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Abstract

We calculate the low-temperature spectral function of the symmetric single impurity An-
derson model using a recently proposed dynamical exchange-correlation (xc) field for-
malism. The xc field, coupled to the one-particle Green’s function, is obtained through
analytic analysis and numerical extrapolation based on finite clusters. In the Kondo
regime, the xc field is modeled by an ansatz that takes into account the different asymp-
totic behaviors in the small- and large-time regimes. The small-time xc field contributes
to the Hubbard side-band, whereas the large-time to the Kondo resonance. We illustrate
these features in terms of analytical and numerical calculations for small- and medium-
size finite clusters, and in the thermodynamic limit. The results indicate that the xc field
formalism provides a good trade-off between accuracy and complexity in solving impu-
rity problems. Consequently, it can significantly reduce the complexity of the many-body
problem faced by first-principles approaches to strongly correlated materials.
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1 Introduction19

Quantum impurity models (QIMs), where one impurity with a small number of discrete levels20

is coupled to a noninteracting bath with continuous degrees of freedom, have been extensively21

studied during the past decades. Originally proposed to study the Kondo effect [1] where a22

localized spin is screened by conducting electrons due to many-body correlations, QIMs remain23

to this date the focus of vast interest for their applicability to different topical areas, such as24

quantum transport through nanoscale devices [2–4], tunneling spectroscopy [5–7], magnetic25

phase manipulation [8], and many-body entanglement [9,10]. Moreover, the single-impurity26

Anderson model (SIAM) [11], one of the basic QIMs variants, is used as an auxiliary system27

for dynamical mean-field theory (DMFT) [12], a tool in first-principles studies of strongly28

correlated systems in- and out-of equilibrium [13–15].29

Because of this important usage, several types of quantum impurity solvers for the SIAM30

have been developed. The thermodynamic properties of the SIAM can be exactly solved by31

the numerical renormalization group (NRG) [16], the continuous-time quantum Monte Carlo32

(QMC) algorithm [17] and Bethe-ansatz-based analytic approaches [18–20]. However, the33

direct application of these solvers to the spectral properties of the SIAM is restricted by factors34

such as the high computational cost of the original NRG, and the dynamical sign problem or35

artifacts introduced by the analytic continuation in QMC. Hence advanced solvers arise with36

sophisticated numerical methods, including generalized NRG [21–24], functional renormal-37

ization group [25,26], configuration interaction approximations [27], distributional exact di-38

agonalization (ED) [28,29], steady-state density functional theory (DFT) [30–32], expansion39

QMC [33–35], and non-wave-function-based tensor network approaches [36,37].40

Nonetheless, in spite of these significant advances, there remains a demand for a theoretical41

treatment of the SIAM which can i) capture spectral weights and energy scales of the Kondo42

peak and the Hubbard bands in a conceptually and physically transparent way, and ii) be43

computationally inexpensive in order to make those ab initio treatments that use the SIAM as44

an auxiliary system more numerically affordable.45

Recently, a Green’s function-based dynamical exchange-correlation (xc) field formalism46

[38] was proposed. Given the key quantity in the framework, the dynamical xc field (Vxc),47

the single-particle Green’s function, and thus the spectral function, can be solved by a direct in-48

tegral in the time domain. The Vxc has been calculated exactly for one-dimensional (1D) finite49

lattice models [39,40] and within the random-phase approximation for the homogeneous elec-50

tron gas [41]. For those systems, the temporal behavior of the Vxc, Vxc(t ) ∼ V0+
∑

n Ane−iωn t ,51

can be seen as the sum of a constant term (complex for the homogeneous electron gas) plus52

a small number of oscillating terms accounting for quasiparticle-like excitations. Accordingly,53

the spectral weight is mainly distributed among a sharp peak (from the constant term V0)54

and continuous satellite bands that emerge from the oscillating terms in Vxc. Thus, a central55

task in the approach is to determine the parameters defining Vxc, which naturally implies the56

introduction of approximate estimates. For example, when applied to 1D half-filled Hubbard57

lattice and spin-
1
2 antiferromagnetic Heisenberg lattice at zero temperature, the formalism58

approximates the exact lattice Vxc using finite clusters [39, 40]. Consequently, the spectral59

2



SciPost Physics Submission

functions are calculated with a good trade-off between accuracy and computational cost. The60

quasiparticle-like excitations in the Vxc and the favourable spectral results may be explained61

by a dynamical screening effect: at zero-temperature, exchange potential and many-body cor-62

relations together suppress many degrees of freedom and lead to only few (if not only one)63

dominant excitations ωn .64

In the local moment regime, some central features of the SIAM local spectral function have65

an immediate interpretation in terms of the Vxc language. Namely, the Hubbard band and the66

sharp Kondo resonance peak may be recognised as coming from a ‘constant’ term and several67

‘quasiparticle-like’ excitation energies. However, the width of the Kondo peak, which is related68

to the Kondo temperature TK, is exponentially small in the Coulomb interaction U , which is69

different from the Dirac-δ peak brought by a constant V0. Moreover, in the mixed valence70

regime, the lack of sharp peak seems to contrast with previous Vxc results from homogeneous71

lattice models [39,40]. Therefore, in this paper, we perform a systematic study of the symmet-72

ric SIAM from the perspective of the Vxc formalism. Our purpose is two-fold: i) by studying73

the Vxc of a QIM at finite temperature (T), we examine how the low-T thermal excitation and74

the inhomogeneous setup of the system are reflected in Vxc; ii) we expect to shed new light75

on the SIAM by investigating the real-time response of the impurity, which is not always easily76

accessed in conventional self-energy-based approaches. By working directly in real time, it77

avoids the problem of analytic continuation associated with imaginary-time approaches.78

This paper is organized as follows. In Sec. 2, we extend the Vxc formalism, originally79

proposed for zero-temperature (zero-T) systems [38], to finite-temperatures (finite-T). This80

is followed by an application of the developed description to the symmetric SIAM at half-filling,81

at temperatures upto around the Kondo temperature TK, in Sec. 2.1. In Sec. 3, we first calculate82

the Vxc analitically on a dimer and numerically on a finite cluster. Based on that, we propose83

an ansatz for the SIAM Vxc, from which the local spectral function is obtained. Quantities such84

as the Kondo temperature and the height of the Kondo peak are re-interpreted within the Vxc85

framework. Finally, we provide our conclusive remarks and an outlook in Sec. 4.86

2 Theory87

We first derive the general finite-T Vxc formalism and then apply it to a discrete cluster at88

thermal equilibrium which represents an impurity coupled to a bath. The low-T Vxc is obtained89

by taking the limit T → 0. We will use atomic units throughout this paper.90

For a system with chemical potential µ at finite temperature T = 1/β , the generalized91

time-independent Hamiltonian is92

K̂ = Ĥ −µN̂. (1)

With r = (r,σ) the space-spin variable, ψ̂(r ) the field operator and ρ̂(r ) the density operator,93

we have94

Ĥ =

∫

drψ̂†(r )h0(r )ψ̂(r ) +
1

2

∫

drdr ′ψ̂†(r )ψ̂†(r ′)v(r, r ′)ψ̂(r ′)ψ̂(r ), (2)

where the single-particle term h0(r ) = −
1
2∇

2 + Vext(r ) is a sum of kinetic energy and the ex-95

ternal field Vext, v(r, r ′) =
1
|r−r′| is the Coulomb interaction, and the particle-number operator96

reads97

N̂ =

∫

drψ̂†(r )ψ̂(r ) =

∫

dr ρ̂(r ) (3)

The Vxc formalism is based on the finite-T time-ordered single-particle Green’s function98

[42]99

iḠ(r t , r ′t ′) := 〈〈ψ̂(r t ); ψ̂†(r ′t ′)〉〉 = Tr{ρ̂GT [ψ̂(r t )ψ̂†(r ′t ′)]} (4)
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where T is the real-time time-ordering symbol,100

ρ̂G = Z−1
G e−β K̂ (5)

is the statistical operator,101

ZG = Tr[e−β K̂ ] (6)

is the grand canonical partition function, and102

ψ̂(r t ) = ei K̂ t ψ̂(r )e−i K̂ t (7)

and its conjugate ψ̂† are the Heisenberg-picture field operators. The 〈〈..〉〉 symbol denotes103

the thermal ensemble average of the time-ordered operators. The equation of motion of the104

