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studied in Einstein-Yang-Mills expansion. Furthermore, we generalized the decomposition to the

multi-trace case through unifying relations and established the connection both in single-trace and

multi-trace graphic descriptions. Finally, we established the relations between the Yang-Mills currents

and the single-trace Yang-Mills scalar currents by choosing special reference orders of the Yang-Mills

graphs.
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1 Introduction

As the leading order of the scattering amplitude, the structures of the tree-level amplitudes in diverse

theories play important roles in the modern amplitude theory. Meanwhile, the relations between the

tree-level amplitudes of different theories have also attracted a lot of attention, e.g. the expansion

relations which will be mainly discussed later. The expansion relations of tree amplitudes construct

an amazing web of different theories [1–5]. For example, one can expand gravity tree amplitudes as a

combination of Einstein-Yang-Mills (EYM) tree amplitudes or pure Yang-Mills (YM) amplitudes. An

analog of the expansion of gravity theory is the expansion of pure YM amplitudes to the Yang-Mills
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scalar (YMS) amplitudes or bi-adjoint scalar (BS) amplitudes, which will be mainly studied in this

paper.

Expansion relations have developed very well recently. The expansion relations can be understood

by the Cachazo-He-Yuan (CHY) formalism considering the relations between the CHY integrands [3, 5–

10]. We can also use different bases to express the expansion relations so that the expansion coefficients

can be given by some graphic rules [11–13], which will also give the Bern-Carrasco-Johannson (BCJ)

numerators [14, 15]. However, unlike the elegant results for amplitudes, an off-shell view of the

expansion relations is still unknown. The off-shell expansion relation is a Feynman-rule version of the

amplitude expansion relation, and it will help to construct the expansion relation for loop integrands.

To fill this gap, we start with the simplest off-shell object: Berends-Giele (BG) current [16]. The

definition of an n-pt BG current is an (n+1)-pt tree amplitude with one leg off-shell, which allows us

to construct BG currents recursively by “gluing” vertices and the off-shell legs of some subcurrents

and is easy to be generalized [17–21]. Obviously, the recursion of BG currents is equivalent to the

recursion of tree amplitudes. Moreover, the existence of the recursion allows us to prove relations

about BG currents by induction. Pioneering work for the expansion relation of BG currents of YM

theory can be seen in [22]. In that work, the authors also generalized the graphic rules (we will explain

this concept later) for on-shell tree amplitudes to the BG currents. However, there are still some

questions remaining. The most urgent one is the expansion relation for the YMS tree amplitudes

with any number of scalar traces. In this paper, we have solved this question using some differential

operators [23] and the same method in [22]. We will also show how to emergent multi-trace YMS

graphic rules from the single-trace ones. Moreover, we have studied how to obtain single-trace YMS

results from the YM results.

This paper is organized as follows. In Section 2, we will review some concepts, including graphic

rules, BG currents, and unifying relations. In Section 3, we consider the single-trace currents and

prove the expansion relation for these currents by induction, using the method in [22]. In Section 5,

we will show how to obtain the expansion relation of the multi-trace YMS currents from the single-

trace YMS currents through the unifying relations. In this process, the emergence of the multi-trace

YMS graphic rules from the single-trace ones will be done. In Section 6, we will demonstrate how to

obtain the single-trace YMS expansion relations from the YM results. Although we failed to emergent

the single-trace YMS graphic rules from the YM ones, we still figured out the connection between the

single-trace YMS and the YM results by choosing some special reference orders.

2 Preliminaries

In this section, we will make a brief review on basic concepts, including BG currents in BS and YMS,

the graphic rules in YMS theory, as well as unifying relations.

2.1 BG recursion in BS

The BG current ϕ(1, ..., n− 1
∣∣σ1, ..., σn−1) in BS theory is defined by [24]

ϕ
(
1, ..., n− 1

∣∣σ1, ..., σn−1

)
=

2

s1...n−1

n−2∑
i=1

[
ϕ
(
1, ..., i

∣∣σ1, ..., σi

)
ϕ
(
i+ 1, ..., n− 1

∣∣σi+1, ..., σn−1

)
− ϕ

(
1, ..., i

∣∣σn−i, ..., σn−1

)
ϕ
(
i+ 1, ..., n− 1

∣∣σ1, ..., σn−i

)]
.(2.1)
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Here σσσ = {σ1, ..., σn−1} denotes a permutation of external lines 1, ..., n− 1. When σσσ involves only one

element, the recursion is defined as

ϕ(l|l′) =
{
1 ( l′ = l)

0 ( l′ ̸= l)
. (2.2)

It is clear from (2.1) that the BS current ϕ
(
a1, ..., ai

∣∣b1, ..., bi) will vanish when {a1, ..., ai}\{b1, ..., bi} ≠

∅. The on-shell BS amplitude A(1, ..., n|σ1, ..., σn) is then obtained by taking the following limit

A(1, 2, ..., n|σ1, ..., σn) =
[
s1...n−1ϕ

(
1, 2, ..., n− 1

∣∣σ1, ..., σn−1

)]∣∣∣
s1...n−1=k2

n=0
. (2.3)

Here, we present three relations of the BS current (2.1) that will be used in subsequent discussions:

• Reflection relation

ϕ
(
1, ..., n− 1

∣∣σ1, ..., σn−1

)
= (−1)nϕ

(
1, ..., n− 1

∣∣σn−1, ..., σ1

)
. (2.4)

• Kleiss-Kuijf (KK) relation [25]

ϕ
(
1, 2, ..., n− 1

∣∣βββ, 1,ααα) =∑
�

(−1)|βββ|ϕ
(
1, 2, ..., n− 1

∣∣1,ααα� βββT
)
. (2.5)

• Two generalized KK relations∑
�

ϕ
(
1, 2, ..., n− 1

∣∣ααα� βββ
)
= 0, (2.6)∑

�

ϕ
(
1, 2, ..., n− 1

∣∣βββ � γγγT , 1,ααα
)
=
∑
�

(−1)|γγγ|ϕ
(
1, 2, ..., n− 1

∣∣βββ, 1,ααα� γγγ
)
. (2.7)

In the equations above, ααα, βββ and γγγ denote ordered sets. The notation |βββ|, |γγγ| indicates the number

of elements in βββ and γγγ, respectively, while βββT represents the inverse permutation of βββ. The shuffling

permutations AAA � BBB of two ordered sets AAA and BBB are defined as all permutations resulting from

merging AAA and BBB while preserving the relative order of elements in each set. The reflection relation

(2.4) is a special case of the KK relation (2.5) when ααα = ∅. The relation (2.6) is derived from the KK

relation (as noted in [26]), and the relation (2.7) can be directly proven by the KK relation (2.5). For

the YMS theory, the (color-ordered) BG currents can also be constructed similarly. In this paper, we

adopt the natural number order for the color labels involving both gluons and scalars. Consequently,

we will omit the label of this color order and focus on the other color order that involves only scalars.

2.2 BG current in YMS

The Lagrangian of YMS theory has the following expression [27],

LYMS = −1

4
F a
µνF

aµν +
1

2
(Dµϕ

A)a(DµϕA)a − g2

4
fabefecdϕAaϕBbϕAcϕBd +

gλ

3!
FABCfabcϕAaϕBbϕCc.

(2.8)

It includes the gluon field strength F a
µν = ∂µA

a
ν−∂νA

a
µ+gfabcAb

µA
c
ν , the covariant derivative Dµϕ

Aa =

∂µϕ
Aa + gfabcAb

µϕ
Ac, and a scalar field ϕAa that is charged under two gauge groups whose structure

constants are iFABC and ifabc respectively. The couplings of these two gauge groups are λ and g.

Here we will choose g = 1 and λ = 2 for convenience.
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The YMS BG current JYMS(111|222| · · · |mmm;G) can be calculated by the perturbiner method1 [28, 29].

