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Abstract

We establish rigorous inequalities between different electronic properties linked to op-
tical sum rules, and organize them into weak and strong bounds on three characteristic
properties of insulators: electron localization length ℓ (the quantum fluctuations in po-
larization), electric susceptibility χ , and optical gap EG. All-electron and valence-only
versions of the bounds are given, and the latter are found to be more informative. The
bounds on ℓ are particularly interesting, as they provide reasonably tight estimates for
an ellusive ground-state property – the average localization length of valence electrons –
from tabulated experimental data: electron density, high-frequency dielectric constant,
and optical gap. The localization lengths estimated in this way for several materials
follow simple chemical trends, especially for the alkali halides. We also illustrate our
findings via analytically solvable harmonic oscillator models, which reveal an intriguing
connection to the physics of long-ranged van der Waals forces.
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1 Introduction23

The low-frequency electronic conductivity24

σaa(ω) = Reσaa(ω) + iImσaa(ω) (1)

displays sharply different behaviors in metals and in insulators. To characterize those behav-25

iors one may define26

Daa = π lim
ω→0

ω Imσaa(ω) , (2a)

ε0χaa = − lim
ω→0

ω−1 Imσaa(ω) , (2b)

where ε0 is the vacuum permittivity. The Drude weight Daa is finite in metals and vanishes27

in insulators, whereas the clamped-ion electric susceptibility χaa is finite in insulators and28

diverges in metals. The 1/ω divergence of Imσaa(ω) in perfect conductors is due to the29

acceleration of free electrons under an applied electric field, and its linear decrease with ω in30

insulators reflects the polarization of bound electrons in reaction to the field.31

In 1964, Kohn proposed electron localization as the essential property of the insulating32

state, and showed that it leads directly to its distinctive electrical behavior [1]. He argued that33

the ground-state wave function Ψ(r1, . . . , rN ) of an insulator in a periodic supercell breaks up34

into a sum of functions, Ψ =
∑

M ΨM , which are localized in disconnected regions of configu-35

ration space and have essentially vanishing overlap.36

Kohn went on to show that the disconectedness of Ψ allows for the definition of an ef-37

fective center-of-mass operator X/N , even though the bare center-of-mass operator operator38

(1/N)
∑N

i=1 ri is ill-defined under periodic boundary conditions. The operator X is based on39

sawtooth functions, whose discontinuities are placed in regions of configuration space where40

Ψ becomes exponentially small [2].41

The importance of X can be seen from the fact that its ground-state expectation value yields42

the electronic contribution to the macroscopic electric polarization (P),43

Pe = −|e|〈X〉/V , (3)

where V is the supercell volume. Thanks to the development of the modern theory of polar-44

ization, P is now understood as a fundamental bulk property of crystalline insulators, indepen-45

dent of surface termination modulo a discrete quantum of indeterminacy. In particular, within46
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a single-particle band picture, Eq. (3) reduces to a sum over the Wannier centers (Kohn’s dis-47

connected wave function pieces ΨM [1,2] can be viewed as “many-body Wannier functions”),48

or can be equivalently written as a Berry phase in momentum space [3, 4]. Crucially, this49

theory asserts that bulk polarization is a property of the wave function and not of the charge50

density – in line with Kohn’s view on electron localization.51

In addition, Kohn’s center-of-mass operator allows for the definition of an electron local-52

ization tensor [5]53

〈rarb〉c =
1
N
[〈XaX b〉 − 〈Xa〉〈X b〉] , (4)

where the subscript c (not a Cartesian index like a and b) stands for “cumulant moment.”54

The diagonal entries of this tensor carry the interpretation of a localization length squared,55

averaged over the total number of electrons, along the corresponding direction:56

ℓ2a = 〈r
2
a 〉c . (5)

As in the case of P, 〈rarb〉c also enjoys an elegant formulation in the framework of band theory,57

where it can be written as a quantum metric tensor [6] of the valence Bloch manifold [5,7,8],58

whose Cartesian trace is related to the Wannier spread [9]. First-principles studies of the59

localization length have been carried out for tetrahedrally coordinated semiconductors [10]60

and oxides [11].61

Kohn did not directly relate the degree of wave function localization to any physical ob-62

servable. An important step in that direction was taken shortly before the modern theory of63

polarization was developed. In Ref. [12], Kudinov proposed to quantify electron localization64

in insulators via the quantum fluctuations in the ground-state polarization [Eqs. (4) and (5)],65

connecting them to the optical absorption spectrum by means of a fluctuation-dissipation re-66

lation [13]. For a bulk crystal, such relation at zero temperature takes the form [5]67

