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Abstract

We calculate the low-temperature spectral function of the symmetric single impurity An-
derson model using a recently proposed dynamical exchange-correlation (xc) field for-
malism. The xc field, coupled to the one-particle Green’s function, is obtained through
analytic analysis and numerical extrapolation based on finite clusters. In the Kondo
regime, the xc field consists of a complex constant term and a main quasiparticle-like
oscillation term. The constant term represents the Hubbard side-band contribution, con-
taining a bath-induced broadening effect, while the quasiparticle-like term is related to
the Kondo resonance peak at low-temperature. We illustrate these features in terms of
analytical and numerical calculations for small and medium-size finite clusters, and in
the thermodynamic limit. The results indicate that the xc field formalism provides a
good trade-off between accuracy and complexity in solving impurity problems. Conse-
quently, it can significantly reduce the complexity of the many-body problem faced by
first-principles approaches to strongly correlated materials.
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1 Introduction18

Quantum impurity models (QIMs), where one impurity (with a small number of discrete lev-19

els) is coupled to a noninteracting bath (with continuous degrees of freedom), have been20

extensively studied during the past decades. Originally proposed to study the Kondo ef-21

fect [1] (where a localized spin is screened by conducting electrons due to many-body cor-22

relations), QIMs remain to this date the focus of vast interest for their applicability to different23

topical areas, such as quantum transport through nanoscale devices [2–4], tunneling spec-24

troscopy [5–7], and many-body entanglement [8,9]. Moreover, the single-impurity Anderson25

model (SIAM) [10], one of the basic QIMs variants, is used as an auxiliary problem for dy-26

namical mean-field theory (DMFT) [11], a tool in first-principles studies of strongly correlated27

systems in- and out-of equilibrium [12–14].28

Because of this important usage, several types of quantum impurity solvers for the SIAM29

have been developed. The thermodynamic properties of the SIAM can be exactly solved by30

the numerical renormalization group (NRG) [15], the continuous-time quantum Monte Carlo31

(QMC) algorithm [16] and Bethe-ansatz based analytic approaches [17–19]. However, the32

direct application of these solvers to the spectral properties of the SIAM is restricted by factors33

such as the high computational cost of the original NRG, and the dynamical sign problem or34

artifacts introduced by the analytic continuation in QMC. Hence advanced solvers arise with35

sophisticated numerical methods, including generalized NRG [20–23], functional renormal-36

ization group [24,25], configuration interaction approximations [26], distributional exact di-37

agonalization (ED) [27,28], steady state density functional theory (DFT) [29–31], expansion38

QMC [32–34], and non-wave-function-based tensor network approaches [35,36].39

Nonetheless, in spite of these significant advances, there remains a demand for a theoretical40

treatment of the SIAM which can i) capture spectral weights and energy scales of the Kondo41

peak and the Hubbard bands in a conceptually and physically transparent way, and ii) be42

computationally inexpensive (in order to make significantly numerically affordable those ab43

initio treatments that use SIAM as an auxiliary problem).44

Recently, a Green’s function-based dynamical exchange-correlation (xc) field formalism45

[37] was proposed. Given the key quantity in the framework, the dynamical xc field (Vxc),46

the single-particle Green’s function (and thus the spectral function) can be solved by a direct in-47

tegral in the time domain. The Vxc has been calculated exactly for one-dimensional (1D) finite48

lattice models [38,39] and within the random-phase approximation for the homogeneous elec-49

tron gas [40]. For those systems, the temporal behavior of the Vxc, Vxc(t ) ∼ V0+
∑

n Ane−iωn t ,50

can be seen as the sum of a constant term (complex for the homogeneous electron gas) plus51

a small number of oscillating terms accounting for quasiparticle-like excitations. Accordingly,52

the spectral weight is mainly distributed among a sharp peak (from the constant term V0)53

and continuous satellite bands that emerge from the oscillating terms in Vxc. Thus, a central54

task in the approach is to determine the parameters defining Vxc, which naturally implies the55

introduction of approximate estimates. For example, when applied to 1D half-filled Hubbard56

lattice and spin-
1
2 antiferromagnetic Heisenberg lattice at zero temperature, the formalism57

approximates the exact lattice Vxc using finite clusters [38, 39]. Consequently, the spectral58
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functions are calculated with a good trade-off between accuracy and computational cost. The59

quasiparticle-like excitations in the Vxc and the favourable spectral results may be explained60

by a dynamical screening effect: at zero-temperature, exchange potential and many-body cor-61

relations together suppress many degrees of freedom and lead to only few (if not only one)62

dominant excitations ωn .63

In the local moment regime, some central features of the SIAM local spectral function have64

an immediate interpretation in terms of the Vxc language. Namely, the Hubbard band and the65

sharp Kondo resonance peak may be recognised as coming from a ‘constant’ term and several66

‘quasiparticle-like’ excitation energies. However, the width of the Kondo peak, which is related67

to the Kondo temperature Tk , is exponentially small in the Coulomb interaction U , which is68

different from the Dirac-δ peak brought by a constant V0. Moreover, in the mixed valence69

regime, the lack of sharp peak seems to contrast with previous Vxc results from homogeneous70

lattice models [38,39]. Therefore, in this paper, we perform a systematic study of the symmet-71

ric SIAM from the perspective of the Vxc formalism. Our purpose is two-fold: i) by studying72

the Vxc of a QIM at finite temperature (T), we examine how the low-T thermal excitation and73

the inhomogeneous setup of the system are reflected in Vxc; ii) we expect to shed new light74

on the SIAM by investigating the real-time response of the impurity, which is not always easily75

accessed in conventional self-energy-based approaches. By working directly in real time, it76

avoids the problem of analytic continuation associated with imaginary-time approaches.77