In particular, we denote the single-trace BG current as JYMS(1, · · · , n − 1), in which the particles of

the ordered set {1, 2, ..., n− 1} can be either scalar or gluons, and the last particle “n” is always fixed

as a scalar and in general off-shell: k2n ̸= 0. For simplicity, the color order involving only all scalars

is chosen as an ordered subset of the ordered set {1, 2, ..., n − 1} and we will always omit this color

order in our notation when considering the single-trace case. For example, for a color order involving

all particles {1, 2, 3g, 4g, 5}, the scalar color order is {1, 2, 5}.
The JYMS(1, · · · , n− 1) has the following expression

JYMS(1, · · · , n− 1) =

6∑
i=1

Ti, (2.9)

and each Tj (i = 1, ...6) in above equation is given by

T1 =
1

s1,...,n−1

n∑
i=2

2
(
JYMS(1, · · · , i− 1) · JYMS(i, · · · , n− 1)

)
,

T2 =
1

s1,...,n−1

n∑
i=2

JYMS(1, · · · , i− 1)
[
JYM(i, · · · , n− 1) ·

(
−2k1,i−1 − ki,n−1

)]
,

T3 =
1

s1,...,n−1

n∑
i=2

[
JYM(1, · · · , i− 1) ·

(
2ki,n−1 + k1,i−1

)]
JYMS(i, · · · , n− 1),

T4 =
1

s1,...,n−1

∑
1<j<i<n

2
[
JYM(1, · · · , i− 1) · JYM(j, · · · , n− 1)

]
JYMS(i, · · · , j − 1),

T5 = − 1

s1,...,n−1

∑
1<j<i<n

JYMS(1, · · · , i− 1)
[
JYM(i, · · · , j − 1) · JYM(j, · · · , n− 1)

]
,

T6 = − 1

s1,...,n−1

∑
1<j<i<n

[
JYM(1, · · · , i− 1) · JYM(i, · · · , j − 1)

]
JYMS(j, · · · , n− 1). (2.10)

2.3 Graphic rules in YMS theory

Here we briefly review a graphic approach to calculating YMS amplitudes, which is based on the

recursive expansion of EYM amplitudes. The EYM amplitude can be decomposed into a basis of

EYM amplitudes with fewer gravitons and finally could be expressed by a summation of pure YM

amplitudes. The expansion coefficients are polynomial functions of polarizations and momentum, i.e.

(ϵi · ϵj), (ϵi · kj) and (ki · kj). If the three types of elements are drawn by arrows and nodes (as

shown in Fig. 1 (a1)-(a3)), the expansion coefficients as well as the permutation of YM amplitudes can

be described by graphs. Similarly, the YMS amplitudes A (111|222| . . . |mmm;G∥γγγ) also have such expansion

properties. From now on we always choose γγγ = {1, 2, ..., n} without loss of generality and ignore this

label.

An arbitrary tree level YMS amplitude A (111|222| . . . |mmm;G) with the gluons set G and the scalar traces

111 = {1, 2, . . . , r, n},222, . . . ,mmm can be generally expressed as a combination of tree-level color-ordered BS

amplitudes

AYMS (111|222| . . . |mmm;G) =
∑
F

(−)FCF
[ ∑
σσσ∈F|1\{1,n}

AYMS

(
1,σσσ, n

) ]
, (2.11)

1In this paper, we always choose the Feynman gauge for YMS currents.
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Figure 1. (a1), (a2) and (a3) correspond to the element ϵi · ϵj , ϵi · kj and ki · kj , respectively. (a4) denotes

two scalar particles i and j connected through a dashed line. The antisymmetric tensor Fµν
i = kµ

i ϵ
ν
i − (µ ↔ µ)

is defined by a vertical line in (b1).

where we have summed over all possible connected tree graphs F which are constructed according to

the graphic rules [2, 13]. The ”n” is fixed as the last point of the first trace 111.

Fig. 1 (a1)-(a3) are shown to represent three components ϵi ·ϵj , ϵi ·kj and ki ·kj . The antisymmetric

tensor Fµν
i = [kµi ϵ

ν
i − (µ ↔ ν)] is drawn by a vertical line in Fig. 1 (b1). The graph that two nodes

are connected by a dashed line (in Fig. 1 (a4)) is also introduced to denote the relative positions of

scalar particles. The graphic rules in YMS amplitudes are given as follows.

• Step-1 The nodes of the ordered set 111 = {1, ..., r, n} are connected with dashed lines. In partic-

ular, node “1” and “n” are chosen as two endpoints of this chain 2. The set R = {r1, ..., rl+m−1}
is defined with a given reference order: r1 ≻ r2 ≻ ... ≻ rl+m−1, and it can be any permutation

of the traces 222, ...,mmm and gluons g1, ..., gl. A root set R = {1, ..., r} is also defined.

• Step-2 Define a chain with the elements in R: ri1 → ri2 · · · → rik → j. The starting point

ri1 of the chain corresponds to the element with the highest priority in R (here it refers to r1),

while the internal points ri2 , ..., rik could be any other elements in R. The chain is attached to

an arbitrary node j of the root set R. Furthermore, a new set R is defined as R \ {ri1 , ..., rik},
and the elements of this chain have been removed from original R. The root set is re-expressed

by R ∪ {r1, ri1 , ..., rik}, which is the union of original root set R and {ri1 , ..., rik}. Following

the procedure and constructing more chains until the set R becomes empty, we finally have

constructed a sum of connected graphs with all particles in 111, ...,mmm and G.

• Step-3 As shown in Fig. 1 (b2) and (b1), the gluon gi represents a polarization vector ϵi if

it appears as the starting point, and a tensor Fµν
i for internal point of the chains in step-2,

respectively. For scalar trace iii, we need to search for all possible pair (ai, bi), for which the trace

iii has the expression: iii = {ai,ααα, bi,βββ}. The trace becomes {ai,ααα�βββT , bi} by shuffling ααα and βββ,

which can be decomposed into a sum of chains with ai and bi as endpoints. If a trace iii appears

as the starting point of any chains in step-2 (shown in Fig. 1 (b3)), an arbitrary bi is fixed, while

all possible ai of pair (ai, bi) (ai ̸= bi) are connected to second point of this chain, contributing

a vector (−kµai
) to the graph CF . When the trace appears as the internal point of each chain

in Fig. 1 (b4), bi and ai will be connected to left- and right-hand adjacent points of the chain,

2In fact, arbitrary two nodes can be chosen as the endpoints.
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respectively, contributing a term (kµbi)(−kνai
) to the graph CF . The ending point j of each chain

(in Step-2) denotes a vector kµj .

• Step-4 The permutations σσσ ∈ F|1 \ {1, n} associated with the graph F in eq. (2.11) are

determined through the following two steps: (i). For any two adjacent nodes a and b such that a

is closer to gluon 1 than b, the permutation σσσ must satisfy σ−1(a) < σ−1(b), where σ−1(a) and

σ−1(b) denote the positions of a and b in σσσ, respectively. (Specifically, if the position of a in σσσ is

j, then a = σj ≡ σ(j), which implies that j = σ−1(a).) (ii). For two subtree structures attached

to the same node, the corresponding permutations are shuffled together while preserving the

permutation order within each subtree.

• Step-5 Each trace iii contributes a (−)F = (−1)|βββ| for given ai and bi, where |βββ| is the number

of elements in βββ for each iii = {ai,ααα� βββT , bi}.

The YMS amplitude (2.11) can be calculated by summing over all possible graphs F described

by the above rules. For each graph of single-trace YMS amplitudes, only gluon particles appear on

the chains (of step-2), of which the graphic rule is much easier than that of pure YM amplitudes [22].

Moreover, since particles in 222, ...,mmm and G are not connected to “n”, we would be able to generalize

the graphic rules by letting the last particle “n” off-shell. The current defined by off-shell graphic

rules (by letting “n” off-shell) is shown as

J̃YMS (111|222| . . . |mmm;G) =
∑
F

(−)FCF
[ ∑
σσσ∈F|1\{1,n}

ϕ
(
1, ..., n− 1|1,σσσ

) ]
=
∑
σσσF

NYMS(1,σσσ
F )ϕ(1, ..., n− 1|1,σσσF ), (2.12)

which is called the effective current.

2.4 Unifying relations

There exist some differential operators that can transform the amplitudes of pure YM theory into those

of YMS theory, which are determined by on-shell kinematics and gauge invariance [23]. In addition,

these operators can also connect gravity, the non-linear sigma model, and so on. Since this work

focuses mainly on the unifying relations among the YMS amplitudes (or BG currents) with different

numbers of scalar traces, here we will demonstrate the relationship between the YM theory and the

YMS theory. For some more studies of these differential operators, see [30–33].

Color-ordered YM amplitudes can be turned into YMS amplitudes through the relation:

AYMS = T [i1j1] T [i2j2] · · · T [injn] ·AYM (2.13)

where T [isjs] with (s = 1, ..., n) are differential operators, is and js refer to i-th and j-th gluon

particles in YM amplitudes AYM , respectively. The equation above is exactly the unifying relation

between YM amplitudes and YMS amplitudes. Note that the operator T [isjs] is defined as:

T [isjs] ≡ ∂ϵis ϵjs =
∂

∂ (ϵis · ϵjs)
, (2.14)

where ϵis denotes the polarization vector of the is-th particle. Furthermore, the differential operator

is generally shown as T [ααα], where ααα = {α1, ..., αn}, and |α| ≥ 2. The T [ααα] can be expressed as:

T [ααα] = Tα1 αn
·
n−1∏
i=2

Tαi−1 αi αn
, (2.15)
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in which Tij = T [i j] and Tijl = ∂kiϵj − ∂klϵj , and ki refers to the momentum of the i-th particle.

