access non-trivial phases we perturb the system such that C, P and T
symmetries, as well as the free-fermionic nature of the model, are retained, but the
global fermionic symmetry is broken. This approach stems from the interpretation of the
fermionic symmetry as the responsible for the impossibility to move away from criticality
through a change of parameters. In principle, one could choose to perturb directly the
UBW generating Hγ through a modification of the coefficients in eq. 2.20. That would
also allow to exit the global fermionic symmetry submanifold, resulting in non-trivial
topological phases. Our choice is to extract the hamiltonian limit from the UBW and
then perturb its BdG form directly, leaving the other analysis for future work. We do it
by perturbing the coefficients B.2 of Hγ:

JL
AB → JL

AB + δ NA → NA + ϵ1 NB → NB + ϵ2. (3.22)

Now we can calculate the winding number for fixed values of α and γ, while changing the
strength of the perturbations. As mentioned above, the absolute value of the index W
quantifies the number of MZM which can localize at each end of an open chain. Figures
4a-4f show how we are able to access the Kitaev-like phase (|W | = 1), which implies
localization of a MZM at each end of an OBC instance of the system. In the γ = 0
limit, shown in fig. 4a, we see how perturbing the chemical potential ϵ as we keep δ = 0
is equivalent to satisfying the condition |µ| < 2|t| to achieve the non-trivial topological
phase of the Kitaev chain. For δ ̸= 0, we observe how the condition is always met in
this parameter range as far as ϵ < δ. We also point out the absence of gap-closing lines
corresponding to the boundaries of the W = 1 phase in figure 4c. This happens because
the W = ±1 phases differ by a global phase factor and are thus equivalent.
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Figure 4: Topological phase diagrams for the chiral indexW (left) and energy gap-closing
points (right) as functions of ϵ and δ.
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4 Brick wall circuits: spectral analysis

We now turn to the spectral analysis of the full UBW operator UF(α, γ, θ). For γ = 0,
the results will reduce to those for the hamiltonian H0(α) in the limit where θ → 0. For
γ ̸= 0 such a direct connection does not exist.

Our analysis will lead to (somewhat implicit) expressions for the 1-particle dispersion
relations ϵki . We anticipate that the global fermionic symmetry that we built into the
UBW circuit will force one of the ϵki to approach 0 in the limit k → 0, causing a degeneracy
in the (logarithmic) spectrum of UF(α, γ, θ). Surprisingly, other gapless points arise as
well and upon fine-tuning θ = ±γ we see a coalescence that leads to a cubic dispersion
ϵk ∝ k3.

4.1 Structure of UBW in momentum space

We consider the general UBW UF(α, γ, θ) on (an even number of) L sites and with
periodic boundary conditions (PBC), see fig. 5. The two sublayers making up UF(α, γ, θ)
are expressed as

Uo = exp[iEo] = exp

i L/2∑
i=1

E2i,2i+1

 , Ue = exp[iEe] = exp

i L/2∑
i=1

E2i−1,2i

 . (4.1)

Figure 5: General brick wall circuit with periodic boundary conditions

We will proceed by writing each layer in momentum space. The explicit breaking of
translation symmetry between the even and odd sites causes a reduction of the Brillouin
zone to to −π/2 < k ≤ π/2. The symmetry k → −k gives a further reduction and we
can analyze the spectral structure restricting to momenta 0 ≤ k ≤ π/2.

For general k, the action of the Ei,i+1 will mix the 1-fermi operators with momentum
k, −k, π − k and k − π and we will have to handle the action of the Ei,i+1 on the span
of the these operators, which in general has dimension 16. We first consider the simpler
sectors where k = 0 or k = π/2.
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4.2 Spectral analysis for k = 0 and k = π/2

For the sector with k = 0, π the momentum space exponents read

E0
o = −a11

(
c†0c0 + c†πcπ − 1

)
+ ib12

(
c†0c

†
π − cπc0

)
+a12 cos(ϕ)

(
c†0c0 − c†πcπ

)
− ia12 sin(ϕ)

(
c†0cπ − c†πc0

)
(4.2)

and

E0
e = −a11

(
c†0c0 + c†πcπ − 1

)
− ib12

(
c†0c

†
π − cπc0

)
+a12 cos(ϕ)

(
c†0c0 − c†πcπ

)
+ ia12 sin(ϕ)

(
c†0cπ − c†πc0

)
. (4.3)

This gives rise to two 2 × 2 blocks for the exponents in matrix form. On the basis
{|∅⟩ , |0, π⟩} (with |∅⟩ denoting the state annihilated by c0 and cπ and |0, π⟩ = c†0c

†
π |∅⟩)

these are

E0,M
o =

(
a11 −ib12
+ib12 −a11

)
, E0,M

e =

(
a11 ib12

−ib12 −a11

)
, (4.4)

and on basis {|0⟩ , |π⟩} (with |0⟩ = c†0 |∅⟩ and |π⟩ = c†π |∅⟩))

E0,N
o = a12

(
cosϕ −i sinϕ
i sinϕ − cosϕ

)
, E0,N

e = a12

(
cosϕ i sinϕ

−i sinϕ − cosϕ

)
. (4.5)

It is an elementary exercise to exponentiate and then multiply these matrices and to
extract the characteristic polynomial Char0(x) =

∏
(λi−x) of U0

F(α, γ, θ) in both these
sectors.

