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Quantum reservoir probing: an inverse paradigm of quantum
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Abstract

Quantum reservoir computing (QRC) is a brain-inspired computational paradigm, ex-
ploiting natural dynamics of a quantum system for information processing. To date, a
multitude of quantum systems have been utilized in the QRC, with diverse computa-
tional capabilities demonstrated accordingly. This study proposes a reciprocal research
direction: probing quantum systems themselves through their information processing
performance in the QRC framework. Building upon this concept, here we develop quan-
tum reservoir probing (QRP), an inverse extension of the QRC. The QRP establishes
an operator-level linkage between physical properties and performance in computing.
A systematic scan of this correspondence reveals intrinsic quantum dynamics of the
reservoir system from computational and informational perspectives. Unifying quan-
tum information and quantum matter, the QRP holds great promise as a potent tool
for exploring various aspects of quantum many-body physics. In this study, we specif-
ically apply it to analyze information propagation in a one-dimensional quantum Ising
chain. We demonstrate that the QRP not only distinguishes between ballistic and diffu-
sive information propagation, reflecting the system’s dynamical characteristics, but also
identifies system-specific information propagation channels, a distinct advantage over
conventional methods.
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1 Introduction18

The contemporary era has witnessed an extraordinary escalation in the capabilities of artificial19

intelligence. Emulating the intricate workings of the human brain, it has revolutionized di-20

verse domains, including image recognition and machine translation [1–3]. Nevertheless, no21

matter how smart it is, artificial intelligence remains constrained by the fundamental physical22

limitations inherent in the silicon-based substrates on which it is realized. Considering the23

substantial energy consumption and the approaching downscaling limits, the need for alter-24

native computational paradigms has been widely recognized. Consequently, unconventional25

computing now stands as an interdisciplinary frontier in scientific exploration [4–6]. A lead-26

ing methodology in this domain is physical reservoir computing [7–12]. In this brain-inspired27

algorithm, an input-driven dynamical system, termed a physical reservoir, performs nonlin-28

ear transformations on sequential input data. When the dynamics exhibit a high-dimensional29

internal space with pronounced nonlinearity, a simple linear transformation of read-out out-30

comes from the physical reservoir is sufficient to precisely generate a target output function.31

Quantum systems inherently satisfy these criteria as effective physical reservoirs, possessing32

intrinsic nonlinearity and an exponentially large Hilbert space. This has led to the develop-33

ment of the quantum reservoir computing (QRC) framework, which leverages quantum sys-34

tems as physical reservoirs [13,14]. Seminal proposals with spin-based implementations have35

demonstrated the exceptional performance of QRC [13–18], later expanded to a variety of36

quantum systems including fermionic and bosonic networks [19–21], harmonic and nonlinear37

oscillators [22–25], and Rydberg atoms [26]. Furthermore, recent advancements in quantum38

technologies have facilitated proof-of-principle experiments for the QRC across several quan-39

tum reservoir settings, such as nuclear magnetic resonance systems [27] and superconducting40

qubits [28, 29]. Importantly, the diverse computational capabilities observed across different41

types of QRC systems present an intriguing research avenue: the investigation of quantum42

systems through their computational performance when utilized in the QRC.43

In this study, we propose an inverse extension of the QRC framework, termed quantum44

reservoir probing (QRP). While the QRC aims to exploit quantum systems for computational45

purposes, the QRP is specifically dedicated to elucidating quantum many-body physics from a46

computational point of view. Notably, in recent years, the intersection of quantum informa-47

tion and quantum matter has gained prominence in various contexts, highlighting the utility48

of quantum information in probing nonequilibrium quantum many-body phenomena such as49

quantum chaos [30–36], thermalization dynamics [37–43], and dynamical quantum phase50

transitions [44–47]. Analogously, the QRP investigates quantum phenomena through an in-51

terdisciplinary approach by establishing a correspondence between the computational per-52

formance of the QRC and the physical attributes of the employed quantum system. Since a53

variety of phenomena can be associated with computation by judiciously selecting the infor-54

mation processed or the computational tasks performed, the QRP has broad applications in the55

exploration of quantum many-body physics. As a fundamental demonstration of the research56

avenues via the QRP, we here investigate the dynamics of information propagation within quan-57

tum systems, where locally encoded quantum information spreads over a multitude of degrees58

of freedom. Although such local information often becomes inaccessible to local probes as the59
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dynamics progress toward the long-time limit (quantum information scrambling [48,49]), our60

study focuses on the early timescale, far from being fully scrambled, where understanding how61

information is distributed in the Hilbert space at each moment becomes a pertinent question.62

In this application of the QRP, information is directly monitored analogously to a pump-63

probe paradigm. Random information is locally injected into the quantum system under inves-64

tigation, and the system’s response is recorded in a selected degree of freedom. Subsequently,65

the original input value is estimated using the observation outcomes based on a statistical66

approach. Successful estimation signifies that information has propagated to that read-out67

degree of freedom; otherwise, it remains unpropagated therein. Utilizing this estimation per-68

formance as an indicator, the QRP can comprehensively assess information propagation to an69

arbitrary degree of freedom at arbitrary time in a unified manner. We demonstrate the efficacy70

of the QRP by investigating a one-dimensional quantum Ising chain as a paradigmatic example.71

We show that the QRP distinctly captures the information propagation dynamics that reflects72

the intrinsic dynamical characteristics of the system, such as quasiparticle-mediated propaga-73

tion in an integrable free fermion system and correlation-mediated propagation in a quantum74

chaotic system. Moreover, by systematically scanning the read-out degrees of freedom, the75

QRP reveals the mechanisms governing information propagation between different degrees of76

freedom, namely information propagation channels, which are typically inaccessible via con-77

ventional methodologies. We believe that our QRP presents an interdisciplinary paradigm to78

further advance the understanding of quantum many-body physics.79

2 Scheme of the QRP80

2.1 Concept of the QRP and its relationship to the QRC81

Prior to exploring the QRP, we introduce the QRC, a computational paradigm specifically de-82

signed to leverage quantum systems for information processing [13]. The architecture of the83