This paper is organized as follows. In Sec. 2, we extend the Vxc formalism, originally78

proposed for zero-temperature (zero-T) systems [37], to finite-temperatures (finite-T), for a79

temperature range of the order of the Kondo temperature TK . This is followed by an applica-80

tion of the developed description to the symmetric SIAM at half-filling in Sec. 2.1. In Sec. 3, we81

first calculate the Vxc analitically on a dimer and numerically on a finite cluster. Based on that,82

we propose an ansatz for the SIAM Vxc, from which the local spectral function is obtained.83

Quantities such as the Kondo temperature and thermal capacity are re-interpreted within the84

Vxc framework. Finally, we provide our conclusive remarks and an outlook in Sec. 4.85

2 Theory86

We first derive the general finite-T Vxc formalism. After that, we apply it to a discrete cluster87

at thermal equilibrium which represents an impurity coupled with a bath. The low-T Vxc is88

obtained by taking the limit T → 0. We will use atomic units throughout this paper.89

For a system with chemical potential µ at finite temperature T = 1/β , the generalized90

time-independent Hamiltonian is91

K̂ = Ĥ −µN̂. (1)

With r = (r,σ) the space-spin variable, ψ̂(r ) the field operator and ρ̂(r ) the density operator,92

we have93

Ĥ =

∫

drψ̂†(r )h0(r )ψ̂(r ) +
1

2

∫

drdr ′ψ̂†(r )ψ̂†(r ′)v(r, r ′)ψ̂(r ′)ψ̂(r ), (2)

where the single-particle term h0(r ) = −
1
2∇

2 + Vext(r ) is a sum of kinetic energy and the ex-94

ternal field Vext, v(r, r ′) =
1
|r−r′| is the Coulomb interaction, and the particle-number operator95

reads96

N̂ =

∫

drψ̂†(r )ψ̂(r ) =

∫

dr ρ̂(r ) (3)

The Vxc formalism is based on the finite-T time-ordered single-particle Green’s function97

[41]98

iḠ(r t , r ′t ′) := 〈〈ψ̂(r t ); ψ̂†(r ′t ′)〉〉 = Tr{ρ̂GT [ψ̂(r t )ψ̂†(r ′t ′)]} (4)
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where T is the real-time time-ordering symbol, ρ̂G = Z−1
G e−β K̂ the statistical operator, ZG = Tr[e−β K̂ ]99

the grand canonical partition function, and ψ̂(r t ) = ei K̂ t ψ̂(r )e−i K̂ t and its conjugate ψ̂† are100

the Heisenberg-picture field operators. The 〈〈..〉〉 symbol denotes the thermal ensemble aver-101

age of the time-ordered operators. The equation of motion of the Green’s function in the Vxc102

scheme is103

[i∂t − h(r )]Ḡ(r t , r ′t ′)− Vxc(r t , r ′t ′)Ḡ(r t , r ′t ′) = δ(t − t ′)δ(r − r ′), (5)

where h(r t ) = h0(r )+VH(r )−µ contains the Hartree field VH(r ) =
∫

dr ′v(r, r ′)Tr{ρ̂Gρ̂(r ′)}.104

The Vxc is defined to according to:105

Vxc(r t , r ′t ′)iḠ(r t , r ′t ′) :=
∫

dr ′′v(r, r ′′)〈〈ρ̂(r ′′t )ψ̂(r t ); ψ̂†(r ′t ′)〉〉
−VH(r )iḠ(r t , r ′t ′). (6)

A correlator g can be defined to factorize the high-order term 〈〈ρ̂(r ′′t )ψ̂(r t ); ψ̂†(r ′t ′)〉〉106

[37]:107

〈〈ρ̂(r ′′t )ψ̂(r t ); ψ̂†(r ′t ′)〉〉 = iḠ(r t , r ′t ′)g (r, r ′, r ′′; t , t ′)ρ(r ′′), (7)

where ρ(r ′′) = Tr
�

ρ̂Gρ̂(r ′′)
	

is the ensemble average of the electron density. We can define108

a dynamical xc hole109

ρxc(r, r ′, r ′′; t , t ′) =
�

g (r, r ′, r ′′; t , t ′)− 1
�

ρ(r ′′), (8)

which fulfills a sum rule when the number of electrons is conserved (the derivation essentially110

follows that of the zero-T case [37] except that ground-state expectation value is replaced by111

thermal average)112
∫

dr ′′ρxc(r, r ′, r ′′; t , t ′) = −θ (t ′ − t ). (9)

Substituting the high-order term in Eq. (6) with the xc hole, the xc potential can be essentially113

written as114

Vxc(r t , r ′t ′) =

∫

dr ′′v(r, r ′′)ρxc(r, r ′, r ′′; t , t ′), (10)

which indicates that the finite-T xc field can be interpreted as the Coulomb potential of a115

finite-T xc hole. Furthermore, the xc hole fulfills an exact constraint116

ρxc(r, r ′, r ′′ = r ; t , t ′) = −ρ(r ). (11)