Note that the operators T [ααα] are also referred to as “trace operators”, and all the elements

contained in ααα (i.e. ααα would be regarded as an arbitrary permutation of these elements) are in the

same trace if T [ααα] acts on a certain amplitude. In addition, the operator T [ααα] is invariant under the

cyclic permutations of the trace ααα. For example, the operator T [123] is given by

T [123] = T12T123 = ∂ϵ1 ϵ2 [∂k1 ϵ2 − ∂k3 ϵ2 ] . (2.16)

If the operator acts on four-point YM amplitude AYM(1, 2, 3, 4), we immediately have a single-trace

YMS amplitude with the scalar trace consisting of 1, 2, and 3:

AYMS(1, 2, 3, 4g) = T [123] ·AYM(1, 2, 3, 4). (2.17)

Finally, it is important to mention that the unifying relations also hold for BG currents under the

same gauge, which can be proved by induction directly [29, 34]. The relation will hold on the off-shell

level when we choose g = 1 and λ = 2 in the YMS Lagrangian (2.8),

JYMS = (−)#T [i1j1] T [i2j2] · · · T [injn] · JYM . (2.18)

The power of the minus sign can be determined by the concrete form of the differential operators. The

relation above will be used in the following discussion.

3 The off-shell expansion relation of the single-trace YMS currents

The YM BG current can be decomposed into an effective current (called BG current in BCJ gauge)

and another two terms relating to gauge transformation [22], and for more details, a brief review is

included in Appendix A.

In this section, we show that the single-trace YMS BG current JYMS(1, · · · , n− 1) in (2.9) could

also be decomposed as follows:

JYMS(1, · · · , n− 1) = J̃YMS(1, · · · , n− 1) + LYMS(1, · · · , n− 1), (3.1)

where J̃YMS(1, . . . , n − 1) is the effective current in single-trace YMS that can be described by the

off-shell graphic rules, while LYMS(1, . . . , n − 1) is related to gauge transformation. Note that the

particles ”1, ..., n− 1” can be either gluons or scalars. The J̃YMS(1, . . . , n− 1) and LYMS are explicitly

shown as

J̃YMS(1, . . . , n− 1) =
∑

σσσ∈Perm(1,...,i1−1,i1+1,...,n−1)

NYMS(i1,σσσ)ϕ(1, . . . , n− 1| i1,σσσ), (3.2)

LYMS(1, . . . , n− 1)

=
∑

{ai,bi}⊂{1,...,n−1}
no scalar between ai and bi

(−1)I+1 JYMS

(
S1,a1−1,K(a1,b1), Sb1+1,a2−1,K(a2,b2), ...,K(aI ,bI), SbI+1,n−1

)
.

(3.3)

The i1 in eq. (3.2) denotes the first scalar in JYMS(1, . . . , n− 1) 3, and the numerator NYMS(i1,σσσ) can

be characterized by the off-shell graphic rules. The S1,a1−1 refers to the sequence (1, 2, ..., a1−1), while

3In this section, we denote the first and last scalar in the single-trace YMS current JYMS(1, · · · , n− 1) as i1 and i2,

respectively. The reference order of the gluons is chosen as R = {1, ..., } \ 111.
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K(ai,bi) is used to denote KYM(ai, ..., bi) for short. The JYMS(S1,a1−1,K(a1,b1), ...,K(aI ,bI), SbI+1,n−1)

stands for the single-trace BG current when {ai, ai+1, ..., bi} (i = 1, ..., I) is considered as a single

external line with the polarization vector Kµ
(ai,bi)

≡ Kµ
YM(ai, ..., bi) and momentum kµai,bi

.

The BG current in YM theory satisfies an identity (A.6-A.7) if the external polarization vector ϵi
(or arbitrary sub-current JYM(AAA)) is replaced by an off-shell momentum ki (or kAAA). The single-trace

YMS current has a similar identity with this replacement, and it can be proven following the same

way as that in YM theory. Alternatively, the identity in YMS can also be derived from the unifying

relations, leading to the natural vanishing of LYMS(1, . . . , n − 1) under the on-shell limit, which will

be discussed Section 6.2.

3.1 Decomposition of the single-trace YMS current

Suppose the decomposition (3.1) is satisfied for any single-trace BG current JYMS(1, ...,m) ifm < n−1.

Here we study the decomposition of JYMS(1, ..., n− 1).

The T1 in eq. (2.10) can be decomposed in the form,

T1 =
2

s1...n−1

i2∑
i=i1+1

[
J̃YMS(1, · · · , i− 1) J̃YMS(i, · · · , n− 1)

+ LYMS(1, · · · , i− 1) JYMS(i, · · · , n− 1)

+ J̃YMS(1, · · · , i− 1)LYMS(i, · · · , n− 1)
]
. (3.4)

The “i1” in this case is in the sub-current JYMS(1, · · · , i − 1) while “i2” in JYMS(i, · · · , n − 1). The

T2 in eq. (2.10) can be rewritten as

T2 =
1

s1,...,n−1

n−1∑
i=i2+1

{
J̃YMS(1, · · · , i− 1)

[
J̃YM(i, · · · , n− 1) · (−2k1,i−1 − ki,n−1)

]
+ LYMS(1, · · · , i− 1)

[
JYM(i, · · · , n− 1) · (−2k1,i−1 − ki,n−1)

]
+ J̃YMS(1, · · · , i− 1)

[
LYM(i, · · · , n− 1) · (−2k1,i−1 − ki,n−1)

]}
, (3.5)

where the decomposition (3.1) of lower-point JYMS(1, · · · , i− 1) has been used. The first term in the

braces of above equation can be decomposed further

J̃YMS(1, · · · , i− 1)
[
J̃YM(i, · · · , n− 1) · (−2k1,i−1)

]
−J̃YMS(1, · · · , i− 1)

[
KYM(i, · · · , n− 1) · (−ki,n−1)

]
+J̃YMS(1, · · · , i− 1)

[(
LYM(i, · · · , n− 1) +KYM(i, · · · , n− 1)

)
· (−2k1,i−1 − ki,n−1)

]
+J̃YMS(1, · · · , i− 1)

[(
JYM(i, · · · , n− 1)− LYM(i, · · · , n− 1)

)
· (−ki,n−1)

]
, (3.6)

Since KYM has the expression (A.4), the second line in eq. (3.6) is equivalent to

J̃YMS(1, · · · , i− 1)

n−1∑
j=i+1

(
J̃YM(i, · · · , j − 1) · J̃YM(j, · · · , n− 1)

)
. (3.7)
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The last two lines in eq. (3.6) and last two terms in the brace of eq. (3.5) will contribute to LYMS(1, · · · , n−
1). The T3 could be decomposed similarly, i.e.

T3 =
1

s1,...,n−1

i1∑
i=1

{[
J̃YM(1, · · · , i− 1) · (2ki,n−1 + k1,i−1)

]
J̃YMS(i, · · · , n− 1)

+
[
J̃YM(1, · · · , i− 1) · (2ki,n−1 + k1,i−1)

]
LYMS(i, · · · , n− 1)

+
[(
LYM(1, · · · , i− 1) +KYM(1, · · · , i− 1)

)
· (2ki,n−1 + k1,i−1)

]
JYMS(i, · · · , n− 1)

}
,

(3.8)

The first term in the brace of eq. (3.8) can be decomposed further[
J̃YM(1, · · · , i− 1) · (2ki,n−1)

]
J̃YMS(i, · · · , n− 1)

−
[
KYM(1, · · · , i− 1) · (k1,i−1)

]
J̃YMS(i, · · · , n− 1)

+
[(
JYM(1, · · · , i− 1)− LYM(1, · · · , i− 1)

)
· (k1,i−1)

]
J̃YMS(i, · · · , n− 1), (3.9)

By using eq. (A.4), the second line of the above equation could be simplified into

−J̃YMS(i, · · · , n− 1)

i−1∑
j=2

[
J̃YM(1, · · · , j − 1) · J̃YM(j, · · · , i− 1)

]
. (3.10)

The T4, T5, and T6 are related to the four-point vertex and could be decomposed in the following way