Specializing to a11, a12, ϕ and b12 as given in eq. 2.20, we obtain, in both the M and
the N sectors,

Char0(x) = x2 − 2
2α2(cosh(γ) + cosh(θ))− sinh(θ)2

2α2(cosh(γ) + cosh(θ)) + sinh(θ)2
x+ 1 (4.6)

Clearly, the global fermionic symmetry maps between the two sectors and causes the
eigenvalues to be identical between the two. Unitarity and particle-hole symmetry guar-
antee that the eigenvalues come in a pair {λ, λ∗} with |λ| = 1.

Translating to 1-particle energies, we find

ϵk=0
1 = 0, ϵk=0

2 = 2arccos

(
2α2(cosh(γ) + cosh(θ))− sinh2(θ)

2α2(cosh(γ) + cosh(θ)) + sinh2(θ)

)
(4.7)

and we have U0
F(α, γ, θ) = exp[

∑
i ϵ

k=0
i (η†i ηi − 1

2
)]. The 1-particle operators for the zero-

energy mode are given by linear combinations of the two fermionic charges,

ηk=0
1 =

1

2
√
L

 QL(γ, θ)√
cosh(γ+θ

2
)
− i

QR(γ, θ)√
cosh(γ−θ

2
)

 . (4.8)
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Repeating the analysis for the sector with k = π
2
and k = −π

2
, we find on basis

{|∅⟩ , |π
2
,−π

2
⟩}

Eπ/2,M
o =

(
a11 −b12
−b12 −a11

)
, Eπ/2,M

e =

(
a11 −b12
−b12 −a11

)
(4.9)

and on basis {|π
2
⟩ , |−π

2
⟩}

Eπ/2,N
o = a12

(
sinϕ i cosϕ

−i cosϕ − sinϕ

)
Eπ/2,N

e = a12

(
sinϕ −i cosϕ
i cosϕ − sinϕ

)
. (4.10)

This leads to

Charπ/2,N(x) = x2 − 2

(
2− 8α2(cosh(γ)− 1)

2α2(cosh(γ) + cosh(θ)) + sinh2(θ)

)
x+ 1 (4.11)

and

Charπ/2,M(x) = x2 − 2

(
−2 +

8α2(cosh(γ) + 1)

2α2(cosh(γ) + cosh(θ)) + sinh2(θ)

)
x+ 1. (4.12)

In this case the 1-particle energies are both non-zero in general. However, one of the 1-
particle energies ϵ

k=π/2
i vanishes when the sectors M, N give identical eigenvalues, which

happens for
2α2
(
cosh(γ)− cosh(θ)

)
= sinh2(θ). (4.13)

4.3 Spectral analysis for general k

For fixed k satisfying 0 < k < π/2 we find the following expressions

Ek
o,e =

{
−a11

(
c†kck + c†−kc−k + c†k−πck−π + c†π−kcπ−k − 2

)
+ a12 cos(k − ϕ)

(
c†kck − c†k−πck−π

)
+ a12 cos(k + ϕ)

(
c†−kc−k − c†π−kcπ−k

)
± ia12 sin(k − ϕ)

(
c†kck−π − c†k−πck

)
± ia12 sin(k + ϕ)

(
c†π−kc−k − c†−kcπ−k

)
∓ ib12 cos(k)

(
c†kc

†
π−k − cπ−kck + c†−kc

†
k−π − ck−πc−k

)
+b12 sin(k)

(
c†kc

†
−k + c−kck + c†π−kc

†
k−π + ck−πcπ−k

)}

(4.14)

with the top (bottom) sign referring to the odd (even) layer.
The block structure for given k is similar to that for Hγ, described in section 3.2. The

exponents Ek
o and Ek

e decompose in blocks of dimension 1, 4, 6, 4, 1. The corresponding
bases are

1. M1: {|k, k + π⟩} and M′
1: {|−k,−k + π⟩}. On both these states both the even

and odd exponents act trivially, meaning these states are inert under the UBW
operator,
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2. M6: {|∅⟩ , |k,−k⟩ , |k,−k + π⟩ , |k + π,−k⟩ , |k + π,−k + π⟩ , |k, k + π,−k,−k + π⟩},

3. N4: {|k⟩ , |k + π⟩ , |k, k + π,−k⟩ , |k, k + π,−k + π⟩},

4. N′
4: {|−k⟩ , |−k + π⟩ , |−k,−k + π, k⟩ , |−k,−k + π, k + π⟩}.

The unitary brick wall (UBW) operator in this sector takes the form

Uk
F(α, γ, θ) = exp

[
i
∑
i

ϵki (η
k †
i ηki −

1

2
)

]
. (4.15)

This implies that the 16 eigenvalues in the sector labeled with k are products of four
factors of the form λi = exp(iϵki ) or λ∗i = exp(−iϵki ), i = 1, 2, 3, 4. Knowing that the
states M1 and M′

1 have zero energy we conclude that some linear combination of the
energies ϵi vanishes, say ±(ϵ1 + ϵ2 + ϵ3 + ϵ4) = 0. In fact, for γ = 0 we have ϵ1 + ϵ3 = 0
and ϵ2 + ϵ4 = 0.