Here we may see an advantage of the Vxc-Framework: the definition of finite-T Vxc introduced117

here is a natural extension from the zero-T formalism, with ground state expectation values118

replaced by thermal ensemble averages. The sum rule and the exact constraint which the119

xc hole fulfills take the same form as the T = 0 case. Moreover, the time-dependence of the120

external field can be included in a formally straightforward way (h(r )→ h(r t ) in Eq. (5), thus121

VH(r t ) and ρ(r t ) depends on time). In practice, however, Vxc can have a more complicated122

behavior when the system is driven by a time-dependent potential from its ground state or123

thermal equilibrium state. The low-T properties of the equilibrium SIAM Vxc is shown in the124

following section.125

2.1 Vxc formalism for the SIAM126

The SIAM Hamiltonian reads127

ĤSIAM = ε f (n̂ f ↑ + n̂ f ↓) +Un̂ f ↑n̂ f ↓ +
∑

kσ

�

εk ĉ†
kσ

ĉkσ + (vk f̂ †
σ ĉkσ +H.c.)

�

. (12)
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Here f̂ †
σ ( f̂σ) creates (annihilates) an electron with spin σ on the impurity site, n̂σ = f̂ †

σ f̂σ128

is the corresponding number operator, ĉ†
kσ

(ĉkσ) creates (annihilates) a bath electron with129

energy εk . Furthermore, vk is the hybridization amplitude, and ε f and U are the impurity130

on-site energy and Coulomb interaction, respectively. We consider a symmetric SIAM at half-131

filling, which means U+2ε f = 0, and the ensemble average n fσ = Tr{ρ̂Gn̂ fσ} = 0.5. We also132

choose the number of fermionic sites (impurity + bath) L even. The local spectral function133

can be obtained from the impurity Green’s function134

iḠ f f ,σ(t ,β) = 〈〈 f̂σ(t ); f̂ †
σ(0)〉〉

= θ (t )

∑

mn+
e−βEm e−i(En+−Em)t

�

�〈n+| f̂
†
σ|m〉

�

�

2

∑

m e−βEm

−θ (−t )

∑

mn−
e−βEm ei(En−−Em)t

�

�〈n−| f̂σ|m〉
�

�

2

∑

m e−βEm
, (13)

where we set t ′ = 0 since the system is in equilibrium, θ is the Heaviside step function, and135

m, n+ and n− label eigenstates with L, L+ 1 and L− 1 electrons, respectively. The system has136

particle-hole symmetry, therefore we focus on the positive time, namely the particle part,137

iḠp
f f ,σ
(t > 0,β) =

∑

m e−βEm
∑

n+ an+,me−iωn+ ,m t

∑

m e−βEm
, (14)

where ωn+,m = En+ − Em are the excitation energies and an+,m =
�

�〈n+| f̂
†
σ|m〉

�

�

2
their corre-138

sponding weight. The equation of motion of the Green’s function reads139

�

i∂t − ε f − VH − Vxc
σ (t ,β)

�

Ḡ f f ,σ(t ,β) = δ(t ), (15)

where the Hartree term VH = Un f σ̄ is proportional to the density of impurity electron with140

opposite spin σ̄ 6= σ. Here, we emphasis that the Vxc is a result of the Coulomb interac-141

tion and can be interpreted as the Coulomb potential of the xc hole, which can be seen from142

Eq. (6). However, for the SIAM, the hybridization between the impurity and the bath is also143

a crucial factor influencing the spectral properties. A dynamical hybridization field, also di-144

rectly coupled to the Green’s function in the equation of motion, can be defined within the145

Vxc-Framework. We incorporate the hybridization field into the Vxc so that the equation of146

motion has a simpler form, and with the given Vxc, the Green’s function can be directly solved.147

To investigate the hybridization effect, we consider the noninteracting case (U = 0 in Eq. (12)).148

At zero-T , the impurity Green’s function G f f ,σ can be analytically solved as149

G f f ,σ(ω) =
1

ω− ε f −∆(ω)
, (16)

where150

∆(ω) =
∑

k

|vk |2

ω+ − εk
(17)

is the hybridization function. ∆(ω) can be calculated analytically by modeling the continuous151

bath as a tight-binding ring with Nc sites and hopping strength th, and the impurity site couples152

to one site with strength V (see Fig. 1). In this model, the SIAM parameters are given by153

εk = 2th cos(k) and vk =
Vp
Nc

. When |ε f |, V � 2|th|, we approach the so-called wide-band154

limit (WBL), thus the hybridization function can be treated as a constant for |ω| � 2|th|,155

∆(ω) = iΓ = i
πV2

4th
. (18)
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Accordingly, we can solve the hybridization field:156

Vxc
nonint,WBL(t ) = iΓθ (−t ). (19)

The physical picture is as follows: the infinitely wide bath band leads to a broadening of157

the impurity level ε f , which is represented by a purely imaginary hybridization field. This158

hybridization effect exists also for non-WBL or interacting cases.

Figure 1: The 1D tight-binding system used to model an impurity coupled to a con-
tinuous bath. When periodic boundary conditions are used for the Nc noninteract-
ing sites (t̃h = th), we have the effective SIAM parameters εk = 2th cos(k) and
vk =

Vp
Nc

. When t̃h=0, the model approaches the SIAM setup in the large Nc limit.