QRC is illustrated in Fig. 1(a), comprising three layers: input, reservoir, and output. In the84

input layer, time-series input data is encoded onto a quantum system, specifically called a quan-85

tum reservoir. The principal role of the reservoir layer is to nonlinearly project the input data86

into an internal feature space, effectively emulating a network of artificial neurons with re-87

current pathways. Unlike conventional machine learning paradigms involving optimizations,88

the internal attributes of the quantum reservoir remain fixed as predetermined by its inher-89

ent physical characteristics. This is analogous to leaving parameters within a neural network90

untrained, which leads to a substantial reduction in processing costs compared to schemes91

requiring the training of the entire weight network. In the reservoir layer, the dynamics of92

the quantum reservoir system in response to the inputs are recorded through measurements93

of specific variables. These read-out outcomes are accumulated into a one-dimensional state94

vector, which is then linearly transformed using a weight vector in the output layer. Only95

this weight is trained to produce the desired output for a given machine learning task. By96

leveraging the pronounced nonlinearity and high-dimensional Hilbert space of the quantum97

reservoir, the QRC can achieve robust neuromorphic computation solely through such simple98

linear post-processing.99

To harness the full potential of the quantum reservoir and access a wealth of informa-100

tion encoded in the Hilbert space, a straightforward approach involves measuring multiple101

operators, thus increasing the number of computational nodes in the post-processing stage.102

For example, when utilizing an N -site spin system as the quantum reservoir, single-site Pauli103

measurements 〈σαi 〉 (1 ≤ j ≤ N ,α = x , y, z) yield a set of 3N values, and two-site Pauli104

measurements 〈σαi σαj 〉 (1 ≤ i, j ≤ N , i 6= j) generate a set of 3N(N − 1)/2 values. Combin-105
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Figure 1: (a) Concept of the QRC. Sequential inputs {sk} is provided at the input
layer, and the internal state of the quantum reservoir X k is extracted based on mea-
surements of various degrees of freedom. At the output layer, the final output yk

is computed by linearly transforming X k using the weight vector w . (b) Schematic
representation of the QRP. The final output is calculated using an individual degree
of freedom, whose performance elucidates the internal structure of the Hilbert space.

ing these measurement results, a (3N(N + 1)/2+ 1)-dimensional state vector is constructed,106

incorporating an additional constant term. The inclusion of read-out outcomes from longer107

Pauli strings appears to enhance computational performance at first glance. However, empiri-108

cal evidence suggests that performance tends to plateau just utilizing a number of degrees of109

freedom that scales polynomially with respect to N [17,18,21]. Considering the exponentially110

large dimensionality of the Hilbert space, this implies that certain degrees of freedom may not111

contribute to computation or may extract redundant information. Although the selection of112

read-out operators is often overlooked, the suitability of a particular degree of freedom for113

computation should reflect the intrinsic characteristics of the Hilbert space, providing insights114

into the physics of the quantum reservoir system.115

The QRP is the conceptual inverse of the QRC, diverging in their primary focus: while the116

QRC is predominantly computationally oriented, the QRP emphasizes the underlying phys-117

ical insights. This paradigm aligns with the recent unification of quantum information and118

quantum matter research, where quantum informational metrics are leveraged to unveil a119

variety of quantum phenomena. The QRP further accelerates this integration, designed to il-120

luminate quantum many-body physics through the computational capabilities of the quantum121

reservoir system. This work demonstrates the effectiveness of the QRP in analyzing informa-122

tion propagation, deviating from established approaches that rely on, for example, many-body123
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correlations, entanglement entropy, or mutual information.124

Figure 1(b) schematically illustrates the architecture of the QRP. In contrast to the QRC,125

our QRP enhances resolution in accessing the Hilbert space by deliberately constraining the126

read-out to a single degree of freedom. In this framework, input is supplied to and trans-127

formed within the quantum reservoir system (similar to the QRC), and the final output is128

calculated from the measurement outcome of a single operator (different from the QRC). Un-129

der this condition, the computational performance is linked to the physical attributes of the130

observed degree of freedom. Specifically, we focus on the estimation task for the input value,131

the performance of which quantifies the memory of input information retained in the observed132

degree of freedom. Successful (unsuccessful) estimation indicates that the input information133

does (does not) influence the read-out operator, thus revealing whether the information has134

propagated to that degree of freedom. For example, in Fig. 1(b), the output derived from 〈σx
1 〉135

exhibits superior estimation performance, suggesting the information reachesσx
1 in the Hilbert136

space; conversely, the inferior performance obtained from 〈σ y
2 〉 indicates the information does137

not propagate to σ y
2 for certain reasons. Analogous analysis can be applied to any degree of138

freedom. Therefore, by systematically scanning read-out operators, the QRP can evaluate in-139

formation propagation in the Hilbert space with operator-level resolution. We note that the140

estimation task is meticulously selected for this research objective: by addressing alternative141

machine learning tasks, the QRP can probe diverse physical properties beyond information142

propagation.143

2.2 Formalization of the QRP to analyze information propagation144

Let us formulate the QRP framework for the analysis of information propagation. Although we145

take a spin system as an illustrative example [Fig. 2(a)], we emphasize that the QRP frame-146

work itself is versatile and applicable to variety of systems. Regarding input, we sequentially147

provide random input information through local quantum quenches; the QRP also accommo-148

dates alternative input methods, such as input-dependent magnetic fields or electric currents.149

Suppose {sk} represent an input sequence with each sk randomly sampled from a uniform150

distribution: sk ∈ [0,1]. At every time interval tin, the density matrix ρ is updated as151

ρ(ktin)→ |ψin(s
k)〉〈ψin(s

k)| ⊗ Tr′ [ρ(ktin)] , (1)

where |ψin(sk)〉 represents the input state of the qubits used for encoding the information of152

sk, and Tr′ denotes the partial trace performed over the input qubits. Starting from the ground153

state, a total of lw+ l tr+ l ts inputs are provided at the input time interval tin. Among these, the154

initial lw inputs are disregarded to wash out the initial conditions, while the subsequent l tr and155

l ts instances are used for training and testing, respectively, as detailed below. Since the input156

procedure involves a nonunitary alteration of the quantum state, we define a virtual time τ,157

which is reset to zero at each input. Specifically, for ktin ≤ t < (k+ 1)tin, τ is defined as τ ≡158

t−ktin [Fig. 2(c)]. The system subsequently undergoes time evolution under the Hamiltonian159

H, simulated via the exact diagonalization method: ρ(ktin+τ) = e−iHτρ(ktin)eiHτ. For read-160

out, the expectation value of an operator O is calculated as 〈O(ktin + τ)〉 = Tr[ρ(ktin + τ)O]161