Clearly, the states in the sector N4 and N′
4 are related to the state M1 by a single

creation or annihilation operator, hence a single operator η†i . The single particle energies
ϵi are thus found by diagonalizing N4 and N′

4. The characteristic polynomial of Uk
F on

the basis N4 takes the form

Chark,N4(x) = (x− λ1)(x− λ2)(x− λ3)(x− λ4)

= (x− λ1)(x− λ2)(x− λ3)(x− λ∗1λ
∗
2λ

∗
3) (4.16)

and it will thus be of the general form

Chark,N4(x) = x4 − a4x
3 + b4x

2 − a∗4x+ 1. (4.17)

The other 4× 4 block will have a similar form but with the conjugate coefficients.

Chark,N
′
4(x) = x4 − a∗4x

3 + b4x
2 − a4x+ 1. (4.18)

Clearly, via all definitions made in the above, the coefficients a4, b4 can be expressed in
the parameters α, γ and θ of the defining 2-qubit gate Š(α, γ, θ) but the derivation of
these expressions is quite cumbersome. In the most general case the two coefficients are

a4 =
1

2
(
2α2(cosh(γ) + cosh(θ)) + sinh2(θ)

)2
×
(
8α2
[
8α2 cosh(γ) cosh(θ) + 8α2 + cosh(θ)− cosh(3θ)

]
+
[
16α4(cosh(2γ) + cosh(2θ))− 32α4 − 32α2 cosh(γ) sinh2(θ)

− 4 cosh(2θ) + cosh(4θ) + 3
]
cos(2k)

− 64 i α2 sinh(γ) sinh2(θ) sin(2k)
)
,

(4.19)

b4 =
1

2
(
2α2(cosh(γ) + cosh(θ)) + sinh2(θ)

)2
×
(
16α4(cosh(2γ) + cosh(2θ)) + 160α4 − 96α2 cosh(γ) sinh2(θ)

− 4 cosh(2θ) + cosh(4θ) + 3

+ 64α2
[
− 2α2 + cosh(θ)(2α2 cosh(γ)− sinh2(θ))

]
cos(2k)

+
[
4α2(cosh(γ)− cosh(θ)) + 2 sinh2(θ)

]2
cos(4k)

)
.

(4.20)
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A useful check is that in the limit k → 0 the solutions to Chark,N4(x) = 0 reduce to
exp[±iϵk=0

1 ] = 1 and exp[±iϵk=0
2 ]. Another check is that a4 = 4 and b4 = 6 in the limit

γ, θ → 0, as all eigenvalues reduce to 1 in that limit.
In the general case, where a∗4 ̸= a4, solving for λki requires solving a quartic equation.

However, we observe that the numbers c12 = cos(ϵk1 + ϵk2), c13 = cos(ϵk1 + ϵk3) and c23 =
cos(ϵk2 + ϵk3) satisfy

c12 + c13 + c23 =
b4
2
, c12c13 + c12c23 + c13c23 =

a4a
∗
4 − 4

4
, c12c13c23 =

a24 + (a∗4)
2 − 4b4

8
.

This implies that the cij can be expressed as the roots of a third order polynomial, giving
closed-form but involved expressions for the ϵki .

In the following subsections we briefly report on the special limits where γ = 0 (equal
masses) or γ = θ.

4.3.1 Equal masses

First the case with equal masses, γ = 0, so that also ϕ = 0. In this case Chark,N4(x) =
Chark,N

′
4(x), a4 is real and the expressions for a4 and b4 reduce to

a4 =
−1

(−1 + 2α2 + cosh(θ))2

×
( 4α2

cosh2(θ/2)
[1− 4α2 − 2 cosh(θ) + cosh(2θ)]

− 2 tanh2(θ/2)[−1− 8α2 + 8α4 + cosh(2θ)] cos(2k)
)
, (4.21)

b4 =
1

(−1 + 2α2 + cosh(θ))2

×
( 1

8 cosh4(θ/2)
[3 + 48α2 + 176α4 + 4(−1 + 4α2(−3 + α2)) cosh(2θ) + cosh(4θ)]

− 8α2 sinh
2(θ/2)

cosh4(θ/2)
[1− 4α2 + 2 cosh(θ) + cosh(2θ)] cos(2k)

+ 2 tanh4(θ/2)[1− 2α2 + cosh2(θ)]2 cos(4k)
)
. (4.22)

For γ = 0 the cosines of the (logarithmic) energies ϵki can be expressed as

cos(ϵk1,2) =
a4
4

± 1

4

√
a24 − 4b4 + 8 (4.23)

bringing us as close as possible to a closed form expression.
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4.3.2 The case γ = θ

Note that in this case a212 = a211 + b212. The coefficients of the characteristic polynomial
of the UBW on basis N4 now come out as

a4 =
1

(4α2 cosh(θ) + sinh2(θ))2

×
(
4α2(cosh(θ) + 4α2(3 + cosh(2θ))− cosh(3θ))

+ 2 sinh2(θ)(−1 + 16α4 − 8α2 cosh(θ) + cosh(2θ)) cos(2k)

− 32 i α2 sinh3(θ) sin(2k)
)
, (4.24)

b4 =
1

2

1

(4α2 cosh(θ) + sinh2(θ))2

×
(
3 + 160α4 − 4 cosh(2θ) + 8α2(3 cosh(θ) + 4α2 cosh(2θ)− 3 cosh(3θ))

+ cosh(4θ)− 64α2(−2α2 + cosh(θ)) sinh2(θ) cos(2k)

+ 4 sinh4(θ) cos(4k)
)
. (4.25)

Specializing to k → 0, it is quickly checked that there are two solutions converging on
ϵ = 0. Analyzing their dispersion, we find

ϵk→0
1 = −2 tanh(θ)k +O(k2), ϵk→0

2 =
sinh(θ)

8α2
k3 +O(k4). (4.26)

The cubic dispersion that we find here is unique to the choice θ = ±γ.