T4 =
1

s1...n−1

∑
1≤i≤i1, i2<j≤n−1

{
2
[
J̃YM(1, · · · , i− 1) · J̃YM(j, · · · , n− 1)

]
J̃YMS(i, · · · , j − 1)

+ 2
[
J̃YM(1, · · · , i− 1) ·

(
LYM(j, · · · , n− 1) +KYM(j, · · · , n− 1)

)]
J̃YMS(i, · · · , j − 1)

+ 2
[
J̃YM(1, · · · , i− 1) · JYM(j, · · · , n− 1)

]
LYMS(i, · · · , j − 1)

+ 2
[(
LYM(1, · · · , i− 1) +KYM(1, · · · , i− 1)

)
· JYM(j, · · · , n− 1)

]
JYMS(i, · · · , j − 1)

}
,

(3.11)

T5 = − 1

s1...n−1

∑
i2<i<j≤n−1

{
J̃YMS(1, · · · , i− 1)

[
J̃YM(i, · · · , j − 1) · J̃YM(j, · · · , n− 1)

]
+ J̃YMS(1, · · · , i− 1)

[
J̃YM(i, · · · , j − 1) ·

(
LYM(j, · · · , n− 1) +KYM(j, · · · , n− 1)

)]
+ J̃YMS(1, · · · , i− 1)

[(
LYM(i, · · · , j − 1) +KYM(i, · · · , j − 1)

)
· JYM(j, · · · , n− 1)

]
+ LYMS(1, · · · , i− 1)

[
JYM(i, · · · , j − 1) · JYM(j, · · · , n− 1)

]}
, (3.12)
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T6 = − 1

s1...n−1

∑
1<i<j≤i1

{[
J̃YM(1, · · · , i− 1) · J̃YM(i, · · · , j − 1)

]
J̃YMS(j, · · · , n− 1)

+
[
J̃YM(1, · · · , i− 1) · J̃YM(i, · · · , j − 1)

]
LYMS(j, · · · , n− 1)

+
[
J̃YM(1, · · · , i− 1) ·

(
LYM(i, · · · , j − 1) +KYM(i, · · · , j − 1)

)]
JYMS(j, · · · , n− 1)

+
[(
LYM(1, · · · , i− 1) +KYM(1, · · · , i− 1)

)
· JYM(i, · · · , j − 1)

]
JYMS(j, · · · , n− 1)

}
.

(3.13)

The first term in the braces of eq. (3.12) will cancel with eq. (3.7) while that of eq. (3.13) is equal to

eq. (3.10). Finally, by collecting the decomposition of each Ti (i = 1, ..., 6), the effective YMS current

J̃(1, ..., n− 1) in eq. (3.1) is a sum of T̃1, T̃2, T̃3 and T̃4

J̃(1, ..., n− 1) = T̃1 + T̃2 + T̃3 + T̃4, (3.14)

which will be proved later. Note that each T̃i (i = 1, 2, 3, 4) has the explicit expression

T̃1 =
2

s1...n−1

i2∑
i=i1+1

J̃YMS(1, · · · , i− 1) J̃YMS(i, · · · , n− 1), (3.15)

T̃2 =
1

s1,...,n−1

n−1∑
i=i2+1

J̃YMS(1, · · · , i− 1)
[
J̃YM(i, · · · , n− 1) · (−2k1,i−1)

]
, (3.16)

T̃3 =
1

s1,...,n−1

i1∑
i=1

[
J̃YM(1, · · · , i− 1) · (2ki,n−1)

]
J̃YMS(i, · · · , n− 1), (3.17)

T̃4 =
2

s1...n−1

{ ∑
1≤i≤i1; i2<j≤n−1

[
J̃YM(1, · · · , i− 1) · J̃YM(j, · · · , n− 1)

]
J̃YMS(i, · · · , j − 1)

−
∑

1<i<j≤i1

[
J̃YM(1, · · · , i− 1) · J̃YM(i, · · · , j − 1)

]
J̃YMS(j, · · · , n− 1)

}
,

(3.18)

while the LYMS(1, ..., n− 1) in eq. (3.1) is given by

LYMS ∼ V3a

[
LYMS

(
JYMS − LYMS

)
+ JYMS LYMS

]
+ V3b

[
LYMSJYM +

(
JYMS − LYMS

)(
KYM + LYM

)]
−V3b

[(
JYM −KYM − LYM

)
LYMS +

(
KYM + LYM

)
JYMS

]
+V4a

[(
JYM −KYM − LYM

)(
JYMS − LYMS

)(
KYM + LYM

)
+
(
JYM −KYM

− LYM

)
LYMSJYM +

(
KYM + LYM

)
JYMS JYM

]
+V4b

[(
JYMS − LYMS

)(
JYM −KYM − LYM

)(
KYM + LYM

)
+
(
JYMS − LYMS

) (
KYM

+ LYM

)
JYM + LYMSJYM JYM

]
−V4b

[(
JYM −KYM − LYM

)(
JYM −KYM − LYM

)
LYMS +

(
JYM −KYM − LYM

) (
KYM

+ LYM

)
JYMS +

(
KYM + LYM

)
JYM JYMS

]
, (3.19)
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Here the vertex factors like V3a and V4b can be obtained directly by summing over the off-shell terms

in Ti. For simplicity, we have omitted the Lorentz indices and the concrete expressions of these factors.

A compact form of the off-shell terms can be given by

LYMS ∼ JYMS

(
S1,a1−1,K(a1,b1), Sb1+1,a2−1,K(a2,b2), ...,K(aI ,bI), SbI+1,n−1

)
. (3.20)

3.2 Proof of eq. (3.14)

Here we show that the r.h.s. of eq. (3.14) is exactly equivalent to the effective current (3.2). Before

proving this, we may introduce two useful relations for NYMS(i1,σσσ) in eq. (3.2). The relations between

off-shell numerators constructed by graphic rules in YM theory ([22]) also hold in that of single-trace

YMS amplitudes.

Relation-1: Given a σσσ = (σσσL,σσσR), if σσσL ∈ Perm(1, ..., i1 − 1, i1 + 1, ..., i− 1) (with 1 ≤ i1 < i) and

σσσR ∈ Perm(i, ..., n−1) (with i ≤ i2 < n), the coefficient NYMS (i1,σσσL,σσσR) is equal to the multiplication

of two sub-coefficients, i.e.

NYMS (i1,σσσL,σσσR) = NYMS (i1,σσσL) NYMS (σσσR) , (3.21)

Relation-2: If σσσL ∈ Perm(1, ..., i1−1, i1+1, ..., i−1) (with 1 ≤ i1 ≤ i2 < n) and σσσR ∈ Perm(i, ..., n−
1), where i, ..., n − 1 denote the gluon particles. Thus NYMS (i1,σσσL,σσσR) can be decomposed into the

structure

NYMS (i1,σσσL,σσσR) = NYMS (i1,σσσL)
[
NYM (σσσR) · k1,i−1

]
, (3.22)

The coefficient Nρ
YM (σσσR) is called type-A numerator in pure YM [22], and it will turn to BCJ numer-

ator under the on-shell limit. The two equations above can be proved in the same way as eq. (A.8),

which has been shown in [22].

This r.h.s. of the above equation is obviously satisfied with graphic rules of the coefficient

NYMS(i1,σσσ).

Suppose eq. (3.2) holds for the lower-point J̃(1, ...,m) (with m < n− 1), we would try to expand

eqs. (3.15-3.17) for the first step.

Expanding T̃1 The T̃1 can be decomposed into the following structure

T̃1 =
2

s1...n−1

i2∑
i=i1+1

(∑
σσσL

NYMS(i1,σσσL)ϕ(1, ..., i− 1|i1,σσσL)

)(∑
σσσR

NYMS(σσσR)ϕ(i, ..., n− 1|σσσR)

)

=
2

s1...n−1

i2∑
i=i1+1

∑
σσσL

∑
σσσR

[
NYMS(i1,σσσL)NYMS(σσσR)

]
ϕ(1, ..., i− 1|i1,σσσL)ϕ(i, ..., n− 1|σσσR)

=
2

s1...n−1

i2∑
i=i1+1

∑
σσσL

∑
σσσR

NYMS(i1,σσσL,σσσR)ϕ(1, ..., i− 1|i1,σσσL)ϕ(i, ..., n− 1|σσσR), (3.23)

of which we have used eq. (3.2) in the first equality, while The second equality is maintained due to

the relation (3.21).
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Expanding T̃2 Since eq. (3.16) contains the effective currents both in YM and YMS, T2 can be

expanded as follows

T̃2 =
1

s1,...,n−1

n−1∑
i=i2+1

[∑
σσσL

NYMS(i1,σσσL)ϕ(1, ..., i− 1 | i1,σσσL)

][∑
σσσR

(NYM(σσσR) · 2k1,i−1)ϕ(i, ..., n− 1|σσσR)

]

=
2

s1,...,n−1

n−1∑
i=i2+1

∑
σσσL

∑
σσσR

[
NYMS(i1,σσσL)(NYM(σσσR) · k1,i−1)ϕ(1, ..., i− 1 | i1,σσσL)ϕ(i, ..., n− 1|σσσR)

]

=
2

s1,...,n−1

n−1∑
i=i2+1

∑
σσσL

∑
σσσR

[
NYMS(i1,σσσL,σσσR)ϕ(1, ..., i− 1 | i1,σσσL)ϕ(i, ..., n− 1|σσσR)

]
.