[Fig. 2(b)]. Hereafter, we denote 〈O(ktin +τ)〉 for general k by 〈O(τ)〉.162

As discussed in Sec. 2.1, the QRP captures information propagation through the capacity163

of a specific degree of freedom to estimate the input values. To elaborate, if information of sk
164

does not propagate to a degree of freedom O(τ), the original value sk cannot be estimated from165

〈O(τ)〉 at all; conversely, when propagated, sk can be accurately estimated from 〈O(τ)〉. Fol-166

lowing the QRC framework [13], this concept is formalized as the short-term memory (STM)167

task. The objective of this task is to produce the output yk(τ) that accurately estimates the168

target ȳk
d = sk−d , where d denotes the delay steps after input. Using the read-out 〈O(ktin+τ)〉,169
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Figure 2: (a) Schematic of our 1D quantum spin chain. Both qubit 0 and qubit 1 are
simultaneously employed for input. The qubits 1,2, · · · evolve with the Hamiltonian
in Eq. (5), while the qubit 0 is detached from the dynamics. (b) Quantum dynamics
of the expectation value 〈O(t)〉 with input {sk} given at time interval tin. (c) Con-
cept of virtual time τ. 〈O(τ+ ktin)〉 is used in the calculation of output yk(τ). (d)
Dynamics of the output yk(τ). The gray dotted line represents the target value ȳk.
The performance at τ is evaluated based on the determination coefficient between
y(τ) and ȳ .

the estimation output at the k-th step is calculated by a linear transformation as170

yk
d (τ) = wo(τ)〈O(ktin +τ)〉+ wc(τ), (2)

where wo(τ) and wc(τ) are k-independent coefficients. For simplicity, we define an internal171

state vector X k(τ) = (〈O(ktin +τ)〉, 1) and a weight vector w (τ) = (wo(τ), wc(τ))>, yielding172

a concise representation of Eq. (2) as yk
d (τ) = X k(τ)w (τ). The weight vector is optimized to173

produce the desired output using the training input dataset with l tr instances; subsequently,174

the estimation performance is evaluated on the unseen testing dataset with l ts instances.175

Gathering internal state vectors in the training and testing phases, we construct an (l tr ×176

2)-dimensional matrix X tr(τ) = {X k(τ)}lw+ltr

k=lw+1 and an (l ts × 2)-dimensional matrix X ts(τ) =177

{X k(τ)}lw+ltr+lts

k=lw+ltr+1, respectively. The corresponding target outputs for the STM task with delay178

d are defined as an l tr-dimensional vector ȳ tr
d ≡ {sk−d}lw+ltr

k=lw+1 and an l ts-dimensional vector179

ȳ ts
d ≡ {sk−d}lw+ltr+ltw

k=lw+ltr+1. In the training phase, the weight vector is trained to minimize the180
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discrepancy between the target ȳ tr
d and the output y tr

d (τ) = X tr(τ)w (τ) across all k at each181

individual moment τ [Fig. 2(d)]. The optimal solution minimizing the least squared error is182

given by183

w (τ) = X tr+(τ) ȳ tr
d , (3)

where X tr+(τ) denotes the Moore-Penrose pseudoinverse-matrix of X tr(τ). In the testing184

phase, the estimation performance, i.e., the similarity between the target ȳ ts
d and the testing185

output y ts
d (τ) = X ts(τ)w (τ), is evaluated using the determination coefficient186

R2
d(τ) =

cov2(y ts
d (τ), ȳ ts

d )

σ2(y ts
d (τ))σ

2( ȳ ts
d )

, (4)

where cov andσ2 represent covariance and variance, respectively. R2
d(τ) approaches one when187

the output y ts
d (τ) and the target ȳ ts

d closely align; otherwise, it approaches zero. From this for-188

malization of the QRP, the estimation performance functions as a quantitative metric to assess189

the extent to which the read-out operator O(τ) retains the information of the d-step previous190

input sk−d . As shown below, our study primarily focuses on R2
d=0(τ) to elucidate the mecha-191

nisms underlying the propagation of the most recently provided information. Notably, since192

only a linear transformation is applied to the raw expectation value, the resultant performance193

should accurately estimate the information stored in O(τ) without over- or under-estimation.194

Indeed, employing nonlinear transformations instead complicates the interpretation of the ob-195

tained performance, as the output reflects not only the physics associated with 〈O(τ)〉 but also196

the inherent characteristics of the chosen transformation itself.197

3 Applications: information propagation in the quantum system198

3.1 Ballistic and diffusive dynamics of information propagation199

To demonstrate the effectiveness of the QRP, we investigate information propagation in a spin-200

1/2 Ising chain. The Hamiltonian is given by201

H = −J
N−1∑
i=1

σx
i σ

x
i+1 + hx

N∑
i=1

σx
i + hz

N∑
i=1

σz
i , (5)

with hz and hx representing the transverse and longitudinal magnetic fields, respectively. σx
i202

andσz
i are the x and z Pauli matrices at site i, and J > 0 is the strength of the nearest-neighbor203

Ising interaction, which we set J = 1 as our energy scale. N denotes the number of sites in204

the system, excluding the qubit 0, which is used as a reference ancillary when considering205

mutual information later and therefore not involved in the time evolution [Fig. 2(a)]. The206

information of sk is provided to the quantum system by setting the state of qubits 0 and 1 as207

|ψin(sk)〉 = psk|00〉{01} +
p

1− sk|11〉{01}, following the scheme in Eq. (5). We take N = 7,208

tin = 5, and (lw, l tr, l ts) = (1000,2000,2000) in the following calculations. This model is209

known to be mapped to a free fermion system via the Jordan-Wigner transformation in the210

case of hx = 0, whereas it shows chaotic spectral statistics at (hx , hz) = (−0.5,1.05) [50]. We211

note a finite hx breaks the symmetry σx
i ↔−σx

i .212

Figure 3 represents the dynamics of the estimation performance R2
d(τ) for d = 0,1,2 in a213

free fermion system with (hx , hz) = (0.0,1.0) and a quantum chaotic system with (hx , hz) =214

(−0.5,1.05). For the calculation of the output yk(τ), the expectation values 〈σz
i (τ)〉 at each215

qubit i are independently employed as the read-out operator. In other words, R2
d(τ) in Fig. 3216

quantifies the information propagated to the z-component of individual spins at each moment.217
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Figure 3: (a) Estimation performance R2
d(τ) in the STM task with delay d = 0,1, 2

in the free fermion system with hx = 0.0 and hz = 1.0. 〈σz
i (τ)〉 is utilized in the

calculation of the output yk
d (τ). The colors represent each qubit, and the marker

styles indicate different delays. (b) The same plot as (a) in the quantum chaotic
system with hx = −0.5 and hz = 1.05.