4.4 Dispersion relations for UF

We illustrate the spectral structure of UF by showing some plots (figure 6,7,8) of the
1-particle dispersion ±ϵki , i = 1, . . . , 4 and k ∈ [0, π/2].
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(c) α = 1, γ = 1, θ = 0.700(1)

Figure 6: UF spectrum for θ ≤ θc = 0.700109

As soon as θ > 0, there are two branches ϵk1 and ϵk2 that are gapless at k = 0, while
a third branch crosses zero at a finite k. For a critical value θc this finite k reaches the
value k = π/2. The critical value θc[α, γ] is precisely the gapless point at k = π/2 that
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we identified in eq. 4.13. For α = 1, γ = 1 we find θc = 0.700109.
Increasing θ beyond θc, the values ±k giving a vanishing dispersion move towards k = 0
and precisely for θ = γ they merge into a single multi-critical point with cubic dispersion,
see eq. 4.26.
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Figure 7: UF spectrum for θ ≥ θc

We next consider these same dispersion plots for more general parameter choices which
break the global fermionic symmetry. One way to break this symmetry is to scale the
amplitude a12 with a factor of ta with respect to the value, given in eq. 2.20, required by
the fermionic symmetry. Clearly, reducing ta below ta = 1 is analogous to setting 2t < µ
in the Kitaev chain eq. 3.5 and one expects that a gap will open up.
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Figure 8: UF spectrum without global fermionic symmetry

Inspecting the behavior, we see that, for θ < θc both the perturbations ta < 1 and
ta > 1 move the gapless points away from k = 0, but do not open a gap for all k. Only
for θ ≥ θc and ta sufficiently below ta = 1 does an overall gap open up. Once θ ≥ γ, an
arbitrary perturbation ta < 1 suffices to gap out all branches of the dispersion. This is
also shown in figure 8.
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Changing the values of α and γ gives a similar picture (as long as both remain non-
zero). The critical value θc depends on both α and γ, while the point giving rise to a cubic
dispersion is θ = ±γ for all values of α. We stress that the dispersion relations discussed
in this section do not pertain to the hamiltonian Hγ, but rather to the exponent E(θ)
characterizing the brick wall unitary UF at finite values of θ, see eq. 1.15.
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5 Simulations of dynamics

This section presents a first exploration of (quench) dynamics generated by applying Nl

layers of our brick wall unitary UF on some initial state. In principle, these dynamics
are tractable via the underlying free fermionic structure, but this analysis quickly be-
comes cumbersome. We therefore resort to numerics, employing a time-evolving block
decimation (TEBD) algorithm [38, 39]. We focus on the expectation value of the local
magnetization σz

i = (1−2ni), with ni = c†ici, after applying Nl layers of UF on our initial
state, leaving other observables and quantities such as entanglement entropies for later
study.

In our numerical analysis, we consider an OBC system which we probe in its bulk, with
interest in computing the expectation value of the observables in the pre-thermalization
phase, before the onset of finite size effects (features propagating in from the boundary).

In appendix C we complement this analysis with analytical reasoning for the system
with PBC, employing the free fermionic spectral structure discussed in section 4. For
sufficiently short timescales Nl, these results exactly reproduce bulk features studied by
our TEBD numerics for OBC. We fix the bond dimension of the TEBD algorithm to
D = 75 for all the simulations reported below.

5.1 Initial state |00...00⟩
We compute the local magnetizations ⟨σz

j ⟩ as a function of the number Nl of applied layers
UF on the all-0 initial state. In figure 9 we show the magnetizations (panel a) and display
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Figure 9: (a) ⟨σz
j ⟩ TEBD results for an OBC system with L = 200, α = 1, γ = 0, θ = 0.5

(b) Local magnetization ⟨σz
j ⟩ with j = L/2 as a function of number applied UF layers,

exact results vs. TEBD.

the evolution of σz
L/2 as a function of the number Nl of applied layers (panel b), comparing

the TEBD results with exact values, for UF with α = 1, γ = 0, θ = 0.5. Appendix C
discusses the derivation of the exact (analytical) results, employing the spectral structure
for a circuit with PBC.

The evolution of the σz
j shows a clear equilibration, caused by a dephasing of the

contributions of different momentum sectors. It persists until finite-size effects, causing
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a rephasing, kick in. In appendix C we demonstrate how the equilibrium value of σz
j can

be reproduced on the basis of a generalized Gibbs ensemble (GGE), with the occupation
numbers nk

i , i = 1, . . . , 4 of the free fermionic eigenmodes ηki acting as the conserved
quantities constraining the dynamics. Using this GGE, the equilibrium value of the σz

j is
expressed in the expectations values of nk

i in the initial state.
We remark that for γ > 0 the equilibrium values of σz

j depend on the parity of j modulo
2, as is apparent in our figure 11 below. Both equilibrium values can be extracted from
the GGE, see appendix C for the details.