(3.24)

where eq. (3.2) and eq. (A.3) have been used above. The second equality in (3.24) is due to the relation

(3.22).

Expanding T̃3 When {i1,σσσL} ∈ Perm(i, ..., n − 1) and σσσR ∈ Perm(1, ..., i − 1) (which implies that

the particles “1, ..., i− 1” are gluons), eq. (3.16) can be decomposed further

T̃3 =
1

s1,...,n−1

i1∑
i=1

[∑
σσσR

(NYM(σσσR) · 2ki,n−1)ϕ(1, ..., i− 1 |σσσR)

][∑
σσσL

NYMS(i1,σσσL)ϕ(i, ..., n− 1 | i1,σσσL)

]

=
2

s1,...,n−1

i1∑
i=1

∑
σσσL

∑
σσσR

[
NYMS(i1,σσσL) (NYM(σσσR) · ki,n−1)ϕ(1, ..., i− 1 |σσσR)ϕ(i, ..., n− 1 | i1,σσσL)

]
= T̃3a − T̃3b, (3.25)

where

T̃3a =
2

s1,...,n−1

i1∑
i=1

∑
σσσL

∑
σσσR

[
NYMS(i1,σσσL,σσσR) ϕ(1, ..., i− 1 |σσσR)ϕ(i, ..., n− 1 | i1,σσσL)

]
, (3.26)

T̃3b =
2

s1,...,n−1

i1∑
i=1

∑
σσσL

∑
σσσR

(kj1 · kj2)
[(
NYMS(σσσR) ·NYM(σσσL1

)
)
NYMS(i1,σσσL2

)

× ϕ(1, ..., i− 1 |σσσR)ϕ(i, ..., n− 1 | i1,σσσL)
]
. (3.27)

The T̃3a is expressed by the (n − 1)-point NYMS(i1,σσσ). The expression of T̃3b is similar to YM case

(see [12, 22]). It can be simplified further by the off-shell graph-based BCJ relation [35], i.e.

T̃3b =
2

s1,...,n−1

i1∑
i=1

∑
j=i

∑
σσσL

∑
σσσR

[(
NYMS(σσσR) ·NYM(σσσL1)

)
NYMS(i1,σσσL2)

]
ϕ(1, ..., i− 1 |σσσR)

×
[
ϕ(i, ..., j − 1 | i1,σσσL1)ϕ(j, .., n− 1 |σσσL2)−

(
(i1,σσσL1) ↔ σσσL2

)]
=

2

s1,...,n−1

i1∑
i=1

[(
J̃YM(1, ..., i− 1) · J̃YM(i, ..., j − 1)

)
J̃YMS(j, ..., n− 1)

−
(
J̃YM(1, ..., i− 1) · J̃YM(j, ..., n− 1)

)
J̃YMS(i, ..., j − 1)

]
, (3.28)

which will cancel with T̃4. The summation over eq. (3.23), (3.24) and (3.26) are exactly equal to

eq. (3.2).
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4 The off-shell Expansion of double-trace BG currents

In this section, we will study the off-shell expansion of double-trace YMS BG currents with unifying

relations. We will show the specific expression of the expansion in a double-trace case.

5 The expansion of BG currents in the YMS theory

Instead of expanding the multi-trace YMS currents directly, we will show the expansion of these

currents through unifying relations in this section.

In this section, we will study the off-shell expansion of arbitrary trace YMS BG currents, and

show the explicit structure of the expansion.

5.1 Unifying relations for YMS effective currents

Here we will obtain multi-trace YMS effective currents from the single-trace ones (3.2) through the

unifying relations. Furthermore, we will also demonstrate how to obtain the graphic rules of multi-trace

YMS currents from the single-trace graphic rules.

5.1.1 Double trace

Here we will prove that a double-trace current described by graphic rules can be obtained if a dif-

ferential operator T [ααα] acts on the single-trace effective current J̃(1, ..., n− 1;G), where α1, ...., αm is

the second trace generated by T [ααα]. If the double trace current is denoted by J̃(111|ααα;G), we have the

relation

J̃YMS(111|ααα;G \ααα) = T [ααα] J̃YMS(111;G) =
∑
σσσF

[
T [ααα]NYMS(1,σσσ

F )
]
ϕ(1, ..., n− 1|1,σσσF ), (5.1)

where eq. (3.2) has been used. Note that the G \ααα means the gluons at ααα turned into a scalar trace.

To show this, we need to consider two parts: the coefficient CF and the permutation set σF . We

will prove this by induction on the number of particles in the second trace.

Two-point differential operator T [α1, α2] Let’s first consider the two-point differential operator

T [ααα] with ααα = {α1, α2}, acting on the effective current (3.2)

T [α1, α2] J̃YMS(1, ..., n− 1) =
∑
σσσF

[
T [α1, α2]NYMS(1,σσσ

F )
]
ϕ(1, ..., n− 1|1,σσσF ), (5.2)

The differential operator T [α1, α2] is equivalent to removing the term ϵα1 · ϵα2 in each numerator

NYMS(1,σσσ
F ). The numerator NYMS(1,σσσ

F ) of a given graph F will be nonzero when acted by T [α1, α2]

only if F contains one of the three subgraphs Fig. 2 (a1) (a2) and (a3) (without loss of generality, here

the reference order is chosen as α1 ≺ α2). The α1 and α2 are internal gluons of a chain in graph (a1),

(a2), while in (a3), α1 is an internal node adjacent to the starting point α2 of a chain. The graphs

Fig. 2 (a1), (a2) and (a3) will be changed into (b1) (b2) and (b3) through T [α1, α2]. The Fµν
α1

F νρ
α2

in

(a1) becomes (−2kα1
)µ(2kα2

)ρ in (b1), corresponding to (a2, b2) = (α1, α2) in Fig. 1 (b4). Similarly,

Fig. 2 (b2) and (b3) correspond to (a2, b2) = (α2, α1) of Fig. 1 (b4) and (a2, b2) = (α1, α2) in Fig. 1

(b3), respectively, implying that {α1, α2} play as an scalar trace. In addition, the chains or subgraphs

of a given F attached to Fig. 2 (a1), (a2) and (a3) are independent of the transformation T [α1, α2],

for which the numerators and permutations relating to these chains will not change.
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Figure 2. The numerators N(1,σσσF ) including the sub-graphs (a1), (a2) and (a3) will be non-vanishing

through differential operator T [α1, α2]. Both α1 and α2 are internal nodes in graphs (a1) and (a2), while in

(a3), α1 and α2 refer to the internal and starting node of a chain. The graphs (a1), (a2) and (a3) will become

(b1), (b2) and (b3) through T [α1, α2].

Finally, the term
[
T [α1, α2]NYMS(1,σσσ

F )
]
in eq. (5.2) will be a numerator of a graph with scalar

trace 111 and ααα = {α1, α2} only if F contains any subgraphs Fig. 2 (a1), (a2) and (a3). The summation

over all graphs F in eq. (5.2) is equivalent to that over graphs with scalar trace 111 and ααα = {α1, α2},
which is exactly equal to the graphic expression of J̃YMS(111|ααα;G \ααα).

Arbitrary-point differential operator T [ααα] We first assume that for any |ααα| < m, the double

trace effective current can be obtained by acting the differential operator T [ααα] on the single-trace

effective current J̃(1, ..., n − 1). Now Let’s consider the operator T [ααα] when |ααα| = m, with ααα =

{α1, ..., αm−1, αm}. According to the definition, the operator can be expressed by

T [ααα] = T [ααα′]Tαm−1,αm,α1
= Tαm−1,αm,α1

T [ααα′], (5.3)

where ααα′ = ααα \ {αm} and Tαm−1,αm,α1 = (∂kαm−1
ϵαm

− ∂kα1
ϵαm

), T [ααα] is cyclically invariant. Based

on the assumption, the double trace effective current J̃YMS(111|ααα′;G \ ααα′) with trace 111 and ααα′ can be

obtained by acting the differential operator T [ααα′] on the single-trace effective current J̃YMS(1, ..., n−1).