Immediately after the input, where τ� 1, the information of sk remains predominantly within218

the qubit 1 where the input is provided. This is evidenced by the almost unity R2
d=0(τ ' 0)219

for the qubit 1, while being vanishingly small for the remaining qubits. Subsequently, the220

information propagates through qubits 2, 3, ..., leading to a gradual emergence of nonzero221

values for R2
d=0(τ) from the qubits close to the qubit 1. At τ = tin (t = (k + 1)tin), the222

new information sk+1 is provided to the input qubits. The information of sk remaining within223

the quantum reservoir system is then evaluated via the STM task with d = 1. Upon this224

input operation, the quantum state of the input qubits undergoes a substantial alteration,225

while the states of the other qubits remain largely unchanged. Indeed, R2
d−1(τ → tin) and226

R2
d(τ = 0) exhibit continuous connectivity, except for the qubit 1, which is designated for227

input (Fig. 2). R2
d(τ) thus effectively corresponds to R2

d=0(τ + tind) under this successively228

quenched condition.229

Remarkably, the nature of information propagation is closely linked to dynamics of the230

quantum system. In the case of free fermion system, information propagates ballistically231

as illustrated in Fig. 3(a). The dynamics of R2
d=0(τ) for each qubit exhibits a unimodal be-232

havior, with peaks sequentially moving to neighboring sites. This ballistic behavior signifies233

quasiparticle-mediated information propagation. On the quenching process for inputting in-234

formation, a quasiparticle containing the provided information is excited at the input qubits.235
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As the quasiparticle traverses along the chain, the peak of R2
d=0(τ), representing the most re-236

cently provided information, moves to the qubit where the quasiparticle exists. Such localized237

behavior gives rise to the unimodal shape observed in Fig. 3(a). Proceeding to the next input,238

a new quasiparticle is created and interferes with the existing ones. As a result, R2
d=1(τ) and239

R2
d=2(τ) exhibit relatively complicated dynamics, albeit the ballistic nature is similar to the240

case of d = 0.241

In contrast, Fig. 3(b) supports diffusive information propagation in the quantum chaotic242

system. The timeline for R2
d=0(τ) commencing its ascension at each qubit is similar to that in243

Fig. 3(a); however, the process of information accumulation toward the maximum of R2
d=0(τ)244

proves to be significantly prolonged. In addition, subsequent to reaching its maximum, R2
d=0(τ)245

exhibits a gradual decay over a timescale of tin, which contrasts with an abrupt post-peak de-246

cline on a timescale of∆τ∼ 2 observed in the free fermion system. Both R2
d=1(τ) and R2

d=2(τ)247

similarly demonstrate smooth and gradual dynamics without any pronounced peaks. Notably,248

R2
d=2(τ→ tin) converges toward a uniform value across all qubits, implying a homogeneous249

spread of information throughout all the qubits owing to the information delocalization. In250

Appendix A, we present the dynamics of R2
d(τ) with varying the system size. Therein, the QRP251

captures qualitatively the same behavior as Fig. 3, emphasizing the generality of the ballistic252

or diffusive information propagation in each system irrespective of the system size.253

For further elucidation of the mechanisms of information propagation, we examine the254

dynamical spin correlation between the individual qubits and the input qubit 1, 〈σz
1(0)σ

z
i (τ)〉,255

in Figs. 4(a) and 4(b). In contrast to the statistically defined R2
d , physical observables, in-256

cluding the correlations, depend on the individual input value sk. Henceforth, we utilize the257

mean value over the testing input instances when considering physical observables. In the258

free fermion system, the dynamical spin correlation for i ≥ 2 initiates an ascension, achieves259

its maximum, and thereafter undergoes an attenuation; this entire process occurs sequentially260

according to the distance from qubit 1 [Fig. 4(a)]. Conversely, in the quantum chaotic system261

in Fig. 4(b), the dynamical spin correlation accumulates progressively over time and maintains262

a value of approximately 0.1 for long periods.263

Figures 4(c) and 4(d) illustrate the relationship between the dynamical spin correlation264

|〈σz
1(0)σ

z
i (τ)〉| and the estimation performance R2

d=0(τ) when individual 〈σz
i (τ)〉 is employed265

as the read-out. As suggested by previous studies on classical magnetic physical reservoirs266

[12, 51, 52], the quantum reservoir system achieves higher R2
d=0(τ) when the spin variable267

harnessed as the read-out is in strong correlation with the input spin σz
1(0). Remarkably,268

despite the intricate dynamics displayed by both quantities in the quantum chaotic system269

[Figs. 3(b) and 4(b)], the data collapse onto a single curve in Fig. 4(d), indicating an almost270

one-to-one correspondence between |〈σz
1(0)σ

z
i (τ)〉| and R2

d=0(τ) irrespective of the qubit po-271

sition i and virtual time τ. This is accentuated by comparison with the more dispersed plot272

for the free fermion system in Fig. 4(c). We quantify the deviation from a perfect one-to-one273

correspondence between these two quantities using the data deviation criterion∆. For a given274

integer 0≤ m≤ M − 1, we define Λm as a set of {(i,τ)} that satisfy m/M ≤ |〈σ1(0)σi(τ)〉|<275

(m+1)/M , where M represents the number of windows (we set M = 4,000). The average of276

R2
d=0 over Λm is denoted as

�
R2

d=0

�
m. Under the assumption of the one-to-one correspondence,277

R2
d=0 calculated for each (i,τ) ∈ Λm should exhibit be close to this average. The data devia-278

tion ∆ is then defined as the summation of the squared deviations from the average given by279