5.2 Initial state |00...1...00⟩
We next consider an initial state with a single seed ‘1’ in the background of the all-0
state.

For γ = 0 (corresponding to equal particle masses in the scattering matrix Š) we
observe a left-right symmetric response of the magnetizations σz

j within a cone spanned
by velocities ±vmax, whose magnitude depends on α and θ. For α and θ such that
|f(θ)| ≪ |g(θ)| (see eq. 1.10), so that the graded permutation term dominates in Š, the
magnitude approaches the maximal value |vmax| = 2 set by the geometry of the circuit.

The response is markedly different for γ > 0. In that case, we see a clear ‘ballistic’
propagation of the seed ‘1’, with drift velocity vd. The sign of vd depends on the parity
modulo 2 of the location of the seed in the initial state. The effect is most pronounced
for γ ≫ θ and values of α large enough to avoid dominance of the graded permutation
term in Š. See figure 10 for the case with γ = 10, θ = 1, showing ballistic propagation
with velocities vd close to ±2.
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Figure 10: TEBD simulation of the propagation of a seed starting from an odd (even)
site for L = 200, α = 1, γ = 10, θ = 1.

For intermediate values of γ, the ballistic propagation is still clearly visible. See figure
11, where we display the propagation of the magnetization for α = 1 and γ = θ = 1 and
γ = θ = 3, with the initial seed at an even site for both panels.

While the precise value of vd is not directly tractable from the free fermionic spectral
structure (it builds up as an average ∂

∂k
ϵki over all participating free fermionic modes), we

can track its value in the limit where γ ≫ θ and α large enough to avoid dominance of
the graded perturbation term in Š. In that situation, the largest velocity in the system
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Figure 11: vd for α = 2 and two choices of γ = θ

is that coming from one of the gapless branches, with value v+ = 2 tanh((γ + θ)/2) (see
appendix C). For γ ≫ θ this velocity is close to the value

vd = 2 tanh(γ/2) = 2
m1 −m2

m1 +m2

(5.1)

which we already quoted in our introduction, eq. 1.1, and which bears a remarkable
resemblance to the analogous formula eq. 1.2 reported in [11].
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6 Outlook

In this paper we embarked on the analysis of a class of unitary brick wall quantum circuits
with a constituent 2-qubit gate Š(α, γ, θ) that is of free fermionic form. The operator Š
was earlier found and studied as a scattering matrix in specific integrable supersymmetric
particle theories in 1+1D. The supersymmetry of these particle theories translates into
a global fermionic symmetry of the circuit unitaries UF. We found that the global
fermionic symmetry protects the criticality of two hamiltonian operators associated to
UF: the ‘Floquet’ hamiltonian E(α, γ, θ) and the logarithmic derivative Hγ(α, γ) (see eq.
3.1). The latter simplifies to the Kitaev chain hamiltonian H0(α) for γ = 0. We identified
topological phases of Hγ (in the BDI class) that arise upon breaking the global fermionic
symmetry (but keeping the free fermionic form). The (ground state) phase diagrams
of (perturbations of) Hγ(α, γ) deserve further study. Perturbations may include terms
beyond the free fermionic realm, similar to those considered for the Kitaev chain in [40,
41].

We also explored the quench dynamics of UF(α, γ, θ), focusing on the time evolution
of the polarizations σz

j starting from the all-0 state or from a state with a single seed. Our
numerics revealed two main features. One is the equilibration of polarizations σz

j to an
average value which can be reproduced by a GGE based on the free fermionic structure.
The other is the manifestation of a drift velocity vd, which can be linked to the spectral
structure we unveiled in section 4. We intend to follow up on these results, including
other observables such as entanglement entropies and aiming to get a better grasp of the
(non-local) ‘Floquet’ hamiltonian E(α, γ, θ) and the associated dynamics.
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A Graded Floquet Baxterization

In this appendix we generalize the Floquet Baxterization thereom of [31] to the case of a
graded space, assuming periodic boundary conditions. We adhere to the notation of [31],
naming the solution to the Yang-Baxter equation Ř rather than Š.

Theorem A.1 (Graded Floquet Baxterization). For a unitary and invertible Ř-matrix
in a Z2 graded space such that p(Ř(u)) = 0, the periodic time evolution operator of a
system of size L, with L mod 2 = 0 and Ř(u) = ΠR(u):

ÛF(θ1 − θ2) =

L/2∏
i=1

Ř2i−1,2i(θ1 − θ2)

L/2∏
i=1

Ř2i,2i−1(θ1 − θ2)

 , (A.1)

is integrable, i.e.[
ÛF(θ1, θ2), t(u, θ1, θ2)

]
= 0 ,

[
t(u, θ1, θ2), t(v, θ1, θ2)

]
= 0 , (A.2)

with the transfer matrix evaluated with:

t(u, θ1, θ2) = Trs [Ta(u, θ1, θ2)] , Ta(u, θ1, θ2) =
1∏

i=L

Ra,i(u, θj) , j = i mod 2 . (A.3)

We remark that the monodromy matrix in equation A.3 is made up by R-matrices and
since each one of them acts both on the auxiliary space Ha and one physical qubit Hi

their form is not trivial. In fact even if p(R(u)) = 0 when only one of the two subspaces is
permuted if R(u) has non diagonal terms there will be extra minus signs, from equation
2.4. Explicitly the product will be written as [29]:

(Ta(u, θ1, θ2))
βb
αa =

(
Trsa

[
1∏

i=L

Ra,i(u− θj)

])βb

αa

(−1)
∑L

j=2(p(aj)+p(bj))
∑j−1

i=1 p(aj) . (A.4)

Proof. We start by defining the operator W(θ1, θ2) acting on the graded Hilbert space(
C(1|1))⊗L

:

W(θ1, θ2) = G̃

L/2∏
i=1

Ř2m−1,2m(θ1, θ2) , G̃ =
L−1∏
m

Πm,m+1 (A.5)

where G̃ is the graded translation operator. We now want to introduce an operator W̃

that acts on a bigger Hilbert space Hb⊗
(
C(1|1))⊗L

, to define W as we define the transfer
matrix with the monodromy matrix:

W̃b(u1, u2) =
1∏

i=L/2

Rb,2m(θ1, θ2)Πb,2m−1 . (A.6)

33



Knowing that Ri,j = Πi,jŘi,j we get for each term of the product:

Rb,2mΠb,2m−1 = Πb,2mŘb,2mΠb,2m−1 ,

= Πb,2mΠb,2m−1Πb,2m−1Řb,2m−1Πb,2m−1 ,

= Πb,2mΠb,2m−1Ř2m−1,2m . (A.7)

So plugging in this result in the equation for each pair of R and Π, we get:

W̃b(θ1, θ2) =
1∏

i=L

Πb,i

L/2∏
i=1

Ř2m−1,2m(θ1, θ2) . (A.8)

Now using the train trick A.7 we can rewrite the previous expression as:

W̃b(θ1, θ2) = Πb,1G̃

L/2∏
i=1

Ř2m−1,2m(θ1, θ2) . (A.9)

We underline that the order of the product of the bricks doesn’t matter, since they act
on different subspaces, thus we get the relation:

W(θ1, θ2) = Trsb

[
W̃b(θ1, θ2)

]
. (A.10)

Now the key relation that makes the system integrable is an equation similar to Yang-
Baxter. In fact one can show that for a graded R-matrix,

Ra,b(u, θ1)Ra,m(u, θ1)Πb,m = Πb,mRa,m(u, θ1)Ra,b(u, θ1) . (A.11)

Therefore one can reproduce the intertwining relation between inhomogeneous mon-
odromy matrices [42] with the newly introduced operator W̃b(θ1, θ2),

Ra,b(u, θ1)Ma,m(u, θ1, θ2)W̃b(θ1, θ2) = W̃b(θ1, θ2)Ma,m(u, θ1, θ2)Ra,b(u, θ1). (A.12)

Now multiplying this last equation from the left and taking the super partial trace on
both sides one get:

[T (u, θ1, θ2) ,W (θ1, θ2)] = 0 . (A.13)

From construction the transfer matrix commutes with the graded translation operator
squared, [

T (u, θ1, θ2) , G̃
2
]
= 0 , (A.14)

and naturally also with its inverse G̃−2. The square of the operator now we notice that
the operator W(θ1, θ2) is essentially the even layer of the brick wall multiplied by the
graded translation operator. Taking the square of it and multiplying it from the left by
G̃−2 will give us:

G̃−2W2 (θ1, θ2) = G̃−1

L/2∏
i=1

Ř2m−1,2m(θ1, θ2)

 G̃

L/2∏
i=1

Ř2m−1,2m(θ1, θ2)

 ,

=

L/2∏
i=1

Ř2m,2m+1(θ1, θ2)

L/2∏
i=1

Ř2m−1,2m(θ1, θ2)

 ,

= UF(θ1, θ2).

(A.15)
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Therefore,
[T (u, θ1, θ2) ,UF(θ1, θ2)] = 0 , (A.16)

∀u ∈ C.

We remark that in the theorem we imposed the condition p(R(u)) = 0 because when
this condition does not hold we have to deal with the minus signs from equation 2.4.
That would mean that the representation in ungraded space of the R-matrix would not
be local anymore. This would make the implementation of the quantum brick wall circuit
unfeasible.

B Explicit form of Hγ

B.1 Real space form and coefficients

The hamiltonian in equation 3.9 can be expressed as a linear combination of local Pauli
matrices. Writing it in block diagonal form and then applying a Jordan-Wigner trans-
formation (2.21) the real space hamiltonian results:

Hγ =
∑
i

[
−NAc

†
2i−1c2i−1 −NBc

†
2ic2i + JAB

(
c†2i−1c2i + c†2ic2i−1

)
+ JBA

(
c†2ic2i+1 + c†2i+1c2i

)
+ JL

AB

(
c†2i−1c2i+2 + c†2i+2c2i−1

)
+ JAA

(
c†2i−1c2i+1 + c†2i+1c2i−1 − c†2ic2i+2 − c†2i+2c2i

)
+ iSAB

(
c†2i−1c

†
2i − c2ic2i−1

)
+ iSBA

(
c†2ic

†
2i+1 − c2i+1c2i

)
+ iSAA

(
c†2i−1c

†
2i+1 − c2i+1c2i−1 − c†2ic

†
2i+2 + c2i+2c2i

)
+ SL

AB

(
c†2i−1c

†
2i+2 + c2i+2c2i−1

)]
+
L

4
(NA +NB) .