159

2.2 The SIAM Vxc at low-temperature160

The Vxc coupled to Ḡp
f f ,σ

can be obtained from the equation of motion. For the symmetric161

SIAM at half-filling, ε f + VH = 0, thus162

Vxc
p,σ(t ,β) =

∑

m e−βEm
∑

n+ an+,mωn+,me−iωn+ ,m t

∑

m e−βEm
∑

n+ an+,me−iωn+ ,m t
. (20)

We focus on the low-temperature case (referred to as low-T) such that e−βEm is negligible163

except for the lowest two eigenstates m = 1, 2. The Vxc can be written as (the derivation is in164

Appendix A)165

Vxc
p,σ(t ,β) = Vxc

p,σ(t , T = 0) + Ṽ(t )e−β(E2−E1), (21)

which is the zero temperature Vxc
p,σ(t , T = 0) plus a correction from a time-oscillating term166

Ṽp,σ(t ) and an exponentially small factor. Both the zero-T Vxc and the oscillating term Ṽ are167

determined by the interaction on the impurity site and the hybridization between the impurity168

and the bath. In the next section, we i) calculate analytically the low-T Vxc of a dimer where169

the interaction is nonzero on one site and ii) present the Vxc of an SIAM on a finite cluster170

determined numerically. Our aim is to investigate the influence of the interaction U and the171

hybridization V on the Vxc, for the dimer and the cluster, respectively. We will after that172

propose an ansatz for the finite-T SIAM Vxc and relate the ansatz parameters to the Kondo173

physics in the thermodynamic limit.174

6
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3 Results175

3.1 Analytic insights from a dimer176

We use a dimer with interaction U only on one site and hopping V between the sites to derive177

the analytic Vxc:178

Ĥdimer = ε f (n̂ f ↑ + n̂ f ↓) +Un̂ f ↑n̂ f ↓ + V
∑

σ

( f̂ †
σ ĉσ +H.c.), (22)

where we fix ε f = −
U
2 and the dimer at half-filling. We consider the T = 0 case first. In the179

Kondo regime (U � V), the particle part of Vxc has an approximate form (for the derivation,180

see Appendix B)181

Vxc
p,σ(t , T = 0) ≈ωp −λΩeiΩt , (23)

where ωp =
r

U2

16 + 4V2+
r

U2

16 + V2, λ ≈ 36V2

U2 , and Ω =
r

U2

4 + 4V2. Eq. (23) indicates that182

the dimer Vxc, similar to the cases mentioned in Sec. 1, can be seen as a sum of a constant term183

and a quasiparticle-like exponential term. Given the Vxc, the corresponding Green’s function184

can be obtained by solving the equation of motion,185

Ḡp
f f ,σ
(t , T = 0) = Ḡp

f f ,σ
(0+, T = 0)e−i(VH+ωp)t ei

∫ t
0 λΩeiΩt̄ d t̄

≈ g+
�

(1−λ)e−i(ε f+VH+ωp)t +λe−i(ε f+VH+ω0)t
�

, (24)

where ω0 = ωp − Ω ∼
V2

U , g+ = Ḡp
f f ,σ
(0+, T = 0). For the symmetric model at half-filling,186

g+ = −0.5i and ε f +VH = 0. The zero-T spectral function can be obtained with particle-hole187

symmetry,188

Adimer(ω, T = 0) =
1−λ

2
δ(ω+ωp) +

λ

2
δ(ω+ω0) +

λ

2
δ(ω−ω0) +

1−λ
2
δ(ω−ωp). (25)

Despite the obvious difference in complexity between the dimer and the SIAM, some physics189

of the SIAM can be outlined from the analytic expression of the dimer Vxc: for large U , two190

peaks (ω = ±ωp) of the spectral function are present, which correspond to impurity levels191

ε f ,ε f +U . The excitation with energy Ω creates two central peaks atω = ±ω0 ≈ 0. However,192

for the dimer the spectral weights of the central peaks,
λ

2 ∼ (
V
U )

2, vanish as U increase. The193

lack of Kondo resonance can be naturally understood as the impurity site is coupled to a single194

site instead of a continuous bath. This is directly reflected by the Vxc: as U increases, the195

exponential term (with amplitude λΩ ∼ V2

U ) becomes negligible.196

For low-T , the time-oscillating term in Eq. (21) can be written as197

Ṽ(t )
Vxc

p,σ(t , T = 0)
≈ λ′eiΩ′ t −λ′′eiΩ′′ t , (26)

where λ′,λ′′ ∼ V2

U2 , Ω′ ∼ U and Ω′′ ∼ V2

U (see full expressions in Eqs. (B.27),(B.28), and198

(B.29) in Appendix B). The Vxc is then199

Vxc
p,σ(t ,β) ≈ωp −λΩeiΩt + e−β∆0ωp(λ

′eiΩ′ t −λ′′eiΩ′′ t ), (27)

7
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where ∆0 ∼
V2

U . Note that we require low temperature condition e−β∆0 � 1. The particle200

part spectral function is201

Adimer(ω> 0,β) ∼=
1−λ− e−β∆0ωp(

λ′′

Ω′′ −
λ′

Ω′ )

2
δ(ω−ωp) +

λ

2
δ(ω−ω0)

+
e−β∆0ωp

λ′′

Ω′′

2
δ(ω− ω̃p)−

e−β∆0ωp
λ′

Ω′

2
δ(ω− ω̃0), (28)

where ω̃0 =ωp−Ω′ and ω̃p =ωp−Ω′′. The first two terms on the RHS of Eq. (28) correspond202

to the zero-T peaks, while the last two terms, with weights proportional to e−β∆0 , are two small203

peaks (referred to as thermal peaks in the text below) close to the zero-T peaks, respectively.204