∆ ≡∑M−1
m=0

∑
(i,τ)∈Λm

h�
R2

d=0

�
(i,τ) −
�
R2

d=0

�
m

i2
. In the quantum chaotic system, the deviation280

criterion ∆ is evaluated to be ∆ ' 0.0299, which is approximately one order of magnitude281

smaller compared to the value of ∆ ' 0.2866 for the free fermion system. This quantitative282

assessment substantiates the one-to-one correspondence between the spin correlation and the283

estimation performance in the former system. In qualitative contrast to the ballistic propaga-284
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Figure 4: (a)-(b) The dynamical spin correlation between qubit 1 and each qubit i
averaged over the testing inputs. (c)-(d) Relationship between the dynamical spin
correlation |〈σz

1(0)σ
z
i (τ)〉| and the estimation performance R2

d=0(τ) obtained from
〈σz

i 〉. Each qubit is represented by distinct colors. (a), (c) Free fermion system and
(b), (d) quantum chaotic system.

tion mediated by quasiparticles in the free fermion system, this observation suggests that the285

spin correlations play a pivotal role in the diffusive information propagation in the quantum286

chaotic system.287

3.2 Information propagation channels in the Hilbert space288

We here emphasize that the QRP possesses the capability to assess information propagation289

to any arbitrary operator O(τ). The estimation performance R2
d(τ), derived from the output290

y(τ) obtained through the linear transformation of 〈O(τ)〉, serves as a quantitative measure291

of the information stored in that degrees of freedom. By systematically scanning the read-out292

operators, the QRP can explore the spread of information across multiple degrees of freedom293

in the Hilbert space at any given moment, thus identifying specific channels for information294

propagation.295

Figures 5(a) and 5(c) represent R2
d=0(τ) employing observables of the single spin

�〈σz
2(τ)〉296

and 〈σz
3(τ)〉
�

and spin correlation
�〈σx

2 (τ)σ
x
3 (τ)〉 and 〈σz

2(τ)σ
z
3(τ)〉
�
; additional operators297

are examined in Appendix B. In the free fermion system [Fig. 5(a)], R2
d=0(τ) initially increases298

at the qubit 2, and before it becomes nonzero for the qubit 3, the information propagates to299
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Figure 5: (a), (c) Dynamics of the estimation performance in the QRP framework.
The skyblue (green) line represents R2

d=0(τ) using single spin 〈σz
2(τ)〉
�〈σz

3(τ)〉
�

for
calculation, whereas the blue (pink) line illustrates R2

d=0(τ)when the spin correlation
〈σx

2 (τ)σ
x
3 (τ)〉
�〈σz

2(τ)σ
z
3(τ)〉
�

is utilized. (b), (d) Dynamics of the OTOC and TMI
averaged over the testing inputs. The skyblue and green lines plot the OTOC for
qubit 2 (F zz

2 (τ)) and for qubit 3 (F zz
3 (τ)), respectively. The black line displays the

TMI among qubits 0, 2, and 3. (a)-(b) Free fermion system, (c)-(d) quantum chaotic
system.

the x component of the correlation between the qubits 2 and 3: 〈σx
2 (τ)σ

x
3 (τ)〉. However,300

R2
d=0(τ) for the z component of the correlation 〈σz

2(τ)σ
z
3(τ)〉 remains nearly zero over all301

time. Detailed results utilizing other operators are presented in Appendix B, yet it is pertinent302

to note that R2
d=0(τ) manifests nonzero value only when employing the z spin on a single site303

〈σz
i (τ)〉 or the x component of the nearest-neighbor spin correlation 〈σx

i (τ)σ
x
i+1(τ)〉. These304

observations unequivocally indicate that the information propagates through the channel of305

spin x interactions between nearest qubits. This is consistent with the picture of quasiparticle-306

mediated information propagation, as the interaction σx
i σ

x
i+1 constitutes the foundation of307
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the quasiparticle description in the free fermion system.308

In contrast, in the quantum chaotic system, both the x and z components of correlations309

retain information with nonzero R2
d=0(τ) [Fig. 5(c)], as well as other operators, including cor-310

relations among distant qubits (Appendix B). In particular, R2
d=0(τ) using 〈σx

2 (τ)σ
x
3 (τ)〉 and311

〈σz
2(τ)σ

z
3(τ)〉 exhibit similar behavior in the early time, and as time evolves, they diverge and312

display different behaviors. Each type of spin correlation thus serves as an individual channel313

for information propagation between the adjacent qubits. This marks a significant distinction314

from the free fermion system, where the information propagation channels are limited to a315

few correlations. Notably, although our investigations focus on the early time regimes, the316

nonzero R2
d observed in various degrees of freedom (Appendix B) could be considered as an317

early signature of the occurrence of quantum information scrambling in the long-time limit,318

where information delocalizes over diverse degrees of freedom.319

3.3 Comparisons with OTOC and TMI320

In the previous sections, we have explored the information propagation through the estima-321

tion performance using the QRP. To validate its reliability, we compare the QRP with conven-322

tional methodologies for evaluating information propagation, namely the out-of-time-order323

correlator (OTOC) and the tripartite mutual information (TMI). The OTOC essentially probes324

the degree of noncommutativity between two initially commuting operators at different tem-325

poral points [53–59]. The long-time behavior of OTOC, particularly its asymptotic value,326

is a key indicator of the presence or absence of scrambling [60–63]. We specifically calcu-327

late the OTOC between the qubits i and 1 as F zz
i ≡ 〈σz

i (τ)σ
z
1(0)σ

z
i (τ)σ

z
1(0)〉. On the other328

hand, the TMI quantifies the extent to which information about one subsystem can be ex-329

tracted from the nonlocal correlations present between two other subsystems [32, 64–66].330

Defined in an operator-independent manner, it becomes negative when the targeted informa-331

tion delocalizes across the subsystems. Here, we utilize the detached input qubit 0 as the332

reference system for sk, and evaluate the spread of information of sk over the nonlocal cor-333

relations between the qubits 2 and 3. The corresponding TMI is defined as I3(0: 2: 3) ≡334