Green’s function in the Vxc scheme is105

[i∂t − h(r )]Ḡ(r t , r ′t ′)− Vxc(r t , r ′t ′)Ḡ(r t , r ′t ′) = δ(t − t ′)δ(r − r ′), (8)

where h(r t ) = h0(r )+VH(r )−µ contains the Hartree field VH(r ) =
∫

dr ′v(r, r ′)Tr{ρ̂Gρ̂(r ′)}.106

The Vxc is defined to according to:107

Vxc(r t , r ′t ′)iḠ(r t , r ′t ′) :=
∫

dr ′′v(r, r ′′)〈〈ρ̂(r ′′t )ψ̂(r t ); ψ̂†(r ′t ′)〉〉
−VH(r )iḠ(r t , r ′t ′). (9)

We note that for systems in equilibrium, the Vxc in the frequency domain and the self-energy108

Σ, defined such that109

∫

dr ′′dt ′′Σ(r t , r ′′t ′′)Ḡ(r ′′t ′′, r ′t ′) = Vxc(r t , r ′t ′)Ḡ(r t , r ′t ′), (10)

are related by the following expression:110

1

2π

∫

dω′Vxc(r, r ′;ω−ω′)Ḡ(r, r ′;ω′) =

∫

dr ′′Σ(r, r ′′;ω)Ḡ(r ′′, r ′;ω). (11)

A correlator g can be defined to factorize the high-order term 〈〈ρ̂(r ′′t )ψ̂(r t ); ψ̂†(r ′t ′)〉〉111

[38]:112

〈〈ρ̂(r ′′t )ψ̂(r t ); ψ̂†(r ′t ′)〉〉 = iḠ(r t , r ′t ′)g (r, r ′, r ′′; t , t ′)ρ(r ′′), (12)

where ρ(r ′′) = Tr
�

ρ̂Gρ̂(r ′′)
	

is the ensemble average of the electron density. We can define113

a dynamical xc hole114

ρxc(r, r ′, r ′′; t , t ′) =
�

g (r, r ′, r ′′; t , t ′)− 1
�

ρ(r ′′), (13)

which fulfills a sum rule when the number of electrons is conserved (the derivation essentially115

follows that of the zero-T case [38] except that ground-state expectation value is replaced by116

thermal average)117
∫

dr ′′ρxc(r, r ′, r ′′; t , t ′) = −θ (t ′ − t ), (14)

where θ is the Heaviside step function. Substituting the higher-order term in Eq. (9) with the118

xc hole, the xc potential can be written as119

Vxc(r t , r ′t ′) =

∫

dr ′′v(r, r ′′)ρxc(r, r ′, r ′′; t , t ′), (15)
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which shows that the finite-T xc field can be interpreted as the Coulomb potential of a finite-T120

xc hole. Furthermore, the xc hole fulfills an exact constraint121

ρxc(r, r ′, r ′′ = r ; t , t ′) = −ρ(r ), (16)

which follows from the fact that the higher-order term 〈〈ρ̂(r ′′t )ψ̂(r t ); ψ̂†(r ′t ′)〉〉, and thus122

the correlator g , vanishes at r ′′ = r , since ρ̂(r )ψ̂(r ) = ψ̂†(r )ψ̂(r )ψ̂(r ) = 0. Here we may123

see an advantage of the Vxc-Framework: the definition of finite-T Vxc introduced here is a124

natural extension from the zero-T formalism, with ground state expectation values replaced125

by thermal ensemble averages. The sum rule and the exact constraint which the xc hole fulfills126

take the same form as the T = 0 case. Moreover, the time-dependence of the external field127

can be included in a formally straightforward way (h(r )→ h(r t ) in Eq. (8), thus VH(r t ) and128

ρ(r t ) depends on time). In practice, however, Vxc can have a more complicated behavior129

when the system is driven by a time-dependent potential from its ground state or thermal130

equilibrium state. The low-T properties of the equilibrium SIAM Vxc is shown in the following131

section.132

2.1 Vxc formalism for the SIAM133

The SIAM Hamiltonian reads134

ĤSIAM = ε f (n̂ f ↑ + n̂ f ↓) +Un̂ f ↑n̂ f ↓ +
∑

kσ

�

εk ĉ†
kσ

ĉkσ + (vk f̂ †
σ ĉkσ +H.c.)

�

. (17)

Here f̂ †
σ ( f̂σ) creates (annihilates) an electron with spin σ on the impurity site, n̂ fσ = f̂ †

σ f̂σ135

is the corresponding number operator, ĉ†
kσ

(ĉkσ) creates (annihilates) a bath electron with136

energy εk . Furthermore, vk is the hybridization amplitude, and ε f and U are the impurity137

on-site energy and Coulomb interaction, respectively. We consider a symmetric SIAM at half-138

filling, which means139

U + 2ε f = 0, (18)

and the ensemble average140

n fσ = Tr{ρ̂Gn̂ fσ} = 0.5. (19)

We also choose the number of fermionic sites (impurity+ bath) L to be even. The local spectral141

function can be obtained from the impurity Green’s function, which can be written in the142

Lehmann representation as143

iḠ f f ,σ(t ,β) = 〈〈 f̂σ(t ); f̂ †
σ(0)〉〉

= θ (t )Z−1
∑

mn+

e−βEm e−i(En+−Em)t
�

�〈n+| f̂
†
σ|m〉

�

�

2

−θ (−t )Z−1
∑

mn−

e−βEm ei(En−−Em)t
�

�〈n−| f̂σ|m〉
�

�

2
, (20)

where we set t ′ = 0 since the system is in equilibrium, m, n+ and n− label eigenstates with144

L, L + 1 and L − 1 electrons, respectively, and Z =
∑

m e−βEm is the partition function. The145

system has particle-hole symmetry, therefore we focus on the positive time, namely the particle146

part,147

iḠp
f f ,σ
(t > 0,β) = Z−1

∑

m

e−βEm
∑

n+

an+,m;σe−iωn+ ,m t , (21)

5



SciPost Physics Submission

where ωn+,m = En+ − Em are the excitation energies and an+,m;σ =
�

�〈n+| f̂
†
σ|m〉

�

�

2
their corre-148

sponding weight. The equation of motion of the Green’s function reads149

�

i∂t − ε f − VH − Vxc
σ (t ,β)

�

Ḡ f f ,σ(t ,β) = δ(t ), (22)

where the Hartree term VH = Un f σ̄ is proportional to the density of impurity electron with150

opposite spin σ̄ 6= σ. Here, we emphasize that the Vxc is a result of the Coulomb inter-151

action and can be interpreted as the Coulomb potential of the xc hole, which can be seen152

from Eq. (15). However, for the SIAM, the hybridization between the impurity and the bath153

is also a crucial factor influencing the spectral properties. A dynamical hybridization field,154

also directly coupled to the Green’s function in the equation of motion, can be defined within155

the Vxc-Framework. We incorporate the hybridization field into the Vxc so that the equation156

of motion has a simpler form, and with the given Vxc, the Green’s function can be directly157

solved. To investigate the hybridization effect, we consider the noninteracting case (U = 0 in158

Eq. (17)). At zero-T , the impurity Green’s function G f f ,σ can be analytically solved as159

G f f ,σ(ω) =
1

ω− ε f −∆(ω)
, (23)

where160

∆(ω) =
∑

k

|vk |2

ω+ − εk
(24)

is the hybridization function. ∆(ω) can be calculated analytically by modeling the continuous161

bath as a tight-binding ring with Nc sites and hopping strength th, and the impurity site couples162

to one site with strength V (see Fig. 1). In this model, the SIAM parameters are given by163

εk = 2th cos(k) and vk =
Vp
Nc

. When |ε f |, V � 2|th|, we approach the so-called wide-band164

limit (WBL), thus the hybridization function can be treated as a constant for |ω| � 2|th|,165

∆(ω) = iΓ = i
πV2

4th
. (25)

Accordingly, we can solve the hybridization field:166

Vxc
nonint,WBL(t ) = iΓθ (−t ). (26)

The physical picture is as follows: the infinitely wide bath band leads to a broadening of167

the impurity level ε f , which is represented by a purely imaginary hybridization field. This168

hybridization effect exists also for non-WBL or interacting cases.

Figure 1: The 1D tight-binding system used to model an impurity coupled to a con-
tinuous bath. When periodic boundary conditions are used for the Nc noninteract-
ing sites (t̃h = th), we have the effective SIAM parameters εk = 2th cos(k) and
vk =

Vp
Nc

. When t̃h=0, the model approaches the SIAM setup in the large Nc limit.