The mixture of a zero-T peak and a thermal peak with close frequencies can be seen as a205

broadening of the zero-T peak. Thus the temperature-induced broadening of the SIAM spectral206

peaks may be explained in the Vxc picture: at low-T , thermal fluctuations induce peaks close to207

the zero-T peaks. The energy difference between the zero-T peak and the thermal peak gives208

effectively the width of the finite-T spectral peak.209

3.2 Including hybridization with a finite cluster at zero-T210

To investigate the combined effects of the interaction U and the hybridization V , we numeri-211

cally solve the Vxc on a finite cluster (corresponding to the t̃h = 0 case in Fig. 1)212

Ĥcluster = ε f (n̂ f ↑ + n̂ f ↓) +Un̂ f ↑n̂ f ↓ + V
∑

σ

( f̂ †
σ ĉ1σ +H.c.) +

Nc−1
∑

i,σ

(th ĉ†
i,σ

ĉi+1,σ +H.c.), (29)

where Nc is the number of noninteracting sites. In the limit Nc → ∞, we reproduce the213

continuous bath (equivalent to εk = 2th cos(k), vk =
Vp
Nc

in Eq. (12)). We use the ITensor214

library [42,43] to perform the time-dependent variational principle (TDVP) [44,45] algorithm215

on a symmetric cluster with L = Nc +1 = 50 sites at zero-T (the algorithm performs better in216

system with open boundary conditions, hence we use a chain setup instead of a periodic one).217

We show in Fig. 2 ReVxc(t ) with different V values. Also, we plot ReVxc(ω) to analyze the218

excitation terms contained in the Vxc. For fixed model parameters ε f = −2.5,U = 5, th = −1,219

ReVxc(t ) with different V can be seen to have three main features. i) It oscillates around220

some constant values close to
U+V

2 . The constant terms increase with V and correspond to the221

sharp peaks of ReVxc(ω) atω = 0. ii) The local maxima of ReVxc(t ) are approximately equally222

separated (e.g. for V = 1, the time intervals between local maximums are almost 1.85), which223

may be described by a factor Ae−iωp t . The excitation energy ωp corresponds to the peaks of224

ReVxc(ω) at ω ∼ −3. Both the amplitude A and the energy |ωp | decrease as V turns smaller,225

as shown in the inset of Fig. 2 (right panel). iii) For V = 1, the local maximum of ReVxc(t )226

around t = 1 is much larger than other local maximal values. Correspondingly, ReVxc(ω)227

exhibits non-Lorentzian structures for ω < −5. Similar larger local maximum at small time228

also exists for V = 0.5, 0.2. As shown in the inset of Fig. 2 ( left panel), for V = 0.5, the local229

maximum at t ∼ 2 is nearly twice as large as the local maximum at t ∼ 4. This drop in local230

maxima suggests that ωp may contain an imaginary part.231

Features i) and ii) can be already found in the analytic expression of the dimer Vxc. How-232

ever, feature iii) emerges only when the impurity is coupled to a large number of noninteracting233

sites. Therefore, we attribute feature iii) to the hybridization effect. As mentioned in Sec. 2.1,234

the Vxc here incorporates the hybridization field, which is a purely imaginary constant for the235

noninteracting case in the WBL. We note that the constant term of the cluster Vxc has a very236

small imaginary part. As a result, the spectral function exhibits sharp peaks at ω ∼ U
2 , instead237

8
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Figure 2: The Vxc of a 50-site cluster at half-filling, with parameters
ε f = −2.5, U = 5, th = −1, T = 0. Left: real part of Vxc(t ). Right: real part of
Vxc(ω), calculated with broadening factor η = 0.1.

of proper Hubbard side-bands. This can be attributed to the qualitative difference between238

the Anderson-type chain with 50 sites and the SIAM where the bath has continuous degrees239

of freedom.240

To summarize the finite-cluster results, ReVxc(t ) exhibits an oscillating behavior, which241

suggests that the Vxc can still take the form Vxc(t ) =Ae−iωp t +C. However, the hybridization242

between the impurity and the bath requires a complex C, so that ReC and ImC determine the243

peak location and the width of the Hubbard band, respectively. Moreover, the local maxima244

of ReVxc(t ) change in time, suggesting a complex ωp .245

3.3 Ansatz of the symmetric SIAM Vxc246

Based on the analytic and numerical results above, we propose an ansatz for the particle part247

Vxc of the symmetic SIAM at low-T :248

Vxc(t ,β) = λωpe−iωp t + C, (30)

where the parameters are generally temperature-dependent. λ is real, and ωp and C are249

complex. The local Green’s function is then approximately (see the derivation in Appendix C)250

Ḡp
f f ,σ
(t ,β) = −

i

2

�

(1−λ)e−iCt +λe−i(C+ωp)t
�

, (31)

and the spectral function is251

A(ω> 0,β) =
1−λ
2π

�

�Im[C]
�

�

(ω− Re[C])2 + (Im[C])2
+
λ

2π

�

�Im[C +ωp]
�

�

(ω− Re[C +ωp])2 + (Im[C +ωp])2
.(32)

Before determining the ansatz parameters numerically, we use the ansatz to interpret the252

Kondo spectral function. The two peaks in the spectral function can be recognized as a Hub-253

bard side-band located at ω = Re[C] with broadening Im[C], and a Kondo peak located at254