S{0} + S{2} + S{3} − S{0}∪{2} − S{0}∪{3} − S{2}∪{3} + S{0}∪{2}∪{3}, where SX is the von Neumann335

entropy. Both the OTOC and TMI are averaged over the testing input instances.336

Figures 5(b) and 5(d) illustrate the OTOC and the TMI in the free fermion system and337

the quantum chaotic system. In the initial stage, the OTOC F zz
i (τ) for the qubits 2 and 3338

begin to decrease, slightly before the ascension of R2
d=0(τ) utilizing 〈σz

2(τ)〉 and 〈σz
3(τ)〉,339

respectively. During the intermediate stage, the TMI I3(0: 2: 3) turns negative at the same340

time as R2
d=0(τ) calculated from the spin correlations become nonzero. Both of them indicate341

the initial spread of the input information over the qubits 2 and 3 in those time regime, which342

completely aligns with the behavior of R2
d(τ) in the QRP [Figs. 5(a) and 5(c)]. As τ approaches343

tin, the OTOC F zz
i (τ) converges to 1 in the free fermion system and 0 in the quantum chaotic344

system. This long-time asymptotic value signifies the presence or absence of scrambling in345

each system [32,56], which is also consistent with whether or not the nonzero R2
d(τ) spreads346

for various operators in the QRP. These parallel observations validate the reliability of the QRP347

in capturing information propagation in quantum systems.348

Fundamentally, the dynamics in the free fermion system and the quantum chaotic sys-349

tem are qualitatively disparate. Beyond differentiating the ballistic and diffusive propaga-350

tion dynamics of R2
d=0(τ) (Fig. 3), the QRP elucidates these disparities from the perspec-351

tive of the information propagation channels; the pronounced distinction in R2
d=0(τ) derived352

from 〈σz
2(τ)σ

z
3(τ)〉 offers compelling evidence of the differences in the propagation channels353

[Figs. 5(a) and 5(c)]. However, such differences in propagation dynamics cannot be deduced354

from the behaviors of OTOC or TMI, as illustrated in Figs. 5(b) and 5(d). The OTOC in these355

systems differ in their asymptotic values, while their early and intermediate dynamics remain356
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Figure 6: (a) The estimation performance R2
d=0(τ) in the free fermion system

with (hx , hz) = (0.0,1.0), employing the read-out operator 〈σx
2 (τ)σ

x
3 (τ)〉 (blue),

〈σz
2(τ)σ

z
3(τ)〉 (pink), 〈σz

2(τ)σ
x
3 (τ)〉 (purple) and 〈σx

2 (τ)σ
z
3(τ)〉 (green). (b) The

same plot as (a) in the perturbed system with (hx , hz) = (−0.02,1.002). (c)-(d),
The OTOC for qubit 2 and qubit 3: (c) F zz

i = 〈σz
i (τ)σ

z
1(0)σ

z
i (τ)σ

z
1(0)〉 and (d)

F zx
i = 〈σz

i (τ)σ
x
1 (0)σ

z
i (τ)σ

x
1 (0)〉. The skyblue and green lines represent the OTOC

in the free fermion system, while the pink and orange lines correspond to the per-
turbed system. (e)-(f) Dynamics of the TMI: (e) I3(0: 2: 3) and (f) I3(0: 2: {3,4}).
The black and red lines plot the TMI in the free fermion system and the perturbed
system, respectively.

notably similar, offering little insight into the information propagation channels (nor can the357

OTOC for other operator pairs in Appendix C). The TMI displays qualitatively similar dynamics358

between these systems throughout the entire temporal regime. Its operator-independent def-359

inition obscures the influence of specific degrees of freedom that differentiate these quantum360

systems. Consequently, the fundamental strength of the QRP lies in its resolution to analyze361
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the information propagation for any arbitrary degrees of freedom at any specific point in time.362

This in-depth analysis effectively uncovers the intrinsic dynamical characteristics of quantum363

systems, including the underlying information propagation channels. Moreover, it is worth364

highlighting the greater experimental feasibility of the QRP, as it solely requires expectation365

values of pertinent operators, such as spins and spin correlations. This stands in stark contrast366

to OTOC, which requires inverse time evolution, and to TMI, which necessitates highly precise367

quantum state tomography [56,67–70].368

We further investigate the perturbed system with (hx , hz) = (−0.02,1.002) to lucidly369

demonstrate the sensitivity of the QRP. These parameters closely approximate those of the free370

fermion system; however, the system is no longer integrable, and the symmetry σx
i ↔−σx

i371

is broken. Figures 6(a) and 6(b) show R2
d=0(τ) when each of the following is employed as372

the read-out operator in the free fermion system and the perturbed system, respectively:373

〈σx
2 (τ)σ

x
3 (τ)〉, 〈σz

2(τ)σ
z
3(τ)〉, 〈σz

2(τ)σ
x
3 (τ)〉, and 〈σx

2 (τ)σ
z
3(τ)〉. Due to the similarity of374

the models, R2
d=0(τ) employing 〈σx

2 (τ)σ
x
3 (τ)〉 and 〈σz

2(τ)σ
z
3(τ)〉 are semiquantitatively in-375

distinguishable between these two systems. Nevertheless, the breakdown of the symmetry376

and quasiparticle picture due to the perturbation gives rise to different types of informa-377

tion propagation channels beyond quasiparticle mediation, as indicated by R2
d=0(τ) utilizing378

〈σz
2(τ)σ

x
3 (τ)〉 and 〈σx

2 (τ)σ
z
3(τ)〉, which only display nonzero values in the perturbed system379

[Fig. 6(b)].380

In Figs. 6(c) and 6(d), we illustrate the dynamics of OTOC F zz
i (τ) and similarly defined381

F zx
i (τ). Remarkably, despite the qualitative differences between the free fermion system and382

the perturbed system, these OTOC manifest almost identical values in both systems, as evi-383

denced by the overlapping pairs of curves (similar agreements are also observed for F x x
i (τ)384

and F xz
i (τ)). We also present the TMI I3(0: 2: 3) and I3(0: 2: {3,4}) in Figs. 6(e) and 6(f)385

respectively, with the latter defined analogously to the former. As in the case of the OTOC,386

the overlapping curves therein underscore the incapacity of the TMI to distinguish between387

the two systems. These observations highlight the marked disparity in sensitivity between the388

QRP and the OTOC or the TMI, as the latter two exhibit less responsiveness to perturbations,389

even those involving changes in symmetry or integrability. The pronounced sensitivity of the390

QRP facilitates a detailed investigation of quantum many-body physics from an informational391

perspective, which might remain obscured in conventional analyses using the OTOC and TMI.392