169
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2.2 The SIAM Vxc at low-temperature170

The Vxc coupled to Ḡp
f f ,σ

can be obtained from the equation of motion. For the symmetric171

SIAM at half-filling, ε f + VH = 0, applying the Lehmann representation of Ḡp
f f ,σ

(Eq. (21))172

into Eq. (22) and solving for the Vxc, we have173

Vxc
p,σ(t ,β) =

∑

m e−βEm
∑

n+
an+,mωn+,me−iωn+ ,m t

∑

m e−βEm
∑

n+
an+,me−iωn+ ,m t

. (27)

We focus on the low-temperature case (referred to as low-T) such that e−βEm is negligible174

except for the lowest two eigenstates m = 1, 2. Under this assumption, the Vxc can be written175

as (the derivation is in Appendix A)176

Vxc
p,σ(t ,β) = Vxc

p,σ(t , T = 0) + Ṽp,σ(t )e
−β(E2−E1), (28)

which is the zero temperature Vxc
p,σ(t , T = 0) plus a correction from a time-oscillating term177

Ṽp,σ(t ) and an exponentially small factor. Both the zero-T Vxc and the oscillating term Ṽ are178

determined by the interaction on the impurity site and the hybridization between the impurity179

and the bath. In the next section, we calculate analytically the low-T Vxc of a dimer where the180

interaction is nonzero on one site and present the Vxc of an SIAM on a finite cluster determined181

numerically. Our aim is to investigate the influence of the interaction U and the hybridization182

V on the Vxc, for the dimer and the cluster, respectively. We will then propose an ansatz for the183

finite-T SIAM Vxc and relate the ansatz parameters to the Kondo physics in the thermodynamic184

limit.185

3 Results186

3.1 Analytic insights from a dimer187

We use a dimer with interaction U only on one site and hopping V between the sites to derive188

the analytic Vxc:189

Ĥdimer = ε f (n̂ f ↑ + n̂ f ↓) +Un̂ f ↑n̂ f ↓ + V
∑

σ

( f̂ †
σ ĉσ +H.c.), (29)

where we fix ε f = −
U
2 and the dimer at half-filling. We consider the T = 0 case first. We study190

the large interaction regime (U � V) to obtain insights for the SIAM in the Kondo regime.191

The particle part of Vxc has an approximate form (for the derivation, see Appendix B)192

Vxc
p,σ(t , T = 0) ≈ωp −λΩeiΩt , (30)

where ωp =
r

U2

16 + 4V2+
r

U2

16 + V2, λ ≈ 36V2

U2 , and Ω =
r

U2

4 + 4V2. Eq. (30) indicates that193

the dimer Vxc, similar to the cases mentioned in Sec. 1, can be seen as a sum of a constant term194

and a quasiparticle-like exponential term. Given the Vxc, the corresponding Green’s function195

can be obtained by solving the equation of motion,196

Ḡp
f f ,σ
(t , T = 0) = Ḡp

f f ,σ
(0+, T = 0)e−i(VH+ωp)t ei

∫ t
0 λΩeiΩt̄ d t̄

≈ g+
�

(1−λ)e−i(ε f+VH+ωp)t +λe−i(ε f+VH+ω0)t
�

, (31)

7
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where ω0 = ωp − Ω ∼
V2

U , g+ = Ḡp
f f ,σ
(0+, T = 0). For the symmetric model at half-filling,197

g+ = −0.5i and ε f +VH = 0. The zero-T spectral function can be obtained with particle-hole198

symmetry,199

Adimer(ω, T = 0) =
1−λ

2
δ(ω+ωp) +

λ

2
δ(ω+ω0) +

λ

2
δ(ω−ω0) +

1−λ
2
δ(ω−ωp). (32)

Despite the obvious difference in complexity between the dimer and the SIAM, some physics200

of the SIAM can be outlined from the analytic expression of the dimer Vxc: for large U , two201

peaks (ω = ±ωp) of the spectral function are present, which correspond to impurity levels202

ε f ,ε f +U . The excitation with energy Ω creates two central peaks atω = ±ω0 ≈ 0. However,203

for the dimer the spectral weights of the central peaks,
λ

2 ∼ (
V
U )

2, vanish as U increase. The204

lack of Kondo resonance can be naturally understood as the impurity site is coupled to a single205

site instead of a continuous bath. This is directly reflected by the Vxc: as U increases, the206

exponential term (with amplitude λΩ ∼ V2

U ) becomes negligible.207

For low-T , the time-oscillating term in Eq. (28) can be written as208

Ṽp,σ(t )

Vxc
p,σ(t , T = 0)

≈ λ′eiΩ′ t −λ′′eiΩ′′ t , (33)

where λ′,λ′′ ∼ V2

U2 , Ω′ ∼ U and Ω′′ ∼ V2

U (see full expressions in Eqs. (B.27),(B.28), and209

(B.29) in Appendix B). The Vxc is then210

Vxc
p,σ(t ,β) ≈ωp −λΩeiΩt + e−β∆0ωp(λ

′eiΩ′ t −λ′′eiΩ′′ t ), (34)

where ∆0 ∼
V2

U . Note that we require low temperature condition e−β∆0 � 1. The particle211

spectral function is212

Adimer(ω> 0,β) ∼=
1−λ− e−β∆0ωp(

λ′′

Ω′′ −
λ′

Ω′ )

2
δ(ω−ωp) +

λ

2
δ(ω−ω0)

+
e−β∆0ωp

λ′′

Ω′′

2
δ(ω− ω̃p)−

e−β∆0ωp
λ′

Ω′

2
δ(ω− ω̃0), (35)

where ω̃0 = ωp −Ω′ and ω̃p = ωp −Ω′′. The first two terms on the RHS of Eq. (35) corre-213

spond to the original peaks at zero-T , while the last two terms, with weights proportional to214

e−β∆0 , represent two small peaks (referred to as thermal peaks in the text below) close to the215

original zero-T peaks, respectively. These thermal peaks arise from expanding the Lehmann216

representation of the Green’s function to the order e−β∆0 . Effectively, the peak at finite-T can217

be seen as the original peak at zero-T absorbing a thermal peak with close frequencies. Thus218

the temperature-induced broadening of the SIAM spectral peaks may be explained in the Vxc219

picture: at low-T , thermal fluctuations induce new peaks close to the original peaks. The energy220

difference between the original peak and the thermal peak gives effectively the width of the221

finite-T spectral peak.222

3.2 Including hybridization with a finite cluster at zero-T223

To investigate the combined effects of the interaction U and the hybridization V , we numeri-224

cally solve the Vxc for a finite cluster (corresponding to the t̃h = 0 case in Fig. 1)225

Ĥcluster = ε f (n̂ f ↑ + n̂ f ↓) +Un̂ f ↑n̂ f ↓ + V
∑

σ

( f̂ †
σ ĉ1σ +H.c.) +

Nc−1
∑

i,σ

(th ĉ†
i,σ

ĉi+1,σ +H.c.), (36)

8
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where Nc is the number of noninteracting sites. In the limit Nc → ∞, we reproduce the226

continuous bath (equivalent to εk = 2th cos(k), vk =
Vp
Nc

in Eq. (17)). We use the ITensor227

library [43,44] to perform the time-dependent variational principle (TDVP) [45,46] algorithm228

on a symmetric cluster with L = Nc + 1 = 50 sites at zero-T (the algorithm performs better229

in system with open boundary conditions, hence we use a chain setup instead of a periodic230

one. See detailed treatment in Appendix C). We show in Fig. 2 ReVxc(t ) with different V231

values. Also, we plot ReVxc(ω) to analyze the excitation terms contained in the Vxc. For fixed232

model parameters ε f = −2.5, U = 5, th = −1, ReVxc(t ) with different V can be seen to have233

three main features. i) It oscillates around some constant values close to
U+V

2 . The constant234

terms increase with V and correspond to the sharp peaks of ReVxc(ω) at ω = 0. ii) The local235

maxima of ReVxc(t ) are approximately equally separated (e.g. for V = 1, the time intervals236

between local maximums are almost 1.85), which may be described by a factor Ae−iωp t . The237

excitation energy ωp corresponds to the peaks of ReVxc(ω) at ω ∼ −3. Both the amplitude A238

and the energy |ωp | decrease as V turns smaller, as shown in the inset of Fig. 2 (right panel).239

iii) For V = 1, the local maximum of ReVxc(t ) around t = 1 is much larger than other local240

maximal values. Correspondingly, ReVxc(ω) exhibits non-Lorentzian structures for ω < −5.241

Similar larger local maximum at small time also exists for V = 0.5, 0.2. As shown in the inset242

of Fig. 2 ( left panel), for V = 0.5, the local maximum at t ∼ 2 is nearly twice as large as243

the local maximum at t ∼ 4. This drop in local maxima suggests that ωp may contain an244

imaginary part.245

Figure 2: The Vxc of a 50-site cluster at half-filling, with parameters
ε f = −2.5, U = 5, th = −1, T = 0. Left: real part of Vxc(t ). Right: real part of
Vxc(ω), calculated with broadening factor η = 0.1.