〈rarb〉c =
ħh

πe2ne

∫ ∞

0

dωω−1 ReσS
ab(ω) , (6)

where ne = N/V is the electron density, S indicates the symmetric part of the tensor, and the68

integral spans the positive-frequency optical absorption spectrum.1 The trace 〈r2〉c =
∑

a ℓ
2
a of69

the localization tensor diverges in conductors by virtue of their nonzero DC Ohmic conductivity,70

while in insulators it remains finite.71

The fluctuation-dissipation relation written above assumes a vanishing macroscopic elec-72

tric field E, as appropriate for transverse long-wave excitations. The needed generalization to73

accomodate more general electrical boundary conditions was given by Resta [14]. In particu-74

lar, for longitudinal excitations where E= −P/ε0 (D= 0), the fluctuation-dissipation relation75

becomes a sum rule for the energy-loss spectrum [14,15],76

〈Þrarb〉c =
ħhε0

πe2ne

∫ ∞

0

dω Im
�

−
1
ε(ω)

�S

ab
. (7)

The quantum fluctuations encoded in the localization tensor clearly depend on the electrical77

boundary conditions, and it is only under E = 0 as assumed in Eq. (6) that its trace discrim-78

inates between insulators and metals [14]. In the following, we will deal mostly with the79

transverse localization tensor; when referring to longitudinal quantities in Secs. 3 and 4.4, we80

will denote them with a tilde as done above.81

1The conductivity tensor can be decomposed in three different ways: real and imaginary parts, Reσ and Imσ;
symmetric and antisymmetric parts, σS and σA; Hermitian and anti-Hermitian parts, σH and σAH. The Hermitian
part of σ (and hence ReσS) is dissipative, while its anti-Hermitian part is reactive.
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Length relations References Comments Energy relations
ℓ≤ ℓ++ [5] ℓ2++∝ 1/EG EL ≥ EG

Weak upper bound
ℓ− ≤ ℓ [16,17] ℓ2−∝ χEG/ne E2

P/EG ≥ EL
Lower bound

Sum-rule derivation in [17]
ℓ≤ ℓ+ [15,18], ℓ2+∝

p

χ/ne EL ≥ EP
this work Strong upper bound

ℓ+ ≤ ℓ++ This work Equivalent to ℓ− ≤ ℓ+,ℓ++ EP ≥ EG
ℓ− ≤ ℓ≤ ℓ+ ≤ ℓ++ This work Chained inequalities E2

P/EG ≥ EL ≥ EP ≥ EG

Table 1: Overview of the sum-rule inequalities on ℓ discussed in the present work.
Those inequalities relate the electron localization length ℓ defined by Eq. (5) to the
optical gap EG, the clamped-ion electric susceptibility χ, and the electron density ne.
The works cited formulate the bounds for crystals; similar relations involving the elec-
tric polarizability of atoms had been previously established [19]. In Refs. [15,18] the
relation ℓ ≤ ℓ+ is formulated not for ℓ but for 2πneℓ

2, which for uncorrelated band
insulators gives the quantum metric traced over the filled bands: see Appendix A. The
last column contains equivalent energy relations [17, 19] expressed in terms of the
localization gap EL and the Penn gap EP, which will be defined shortly [see Eq. (11)].

Although Eq. (6) provides a way of extracting the transverse localization length ℓ from82

the optical absorption spectrum, we are not aware of any experimental work in that direction.83

As discussed in Ref. [17], an alternative is to estimate ℓ via rigorous upper and lower bounds84

involving readily-available experimental data: electron density ne, electric susceptibility χ,85

and minimum optical gap EG (see Table 1). This approach was used recently to estimate86

2πneℓ
2
α (the quantum metric of the filled bands) for a number of materials [15,20].87

In this work, we employ a sum-rule approach [19] to estabish weak and strong bounds on88

ℓ, χ, and EG. We give two formulations of the bounds – all electron and valence-only – and89

argue that the valence-only formulation, even if approximate, is more informative. This is con-90

firmed by an explicit evaluation of the bounds on ℓ for a series of materials; the strong bound is91

found to be much tighter than the weak one, and the valence-only formulation reveals simple92

chemical trends. To illustrate the impact of long-ranged electrostatics on the polarization fluc-93

tuations [14], we apply our formalism to analytically solvable systems of harmonic oscillators.94