Here we only need to prove that the double trace effective current J̃YMS(111|ααα;G \ ααα) is equivalent to

Tm−1,m,1 J̃(111|ααα′;G \ααα′), where

J̃YMS(111|ααα′;G \ααα′) =
∑
σσσF

NYMS(1,σσσ
F )ϕ(1, ..., n− 1|1,σσσF ). (5.4)

Note that when NYMS(1,σσσ
F ) is acted by Tαm−1,αm,α1

, it will be nonzero only if the graph F
contains these subgraphs shown in Fig. 3 (a1)-(a5). The trace ααα′ is in the internal positions in Fig. 3

(a1)-(a3), while starting positions in Fig. 3(a4)-(a5). The particle αm is adjacent to ααα′ of the same

chain in (a1), (a2) and (a4), while in (a3) and (a5), a chain containing αm are attached to the trace

ααα′ at c2 ∈ {α1, αm−1}. Particularly, c2 is adjacent to αm. The five subgraphs (a1)-(a5) will turn to

Fig. 3 (b1)-(b5) under Tαm−1,αm,α1
. The graphs (b1)-(b5) are discussed as follows:

• Fig. 3 (a1) becomes (b1) through Tαm−1,αm,α1
. The arrows in (b1) stands for the tenor−(2kµαm

)(2kρb2).

The a2 in (a1) and (b1) can only take α1 and αm−1 due to the expression of Tαm−1,αm,α1
.

When (a2, b2) = (α1, αi), where i = 2, ...,m − 1, the trace ααα′ is given by {α1, {α2, ..., αi−1}�
{αi+1, ..., αm−1}T , αi} accompanied with a factor (−1)m−i−1, thus the permutations of graph

(b1) has the form

(−1)(−1)m−i−1{αm, α1, {α2, ..., αi−1}� {αi+1, ..., αm−1}T , αi}. (5.5)
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Figure 3. The numerators N(1,σσσF ) including the sub-graphs (a1), (a2) and (a3) will be non-vanishing

through differential operator Tαm−1,αm,α1 . The three graphs will become (b1), (b2) and (b3). The same thing

happens for the starting trace case ((a4),(a5) to (b4), (b5)).

The first “ − ” sign above comes from the operator Tααm−1
,αm,α1

. When (a2, b2) = (αm−1, αi),

where i = 1, 2, ...,m−2, the traceααα′ is shown as {αm−1, {α1, α2, ..., αi−1}�{αi+1, ..., αm−2}T , αi}
accompanied with a factor (−1)m−i−1, and the permutation of graph (b2) takes the expression

(−1)m−i{αm, αm−1, {α1, α2, ..., αi−1}� {αi+1, ..., αm−2}T , αi}. (5.6)

The sum of above two equations is equal to (−1)m−i{αm, {α1, ..., αi−1}�{αi+1, ..., αm−1}T , αi},
which is exactly the graphic expression of scalar trace ααα, with αm and αi as leftmost and

rightmost endpoints (comparing with graphic rules in Section 2.3).

• Fig. 3 (a2) becomes (b2) through Tαm−1,αm,α1
. The arrows in (b2) refers to the tenor−(2kµa2

)(2kραm
).

The b2 in (a2) and (b2) can only take α1 and αm−1. When (a2, b2) = (αi, α1), where i =

2, ...,m− 1, the permutations of graph (b1) has the form

(−1)(−1)i−2{αi, {αi+1, ..., αm−1}� {α2, ..., αi−1}T , α1, αm}, (5.7)

and if (a2, b2) = (αi, αm−1), where i = 1, 2, ...,m− 2, the permutations of graph (b1) can be

(−1)i−1{αi, {αi+1, ..., αm−2}� {α1, ..., αi−1}T , αm−1, αm}. (5.8)

the sum of above two equations is equal to (−1)i−1{αi, {αi+1, ..., αm−1}� {α1, ..., αi−1}T , αm},
which is the scalar trace ααα (of Step-2 of graphic rules in Section 2.3), with αi and αm as leftmost

and rightmost endpoints.

• Fig. 3 (a3) becomes (b3) through Tαm−1,αm,α1 . The arrows in (b3) refers to the tenor−(2kµa2
)(2kρb2),

and the c2 of this graph can be α1 and αm−1. If (a2, b2) = (αi, αj) with i < j, the trace ααα′
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corresponds to the permutation

(−1)i+m−j{αi, {αi+1, ..., αj−1}� {αj+1, ..., αm−1, α1, ..., αi−1}T , αj}. (5.9)

Correspondingly, all possible permutations of graph (b3) for c2 = α1 are denoted by

(−)(−1)i+m−j+1{αi, {αi+1, ..., αj−1}� {αj+1, ..., αm−1, αm � {α1, ..., αi−1}}T , αj}. (5.10)

If c2 = αm−1, the permutation would be

(−1)i+m−j+1{αi, {αi+1, ..., αj−1}� {αj+1, ..., αm−1, α1, αm � {α2, ..., αi−1}}T , αj}. (5.11)

The difference of above two equations is equal to

(−1)i+m−j+1{αi, {αi+1, ..., αj−1}� {αj+1, ..., αm−1, αm, α1, {α2, ..., αi−1}}T , αj}, (5.12)

which correspond to the trace ααα with αi and αj as two endpoints. The calculation above is also

valid when i > j.

• Fig. 3 (a4) becomes (b4) through Tαm−1,αm,α1
. The arrows of graph (b4) represents the vector

−2kµαm
. The permutations of graph (b4) is same to that of (b1), and it correspond to the trace

ααα with αm and a fixed b2 as both endpoints.

• Fig. 3 (a5) becomes (b5) through Tαm−1,αm,α1 . The arrows of graph (b5) means a vector −2kµa2
.

The permutations of graph (b5) are same to that of (b3), and they correspond to the trace ααα

with a2 and a fixed b2 as both endpoints4.

The five cases above include all possible permutations of the trace ααα when it is both in internal

and external positions. Besides, the remaining sub-structures of a given graph connected to ααα will

not change. It shows that the a double-trace effective current J̃YMS(111|ααα;G \ααα) can be obtained from

single-trace ones J̃YMS(1, ..., n− 1) through the operation T [ααα].

5.1.2 Multi-trace

Since we have proved that the off-shell double trace graphic rules can be derived from single-trace

version by operator T [ααα]. This will be naturally extended to m-trace YMS graphic rules by using a

number of operator T [PPP 2] · · · T [PPPm], where PPP i ∩PPP j = ∅ for any i, j ∈ {2, · · · ,m}. The corresponding

current J̃(111|222|...|mmm;G) is called m-trace effective current in YMS,

J̃YMS(111|222|...|mmm;G) =
∑
F

T [PPP 2] · · · T [PPPm](NYMS(1,σσσ
F ))ϕ(1, .., n− 1|1,σσσF ). (5.13)

5.2 Unifying relations for off-shell terms

Now let us turn to the off-shell terms of the YMS currents. The YMS currents with an off-shell scalar

leg can be written as follows

JYMS = J̃YMS + L (5.14)

4Here (b4), (b5) only corresponds to the case the αm not be the fixed point of the starting trace ααα. If we want αm to

be the fixed point, we should change to another reference order so that αm can connect to b2 itself and we will obtain

the graph that αm is the fixed point. In this reference order (a4), (a5) will not appear and we will not obtain (b4), (b5).