Features i) and ii) can be already found in the analytic expression of the dimer Vxc. How-246

ever, feature iii) emerges only when the impurity is coupled to a large number of noninteracting247

sites. Therefore, we attribute feature iii) to the hybridization effect. As mentioned in Sec. 2.1,248

the Vxc here incorporates the hybridization field, which is a purely imaginary constant for the249

noninteracting case in the WBL. We note that the constant term of the cluster Vxc has a very250

small imaginary part. As a result, the spectral function exhibits sharp peaks at ω ∼ U
2 , instead251

of proper Hubbard side-bands. This can be attributed to the qualitative difference between252

the Anderson-type chain with 50 sites and the SIAM where the bath has continuous degrees253

of freedom.254

To summarize the finite-cluster results, ReVxc(t ) exhibits an oscillating behavior, which255

suggests that the Vxc can still take the form Vxc(t ) =Ae−iωp t +C. However, the hybridization256

between the impurity and the bath requires a complex C, so that ReC and ImC determine the257

peak location and the width of the Hubbard band, respectively. Moreover, the local maxima258

of ReVxc(t ) change in time, suggesting a complex ωp . Here, we notice that Im[ωp] can be259

positive, leading to Vxc(t ) →∞ for large positive t . Thus it is more appropriate to use the260
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form Vxc(t ) =Ae−iωp t + C, which is derived using finite clusters, in the small-time regime.261

To determine the Vxc in the large-time regime (|tl | →∞), we consider the following ob-262

servation. The spectral function at low energies is largely determined by Ḡ f f ,σ(tl ,β). The263

Kondo resonance peak (with half-width ΓK) in the spectral function suggests that the Green’s264

function in the large-time regime takes the form Ḡ f f ,σ(tl > 0,β) ∝ e−ΓK tl . Since in our265

formalism Ḡ f f ,σ(t > 0,β) ∝ e−i
∫ t

0 Vxc(t̄ )d t̄ , the Vxc in the large-time regime should be ap-266

proximately Vxc(tl > 0) ≈ −iΓK. Notably, the fact that Vxc converges to −iΓK for large positive267

t is a direct consequence of the Kondo effect. Vxc calculated using small finite clusters lacks268

this feature because the noninteracting bath is not continuous.269

3.3 Ansatz of the symmetric SIAM Vxc270

Based on the analytic and numerical results above, the particle part of Vxc (t > 0) of the271

symmetic SIAM at low-T in the small- and large-time regimes can be described as:272

Vxc
p,σ(t > 0,β) ≈

¦ λωpe−iωp t + C, t small
−iΓK, t large.

(37)

The physical picture is highlighted as follows: Vxc in the large-time regime, dominating Ḡ f f ,σ273

for large |t |, leads to the sharp Kondo resonance peak. On the other hand, Vxc in the small-274

time regime, with a large contribution from the constant term C, corresponds to the Hubbard275

side-band broadened by the hybridization effect. We propose an ansatz for Vxc
p,σ(t > 0,β)276

which captures both the large- and small-time features:277

Vxc
p,σ(t > 0,β) =

λ(ωp + C) + (1−λ)Ceiωp t

λ+ (1−λ)eiωp t
, (38)

where λ is real, ωp and C are complex, and ωp + C = −iΓK is temperature-dependent. The278

fractional form of the complete ansatz (Eq. (38)) follows naturally from a Vxc obtained via the279

equation of motion and the Lehmann representation of the Green’s function (see Eq. (27)),280

where both the numerator and the denominator contain exponential factors of t . Note that281

for a particle-hole symmetric system, the hole part Vxc (t < 0) can be calculated using the282

symmetry relation283

Vxc(−t ) = −Vxc(t ). (39)

Following Eq. (38), the local Green’s function (t > 0) is then (see the derivation in Appendix D)284

Ḡp
f f ,σ
(t ,β) = −

i

2

�

(1−λ)e−iCt +λe−i(C+ωp)t
�

, (40)

and the spectral function is285

A(ω> 0,β) =
1−λ
2π

�

�Im[C]
�

�

(ω− Re[C])2 + (Im[C])2
+
λ

2π

�

�Im[C +ωp]
�

�

(ω− Re[C +ωp])2 + (Im[C +ωp])2
,(41)

and A for ω< 0 can be calculated using the particle-hole symmetry:286

A(ω< 0,β) = A(−ω,β). (42)

Before determining the ansatz parameters numerically, we use the ansatz to interpret the287

Kondo spectral function. The two peaks in the spectral function can be recognized as a Hub-288

bard side-band located at ω = Re[C] with half-width ΓH = −Im[C], and a Kondo peak located289

10
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at ω = Re[C +ωp] = 0 with half-width ΓK = −Im[C +ωp]. The spectral weights of the two290

peaks are determined by λ. The two peaks have distinct origins. The peak location and the291

width of the Hubbard side-band are controlled by the constant term of the Vxc in the small-292

time regime, which accounts for the fact that the impurity level is affected by the interaction293

and broadened by the continuous bath. On the other hand, at low-T , the Vxc in the large-294

time regime creates a sharp resonance peak close to ω = 0, whose width and height can be295

described by the Fermi-liquid treatment [47].296

Having in mind the physical meaning of the parameters, we discuss the extrapolation pro-297

cedure, i.e., how the ansatz quantities (λ,ωp ,C) can be calculated with a given symmetric298

SIAM with model parameters (U, V, th,β). Here, to compare with NRG results in the litera-299

ture (e.g., from Refs. [29] and [48]), we also use the WBL. We consider first the T = 0 limit,300

and assume that the half-width of the Kondo peak is given by the Kondo temperature (TK) [48].301

Thus,302

C +ωp

�

�

�

T=0
≈ −iTK = −i

√

√UΓ

2
e−

πU
8Γ +

πΓ
2U . (43)

The peak location of the Hubbard side-band can be directly calculated, which means303

Re[C] ≈
U

2
. (44)

We notice that the height of the Kondo peak at T = 0 is given by 1/(πΓ ), suggesting304

A(ω = 0) =
λ

πTK
+

1−λ
π|Im[C]|

=
1

πΓ
, (45)

which simplifies to
λ

πTK
=

1
πΓ for TK much smaller than the Hubbard side-band half-width305

ΓH, and thus λ can be determined. The last unknown parameter is the imaginary part of306

C, which corresponds to ΓH. We use the Anderson-type finite-size chain spectral function to307

estimate Im[C]. Note that a finite chain cannot reproduce the proper broadening caused by an308

infinitely wide band. However, the relative weight between the Hubbard peak and the Kondo309

peak,310

R =
1−λ
2λ

TK
�

�Im[C]
�

�

, (46)

can provide information of Im[C]. We extrapolate the value of R by increasing the number of311

sites in the chain. We calculate the spectral function using the chain setup with an increas-312

ing number of noninteracting sites Nc . From the spectral functions (as plotted in Fig. 3a),313

we determine the relative weight R, which is then plotted against the total number of sites314

L = Nc + 1. For a given Γ , R increases with L (we use L = 4, 8, 20, 30 and 40), as shown by315

the scattered data points in Fig. 3b. Noticing the nearly linear increase of R at small L and316

expecting a converging R at large L, we fit the R − L data using a hyperbolic-tangent func-317

tional form (which eventually provides satisfactory spectral functions) for the fitting function.318

Consequently, R(L =∞) can be estimated using the fitting results (see the curves in Fig. 3b).319

In Fig. 4, we show the local spectral function of a symmetric SIAM in the WBL with320

U = 3, th = 50, T = 0. We choose the parameters (Γ = 0.2, 0.5, and 0.9) to compare with321

NRG results [29] in the WBL. The spectral function show satisfactory agreements to the NRG322

results. We attribute this to the fact that the Vxc as an effective field captures the intrin-323

sic physics of an impurity problem. In the large-positive-time regime, Vxc
p,σ(t ) converges to324