This exercise reveals an intriguing connection to the physics of van der Waals (dispersion)95

forces, and clarifies the central role of electron-electron correlation in the determination of96

the optical bounds.97

The manuscript is organized as follows. In Sec. 2 the inverse moments of the optical ab-98

sorption spectrum are introduced, the sum rules for the three leading moments are stated,99

and average optical gaps are defined. In Sec. 3, sum-rule inequalities are established for the100

inverse moments and for the average gaps; the latter are then organized into chained inequal-101

ities, from which various bounds on ℓ, χ, and EG are deduced. In Sec. 4 those bounds are102

examined for several exactly-solvable models, including harmonic oscillator models coupled103

by dispersion interactions. In Sec. 5 the localization length ℓ is estimated for various materials104

using the all-electron and valence-only varieties of the bounds, and the observed trends are105

discussed. We conclude in Sec. 6 with a summary, and provide some accessory results in three106

appendices.107
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2 Sum rules and average gaps108

For light with linear polarization along direction n̂, we define the inverse moments of the109

optical absorption spectrum at zero temperature as110

Ip(n̂) =
2
π

∫ ∞

0

dωω−p ReσS
ab(ω)n̂a n̂b , (8)

where a summation over repeated Cartesian indices is implied; the integer p and the absorption111

strength ReσS
ab(ω)n̂a n̂b are both non-negative (the latter follows from the assumption that the112

unperturbed system is in the ground state), and the 2/π factor was included for convenience113

in writing the sum rules below. For simplicity we will assume cubic symmetry or higher so that114

σS
ab = σ

Sδab, rendering Ip independent of n̂,115

Ip =
2
π

∫ ∞

0

dωω−p ReσS(ω) . (9)

The inverse spectral moments with p = 0, 1,2 satisfy116

I0 =
e2ne

me
≡ ε0ω

2
p , (10a)

I1 =
2e2

ħh
neℓ

2 , (10b)

I2 = ε0χ ≡ ε0 (ε− 1) , (10c)

where we have introduced the plasma frequencyωp and the static electronic permittivity ε (of-117

ten denoted as ε∞). The above identities are respectively the oscillator-strength sum rule,2118

the fluctuation-dissipation relation of Eq. (6) [with ℓ2 defined by Eq. (5)], and the electric-119

susceptibility sum rule; the corresponding relations for atomic systems are given in Ref. [19].120

All three sum rules converge for insulators, while in metals I1 and I2 diverge as a result of121

the nonzero DC conductivity. Equations (10a) and (10c) follow from the Kramers-Krönig re-122

lations, which in the case of (10a) must be complemented by general arguments concerning123

the behavior of the permittivity at high frequencies [22].124

In addition, we find it useful to define a “localization gap” EL and a “Penn gap” EP as [17]125

E−1
L =
ħh−1 I1

I0
, E−2

P =
ħh−2 I2

I0
; (11)

these expressions can be interpreted as average inverse excitation energies (or energies squared)126

weighted by the transition strength [19]. Using Eq. (10) and writing ħh2/2me as a2
0 Ry (a0 is127

the Bohr radius and Ry is the Rydberg unit of energy), we obtain128

EL =
ħh2

2meℓ2
⇔
�

ℓ

a0

�2

=
Ry
EL

(12)

and129

χ =

�

ħhωp

EP

�2

, (13)

the latter being the standard definition of the Penn gap in semiconductor physics [23,24].130

As shown below and already indicated in Table 1, the inequalities of interest can be ex-131

pressed concisely as relations among three characteristic energy scales of the band structure:132

optical gap EG (the energy threshold for optical absorption), Penn gap, and localization gap.133

2The oscillator-strength sum rule gets modified for tight-binding models [21], and also when nonlocal pseu-
dopotentials are used in the context of first-principles calculations.
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3 Sum-rule inequalities134

From the fact that ReσS(ω) ≥ 0 one can readily establish two types of inequalities involving135

different spectral moments [19]. The first type are of the form136

Ip+q ≤
ħh
EG

Ip+q−1 ≤ . . .≤
�

ħh
EG

�q

Ip , (14)

where q > 0; the second,137

I2
p ≤ Ip−1 Ip+1 , (15)

follow from the Cauchy-Bunyakovsky-Schwarz inequality138

�∫ ∞

0

dω f (ω)g(ω)