ω = Re[C +ωp] with width Im[C +ωp]. The spectral weights of the two peaks are deter-255

mined by λ. The two peaks have distinct origins. The peak location and the width of the256

Hubbard side-band are controlled by the constant term of the Vxc, which accounts for the fact257

that the impurity level is affected by the interaction and broadened by the continuous bath. On258

the other hand, at low-T , quasiparticle-like energy ωp creates a sharp resonance peak close259

to ω = 0, whose width and height can be described by the Fermi-liquid treatment [46].260

Having in mind the physical meaning of the parameters, we discuss the extrapolation pro-261

cedure, i.e., how the ansatz quantities (λ,ωp ,C) can be calculated with a given symmetric262

9
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SIAM with model parameters (U, V, th,β). Here, to compare with NRG results in the litera-263

ture (e.g., from Refs. [28] and [47]), we also use the WBL. We consider first the T = 0 limit,264

and assume that the first (second) term on the RHS of Eq. (32) contributes to the Hubbard265

(Kondo) peak. In this case, λ can be determined from the height of the Kondo peak:266

λ

πTK
=

1

πΓ
. (33)

The peak location of the Hubbard side-band can be directly calculated, which means267

Re[C] ≈
U

2
. (34)

The Kondo resonance peak is at ω = 0 and its width is given by the Kondo temperature268

(TK) [47]. Thus,269

C +ωp ≈ −iTK = −i

√

√UΓ

2
e−

πU
8Γ +

πΓ
2U . (35)

The last unknown parameter is the imaginary part of C, which corresponds to the width of the270

Hubbard side-band. We use the Anderson-type finite-size chain spectral function to estimate271

Im[C]. Note that a finite chain cannot reproduce the proper broadening caused by an infinitely272

wide band. However, the relative weight between the Hubbard peak and the Kondo peak,273

R =
1−λ
2λ

Tk
�

�Im[C]
�

�

, (36)

can provide information of Im[C]. We extrapolate the value of R by increasing the number of274

sites in the chain. We calculate the spectral function using the chain setup with an increas-275

ing number of noninteracting sites Nc . From the spectral functions (as plotted in Fig. 3a),276

we determine the relative weight R, which is then plotted against the total number of sites277

L = Nc + 1. For a given Γ , R increases with L (we use L = 4, 8, 20, 30 and 40), as shown by278

the scattered data points in Fig. 3b. Noticing the nearly linear increase of R at small L and279

expecting a converging R at large L, we fit the R − L data using an hyperbolic-tangent func-280

tional form for the fitting function (see the curves in Fig. 3b). Consequently, R(L =∞) can281

be estimated using the fitting results.282

In Fig. 4, we show the local spectral function of a symmetric SIAM in the WBL with283

U = 3, th = 50, T = 0. We choose the parameters (Γ = 0.2, 0.5, and 0.9) to compare with284

NRG results in the WBL (see Fig. 3 in Ref. [28]). The spectral function show satisfactory285

agreements to the NRG results. We attribute this to the fact that the Vxc as an effective field286

captures the intrinsic physics of an impurity problem. A complex excitation ωp dominates the287

temporal behavior of the Vxc. Specifically, Re[ωp] = −
U
2 creates the Kondo resonance peak288

which requires no energy transfer, and Im[ωp] contains the Kondo temperature. At zero-T and289

in the WBL, most of the ansatz parameters can naturally be determined based on some well-290

known results of the SIAM. Only one parameter requires a numerical extrapolation. Moreover,291

the cluster spectral function used in the extrapolation (obtained via ED or TDVP) is actually292

distinct from the SIAM spectral function: for cluster results, the Kondo peak position is not at293

ω = 0, and the Hubbard band is too sharp. As already noted close to the end of section 3.2,294

the discrepancy can be attributed to the essential differences between a finite cluster with tens295

of sites and a continuous bath. However, the Vxc scheme produces favourable spectral func-296

tions using these finite cluster results. This indicates that the Vxc formalism, originating from297

very fundamental physics and using established knowledge of the target system as a reference,298

is able to capture the key features of the impurity problem.299
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Figure 3: a) The zero-T spectral function of L-site clusters. We use U = 3, th = 50 to
approach the WBL, and different V values to reach Γ = 0.2, 0.5 and 0.9. The results
are from ED for L = 4, 8 and from TDVP for L = 20. The Kondo peaks and Hubbard
peaks are highlighted by arrows. b) The relative weight R between the Hubbard peak
and the Kondo peak, as a function of the total number of sites L. TDVP is used for
L = 20, 30 and 40. For each value of Γ , the data are fitted using R = R∞ tanh(aL),
where R∞ is the converged value and a is a parameter determining the converging
speed. The fitted values are R∞ = 0.165, 0.151, and 0.107 for Γ = 0.2, 0.5, and
0.9, respectively.

Figure 4: The zero-T spectral function of a symmetric SIAM. We use U = 3, th = 50
to approach the WBL, and different V values to realize desired Γ values. From the
extrapolation, we get Im[C] = −0.6,−1.3 and −1.7, respectively, for Γ = 0.2, 0.5
and 0.9.