ωp + C = −iTK, meaning that the Kondo resonance peak is created at ω = 0 and it requires325

no energy transfer. In the small-positive-time regime, Vxc
p,σ(t ) is dominated by the complex326

constant C, giving rise to the Hubbard side-band. Upon closely comparing our results with327

NRG, we notice that in the Kondo regime (small Γ/U), our Kondo peaks have a smaller width328
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Figure 3: a) The zero-T spectral function of L-site clusters. We use U = 3, th = 50 to
approach the WBL, and different V values to reach Γ = 0.2, 0.5 and 0.9. The results
are from ED for L = 4, 8 and from TDVP for L = 20. The Kondo peaks and Hubbard
peaks are highlighted by arrows. b) The relative weight R between the Hubbard peak
and the Kondo peak, as a function of the total number of sites L. TDVP is used for
L = 20, 30 and 40. For each value of Γ , the data are fitted using R = R∞ tanh(aL),
where R∞ is the converged value and a is a parameter determining the converging
speed. The fitted values are R∞ = 0.165, 0.151, and 0.107 for Γ = 0.2, 0.5, and
0.9, respectively.

than those from NRG. This is because we assume ΓK
�

�

T=0 = TK, while in NRG-based theory,329

ΓK
�

�

T=0 = w TK, where w ≈ 3.7 is determined by the so-called Wilson number [49]. At zero-T330

and in the WBL, most of the ansatz parameters can naturally be determined based on some331

well-known results of the SIAM. Only one parameter requires a numerical extrapolation. More-332

over, the cluster spectral function used in the extrapolation (obtained via ED or TDVP) is ac-333

tually distinct from the SIAM spectral function: for cluster results, the Kondo peak position is334

not at ω = 0, and the Hubbard band is too sharp. As already noted close to the end of section335

3.2, the discrepancy can be attributed to the essential differences between a finite cluster with336

tens of sites and a continuous bath. However, the Vxc scheme produces favourable spectral337

functions using these finite cluster results. This indicates that the Vxc formalism, originat-338

ing from very fundamental physics and using established knowledge of the target system as a339

reference, is able to capture the key features of the impurity problem.340

Lastly, we discuss the spectral function at finite temperatures. In the Vxc formalism, we341

can see from the dimer result that thermal excitation leads to the broadening of both the342

Kondo peak and the Hubbard side-band peak. For the SIAM in the WBL, as the temperature343

T increases, the Kondo peak is broadened, while the Hubbard side-band remains almost un-344

changed. This thermal behavior can be effectively captured by our ansatz, which treats the345

imaginary part of the excitation energy ωp as temperature-dependent, while assuming that346

other parameters remain temperature-independent. The temperature dependence can be ex-347

pressed as348

ωp(T) =ωp(T = 0) + iΩT . (47)

According to our interpretation of the ansatz parameters, ωp at finite-T corresponds to the349

finite-T Kondo peak half-width ΓK as350

ωp(T) = −
U

2
+ i
�

ΓH − ΓK(T)
�

. (48)
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Figure 4: The zero-T spectral function of a symmetric SIAM. We use U = 3, th = 50
to approach the WBL, and different V values to realize desired Γ values. From the
extrapolation, we get Im[C] = −0.6,−1.3 and −1.7, respectively, for Γ = 0.2, 0.5
and 0.9. The NRG results (blue dashed lines) are adapted from Ref. [29].

Following Eqs. (47) and (48), we have the following relation between ΩT and ΓK(T):351

ΩT = −i
�

ΓK(T)− ΓK(0)
�

. (49)

Several expressions have been proposed to describe the temperature-dependence of the Kondo352

peak half-width ΓK in the literature [50–52], which can be used to determine ΩT . For T ® TK,353

an expression beyond Fermi-liquid theory has been derived [52]:354

ΓK(T) = 1.542TK

√

√

√

√(1+
p

3) + (2+
p

3)

√

√

√1+
� T

T̃K

�2
+
p

3

2

� T

T̃K

�2
, (50)

where T̃K ≈ 0.491TK. Note that Eq. (50) is based on the NRG correction ΓK(T = 0) ≈ 3.92TK,355

which provides a good description for the SIAM in the strong Kondo regime. However, when356

the hybridization Γ becomes large, the factor 3.92 overestimates the width of the Kondo peak357

(see the Γ = 0.9 case in Fig. 4). To be consistent with our zero-T treatment, we rescale Eq. (50)358

by a factor of 3.92. In the Fermi-liquid regime (T � TK), we approximately have359

ΩT = −
αT2

TK
, (51)

whereα ≈ 3.44. Other ansatz parameters are estimated using the zero-T TDVP approach. The360

finite-T spectral function results (
U

2th
= 2× 10−3, Γ = 0.04U) are shown in Fig 5. Compared361

with NRG results [48], the finite-T Vxc result captures the correct trend of the Kondo peak362

width: at T � TK, the contribution of ΩT is negligible, leading to a width dominated by the363

Kondo temperature. As T approaches TK, |ΩT | increases. The agreement with NRG results364

worsens for T > 10TK. This may be due to our reference expression, Eq. (50), being only365

valid for temperatures up to around TK [52].366

4 Conclusions and outlook367

In this work, we applied the exchange-correlation (xc) field formalism to the symmetric single368

impurity Anderson model (SIAM) at low temperatures. The formalism introduces a dynamical369

xc field (Vxc), which can be interpreted as the Coulomb potential of the xc hole. For the SIAM,370
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Figure 5: The spectral function of a symmetric SIAM with
U

2th
= 2 × 10−3 and

Γ = 0.04U , at temperatures from 10−2TK to 103TK. Left: The frequency is in unit
of U . Right: The frequency is in unit of TK and in logarithmic scale to highlight the
width of the Kondo resonance peak. The NRG results (bottom) are adapted from
Ref. [48].

the Vxc also incorporates the hybridization effect between the impurity and the bath. We371

proposed an ansatz for the SIAM Vxc, which exhibits different asymptotic behaviors in the372

small- and large-time regimes, respectively. At small t , the Vxc includes a dominant complex373

constant term, C, and an exponential term with a complex quasiparticle-like excitation, ωp .374

The real and imaginary parts of C correspond to the peak location and the width of the Hubbard375

side-band, respectively. At large t , the Vxc converges to C + ωp , which corresponds to the376

Kondo peak half-width. Importantly, Im[ωp(T = 0)] accounts for the Kondo temperature. At377

zero-T in the WBL, most parameters of the ansatz can be calculated from the model parameters378

using Fermi-liquid theory. The only unknown parameter can be estimated by an extrapolation379

procedure. For low temperatures, the temperature-dependence of the ansatz parameters is380

primarily through Im[ωp], which is determined by extensions of Fermi-liquid theory, guided by381

the insights from the auxiliary analytically dimer Vxc. Overall, the spectral function calculated382

from the Vxc shows satisfactory agreement with the NRG results. The extrapolation procedures383

involved are of low computational cost. We understand the favourable performance of the384

xc field formalism as follows: the screening effect underlying the SIAM is essential for the385

Kondo effect, and the xc field provides a suitable description for quasiparticle-like excitations.386

Hence, the parameters in the ansatz have clear physical meaning and can be related in a387

novel perspective to key well-understood features of the spectral function. The fact that only388

a few parameters require numerical treatment leads to a good trade-off between accuracy and389

computational effort.390
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As an outlook, QIMs beyond the symmetric SIAM at half-filling can also be interpreted391

from the perspective of the xc field formalism. We have already noted that for the narrow band392

SIAM or the SIAM away from half-filling, the Vxc requires a different extrapolation scheme.393

Additionally, when an external magnetic field is included, the spectral function becomes spin-394

dependent, and the Kondo resonance can be suppressed with increasing field. In future work,395

we plan to investigate how the magnetic field affects the Vxc. Moreover, quantities such as the396

dynamical spin susceptibility, the specific heat, and the size of the Kondo cloud are related to397

spin correlators. We expect the spin xc field formalism can be applied to these problems.398

Finally, we stress a significant feature of the xc field formalism: it manages to reduce a399

complicated many-body problem to an extrapolation procedure. The extrapolation is usually400

done with a (numerically) solvable finite cluster or a homogeneous system as a reference.401