�2

≤
�∫ ∞

0

dω f (ω)2
��∫ ∞

0

dω g(ω)2
�

(16)

by setting f (ω) = ω−(p−1)/2
p

ReσS(ω) and g(ω) = ω−(p+1)/2
p

ReσS(ω). Both types of139

inequalities become saturated in the limit of a narrow absorption spectrum concentrated at140

EG [19].141

The average gaps introduced in Eq. (11) satisfy142

EL ≥ EP ≥ EG , E2
P ≥ EGEL , (17)

with the relation EL ≥ EP coming from Eq. (15) and the others from Eq. (14).3 As expected,143

the average gaps EL and EP cannot be smaller than the minimum gap EG.144

Equation (17) allows to bracket EL as E2
P/EG ≥ EL ≥ EP ≥ EG and EP as E2

L ≥ E2
P ≥ EGEL ≥ E2

G;145

combined with Eqs. (12) and (13), these chained inequalities yield146

ε0χEG

2e2ne
≤ ℓ2 ≤

ħh
2|e|

√

√ ε0χ

mene
≤
ħh2

2meEG

�

ℓ2− ≤ ℓ
2 ≤ ℓ2+ ≤ ℓ

2
++

�

, (18a)

4e2meneℓ
4

ε0ħh2 ≤ χ ≤
2e2neℓ

2

ε0EG
≤
ħh2e2ne

ε0meE2
G

. (18b)

As already indicated in Table 1, we will refer to ℓ− as the lower bound on ℓ, and to ℓ+ and ℓ++147

as the strong and weak upper bounds, respectively; the same terminology will be used for the148

bounds on χ. The weak upper bounds on ℓ [5] and on χ [25] reflect the intuitive notion that149

wide-gap materials tend to have more localized and less polarizable electrons.150

The bounds on ℓ are particularly interesting, as they only involve parameters that are tabu-151

lated for many materials: electron density, electric susceptiblity, and optical gap. Since ℓ itself152

is not commonly measured, those bounds provide a simple and practical way of estimating its153

value. Note that the weak upper bound ℓ++ only depends on the inverse minimum gap; this154

is a delicate quantity, especially for narrow-gap semiconductors, and it is not representative of155

the entire spectrum (the nature of the electron system can be very different for materials with156

the same minimum gap). The localization length is instead a global property of the electron157

system, and the value of EG is not its most relevant descriptor; for example, ℓ++ diverges in the158

same way for all materials as EG is tuned to zero. We therefore expect ℓ++ to give a relatively159

poor estimate for ℓ in real systems. The strong upper bound ℓ+ depends instead on χ and160

ne via the average Penn gap, which is much more representative of the entire spectrum. As161

for the lower bound ℓ−, it depends on both EG and EP; there is still some dependence on the162

minimum gap, but it is a smaller effect than for ℓ++.163

3For an alternative derivation of EL ≥ EP (or I2
1 ≤ I0 I2), see Refs. [18, 19]. In the notation of Ref. [19], that

relation reads m2
0 ≤ m−1m1.
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The relations in Eq. (17) can also be arranged as EG ≤ E2
P/EL ≤ EP ≤ EL to place bounds164

on the optical gap,165

EG ≤
2e2neℓ

2

ε0χ
≤ ħh|e|
√

√ ne

meε0χ
≤
ħh2

2meℓ2
. (19)

It is significant that there are several upper bounds, but no lower bound. This is consistent166

with the existence of electronic systems without an energy gap that are strict insulators [1,2].167

Although we have been focusing on transverse long-wave modes, similar results hold for168

longitudinal ones [15, 25]. As shown in Appendix B, the only changes to Eqs. (18) and (19)169

are170

EG→ ẼG , ℓ→ ℓ̃ , χ → 1− ε−1 , (20)

where ẼG is the minimum energy for long-wave longitudinal excitations (plasmon gap), and171

ℓ̃ is the localization length associated with the longitudinal quantum fluctuations described172

by Eq. (7). The lower and strong upper bounds on ℓ̃2 are written in Ref. [15] (in terms of173

2πneℓ̃
2), and the weak upper bound on 1− ε−1 is given in Ref. [25].174

In closing, we comment on the applicability of the above relations to Chern insultors (CIs).175