(B.1)

This hamiltonian is clearly free fermionic and its coefficient are functions of the parame-
ters α and γ, explicitly:

NA =
sech

(
γ
2

)
− tanh

(
γ
2

)
sech3

(
γ
2

)
α

NB =
sech

(
γ
2

)
+ tanh

(
γ
2

)
sech3

(
γ
2

)
α

JAB =
3 tanh2

(
γ
2

)
sech2

(
γ
2

)
+ sech4

(
γ
2

)
2α

JBA =
sech4

(
γ
2

)
2α

JAA =
tanh

(
γ
2

)
sech3(γ

2
)

2α
JL
AB = −

tanh2(γ
2
) sech2

(
γ
2

)
2α

SAB =
sech

(
γ
2

)
2

SBA =
sech3(γ

2
)

2

SAA =
tanh

(
γ
2

)
sech2(γ

2
)

2
SL
AB = −

tanh2
(
γ
2

)
sech(γ

2
)

2
. (B.2)
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B.2 Momentum space and dispersion relation coefficients

The hamiltonian 3.18 is the Fourier transform of equation B.1 written after a double
folding of the Brillouin zone, its coefficients are:

N1 =
sech4

(
γ
2

) (
−4 cosh3

(
γ
2

)
+ (3 cosh(γ) + 1) cos(k)− 2 sinh2

(
γ
2

)
cos(3k)

)
4α

N2 =
sech4

(
γ
2

) (
−4 cosh3

(
γ
2

)
− (3 cosh(γ) + 1) cos(k) + 2 sinh2

(
γ
2

)
cos(3k)

)
4α

H = −
tanh

(
γ
2

)
sech3

(
γ
2

) (
sinh2(γ

2
) + 2i sinh

(
γ
2

)
sin3(k) + cos(2k)

)
α

S1 = − sech3
(γ
2

)
sin(k)(1− sinh2(

γ

2
) cos(2k))

S2 = 2 sinh
(γ
2

)
sech3

(γ
2

)
sin(k) cos(k)

(
1 + i sinh

(γ
2

)
sin(k)

)
. (B.3)

The diagonalization of the two 4× 4 blocks in terms of the coefficients appearing above
results in:

ϵ = ±

(
N2

1

2
+
N2

2

2
+ |H|2 + S2

1 + |S2|2 ±
1

2

(
(N2

1 −N2
2 )

2 + 4(N1 +N2)
2|H|2

+ 16S2
1 |H|2 − 16(N1 −N2)S1Re [S2H

∗]− 8Re
[
S2
2(H

∗)2
]

+ 4(N1 −N2)
2|S2|2 + 8|H|2|S2|2

) 1
2

) 1
2

.

(B.4)
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Now plugging inside the equation above the values of the coefficients we find the expres-
sion in equation 3.11, with the following coefficients

ν0 =
sech4

(
γ
2

)
α2

(1 + 2 cosh(γ)) + sech2
(γ
2

)
,

ν1 =
sech4

(
γ
2

)
α2

− sech2
(γ
2

)
,

µ0 =
sech6

(
γ
2

)
α4

(8 cosh(γ))

+
tanh2

(
γ
2

)
sech12

(
γ
2

)
32α2

(
300− 193 cosh(γ) + 162 cosh(2γ)− 15 cosh(3γ) + 2 cosh(4γ)

)
,

µ1 =
8 sech6

(
γ
2

)
α4

−
tanh2

(
γ
2

)
sech12

(
γ
2

)
16α2

(
163− 120 cosh(γ) + 92 cosh(2γ)− 8 cosh(3γ) + cosh(4γ)

)
,

µ2 =
tanh4

(
γ
2

)
sech10

(
γ
2

)
16α2

(
93 + 4 cosh(γ) + 31 cosh(2γ)

)
,

µ3 = −
tanh4

(
γ
2

)
sech10

(
γ
2

)
2α2

(
21− 12 cosh(γ) + 7 cosh(2γ)

)
,

µ4 =
tanh4

(
γ
2

)
sech10

(
γ
2

)
8α2

(
45− 44 cosh(γ) + 15 cosh(2γ)

)
,

µ5 = −
4 tanh8

(
γ
2

)
sech6

(
γ
2

)
α2

,

µ6 =
tanh8

(
γ
2

)
sech6

(
γ
2

)
2α2

. (B.5)

C Dynamics of UF with PBC.

Exploiting the spectral structure worked out in section 4, we can analyze the dynamics
of UF with periodic boundary conditions (PBC) in closed form. In this appendix we
give a quantitative account of the state produced by Nl layers of UF on the all-0 initial
state, and we give a more qualitative discussion of the drift velocity vd of a seed ‘1’ in a
background of an all-0 state.

C.1 Creation and annihilation operators

We assume PBC and L = 4l+ 2. The momentum sectors are then grouped as (k = 0, π)
and (k,−k, k + π,−k + π) for k = 2πj

L
, l = 1, . . . , l.

Let v1, . . . , v4 be the (real-valued) eigenvectors of U
k
F on the basis N4 (see section 4.3),

denoted by U
k|N4
F , for momentum 0 < k < π/2. We have

v1i |k⟩+ v2i |k + π⟩+ v3i |k, k + π,−k⟩+ v4i |k, k + π,−k + π⟩ = ηk†i |k, k + π⟩ (C.1)

with
ηk†i =

[
−v1i ck+π + v2i ck + v3i c

†
−k + v4i c

†
−k+π

]
. (C.2)
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Note that
ηki |k, k + π⟩ = 0. (C.3)

Let V k be the matrix with rows vi, then

(V k)TV k = 1, (V k)TΛkV k = U
k|N4
F , (C.4)

with Λk diagonal with elements Λk
jj = eiϵ

k
j .