When the target system and the reference system exhibit explicit similarities, the extrapolation402

can be done straightforwardly. In practice, the connection between the reference system and403

the complex target is often less obvious. An example is the SIAM presented in this paper, where404

the finite cluster spectral function differs qualitatively from the SIAM. Despite this, the xc field405

formalism successfully captures the implicit correspondence, specifically the relative weight406

between the Hubbard peak and the Kondo peak at T = 0. Hence, we believe that the xc field407

formalism, based on the quasiparticle picture, is a viable and powerful approach for modeling408

correlated many-body system and holds great potential for first-principles calculations.409
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A Low temperature approximation of the Vxc415

From Eq. (27) and e−βEm � 1 for m > 2, the Vxc can be written as416

Vxc
p,σ(t ,β) =

C + e−β∆0 D

A+ e−β∆0 B
, (A.1)

where417

∆0 = E2 − E1, (A.2)

A =
∑

n+

an+,1e−iωn+ ,1 t , (A.3)

B =
∑

n+

an+,2e−iωn+ ,2 t , (A.4)

C =
∑

n+

an+,1ωn+,1e−iωn+ ,1 t , (A.5)

D =
∑

n+

an+,2ωn+,2e−iωn+ ,2 t . (A.6)

An expansion418

1

A+ e−β∆0 B
≈

1− e−β∆0
B
A

A
(A.7)
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leads to419

Vxc
p,σ(t ,β) =

C

A
+
�D

A
−

BC

A2

�

e−β∆0 , (A.8)

where C/A is just the zero-T Vxc, and all terms of order O(e−β∆)where∆ >∆0 are neglected420

for low-T . The time-oscillating term in the main text is then421

Ṽp,σ(t ) =
D

A
−

BC

A2
=

C

A
[
D

C
−

B

A
] (A.9)

B Analytic Vxc of an impurity-free-electron dimer422

We use a dimer consisting of an interacting site ( f ) and a noninteracting site (c) to calculate423

the analytic Vxc for the f site. Here we repeat the Hamiltonian in the main text:424

Ĥdimer = ε f (n̂ f ↑ + n̂ f ↓) +Un̂ f ↑n̂ f ↓ + V
∑

σ

( f̂ †
σ ĉσ +H.c.), (B.1)

where ε f = −
U
2 , V is the hopping strength and the dimer is at half-filling. With the cho-425

sen dimer model, the spectral weights and the local Green’s function (Eq. (21)) are spin-426

independent. For simplicity we keep the spin indices implicit in this section. With variables427

depending on U, V428

u =
U

2V
(B.2)

x =
u

4
+

√

√

1+ (
u

4
)2 (B.3)

y =
u

2
+
s

1+ (
u

2
)2, (B.4)

and the same low-T assumption, the particle part of the Green’s function can be written as429

iḠp
f f
(t ) = Z−1

�

[a1,1e−iω1,1 t + a2,1e−iω2,1 t ] + eβu[a1,2e−iω1,2 t + a2,2e−iω2,2 t ]
�

(B.5)

where the partition function is430

Z = 1+ 3eβ(u−2x )V , (B.6)

the spectral weights are431

a1,1 =
(x + y)2

2(1+ x2)(1+ y2)
(B.7)

a2,1 =
(1− x y)2

2(1+ x2)(1+ y2)
(B.8)

a1,2 =
3

2(1+ y2)
(B.9)

a2,2 =
3y2

2(1+ y2)
, (B.10)

and the excitation energies are432

ω1,1 = (2x − y)V (B.11)

ω2,1 = (2x + y − u)V (B.12)

ω1,2 = (−y + u)V (B.13)

ω2,2 = yV. (B.14)
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Following the notations in Appendix A, the zero-T Vxc is433

Vxc
p (t , T = 0) =

a1,1ω1,1e−iω1,1 t + a2,1ω2,1e−iω2,1 t

a1,1e−iω1,1 t + a2,1e−iω2,1 t
. (B.15)

We note that in the large-interaction regime (u � 1),434

x =
u

2
+

2

u
+O(

1

u3
) (B.16)

y = u +
1

u
+O(

1

u3
), (B.17)

thus435

λ :=
a1,1

a2,1
=

9

u2
+O(

1

u3
)� 1. (B.18)

The expansion of Vxc to the first order in λ gives436

Vxc
p (t , T = 0) ≈ω2,1 −λΩeiΩt , (B.19)

where437

Ω =ω2,1 −ω1,1 =
p

u2 + 4V. (B.20)

For low-T , following Eq. (A.9), we have438

Ṽp(t )

Vxc
p (t , T = 0)

=
a1,2ω1,2e−iω1,2 t + a2,2ω2,2e−iω2,2 t

a1,1ω1,1e−iω1,1 t + a2,1ω2,1e−iω2,1 t
−

a1,2e−iω1,2 t + a2,2e−iω2,2 t

a1,1e−iω1,1 t + a2,1e−iω2,1 t
. (B.21)

Noting that for u � 1,439

a1,2

a2,1
=

3

u2
+O(

1

u3
), (B.22)

a2,2

a2,1
= 3(1+

4

u2
) +O(

1

u3
), (B.23)

ω1,1

ω2,1
=

3

u2
+O(

1

u3
), (B.24)

ω1,2

ω2,1
= −

1

u2
+O(

1

u3
), (B.25)

ω2,2

ω2,1
= 1−

4

u2
+O(

1

u3
), (B.26)

we get440

Ṽp(t )

Vxc
p (t , T = 0)

=
24

u2
eiΩ′ t −

12

u2
eiΩ′′ t +O(

1

u3
), (B.27)

where441

Ω′ = ω2,1 −ω1,2 = (

√

√u2

4
+ 4+

p

u2 + 4−
u

2
)V (B.28)

Ω′′ = ω2,1 −ω2,2 = (

√

√u2

4
+ 4−

u

2
)V. (B.29)

The temperature factor442

e−β∆0 = e−β(2x−u) (B.30)

need to be small in order for the approximation Eq. (A.7) holds.443
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C Calculating the Green’s function at T = 0 using TDVP444

Here, we give some details regarding calculating G f f ,σ(t , T = 0) of our finite cluster using445

the ITensor library [43, 44]. We first calculate the ground state |Ψ0〉 using the density matrix446

renormalization group algorithm. Then the TDVP algorithm is used to time-evolve the state447

f̂ †
σ|Ψ0〉. With |Ψ(t > 0)〉 = e−iĤ t f̂ †

σ|Ψ0〉, the one-particle Green’s function at equilibrium can448

be calculated:449

iG f f ,σ(t > 0) = 〈Ψ0|eiĤ t f̂σe−iĤ t f̂ †
σ|Ψ0〉

= eiE0 t 〈Ψ0|Ψ(t )〉, (C.1)

where E0 is the ground-state energy. Our system is particle-hole symmetric, which means450

G f f ,σ(t < 0, T = 0) = −G f f ,σ(−t , T = 0). (C.2)

We calculate the Green’s function in the frequency domain with the Fourier transform451

G f f ,σ(ω, T = 0) =

∫

G f f ,σ(t , T = 0)eiωt dt . (C.3)

The spectral function is then calculated from G f f ,σ(ω).452

D Solving the Green’s function from the ansatz of the Vxc453

For the SIAM, the equation of motion of the particle Green’s function (t > 0) reads454

[i∂t − ε f − VH − Vxc
p,σ(t ,β)]Ḡp

f f ,σ
(t ,β) = 0, (D.1)

where ε f +VH = 0 and g+ = Ḡp
f f ,σ
(t = 0+,β) = −0.5i for the symmetric SIAM. Accordingly,455

the Green’s function is456

Ḡp
f f ,σ
(t > 0,β) = g+e−i

∫ t
0 Vxc

p,σ(t̄ ,β)d t̄ (D.2)

The Vxc is given by the complete ansatz457

Vxc
p,σ(t > 0,β) =

λ(C +ωp) + (1−λ)Ceiωp t

λ+ (1−λ)eiωp t
, (D.3)

where λ is real and positive, andωp and C are complex. Assuming that λ� 1 and Imωp > 0,458

we have for positive t459

Vxc
p,σ(t ,β) =

¦ λωpe−iωp t + C, t small,
ωp + C, t large.