The general character of the sum rules in Eq. (10) suggests that the inequalities deduced from176

them remain valid for CIs. The subtlety is that CIs occupy a middle ground between metals177

and ordinary insulators [4], and the I1 and I2 sum rules diverge for metals. On the other hand,178

all three sum rules involve the symmetric (time even) part of the optical conductivity, whereas179

the distinction between ordinary and Chern insulators rests with the antisymmetric (time odd)180

part; from this we can conclude that the inequalities obtained above do apply to CIs, even if181

such materials fall outside the scope of Kohn’s theory of the insulating state. Indeed, while182

the total Wannier spread diverges in a CI, its gauge invariant part proportional to ℓ2 remains183

finite [26], consistent with the weak upper bound on ℓ2. Likewise, the weak upper bound on184

χ implies that the susceptibility remains finite in CIs, even though the concept of spontaneous185

polarization requires special care [27]. We note that there exist additional sum rules [8] and186

inequalities [28–32] involving the time-odd part of the optical conductivity and the Chern187

invariant; such relations fall outside the scope of the present work.188

4 Analytically solvable models189

To build intuition on the bounds obtained above, we will now apply them to several models that190

can be treated analytically. For the first few examples dealing with finite systems, we introduce191

a polarizability per electron via the relation d= NαE0; here d is the dipole moment induced on192

the N -electron system by the applied electric field E0. To use the bulk relations (18) and (19),193

we place the system in a periodic supercell. In the limit where the supercell dimensions far194

exceed those of the system, the applied field E0 generates a macroscopic field E = E0 in the195

effective medium; from P = ε0χE = d/V we get χ = neα/ε0 +O(V−1), where the additional196

terms (originating from the Clausius-Mossotti relation, see Sec. 4.4) vanish in the assumed197

limit of large V . Plugging this expression for χ into Eqs. (18) and (19) gives198

αEG

2e2
≤ ℓ2 ≤

ħh
2|e|

√

√ α

me
≤
ħh2

2meEG
, (21a)

4e2meℓ
4

ħh2 ≤ α≤
2e2ℓ2

EG
≤
ħh2e2

meE2
G

, (21b)

EG ≤
2e2ℓ2

α
≤
ħh|e|
p

meα
≤
ħh2

2meℓ2
. (21c)

199
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At this point we make contact with known results for atoms and molecules. The strong200

upper bound on α, with EG replaced by a mean excitation energy ∆E and 3e2ℓ2 expressed as201

the dipole fluctuation 〈d2〉c, becomes202

α≈
2〈d2〉c
3∆E

. (22)

This estimate for the polarizability is discussed in Ref. [33], where its relation to the fluctuation-203

dissipation theorem is also mentioned. That textbook also gives an estimate for α in terms of204

the weak upper bound in Eq. (21b), invoking the oscillator-strength sum rule.205

4.1 Hydrogen atom206

Introducing the polarizability volume α′ = α/4πε0 [33], Eq. (21) becomes207

1
4
α′

a3
0

EG

Ry
≤
ℓ2

a2
0

≤
1
2

√

√

√

α′

a3
0

≤
Ry
EG

, (23a)

4
ℓ4

a4
0

≤
α′

a3
0

≤ 4
Ry
EG

ℓ2

a2
0

≤ 4
Ry2

E2
G

, (23b)

EG

Ry
≤ 4

a0ℓ
2

α′
≤ 2

√

√

√a3
0

α′
≤

a2
0

ℓ2
, (23c)

where every fraction is dimensionless. For the nonrelativistic hydrogen atom we have [34,35]208

EG = 0.75Ry , α′ = 4.5a3
0 , ℓ2 = a2

0 , (24)

which plugged into Eq. (23) gives209

27
32
≤
ℓ2

a2
0

= 1≤

√

√9
8
≤

4
3

, (25a)

4≤
α′

a3
0

= 4.5≤
16
3
≤
�

8
3

�2

, (25b)

EG

Ry
= 0.75≤

8
9
≤

2
p

4.5
≤ 1 . (25c)