Similarly, on the basis N′
4, the operators η

k
i create eigenstates acting on |−k,−k + π⟩,

ηki =
[
−v̄1i c−k+π + v̄2i c−k + v̄3i c

†
k + v̄4i c

†
k+π

]
, (C.5)

with v̄i the eigenvectors of Uk
F on the basis N ′

4. We have

V k = V −k = V kM (C.6)

with M a 4 by 4 matrix with nonzero entries M14 =M41 = −1, M23 =M32 = 1.

C.2 Quench dynamics from the all-0 state

In momentum space the initial state |00 . . . 0⟩ is annihilated by all operators c†k, meaning
that it is a product over all k values, with 0 ≤ k < π/2 of the state we denoted as |∅⟩ in
section 4. For 0 < k < π/2 this state is part of the basis M6. The restriction of UF to

M6, denoted as U
k|M6

F is a 6 × 6 matrix whose structure is specified in section 4.3. The
contributions of a sector with momentum 0 < k < π/2 to the sums Neven and Nodd of the
densities nj on all even (odd) sites are found to be the expectation values of

(c†k ± c†k+π)(ck ± ck+π)/2 + (c†−k ± c†−k+π)(c−k ± c−k+π)/2 (C.7)

in the state generated by Nl times the action of UF. This leads to

Nk
even = (vk6)

TDevenv
k
6 , Nk

odd = (vk6)
TDoddv

k
6 , (C.8)

with vk6 = (U
k|M6

6 )Nl |∅⟩ and

Deven =


0 0 0 0 0 0
0 1 1

2
1
2

0 0
0 1

2
1 0 1

2
0

0 1
2

0 1 1
2

0
0 0 1

2
1
2

1 0
0 0 0 0 0 2

 , Dodd =


0 0 0 0 0 0
0 1 −1

2
−1

2
0 0

0 −1
2

1 0 −1
2

0
0 −1

2
0 1 −1

2
0

0 0 −1
2

−1
2

1 0
0 0 0 0 0 2

 . (C.9)

There is a similar (but simpler) expression for the contribution from the sector with
momenta 0 and π. Summing over all momenta leads toNeven andNodd and the expectation
values of σz

j for a single even or odd site are simply obtained as

⟨σz
even⟩ = 1− 4Neven

L
, ⟨σz

odd⟩ = 1− 4Nodd

L
. (C.10)

For γ = 0 the even and odd expectation values are the same. Figure 9(b) displays ⟨σz
even⟩

for the case with α = 1, γ = 0, θ = 0.5.
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C.3 Equilibrium values from GGE

The expectation values n̄k
i = ⟨ηk†i ηki ⟩ are all conserved quantities. This allows us to

conceive a generalized Gibbs ensemble (GGE) for the quench dynamics.
Applying Nl times UF to the all-0 state leads to a state with rapidly oscillating phase

factors. Combining all k we will see a dephasing, which is constrained by the conservation
of the nk

i . In the resulting equilibrium state we have ⟨ηk†i ηkj ⟩ = δijn̄
k
i . This relation allows

us to express the expectation values of expressions such as eq. C.7 in terms of vji and n̄
k
i .

In this way, the ensemble averages for Nk
even and Nk

odd, and thereby for the even and odd
magnetizations, are fully expressed in data pertaining to UF and the initial state. We
checked that these ensemble averages agree with the equilibrium values generated by the
full dynamics.

C.4 Velocities of free fermionic modes

The dynamics of an initial state with a single seed ‘1’ reveals characteristic velocities,
which can be related to the group velocities ∂

∂k
ϵki of the free fermionic modes ηki . While the

relations expressing these velocities in terms of our parameters α, γ and θ are in general
intractable analytically, we found closed-form expressions for momenta approaching 0 or
π/2.

Near momentum k = 0 we have

1. four critical branches with ϵk=0
i = 0 and velocities ±v+ and ±v−, with

v+ = 2 tanh((γ + θ)/2), v− = 2 tanh((γ − θ)/2), (C.11)

2. four branches with (in general) non-zero ϵk=0
i and velocities ±v0,

v0 = (v+ + v−)/2 = 2
sinh(γ)

cosh(γ) + cosh(θ)
. (C.12)

Note that the dispersions for θ = γ, as displayed in eq. 4.26, are a special case where
v− = 0 and the leading term in the dispersion of the v− branch is cubic in k.

Near momentum k = π/2 all velocities turn out to be equal to ±v1,

v1 =
2 sinh(θ)√

−1 + 2α2 + cosh(θ)
√
1 + 2α2 + cosh(θ)

. (C.13)

We note that, as soon as θ > 0, limα→0 v1 = 2, which is the maximal velocity set
by the geometry of the system. In a large part of the α, γ, θ parameter space v+ is
the largest velocity in the system. These velocities provide upper bounds for the drift
velocity vd. In the particular case where γ ≫ θ and α sufficiently large, the drift velocity
is found to be close to v+, which in turn is close to the value displayed in eq. 1.1.
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