(D.4)

The time integral of Vxc is460

∫ t

0

Vxc
p,σ(t̄ ,β)d t̄ =

∫ t

0

λ(C +ωp)e−iωp t̄

λe−iωp t̄ + (1−λ)
d t̄ +

∫ t

0

(1−λ)Ceiωp t̄

λ+ (1−λ)eiωp t̄
d t̄

=
C +ωp

−iωp
ln
�

λe−iωp t + (1−λ)
�

+
C

iωp
ln
�

λ+ (1−λ)eiωp t �

= (C +ωp) + i ln
�

λ+ (1−λ)eiωp t �. (D.5)
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Applying Eq. (D.5) to Eq. (D.2), we obtain the Green’s function461

Ḡp
f f ,σ
(t > 0,β) = g+

�

(1−λ)e−iCt +λe−i(C+ωp)t
�

. (D.6)

The parameters are interpreted as follows: Im[C] ∼ −ΓH, where ΓH is the half-width of the462

Hubbard side-band, and Im[C +ωp] ∼ −ΓK, where ΓK is the half-width of the Kondo peak and463

is much smaller than ΓH in the Kondo regime. Using the results in the main text, we have464

λ� 1,C +ωp = −iTK, and ωp = −
U
2 + i(ΓH − ΓK). They are consistent with our assumption465

to derive the asymptotic properties in Eq. (D.4).466

References467

[1] A. C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge Studies in Magnetism.468

Cambridge University Press (1993).469

[2] Y. Meir, N. S. Wingreen and P. A. Lee, Low-temperature transport through a quan-470

tum dot: The anderson model out of equilibrium, Phys. Rev. Lett. 70, 2601 (1993),471

doi:10.1103/PhysRevLett.70.2601.472

[3] D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav and473

M. A. Kastner, Kondo effect in a single-electron transistor, Nature 391, 156 (1998),474

doi:10.1038/34373.475

[4] S. M. Cronenwett, T. H. Oosterkamp and L. P. Kouwenhoven, A Tunable Kondo Effect in476

Quantum Dots, Science 281(5376), 540 (1998), doi:10.1126/science.281.5376.540,477

https://www.science.org/doi/pdf/10.1126/science.281.5376.540.478

[5] V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie and N. S. Wingreen, Tunneling into a479

Single Magnetic Atom: Spectroscopic Evidence of the Kondo Resonance, Science 280(5363),480

567 (1998), doi:10.1126/science.280.5363.567, https://www.science.org/doi/pdf/10.481

1126/science.280.5363.567.482

[6] J. Li, W.-D. Schneider, R. Berndt and B. Delley, Kondo Scattering Observed at a Single483

Magnetic Impurity, Phys. Rev. Lett. 80, 2893 (1998), doi:10.1103/PhysRevLett.80.2893.484

[7] O. Újsághy, J. Kroha, L. Szunyogh and A. Zawadowski, Theory of the Fano Resonance in485

the STM Tunneling Density of States due to a Single Kondo Impurity, Phys. Rev. Lett. 85,486

2557 (2000), doi:10.1103/PhysRevLett.85.2557.487

[8] S. Ydman, M. Hopjan and C. Verdozzi, Nonequilibrium kondo-vs.-rkky scenarios in nan-488

oclusters, EPL 123(4), 47001 (2018), doi:10.1209/0295-5075/123/47001.489

[9] L. Amico, R. Fazio, A. Osterloh and V. Vedral, Entanglement in many-body systems, Rev.490

Mod. Phys. 80, 517 (2008), doi:10.1103/RevModPhys.80.517.491

[10] P. Samuelsson and C. Verdozzi, Two-particle spin entanglement in magnetic anderson nan-492

oclusters, Phys. Rev. B 75, 132405 (2007), doi:10.1103/PhysRevB.75.132405.493

[11] P. W. Anderson, Localized Magnetic States in Metals, Phys. Rev. 124, 41 (1961),494

doi:10.1103/PhysRev.124.41.495

[12] A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg, Dynamical mean-field theory of496

strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys.497

68, 13 (1996), doi:10.1103/RevModPhys.68.13.498

19

https://doi.org/10.1103/PhysRevLett.70.2601
https://doi.org/10.1038/34373
https://doi.org/10.1126/science.281.5376.540
https://www.science.org/doi/pdf/10.1126/science.281.5376.540
https://doi.org/10.1126/science.280.5363.567
https://www.science.org/doi/pdf/10.1126/science.280.5363.567
https://www.science.org/doi/pdf/10.1126/science.280.5363.567
https://www.science.org/doi/pdf/10.1126/science.280.5363.567
https://doi.org/10.1103/PhysRevLett.80.2893
https://doi.org/10.1103/PhysRevLett.85.2557
https://doi.org/10.1209/0295-5075/123/47001
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/PhysRevB.75.132405
https://doi.org/10.1103/PhysRev.124.41
https://doi.org/10.1103/RevModPhys.68.13


SciPost Physics Submission

[13] S. Biermann, F. Aryasetiawan and A. Georges, First-Principles Approach to the499

Electronic Structure of Strongly Correlated Systems: Combining the GW Approxi-500

mation and Dynamical Mean-Field Theory, Phys. Rev. Lett. 90, 086402 (2003),501

doi:10.1103/PhysRevLett.90.086402.502

[14] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet and C. A. Marianetti,503

Electronic structure calculations with dynamical mean-field theory, Rev. Mod. Phys. 78,504

865 (2006), doi:10.1103/RevModPhys.78.865.505

[15] H. Aoki, N. Tsuji, M. Eckstein, M. Kollar, T. Oka and P. Werner, Nonequilibrium506

dynamical mean-field theory and its applications, Rev. Mod. Phys. 86, 779 (2014),507

doi:10.1103/RevModPhys.86.779.508

[16] K. G. Wilson, The renormalization group: Critical phenomena and the Kondo problem, Rev.509

Mod. Phys. 47, 773 (1975), doi:10.1103/RevModPhys.47.773.510

[17] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer and P. Werner, Continuous-511

time Monte Carlo methods for quantum impurity models, Rev. Mod. Phys. 83, 349 (2011),512

doi:10.1103/RevModPhys.83.349.513

[18] N. Andrei, K. Furuya and J. H. Lowenstein, Solution of the Kondo problem, Rev. Mod.514

Phys. 55, 331 (1983), doi:10.1103/RevModPhys.55.331.515

[19] P. B. Wiegmann and A. M. Tsvelick, Exact solution of the Anderson model: I, J. Phys. C:516

Solid State Phys. 16(12), 2281 (1983), doi:10.1088/0022-3719/16/12/017.517

[20] A. M. Tsvelick and P. B. Wiegmann, Exact solution of the Anderson model. II. Thermody-518

namic properties at finite temperatures, J. Phys. C: Solid State Phys. 16(12), 2321 (1983),519

doi:10.1088/0022-3719/16/12/018.520

[21] W. Hofstetter, Generalized Numerical Renormalization Group for Dynamical Quantities,521

Phys. Rev. Lett. 85, 1508 (2000), doi:10.1103/PhysRevLett.85.1508.522

[22] R. Peters, T. Pruschke and F. B. Anders, Numerical renormalization group approach523

to green’s functions for quantum impurity models, Phys. Rev. B 74, 245114 (2006),524

doi:10.1103/PhysRevB.74.245114.525

[23] A. Weichselbaum and J. von Delft, Sum-Rule Conserving Spectral Functions from526

the Numerical Renormalization Group, Phys. Rev. Lett. 99, 076402 (2007),527

doi:10.1103/PhysRevLett.99.076402.528

[24] Z. Osolin and R. Žitko, Padé approximant approach for obtaining finite-temperature spec-529

tral functions of quantum impurity models using the numerical renormalization group tech-530

nique, Phys. Rev. B 87, 245135 (2013), doi:10.1103/PhysRevB.87.245135.531

[25] A. Isidori, D. Roosen, L. Bartosch, W. Hofstetter and P. Kopietz, Spectral function of532

the Anderson impurity model at finite temperatures, Phys. Rev. B 81, 235120 (2010),533

doi:10.1103/PhysRevB.81.235120.534

[26] A. Ge, N. Ritz, E. Walter, S. Aguirre, J. von Delft and F. B. Kugler, Real-frequency quantum535

field theory applied to the single-impurity Anderson model, Phys. Rev. B 109, 115128536

(2024), doi:10.1103/PhysRevB.109.115128.537

[27] D. Zgid, E. Gull and G. K.-L. Chan, Truncated configuration interaction expansions as538

solvers for correlated quantum impurity models and dynamical mean-field theory, Phys.539

Rev. B 86, 165128 (2012), doi:10.1103/PhysRevB.86.165128.540

20

https://doi.org/10.1103/PhysRevLett.90.086402
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.86.779
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.55.331
https://doi.org/10.1088/0022-3719/16/12/017
https://doi.org/10.1088/0022-3719/16/12/018
https://doi.org/10.1103/PhysRevLett.85.1508
https://doi.org/10.1103/PhysRevB.74.245114
https://doi.org/10.1103/PhysRevLett.99.076402
https://doi.org/10.1103/PhysRevB.87.245135
https://doi.org/10.1103/PhysRevB.81.235120
https://doi.org/10.1103/PhysRevB.109.115128
https://doi.org/10.1103/PhysRevB.86.165128