The lower and strong upper bounds on α′ are given in Ref. [19], and the latter is also discussed210

in Ref. [34] and in other textbooks.211

Taking the average of the lower and strong upper bounds on ℓ2 and on α′ produces the212

reasonably accurate estimates ℓ2 ≈ 0.952a2
0 and α′ ≈ 4.(6)a3

0. The estimates ℓ2 ≈ 1.089a2
0213

and α′ ≈ 5.(5)a3
0 obtained by taking the average of the lower and weak upper bounds are214

much less accurate, especially for α′.215

We also note that for the hydrogen atom the strong upper bound ℓ+ is closer to ℓ than the216

lower bound ℓ−. This supports the notion that ℓ+, being based solely on the average Penn gap,217

is more representative of the entire absorption spectrum than ℓ−, which also depends on the218

minimum gap. Further evidence that ℓ+ tends to track ℓmore closely than ℓ− will be presented219

in Sec. 5 for crystalline materials.220

4.2 Isotropic harmonic oscillator221

For an electron trapped in an isotropic harmonic potential of frequency ω0 the parameters222

are [33,34]223

EG = ħhω0 , α=
e2

meω
2
0

≡ α0 , ℓ2 =
ħh

2meω0
≡ ℓ20 , (26)

8
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saturating all the inequalities in Eq. (21). This can be understood from the selection rules for224

the harmonic oscillator: as the only allowed dipole transition from the ground state is to the225

first excited state, the entire spectral weight is at EG, producing the saturation [19].226

4.3 Van der Waals dimer model227

So far we have only discussed one-electron systems. To analyze the effect of electron corre-228

lations, we now consider a system of two identical harmonic oscillators 1 and 2 separated by229

R. We think of these oscillators as vibrating electrical dipoles in which the +e charges (ions)230

are held in the position of equilibrium while the −e charges (electrons) vibrate about these231

equilibrium positions, their displacements being r1 and r2. In the limit where r1, r2≪ R, this232

provides a simple model for the van der Waals interaction [33,36].233

The interaction term is234

H12 =
e2

4πε0

�

1
R
+

1
|R+ r1 − r2|

−
1

|R+ r1|
−

1
|R− r2|

�

. (27)

In the approximation r1, r2≪ R we expand Eq. (27) to obtain in lowest order235

H12 ≃
e2

4πε0
r1ar2b

�

δab

R3
− 3

RaRb

R5

�

, (28)

which is in the form of a dipole-dipole interaction. Orienting the Cartesian frame such that236

R= Rx̂ leads to237

H12 ≃
e2

4πε0

�

−
2
R3

x1 x2 +
1
R3

y1 y2 +
1
R3

z1z2

�

≡ H∥12 +H⊥12 , (29)

where H∥12 denotes the first term and H⊥12 the other two.238

For oscillations along R the only surviving term in Eq. (29) is H∥12, and we recover the 1D239

model of Ref. [36]. Denoting by H0 the Hamiltonian of the two uncoupled oscillators, H0+H∥12240

is diagonalized by the transformation241

x± =
1
p

2
(x1 ± x2) (30)

together with a similar transformation for the momenta, resulting in two decoupled oscillators242

with frequencies243

ω
∥
± =ω0

√

√

1∓
2α′0
R3

, (31)

where α′0 is the polarizability volume of a single oscillator.244

For unrestricted 3D oscillations, the interaction term is given by the full Eq. (29). Now245

instead of two modes we have six modes. By following through the same derivation, we can246

split also the y and z modes into symmetric and antisymmetric combinations with frequencies247

ω⊥± =ω0

√

√

1±
α′0
R3

; (32)

thus, for transverse oscillations the symmetric modes have higher frequency than the antisym-248

metric ones.249

In the 3D model the parameters EG, α, and ℓ2 are anisotropic, carrying labels ∥ or ⊥. To250

evaluate the ∥ components, note that the interaction with a field E∥ = Ex̂ is described by251
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eE(x1 + x2) =
p

2eEx+, and that ℓ2∥ is defined via (4) in terms of X ≡ x1 + x2 =
p

2x+. This252

means that only the symmetric mode participates, and with a simple calculation one finds that253

the three parameters are obtained by replacing ω0 with ω∥+ in Eq. (26),254

E∥G = ħhω
∥
+ ≃ ħhω0

�

1−α′0/R
3
�

, (33a)

α∥ =
e2

me

�

ω
∥
+

�2 ≃ α0

�

1+ 2α′0/R
3
�

, (33b)

ℓ2∥ =
ħh

2meω
∥
+

≃ ℓ20
�

1+α′0/R
3
�

. (33c)