In other words, the arbitrariness of the fixed point of the starting trace in the new graph is ensured by the arbitrariness

of the reference order of the old graph.
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where JYMS is the BG current, J̃YMS can be given by the graphic rules as before and actually has the

same form as the corresponding YMS amplitudes, L is the total off-shell terms and will vanish after

taking the on-shell limit. Let k be the number of on-shell scalars and m be the number of scalar traces

in the multi-trace current. For the single-trace current, we assume that the scalar set is {1, 2, · · · , r, n}
where n is the off-shell scalar without loss of generality. Then we have the following equation where

the extra minus signs come from the analysis of the BG currents from the perturbiner method [28, 34]:

JYMS(1, 2, · · · , r|2| · · · |m;G) = (−1)n+k−m
∑
F

(−)FCF
[∑

σF

ϕBS(1, · · · , n− 1|1, σF )

]
+ Lm-trace

(5.15)

and

T [PPP 2] · · · T [PPPm]JYMS(1, · · · , r,G) = (−1)k−r−m+1JYMS(1, · · · , r|2| · · · |m,G). (5.16)

Applying the relation we proved for the expansion coefficient and the single-trace off-shell terms (3.3),

we have the following relation:

Lm-trace = (−1)k−r−m+1T [PPP 2] · · · T [PPPm]LYMS =
∑

{ai,bi}⊂{1,...,n−1}

(−1)I+1JYMS(111|222| · · · |mmm; G̃) (5.17)

where G̃ is the division of gluons G, and can be defined by

G̃ = {S′
1,a1−1,K(a1,b1), S

′
b1+1,a2−1,K(a2,b2), ...,K(aI ,bI), S

′
bI+1,n−1}. (5.18)

In the above expression, S′
1,a1−1 denotes a set G ∩ S1,a1−1. The JYMS

(
111|222| · · · |mmm; G̃

)
refers to the

BG current in multi-trace YMS when {ai, ai+1, ..., bi} is considered as a single external line with the

polarization vector K(a1,b1). For example, if G = {2, 4, 5}, then S′ = {2} and {a1, b1} = {4, 5}. Such

expression of the off-shell terms can be obtained from the single-trace expression (3.3) directly. Note

that the differential operators we considered will not affect the on-shell limit, which means that taking

the on-shell limit before or after acting the differential operators on them will both lead to a zero

result for off-shell terms.

The eq. (5.18) comes from the following statement: if we act an operator T [PPP ] on the single-trace

off-shell term LYMS, then PPP must be i) a subset of the legs replaced by an arbitrary KYM in (3.3) or

ii) has no intersection with any legs in any KYM. The former case i) will change KYM to KYMS:

K ρ
YMS

(
1, 2, ..., n− 1

)
=

1

s12...n−1
k ρ
1,n−1

n−2∑
i=1

J̃YMS(1, ..., i) · J̃YMS(i+ 1, ..., n− 1), (5.19)

Note that here the YMS subcurrents can have both a scalar off-shell leg and a gluon off-shell leg and

can also be multi-trace currents5. Here we have used the fact that the effective current J̃YMS can

be obtained by acting differential operators on J̃YM , which will be demonstrated in the next section.

The latter case ii) is just the unifying relation that changes the gluon legs to the scalar legs in the

same trace. Other cases will not contribute through the following argument. Assuming that the first

element of PPP = {Pi} that intersects with a certain KYMS is Pl, then from cyclic invariant of the

operator T [PPP ], we can always write T [PPP ] as follows:

T [PPP ] = T [Pl, · · · , Pl−1] ∝ ∂ϵPl
ϵPl−1

(5.20)

5Although we do not consider the YMS currents with an off-shell gluon leg in this paper, the decomposition of

the currents (currents as a sum of off-shell terms and effective terms which have the same expansion formalism as the

amplitudes) and the unifying relations still hold in this case.
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However, as Pl is the first element of PPP intersect with that KYMS, there will not exist any ϵPl
· ϵPl−1

.

Therefore this case will not contribute. Roughly speaking, for a given YMS current, every gluon

internal line will correspond to some off-shell terms by replacing the subcurrent connecting it with

corresponding KYMS.

6 Further study: from YM to single-trace YMS

The unifying relation also connects the YM theory and the YMS theory, and the relation is also valid

off-shell. However, unlike the YMS case, we find that we cannot emergent the whole YMS graphic

rules from the YM graphic rules using differential operators. Nevertheless, we still figure out some

useful relations by choosing some special reference orders in the YM graphic rules. In this section, we

will show how to relate the off-shell terms between the YM currents and the single-trace YMS currents

and give a typical example.

6.1 From YM expansion to single-trace YMS expansion: special reference orders

Even though we have not figured out how to emergent the whole single-trace YMS graphic rules

from the YM graphic rules, we can choose some special reference orders when we draw graphs so

that one can obtain the single-trace YMS expansion coefficients from the YM expansion coefficients

using differential operators just for this special reference order. Without loss of generality, we will

demonstrate how to obtain the single-trace YMS expansion for a scalar trace {1, 2, 3, ..., s}. Firstly,

the reference order should be chosen specially so that the first and the last element of reference order

is 1 and s respectively. Then consider the case the s = 2, the root of the YM graphs can only be

{1, 2} and will give the correct contribution after acting T [12]. Then we use the method in section 5,

consider

T [1, ..., α, β, s] = T [1, ..., α, s](∂kαϵβ − ∂ksϵβ ), (6.1)

we can prove our statement by induction. Therefore, the single-trace YMS expansion coefficients from

the graphic rules for a scalar trace {1, 2, 3, ..., s} can be obtained by acting T [1, 2, 3, ..., s] on the YM

expansion coefficients from the graphic rules.

Note that this proof is only valid for the reference order R = {1, ..., s} and the particle order in

... is not important. If s is not the last element of the reference order, this proof is not valid. As the

expansion coefficients do not depend on the reference order, we exactly obtain the YMS expansion

coefficients from the YM ones using differential operators. However, how to emergent the whole graphic

rules from the differential operators is still unknown.

6.2 From YM off-shell terms to single-trace YMS off-shell terms

Recall that the Kρ
YM and Lρ

YM are given in Appendix A:

K ρ
YM

(
1, 2, ..., n− 1

)
=

1

s12...n−1
k ρ
1,n−1

n−2∑
i=1

J̃YM(1, ..., i) · J̃YM(i+ 1, ..., n− 1), (6.2)

Lρ
YM

(
1, 2, ..., n− 1

)
=

∑
{ai,bi}⊂{1,...,n−1}

(−1)I+1Jρ
YM

(
S1,a1−1,K(a1,b1), Sb1+1,a2−1,K(a2,b2), ...,K(aI ,bI), SbI+1,n−1

)
,(6.3)

Note that only the LYM terms will contribute to the off-shell terms of the single-trace YMS currents

through unifying relation (2.18).
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The argument for the off-shell terms in this case is similar to before. However, this time we

include the off-shell leg n in the operator T [PPP 1] which means that PPP 1 will never be in a certain KYM.

Assuming that the first element of PPP = {Pi} that intersects with a certain KYM is Pl, then

T [PPP 1] ∝ TPl−1Pln = (∂kl−1ϵl − ∂knϵl) (6.4)

will annihilate the YM off-shell terms as we explained before. It also comes from the fact that BG

currents do not include the off-shell momentum kn explicitly. Hence only the case that PPP 1 does not

intersect with any legs in any KYM contributes to the single-trace YMS off-shell terms. We then have

the following equation:

LYMS(1, . . . , n− 1)

=
∑

{ai,bi}⊂{1,...,n−1}
no scalar between ai and bi

(−1)I+1 JYMS

(
S1,a1−1,K(a1,b1), Sb1+1,a2−1,K(a2,b2), ...,K(aI ,bI), SbI+1,n−1

)
,(6.5)

which reproduces the result in section 3.

6.3 Example: two/three-point BG currents

In this subsection, we will demonstrate two typical examples to verify our results about the decompo-

sition of the YMS currents.

6.3.1 Two-point BG current in YMS

The YM BG current JYM(12) can be rewritten as the sum of J̃ρ
YM(12) and Kρ

YM(12), with

s12J̃
ρ
YM(12) =

[
ϵ1
(
F2 − ϵ2 · 2k1

)]ρ
, s12K

ρ
YM(12) = (ϵ1 · ϵ2) kρ12, (6.6)

The effective current J̃ρ
YM(12) will become JYMS(1, 2g) = (ϵ2 · k1)ϕ(12|12) under the operator T [23],

while Kρ
YM(12) turns to be 0. In the derivation, we have used the on-shell condition ϵi · ki = k2i = 0

(i = 1, 2).

6.3.2 Three-point BG current in YMS

As a typical example of our statement, consider the following process

JYM(123) · ϵ4
T [14]−→ JYMS(1s, 2g, 3g)

T [23]−→ JYMS(1s|2s, 3s), (6.7)

For the expansion coefficients from YM to single-trace YMS theory, see appendix ??. We will demon-

strate that the off-shell terms of the above double-trace current can be obtained from the YM ones.