4 Discussion and conclusion393

In this paper, we have proposed the QRP by inversely extending the QRC for the exploration of394

quantum many-body physics from the perspectives of computation and information. By estab-395

lishing a correspondence between the physical properties and the computational performance,396

the QRP can shed light on the physics in any degree of freedom at arbitrary times. Among many397

applications of the QRP, we have concentrated on the study of information propagation within398

the Hilbert space. Here, sequential input information is provided to the quantum reservoir399

system via the local quantum quench, subsequently estimated using various read-out opera-400

tors. The estimation performance is utilized as the metric for information propagation. In the401

quantum Ising chain with transverse and longitudinal magnetic fields, we have demonstrated402

that the QRP captures both ballistic information propagation mediated by quasiparticles in the403

free fermion system and diffusive information propagation facilitated by correlations in the404

quantum chaotic system, with the latter exhibiting early signatures of information scrambling405

across various degrees of freedom. Furthermore, we have shown that the QRP can systemati-406

cally identify system-specific information propagation channels through a comprehensive scan407

of read-out operators, which is an advantage over conventional measures, in addition to its408
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pronounced sensitivity to perturbations.409

Through the examination of information propagation, the QRP is applicable to uncover410

the relationship between specific operations and their resultant quantum dynamics, extending411

beyond the analysis of the propagation dynamics itself. Conventional approaches to under-412

standing the impact of operations such as sudden quenches, application of electromagnetic413

fields, or coupling with external systems, typically involve direct observation of physical ob-414

servables under the influence of these operations. However, the resulting dynamics is often415

affected by other multiple intrinsic and extrinsic factors, the complexity of which precludes416

straightforward inference of the underlying causal relationships. In contrast, the QRP concep-417

tualizes quantum dynamics as a process that conveys quantum information throughout the418

system. Particularly in this study, where the input is initially provided via the quantum quench419

operation, the propagation of the input information can be taken as equivalent to the propaga-420

tion of quenching effects, with quasiparticles or quantum correlations mediating this process.421

Similarly, when the input originates from, for example, magnetic fields or electric currents,422

information propagation can be interpreted as the spread of the effects of the applied fields or423

currents. Thus, by characterizing the operation as the source of the input information, the QRP424

can selectively extract the resultant effects in isolation from other influences of diverse origin,425

utilizing the provided information as a marker. This methodology should prove invaluable in426

a wide range of contexts for analyzing phenomena of interest without being obscured by the427

complex interplay of various factors.428

Finally, we emphasize the extensive applicability of the QRP, which is not inherently limited429

to the analysis of information propagation. The QRP can investigate diverse properties of quan-430

tum systems by tailoring the input scheme and target output accordingly. For instance, by set-431

ting the target output as a nonlinear transformation of the provided input, the QRP would illu-432

minate the nonlinear quantum processes within the quantum system; alternatively, by provid-433

ing multiple inputs from distinct terminals, interactions among multiple excitations could be434

evaluated. Moreover, the QRP is fundamentally applicable to arbitrary systems, and potential435

applications to high-dimensional, dissipative, or topological systems promise to yield further436

insights into largely unexplored quantum many-body phenomena, including mesoscopic, non-437

Hermitian, and topological quantum physics. All these analyses could be performed within the438

identical framework of the QRP, which probes physics through computational performance to439

solve specific tasks using physical degrees of freedom. It is worth noting that the QRP can be440

implemented using the same experimental configuration as the QRC, which has already been441

successfully realized in several systems [27–29], with potential platforms including optical lat-442

tices [71], photonic simulators [72], and trapped ions [73]. Considering the design flexibility,443

broad applicability, and experimental feasibility, we believe the QRP will establish itself as a444

potent tool for further propelling the exploration of quantum many-body physics.445
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A Information propagation dynamics with varying system sizes453

We examine the system size dependence of the information propagation dynamics. Figure 7454

extends Fig. 3 by showcasing the estimation performance R2
d(τ) calculated using individual455

spin operators 〈σz
i (τ)〉 for system sizes ranging from N = 6 to 10.456

In the free fermion system, we observe a characteristic sequential peaks in R2
d=0, exhibiting457

ballistic propagation from qubit 1 towards qubits 2, 3, and so forth. Conversely, the quan-458

tum chaotic system demonstrates diffusive propagation of R2
d=0 throughout the system. These459

qualitative behaviors remain consistent across different system sizes, suggesting the general460

applicability of the QRP for capturing the characteristics of information propagation dynamics461

independent of system sizes.462
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Figure 7: (a) Size dependence of the estimation performance R2
d(τ) in the STM task

with delay d = 0,1,2 in the free fermion system with hx = 0.0 and hz = 1.0. 〈σz
i (τ)〉

is utilized in the calculation of the output y(τ). Sequentially from the top figure,
the system size ranges from N = 6 to 10. (b) The same plot as (a) in the quantum
chaotic system with hx = −0.5 and hz = 1.05. The colors represent each qubit, and
the marker styles indicate different delays.
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B Read-out with various degrees of freedom463

We investigate the information stored in various types of operators using the QRP protocol.464

Specifically focusing on the information possessed in qubits 2, 3, and 4, we calculate the esti-465

mation performance employing the spin σ(x ,z)
i (τ) and spin correlations σ(x ,z)

i (τ)σ(x ,z)
j (τ) over466

these qubits. Figure 8 illustrates R2
d=0(τ) for three different systems: the free fermion system467

with (hx , hz) = (0.0,1.0), the quantum chaotic system with (hx , hz) = (−0.5,1.05), and the468

perturbed system with (hx , hz) = (−0.02,1.002).469

In the free fermion system, R2
d=0(τ) exhibits a nonzero value when either 〈σz

i (τ)〉 [Fig. 8(d)]470

or 〈σx
i (τ)σ

x
i+1(τ)〉 [Figs. 8(g) and 8(m)] is utilized as the read-out operator. Otherwise,471