The ⊥ components are obtained by sending ω∥+→ω
⊥
+ and α′0→−α

′
0/2 in these expressions.255

In conclusion, the van der Waals interaction reduces the optical gap and increases both the256

polarizability and the localization length in the axial direction of the dimer, and the opposite257

happens in the perpendicular directions. As the antisymmetric modes are dipole inactive, the258

entire spectral weight for light polarized along R or perpendicularly to it is concentrated at259

a single frequency ħhω∥+ or ħhω⊥+ , respectively. In both cases the bounds in Eq. (21) remain260

saturated, just like for a single oscillator.261

We emphasize that the explicit treatment of electron correlations is essential to obtain a262

qualitatively correct physical picture. For example, it is easy to show that the fluctuation-263

dissipation sum rule fails if the electron-electron interaction is treated at the mean-field level,264

e.g., within Hartree-Fock (HF) theory. Within HF, the dielectric susceptibility of the system of265

interacting oscillators is described exactly; nonetheless, the localization length is unaffected by266

the interaction and corresponds to that of the isolated monomer. This implies that the correct267

description of the macroscopic polarization fluctuations goes hand in hand with the ability of268

the theory to capture dispersion interactions between isolated bodies.269

4.4 Van der Waals crystal model270

As an extension of the dimer model, we now consider a periodic array of oscillators coupled271

by dipole-dipole interactions. The potential energy reads272

U =
1
2

meω
2
0

∑

R

�

�rR
�

�

2
+

e2

4πε0

∑

R

∑

R′ ̸=0

rR
a rR+R′

b

2

�

δab

R′3
− 3

R′aR′b
R′5

�

, (34)

where rR denotes the displacement of an electron away from its equilibrium position R, taken273

to be a point on a Bravais lattice. A similar model was discussed in Ref. [25]; the only difference274

is that the positive charges, instead of being point charges placed at the lattice points, are275

smeared into a uniform background.276

4.4.1 Dynamical matrix277

As in the dimer model, the electrons are assumed to be strongly localized in the sense that the278

quantum fluctuations are small compared to the separation between the ions. The resulting279

potential bears many similarities to the form that appears in the context of lattice vibrations;280

we will therefore borrow the same terminology in discussing the relevant contributions to the281

electronic Hamiltonian.282

To determine the normal modes of the system we first evaluate the force-constant matrix283

DaR,bR′ ≡
∂ 2U

∂ rR
a ∂ rR′

b

= Da0,bR′−R (35)
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to find284

Da0,bR = meω
2
0δabδR0 +

e2

4πε0
(1−δR0)
�

δab

R3
− 3

RaRb

R5

�

, (36)

and then convert it into a dynamical matrix using285

Dab(q) =
1

me

∑

R

Da0,bR e−iq·R . (37)

The result is286

Dab(q) =ω
2
0δab + Cab(q) , (38)

where287

Cab(q) =
e2/me

4πε0

∑

R̸=0

e−iq·R
�

δab

R3
− 3

RaRb

R5

�

. (39)

To carry out the above lattice sum it is convenient to work in reciprocal space, where the288

interaction can be recast as a rapidly converging Ewald summation,289

Cab(q) =
e2/me

4πε0

�

4π
Ω

′
∑

G

KaKb

K2
e−

K2σ2
4 −δab

4
3
p
πσ3

�

, K= G+ q , (40)

with Ω the volume of a primitive cell. The primed sum excludes the divergent G+ q= 0 term,290

and the second term removes the self-interaction of the dipole in the origin cell; the result is291

independent of the Ewald parameter σ provided that σ≪ R for all R ̸= 0.292

By diagonalizing the 3 × 3 matrix Cab(q) at every point in the Brillouin zone, we have293

rewritten the problem as a set of independent oscillators. In particular, we have three modes294

at each q that are characterized by a frequency295

ω2
i (q) =ω

2
0 +λi(q) , (41)

where λi(q) are the eigenvalues of Cab(q).296

In Appendix C, we calculate the zero-point energy of this model by collecting the contri-297

butions from all normal modes across the Brillouin zone.298

4.4.2 Long-wave limit299

The q→ 0 limit is particularly relevant to our discussion, since it corresponds to the collective300

displacement of the electronic center of mass. For a cubic lattice we find two TO modes and301

one LO mode where302

λTO = −
1
3
ω2

p , λLO =
2
3
ω2

p , (42)

with ω2
p = e2/ε0meΩ. To obtain this result note that the matrix C(q) is traceless so that303

2λTO +λLO = 0, and that λLO = λTO +ω2
p, where ω2

p is the contribution from the G = 0 term304

in Eq. (40) when q→ 0.305

The dielectric susceptibility and permittivity are readily given in terms of the TO mode306

frequency,307

χ =
ω2

p

ω2
TO

, ε= 1+χ . (43)