SciPost Physics Submission

[28] M. Granath and H. U. R. Strand, Distributional exact diagonalization for-541

malism for quantum impurity models, Phys. Rev. B 86, 115111 (2012),542

doi:10.1103/PhysRevB.86.115111.543

[29] S. Motahari, R. Requist and D. Jacob, Kondo physics of the Anderson impurity544

model by distributional exact diagonalization, Phys. Rev. B 94, 235133 (2016),545

doi:10.1103/PhysRevB.94.235133.546

[30] G. Stefanucci and S. Kurth, Steady-State Density Functional Theory for Finite Bias Conduc-547

tances, Nano Letters 15(12), 8020 (2015), doi:10.1021/acs.nanolett.5b03294, PMID:548

26571349, https://doi.org/10.1021/acs.nanolett.5b03294.549

[31] S. Kurth and G. Stefanucci, Nonequilibrium Anderson model made simple with density550

functional theory, Phys. Rev. B 94, 241103 (2016), doi:10.1103/PhysRevB.94.241103.551

[32] D. Jacob and S. Kurth, Many-Body Spectral Functions from Steady State Density Functional552

Theory, Nano Letters 18(3), 2086 (2018), doi:10.1021/acs.nanolett.8b00255, PMID:553

29437404, https://doi.org/10.1021/acs.nanolett.8b00255.554

[33] P. Kubiczek, A. N. Rubtsov and A. I. Lichtenstein, Exact real-time dynamics of single-555

impurity Anderson model from a single-spin hybridization-expansion, SciPost Phys. 7, 016556

(2019), doi:10.21468/SciPostPhys.7.2.016.557

[34] A. J. Kim, J. Li, M. Eckstein and P. Werner, Pseudoparticle vertex solver for quantum558

impurity models, Phys. Rev. B 106, 085124 (2022), doi:10.1103/PhysRevB.106.085124.559

[35] D. Werner, J. Lotze and E. Arrigoni, Configuration interaction based nonequi-560

librium steady state impurity solver, Phys. Rev. B 107, 075119 (2023),561

doi:10.1103/PhysRevB.107.075119.562

[36] N. Ng, G. Park, A. J. Millis, G. K.-L. Chan and D. R. Reichman, Real-time evolution of563

Anderson impurity models via tensor network influence functionals, Phys. Rev. B 107,564

125103 (2023), doi:10.1103/PhysRevB.107.125103.565

[37] B. Kloss, J. Thoenniss, M. Sonner, A. Lerose, M. T. Fishman, E. M. Stoudenmire, O. Par-566

collet, A. Georges and D. A. Abanin, Equilibrium quantum impurity problems via ma-567

trix product state encoding of the retarded action, Phys. Rev. B 108, 205110 (2023),568

doi:10.1103/PhysRevB.108.205110.569

[38] F. Aryasetiawan, Time-dependent exchange-correlation potential in lieu of self-energy, Phys.570

Rev. B 105, 075106 (2022), doi:10.1103/PhysRevB.105.075106.571

[39] F. Aryasetiawan and T. Sjöstrand, Spectral functions of the half-filled one-dimensional572

Hubbard chain within the exchange-correlation potential formalism, Phys. Rev. B 106,573

045123 (2022), doi:10.1103/PhysRevB.106.045123.574

[40] Z. Zhao, C. Verdozzi and F. Aryasetiawan, Dynamical exchange-correlation potential for-575

malism for spin-
1
2 Heisenberg and Hubbard chains: The antiferromagnetic/half-filled case,576

Phys. Rev. B 108, 235132 (2023), doi:10.1103/PhysRevB.108.235132.577

[41] K. Karlsson and F. Aryasetiawan, Time-dependent exchange-correlation hole578

and potential of the electron gas, Phys. Rev. B 107, 115172 (2023),579

doi:10.1103/PhysRevB.107.115172.580

[42] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, Courier Cor-581

poration (2012).582

21

https://doi.org/10.1103/PhysRevB.86.115111
https://doi.org/10.1103/PhysRevB.94.235133
https://doi.org/10.1021/acs.nanolett.5b03294
https://doi.org/10.1021/acs.nanolett.5b03294
https://doi.org/10.1103/PhysRevB.94.241103
https://doi.org/10.1021/acs.nanolett.8b00255
https://doi.org/10.1021/acs.nanolett.8b00255
https://doi.org/10.21468/SciPostPhys.7.2.016
https://doi.org/10.1103/PhysRevB.106.085124
https://doi.org/10.1103/PhysRevB.107.075119
https://doi.org/10.1103/PhysRevB.107.125103
https://doi.org/10.1103/PhysRevB.108.205110
https://doi.org/10.1103/PhysRevB.105.075106
https://doi.org/10.1103/PhysRevB.106.045123
https://doi.org/10.1103/PhysRevB.108.235132
https://doi.org/10.1103/PhysRevB.107.115172


SciPost Physics Submission

[43] M. Fishman, S. R. White and E. M. Stoudenmire, The ITensor Software Li-583

brary for Tensor Network Calculations, SciPost Phys. Codebases p. 4 (2022),584

doi:10.21468/SciPostPhysCodeb.4.585

[44] M. Fishman, S. R. White and E. M. Stoudenmire, Codebase release 0.3 for ITensor, SciPost586

Phys. Codebases pp. 4–r0.3 (2022), doi:10.21468/SciPostPhysCodeb.4-r0.3.587

[45] J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde and F. Verstraete, Time-588

Dependent Variational Principle for Quantum Lattices, Phys. Rev. Lett. 107, 070601589

(2011), doi:10.1103/PhysRevLett.107.070601.590

[46] M. Yang and S. R. White, Time-dependent variational principle with ancillary Krylov sub-591

space, Phys. Rev. B 102, 094315 (2020), doi:10.1103/PhysRevB.102.094315.592

[47] P. Nozières, A “fermi-liquid" description of the Kondo problem at low temperatures, J. Low593

Temp. Phys. 17 (1974), doi:10.1007/BF00654541.594

[48] E. Pavarini, E. Koch, A. Lichtenstein and D. Vollhardt, eds., Dynamical Mean-Field Theory595

of Correlated Electrons: Modeling and Simulation, Verlag des Forschungszentrum Jülich,596

ISBN ISBN 978-3-95806-619-9 (2022).597

[49] R. Žitko and T. Pruschke, Energy resolution and discretization artifacts in598

the numerical renormalization group, Phys. Rev. B 79, 085106 (2009),599

doi:10.1103/PhysRevB.79.085106.600

[50] H. O. Frota, Shape of the kondo resonance, Phys. Rev. B 45, 1096 (1992),601

doi:10.1103/PhysRevB.45.1096.602

[51] K. Nagaoka, T. Jamneala, M. Grobis and M. F. Crommie, Temperature De-603

pendence of a Single Kondo Impurity, Phys. Rev. Lett. 88, 077205 (2002),604

doi:10.1103/PhysRevLett.88.077205.605

[52] D. Jacob, Temperature evolution of the Kondo peak beyond Fermi liquid theory, Phys. Rev.606

B 108, L161109 (2023), doi:10.1103/PhysRevB.108.L161109.607

22

https://doi.org/10.21468/SciPostPhysCodeb.4
https://doi.org/10.21468/SciPostPhysCodeb.4-r0.3
https://doi.org/10.1103/PhysRevLett.107.070601
https://doi.org/10.1103/PhysRevB.102.094315
https://doi.org/10.1007/BF00654541
https://doi.org/10.1103/PhysRevB.79.085106
https://doi.org/10.1103/PhysRevB.45.1096
https://doi.org/10.1103/PhysRevLett.88.077205
https://doi.org/10.1103/PhysRevB.108.L161109

	Introduction
	Theory
	Vxc formalism for the SIAM
	The SIAM Vxc at low-temperature

	Results
	Analytic insights from a dimer
	Including hybridization with a finite cluster at zero-T
	Ansatz of the symmetric SIAM Vxc

	Conclusions and outlook
	Low temperature approximation of the Vxc
	Analytic Vxc of an impurity-free-electron dimer
	Calculating the Green's function at T=0 using TDVP
	Solving the Green's function from the ansatz of the Vxc
	References