Lastly, we discuss the spectral function at finite temperatures, and in the range T ∈ (0, TK).300

In the Vxc formalism, we can see from the dimer result that thermal excitation leads to the301

broadening of both the Kondo peak and the Hubbard side-band peak. In the WBL, this thermal302

broadening can be effectively described by the temperature-dependence of the imaginary part303

of the excitation energy ωp , while keeping other parameters temperature-independent:304

ωp(T) =ωp(T = 0) + iΩT , (37)

where ΩT is much smaller than Im[C]. Effectively, the Hubbard side-band stays almost un-305

changed with the increasing T . We perform ED on an eight-site cluster with th = 500, U = 1306

and Γ = 0.04 to calculate the spectral function at T/TK = 0.01, 0.1, 1. ΩT is estimated using307

the position of the thermal peak nearest to the Kondo peak. Other parameters are estimated308
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using the zero-T TDVP approach. The low-T spectral function results are shown in Fig 5.309

Compared with NRG results (see page 3.15 of Ref. [47]), the finite-T Vxc result captures the310

correct trend of the Kondo peak width: at T � TK, the contribution ofΩT is negligible, leading311

to a width dominated by the Kondo temperature. As T approaches TK, |ΩT | increases .

Figure 5: The spectral function of a symmetric SIAM with th = 500, U = 2 and
Γ = 0.04, at T = 0.01TK, 0.1TK and TK. Left: The frequency is in unit of U . Right:
The frequency is in unit of TK and in logarithmic scale to highlight the width of the
Kondo resonance peak.

312

4 Conclusions and outlook313

In this work, we applied the exchange-correlation (xc) field formalism to the symmetric single314

impurity Anderson model (SIAM) at low temperatures. The formalism introduces a dynami-315

cal xc field (Vxc), which can be interpreted as the Coulomb potential of the xc hole. For the316

SIAM, the Vxc also incorporates the hybridization effect between the impurity and the bath.317

We proposed an ansatz for the SIAM Vxc, which includes a complex constant term, C, and a318

complex quasiparticle-like excitation, ωp . The real and imaginary parts of C correspond to319

the peak location and the width of the Hubbard side-band, respectively. More importantly,320

Im[ωp] accounts for the Kondo temperature. At zero-T in the WBL, most parameters of the321

ansatz can be calculated from the model parameters using Fermi-liquid theory. The only un-322

known parameter can be estimated by an extrapolation procedure. For low temperatures, the323

temperature-dependence of the ansatz parameters is primarily through Im[ωp], which again324

needs to be approximated numerically, guided by the insights from the auxiliary analytically325

dimer Vxc. Overall, the spectral function calculated from the Vxc shows satisfactory agreement326

with the NRG results. The extrapolation procedures involved are of low computational cost.327

We understand the favourable performance of the xc field formalism as follows: the screening328

effect underlying the SIAM is essential for the Kondo effect, and the xc field provides a suitable329

description for quasiparticle-like excitations. Hence, the parameters in the ansatz have clear330

physical meaning and can be related in a novel perspective to key well-understood features of331

the spectral function. The fact that only a few parameters require numerical treatment leads332

to a good trade-off between accuracy and computational effort.333

As an outlook, QIMs beyond the symmetric SIAM at half-filling can also be interpreted334

from the perspective of the xc field formalism. We have already noted that the narrow band335

SIAM Vxc requires a different extrapolation scheme. Additionally, when an external magnetic336

field is included, the spectral function becomes spin-dependent, and the Kondo resonance can337

be suppressed with increasing field. In future work, we plan to investigate how the magnetic338

field affects the Vxc. Moreover, quantities such as the dynamical spin susceptibility, the specific339

heat, and the size of the Kondo cloud are related to spin correlators. We expect the spin xc340
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field formalism can be applied to these problems.341

Finally, we stress a significant feature of the xc field formalism: it manages to reduce a342

complicated many-body problem to an extrapolation procedure. The extrapolation is usually343

done with a (numerically) solvable finite cluster or a homogeneous system as a reference.344

When the target system and the reference system exhibit explicit similarities, the extrapolation345

can be done straightforwardly. In practice, the connection between the reference system and346

the complex target is often less obvious. An example is the SIAM presented in this paper, where347

the finite cluster spectral function differs qualitatively from the SIAM. Despite this, the xc field348

formalism successfully captures the implicit correspondence, specifically the relative weight349

between the Hubbard peak and the Kondo peak at T = 0. Hence, we believe that the xc field350

formalism, based on the quasiparticle picture, is a viable and powerful approach for modeling351

correlated many-body system and holds great potential for first-principles calculations.352
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A Low temperature approximation of the Vxc358

From Eq. (20) and e−βEm � 1 for m > 2, the Vxc can be written as359

Vxc
p,σ(t ,β) =

C + e−β∆0 D

A+ e−β∆0 B
, (A.1)

where360

∆0 = E2 − E1, (A.2)

A =
∑

n+
an+,1e−iωn+ ,1 t , (A.3)

B =
∑

n+
an+,2e−iωn+ ,2 t , (A.4)

C =
∑

n+
an+,1ωn+,1e−iωn+ ,1 t , (A.5)

D =
∑

n+
an+,2ωn+,2e−iωn+ ,2 t . (A.6)

An expansion361

1

A+ e−β∆0 B
≈

1− e−β∆0
B
A

A
(A.7)

leads to362

Vxc
p,σ(t ,β) =

C

A
+
�D

A
−

BC

A2

�

e−β∆0 , (A.8)
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where C/A is just the zero-T Vxc, and all terms of order O(e−β∆)where∆ >∆0 are neglected363

for low-T . The time-oscillating term in the main text is then364

Ṽ(t ) =
D

A
−

BC

A2
=

C

A
[
D

C
−

B

A
] (A.9)