R2
d=0(τ) becomes nearly zero, indicating information is not stored in operators such as 〈σx

i (τ)〉472

[Fig. 8(a)], 〈σz
i (τ)σ

z
j (τ)〉 [Figs. 8(g), 8(m), and 8(s)], 〈σx

i (τ)σ
z
j (τ)〉, 〈σz

i (τ)σ
x
j (τ)〉 [Figs. 8(j),473

8(p), and 8(v)], and 〈σx
i (τ)σ

x
j 6=i+1(τ)〉 [Fig. 8(s)]. We note that due to the inherent symmetry474

σx
i ↔−σx

i in the free fermion system, the expectation values of odd operators with respect475

to σx
i vanish, resulting in R2

d=0(τ)' 0 when utilizing such operators.476
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Figure 8: Dynamics of the reservoir performance R2
d=0 for the STM task employing

various operators of qubits 2, 3,4 for the read-out. The legends on the rightmost side
show the correspondence between markers and operators. (a, d, g, j, m, p, s, v) Free
fermion system, (b, e, h, k, n, q, t, w) perturbed system, and (c, f, i, l, o, r, u, x)
quantum chaotic system.
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In the quantum chaotic case, R2
d=0(τ) manifests nonzero values for all the read-out op-477

erators shown in Fig. 8, including correlations between qubits 2 and 4 despite the distance478

between the qubits [Figs. 8(u) and 8(x)]. This represents an early signature of quantum in-479

formation scrambling, where information diffuses across a multitude of degrees of freedom.480

In the perturbed system, R2
d=0(τ) employing 〈σz

i (τ)〉 and 〈σx
i (τ)σ

x
i+1(τ)〉 are semiquanti-481

tatively the same as those in the free fermion system, as evidenced by the almost identical pairs482

of figures: Figs. 8(d) and 8(e), Figs. 8(g) and 8(h), and Figs. 8(m) and 8(n). However, due to483

the breakdown of the symmetry and the quasiparticle picture, information propagates across484

a broader range of degrees of freedom. Indeed, the x component of each spin 〈σx
i (τ)〉 mani-485

fests nonzero R2
d=0(τ) [Fig. 8(b)], and the spin correlations 〈σx

i (τ)σ
z
j (τ)〉 and 〈σz

i (τ)σ
x
j (τ)〉486

[Figs. 8(k), 8(q), and 8(w)] also exhibit nonzero R2
d=0(τ). The latter suggests that these corre-487

lations serve as additional information propagation channels between qubits i and j, alongside488

quasiparticle mediation.489

C The OTOC for various operator pairs490

In Fig. 5(a), we demonstrate that R2
d=0 using 〈σx

2 (τ)σ
x
3 (τ)〉 and 〈σz

2(τ)σ
z
3(τ)〉 exhibit markedly491

distinct behaviors in the free fermion system, which indicates that information propagates pri-492

marily through σx
2 (τ)σ

x
3 (τ), rather than σz

2(τ)σ
z
3(τ). Conversely, in the quantum chaotic493
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Figure 9: (a)-(c) Dynamics of the OTOC averaged over the testing in-
puts: F x x ,z

23,1 = 〈(σx
2σ

x
3 )(τ)σ

z
1(0)(σ

x
2σ

x
3 )(τ)σ

z
1(0)〉 (green) and F zz,z

23,1 =
〈(σz

2σ
z
3)(τ)σ

z
1(0)(σ

z
2σ

z
3)(τ)σ

z
1(0)〉 (purple). (d)-(f) The same plot for

F x x
2,3 = 〈σx

2 (τ)σ
x
3 (0)σ

x
2 (τ)σ

x
3 (0)〉 (pink) and F zz

2,3 = 〈σz
2(τ)σ

z
3(0)σ

z
2(τ)σ

z
3(0)〉

(skyblue). (a), (d) Free fermion system, (b), (e) perturbed system, and (c), (f)
quantum chaotic system.
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system [Fig. 5(b)], R2
d=0 for both read-out operators becomes finite, suggesting that each type494

of spin correlation serves as an independent information propagation channel. However, the495

OTOC F zz
2 = 〈σz

2(τ)σ
z
1(τ)σ

z
2(τ)σ

z
1(0)〉 and F zz

3 = 〈σz
3(τ)σ

z
1(τ)σ

z
3(τ)σ

z
1(0)〉 exhibit similar496

dynamics between these systems, except for the asymptotic value, as shown in Figs. 5(b) and497

5(d). This suggests the incapability of the OTOC to identify information propagation channels498

in the Hilbert space.499

To further illustrate this limitation, we examine the OTOC for various operator pairs,500

specifically focusing on the qubits 2 and 3. In Figs. 9(a), 9(b), and 9(c), corresponding re-501

spectively to the free fermion system, the perturbed system, and the quantum chaotic sys-502

tem, we illustrate the OTOC between the qubit 1 and the correlations of the qubits 2 and 3:503

F x x ,z
23,1 = 〈(σx

2σ
x
3 )(τ)σ

z
1(0)(σ

x
2σ

x
3 )(τ)σ

z
1(0)〉 and F zz,z

23,1 = 〈(σz
2σ

z
3)(τ)σ

z
1(0)(σ

z
2σ

z
3)(τ)σ

z
1(0)〉.504

As shown in Fig. 6, the OTOC for the first two systems exhibit semiquantitative similarity,505

while those for the quantum chaotic system deviate in the asymptotic values, corresponding to506

the occurrence of scrambling. However, other qualitative differences, particularly with regard507

to information propagation channels, are not inferred from them. Even when comparing the508

two OTOC within the free fermion system [Fig. 9(a)], F x x ,z
23,1 and F zz,z

23,1 display similar behavior,509

failing to reveal any qualitative differences between σx
2 (τ)σ

x
3 (τ) and σz

2(τ)σ
z
3(τ), contrary to510

results obtained with the QRP that suggest distinct roles for these operators.511

In addition to the aforementioned OTOC involving the qubit 1, we further investigate the512

OTOC with only the qubits 2 and 3. For the three systems, Figs. 9(d)-9(f) present the OTOC513

F x x
2,3 = 〈σx

2 (τ)σ
x
3 (0)σ

x
2 (τ)σ

x
3 (0)〉 and F zz

2,3 = 〈σz
2(τ)σ

z
3(0)σ

z
2(τ)σ

z
3(0)〉; permuting the site514

indices 2 and 3 in the above definition yields similar results. As is the case in Figs. 9(a)-9(c),515

the OTOC for the free fermion and perturbed systems are semiquantitatively the same, with516

qualitative differences between these two systems and the quantum chaotic system emerging517

only in their convergence. Furthermore, in the free fermion system [Fig. 9(d)], F x x
2,3 and F zz

2,3518

exhibit similar behavior, except for a sign difference in the asymptotic value. Consequently,519

the OTOC F x x
2,3 and F zz

2,3, as well as F x x ,z
23,1 and F zz,z

23,1, are insufficient to distinguish the different520

types of information propagation channels, underscoring the significant advantage of the QRP.521
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