For the 3-pt YM currents Jρ
YM(123), the off-shell terms (A.4) and (A.5) are

Kρ
YM(1, 2, 3) =

1

s123

[
J̃YM(1, 2) · ϵ3 + ϵ1 · J̃YM(2, 3)

]
kρ1,3 (6.8)

Lρ
YM(1, 2, 3) = Jρ

YM(KYM(1, 2), 3) + Jρ(1,KYM(2, 3)), (6.9)

Then the only term that contributes to the single-trace off-shell terms is

Jρ
YM(1,KYM(2, 3)) (6.10)

since other terms will not give a ϵ1 · ϵ4 after contracting with ϵ4. Then the single-trace off-shell terms

should be

T [14]JYM(1,K(2, 3)) · ϵ4 = − 1

s23s123
(ϵ2 · ϵ3) [k2,3 · (2k1 + k2,3)] = −ϵ2 · ϵ3

s23
(6.11)
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which is exactly the correct answer from direct calculations. The double-trace off-shell term should be

−T [23](−ϵ2 · ϵ3
s23

) =
1

s23
(6.12)

A direct calculation shows that

s123JYMS(1|2, 3) = 1− 2
k1 · (k3 − k2)

s23
= −4k1 · k3

s23
+

s123
s23

→ LYMS =
1

s23
(6.13)

which matches with the results from differential operators.

7 Conclusions

In this paper, we derived the expansion relations for any-trace YMS currents and wrote down the

decomposition of the YMS currents explicitly. We first figured out the expansion relations for the

single-trace current using a method similar to [22]. Then we pointed out how to obtain the multi-trace

graphic rules by acting some differential operators on the single-trace graphic rules for amplitudes.

Such differential operators, known as the unifying relations, are also valid in the off-shell case for the

YM and the YMS theory [34]. A YMS current with an off-shell scalar leg can always be decomposed

into two parts: a part with the same expression as the corresponding amplitudes and a part that

will vanish after taking the on-shell limit which is called “the off-shell terms”. Hence we can use

such differential operators to obtain the expansion relations for multi-trace from the single-trace ones.

Accordingly, we can write down all the off-shell terms in a compact form and find that they come

from gluon propagators. Finally, we connected the YM current expansion and the single-trace YMS

current expansion by choosing some special reference orders and reproduced the expression of the off-

shell terms for the single-trace YM currents. In conclusion, we found that the graphic rules and the

unifying relations allowed us to figure out all terms in the expansion relations explicitly for any-trace

YMS currents and such relations can also be generalized to the YM currents case.

There are still some related problems that deserve further study. We list some of them here:

1. In this work, we only consider the expansion relations for BG currents which have only one off-

shell leg. What about the case that all legs are off-shell? This question is equivalent to finding

out the expansion relation for the Feynman rules.

2. Can we figure out the expansion relations for 1-loop integrands using our method? This question

is equivalent to finding out the possible 1-loop BCJ numerator from an off-shell way. A possible

way to reach this is by finding out the expansion relation for currents with 2 legs off-shell and then

using the sewing procedure [36] to generate a loop. There is also an alternative way to consider

the loop effect [37]. Note that there are also some works about the 1-loop BCJ numerator from

the on-shell methods [38–40].

3. A harder direction is to do the same things on the BG currents for extended gravity [41–43], and

then consider the second question above. This question is more meaningful since we are more

interested in the gravity theory. Note that the unifying relation is only valid for amplitudes

in this case, which means that the method we used in this paper cannot be generalized to the

gravity case.
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A Review on the decomposition of BG current in YM

Here we briefly review on some useful results relating to YM BG current in [22]. The YM BG current

has the form

Jµ
YM(1, ..., n− 1) =

1

s1...n−1

[ n−1∑
i=2

V µνρ
3 JYM,ν(1, ..., i− 1) JYM,ρ(i, ..., n− 1)

+
∑

1<i<j<n−1

V µνργ
4 JYM,ν(1, ..., i− 1)JYM,ρ(i, ..., j − 1)JYM,γ(j, ..., n− 1)

]
,

(A.1)

where V µνρ
3 and V µνργ

4 are the three-point and four-point vertex in Yang-Mills field. It has shown in

[22] that, the BG current in the Feynman gauge was decomposed as follows

Jρ
YM(1, ..., n− 1) = J̃ρ

YM(1, ..., n− 1) +Kρ
YM(1, ..., n− 1) + Lρ

YM(1, ..., n− 1). (A.2)

where J̃YM(1, ..., n−1) is called the effective current in YM. The Kρ
YM(1, ..., n−1) and Lρ

YM(1, ..., n−1)

are related to gauge transformation, which will vanish under the on-shell limit. The effective current

is exactly the BG current in BCJ gauge [19], and it can be expressed by a sum of BS currents

J̃ρ
YM(1, ..., n− 1) =

∑
σσσ∈P(2,...,n−1)

Nρ
YM(1,σσσ)ϕ(1, ..., n− 1| 1,σσσ), (A.3)

in which the coefficients Nρ
YM(1,σσσ) are the off-shell BCJ numerators. Both the permutations σσσ and

Nρ
YM(1,σσσ) can be characterized by graphic rules in YM. The Kρ

YM and Lρ
YM are given by

K ρ
YM

(
1, 2, ..., n− 1

)
=

1

s12...n−1
k ρ
1,n−1

n−2∑
i=1

J̃YM(1, ..., i) · J̃YM(i+ 1, ..., n− 1), (A.4)

Lρ
YM

(
1, 2, ..., n− 1

)
=

∑
{ai,bi}⊂{1,...,n−1}

(−1)I+1Jρ
YM

(
S1,a1−1,K(a1,b1), Sb1+1,a2−1,K(a2,b2), ...,K(aI ,bI), SbI+1,n−1

)
,(A.5)

where S1,a1−1 denotes the sequence 1, 2, ..., a1 − 1, while K(ai,bi) refers to KYM(ai, ai + 1..., bi). The

Jρ
YM(S1,a1−1,K(a1,b1), ...,K(aI ,bI), SbI+1,n−1) represents the BG current when {ai, ai+1, ..., bi} (i =

1, ..., I) is considered as a single external line with the polarization vector Kµ
(ai,bi)

≡ Kµ
YM(ai, ..., bi)

and momentum kµai,bi
. The currents JYM in LYM will vanish under on-shell limit, i.e.

k1,n−1 · JYM(1, ..., a1 − 1, ka1,b1 , b1 + 1, ..., a2 − 1, ka2,b2 , ..., kaI ,bI , bI + 1, ..., n− 1) = 0, (A.6)

ϵn · JYM(1, ..., a1 − 1, ka1,b1 , b1 + 1, ..., a2 − 1, ka2,b2 , ..., kaI ,bI , bI + 1, ..., n− 1) = 0, (A.7)

which leads to the vanishing of Kρ
YM

(
1, 2, ..., n− 1

)
and Lρ

YM

(
1, 2, ..., n− 1

)
.
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The graphic rules in YM are a little different from that of single-trace YMS. The dashed line of

the scalar trace in step-1 of Section 2.3 is replaced by a chain
[
ϵ1 · Fj1 · · ·Fjs · ϵn

]
, which is from the

root set R = {1, j1, j2, ..., js}. The j1, ..., js are chosen arbitrarily from {2, ..., n − 1}. In addition,

the reference order is fixed by the set R = {1, ..., n − 1}, and R\R is defined to construct the chain

towards R. The “1” and “n” are fixed as two endpoints of a given graph, and by letting “n” off-shell,

the graphic rules can be naturally generalized into off-shell.

Three types of off-shell numerators, including type-A/B/C numerators, have been introduced.

The type-A/B numerators correspond directly to Nρ
YM(1,σσσ) in the effective current. Each Nρ

C is a

tensor that keeps two endpoints off-shell, while the branches attached satisfy the graphic rules. If

σσσL ∈ Perm(2, ..., i − 1) and σσσR ∈ Perm(i, ..., n − 1), these numerators are connected through the

relation

Nρ
A(1,σσσL,σσσR) =

[
NA(1,σσσL)NC(σσσR)−Nµ

A(1,σσσL)
(
NB(σσσR) · k1,i−1

)]ρ
, (A.8)

which has been proved in [22]. The relation above can be extended to the YMS case, i.e. i) the relation

(3.21) is similar to
[
Nµ

A(1,σσσL)N
µ
C(1,σσσL)

]ρ
when the last scalar “i2” in Section 3 is included in σσσR,

and ii) the relation (3.22) is similar to
[
Nµ

A(1,σσσL)
(
NB(σσσR) · k1,i−1

)]ρ
if “i2” is in σσσL (in which σσσR

refer to pure gluons). Eqs. (3.21-3.22) can be proved in the same way as eq. (A.8), which will not be

illustrated in the present work.
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