B Analytic Vxc of an impurity-free-electron dimer365

We use a dimer consisting of an interacting site ( f ) and a noninteracting site (c) to calculate366

the analytic Vxc for the f site. Here we repeat the Hamiltonian in the main text:367

Ĥdimer = ε f (n̂ f ↑ + n̂ f ↓) +Un̂ f ↑n̂ f ↓ + V
∑

σ

( f̂ †
σ ĉσ +H.c.), (B.1)

where ε f = −
U
2 , V is the hopping strength and the dimer is at half-filling. With variables368

depending on U, V369

u =
U

2V
(B.2)

x =
u

4
+

√

√

1+ (
u

4
)2 (B.3)

y =
u

2
+
s

1+ (
u

2
)2, (B.4)

and the same low-T assumption, the particle part of the Green’s function can be written as370

iḠp
f f ,σ
(t ) = Z−1

�

[a1,1e−iω1,1 t + a2,1e−iω2,1 t ] + eβu[a1,2e−iω1,2 t + a2,2e−iω2,2 t ]
�

(B.5)

where the partition function is371

Z = 1+ 3eβ(u−2x )V , (B.6)

the spectral weights are372

a1,1 =
(x + y)2

2(1+ x2)(1+ y2)
(B.7)

a2,1 =
(1− x y)2

2(1+ x2)(1+ y2)
(B.8)

a1,2 =
3

2(1+ y2)
(B.9)

a2,2 =
3y2

2(1+ y2)
, (B.10)

and the excitation energies are373

ω1,1 = (2x − y)V (B.11)

ω2,1 = (2x + y − u)V (B.12)

ω1,2 = (−y + u)V (B.13)

ω2,2 = yV. (B.14)
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Following the notations in Appendix A, the zero-T Vxc is374

Vxc
p,σ(t , T = 0) =

a1,1ω1,1e−iω1,1 t + a2,1ω2,1e−iω2,1 t

a1,1e−iω1,1 t + a2,1e−iω2,1 t
. (B.15)

We note that in the Kondo regime (u � 1),375

x =
u

2
+

2

u
+O(

1

u3
) (B.16)

y = u +
1

u
+O(

1

u3
), (B.17)

thus376

λ :=
a1,1

a2,1
=

9

u2
+O(

1

u3
)� 1. (B.18)

The expansion of Vxc to the first order in λ gives377

Vxc
p,σ(t , T = 0) ≈ω2,1 −λΩeiΩt , (B.19)

where378

Ω =ω2,1 −ω1,1 =
p

u2 + 4V. (B.20)

For low-T , following Eq. (A.9), we have379

Ṽ(t )
Vxc

p,σ(t , T = 0)
=

a1,2ω1,2e−iω1,2 t + a2,2ω2,2e−iω2,2 t

a1,1ω1,1e−iω1,1 t + a2,1ω2,1e−iω2,1 t
−

a1,2e−iω1,2 t + a2,2e−iω2,2 t

a1,1e−iω1,1 t + a2,1e−iω2,1 t
. (B.21)

Noting that for u � 1,380

a1,2

a2,1
=

3

u2
+O(

1

u3
), (B.22)

a2,2

a2,1
= 3(1+

4

u2
) +O(

1

u3
), (B.23)

ω1,1

ω2,1
=

3

u2
+O(

1

u3
), (B.24)

ω1,2

ω2,1
= −

1

u2
+O(

1

u3
), (B.25)

ω2,2

ω2,1
= 1−

4

u2
+O(

1

u3
), (B.26)

we get381

Ṽ(t )
Vxc

p,σ(t , T = 0)
=

24

u2
eiΩ′ t −

12

u2
eiΩ′′ t +O(

1

u3
), (B.27)

where382

Ω′ = ω2,1 −ω1,2 = (

√

√u2

4
+ 4+

p

u2 + 4−
u

2
)V (B.28)

Ω′′ = ω2,1 −ω2,2 = (

√

√u2

4
+ 4−

u

2
)V. (B.29)

The temperature factor383

e−β∆0 = e−β(2x−u) (B.30)

need to be small in order for the approximation Eq. (A.7) holds.384
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C Solving the Green’s function from the ansatz of the Vxc385

For the SIAM, the equation of motion of the particle Green’s function reads386

[i∂t − ε f − VH − Vxc
p,σ(t ,β)]Ḡp

f f ,σ
(t ,β) = 0, (C.1)

where ε f +VH = 0 and g+ = Ḡp
f f ,σ
(t = 0+,β) = −0.5i for the symmetric SIAM. Accordingly,387

the Green’s function is388

Ḡp
f f ,σ
(t ,β) = g+e−i

∫ t
0 Vxc

p,σ(t̄ ,β)d t̄ (C.2)

The Vxc is389

Vxc
p,σ(t ,β) = λωpe−iωp t + C (C.3)

where λ is real, ωp and C are complex. We have390

e−i
∫ t

0 Vxc
p,σ(t̄ ,β)d t̄ = e−iCt eλ(e

−iωp t−1)

≈ e−iCt [1+λ(e−iωp t − 1)], (C.4)

where we assume a small λ in the last line to get a simpler expression. The Green’s function391

is then392

Ḡp
f f ,σ
(t ,β) = g+

�

(1−λ)e−iCt +λe−i(C+ωp)t
�

. (C.5)
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