Then, based on the above, we can quickly verify that the following results hold,308

ε=
ω2

LO

ω2
TO

,
ε− 1
ε+ 2

=
α0

3ε0Ω
. (44)
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The first result is the Lyddane-Sachs-Teller relation [36], valid for a single-mode dielectric.309

The second is the Clausius-Mossotti relation [36], linking the macroscopic permittivity to the310

molecular polarizability α0.311

For the TO modes we have312

EG = ħhωTO , χ =
ω2

p

ω2
TO

, ℓ2 =
ħh

2meωTO
. (45)

When plugged into Eqs. (12) and (13) these parameters give EL = EP = EG, saturating all the313

bounds in Eqs. (18) and (19). The parameters for the LO modes are314

ẼG = ħhωLO , 1− ε−1 =
ω2

p

ω2
LO

, ℓ̃2 =
ħh

2meωLO
, (46)

and again the corresponding bounds, obtained by modifying Eqs. (18) and (19) according to315

Eq. (20), are saturated.316

5 Real materials317

Starting from experimental data, we have evaluated the bounds on ℓ in Eq. (18a) for a number318

of materials. To visualize the results, it is helpful to bring that equation to the form4
319

Ry
EP

√

√ EG

Ry
≤
ℓ

a0
≤
√

√Ry
EP
≤
√

√Ry
EG

, (47)

which suggests plotting the data as shown schematically in Fig. 1. Given a data point (large320

blue dot), the range [ℓ−,ℓ+] in units of a0 is obtained by drawing horizontal and vertical line321

segments from it to the diagonal dashed line; its projection on that line (small black dot) yields322

ℓ≈ (ℓ+ + ℓ−)/2 , (48)

which we will refer to as the “strong bound” estimate, as opposed to the “weak bound” estimate323

obtained by replacing ℓ+ with ℓ++ in the expression above.324

In the following, we use Eqs. (47) and (48) to estimate the electron localization length in325

different classes of materials. The needed experimental data are the optical gap (the lowest326

energy for optical absorption), the electron density, and the clamped-ion electric susceptibility;327

the last two enter via Eq. (13) for the Penn gap.328

5.1 Rocksalt alkali halides329

Figure 2 shows the results obtained for alkali halides with the rocksalt structure. Consider330

first the top panels, where EP was calculated from the total electron density ne including inner331

core electrons. Such “all-electron” bounds inevitably provide average localization lengths that332

include those tight inert states; as a consequence, the bounds are rather loose not only on the333

left panel (weak bound) but also on the right panel (strong bound). On the left panel the upper334

bound is independent of ne, and hence it is insensitive to the different localization lengths of335

valence and core electrons. This is not the case for the right panel, where the tighter upper336

bound containing ne narrows down the estimates for ℓ; nevertheless, the data points are still337

quite far from the diagonal.338

4To obtain Eq. (47), combine the energy relations in the last line of Table 1 with the second form of Eq. (12).
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Figure 1: Schematic representation of the strong bound on ℓ in Eq. (47). For the
weak bound, replace EP → EG on the horizontal axis; since EG ≤ EP, the data point
(blue dot) will move to the right, resulting in a wider range [ℓ−,ℓ++].

To rationalize the results for the strong bound, note that339

ℓ+ − ℓ−
a0

=

√

√Ry
EP

�

1−
√

√ EG

EP

�

, (49)

and thus the range [ℓ−,ℓ+] gets tighter and tighter as EP gets closer to EG. Since EP∝
p

ne,340

the inclusion of core electrons goes in the opposite direction, and the range [ℓ−,ℓ+] tends to341

increase as we move down the periodic table. This can be seen in the top-right panel of Fig. 2,342

where the distance from the diagonal line increases from the fluorides to the chlorides, from343

these to the bromides, and from these to the iodides.344

It would be much more relevant for physical properties if one could estimate the average345

localization length of the valence electrons only. Here, we take the simple approach of replac-346

ing EP in Eq. (47) with a valence Penn gap calculated from the valence electron density.5 The347

bounds on ℓ obtained in this manner are presented in the bottom panels of Fig. 2. As a result348

of discarding the core electrons the data points move closer to diagonal line (the bounds get349

tighter), and their projections on that line move further up (the average localization lengths350

increase). Most interestingly, simple trends emerge in this valence-only formulation, with ℓ351

increasing from the lighter to the heavier halogens; this agrees with the intuition on chemical352

bonding in strongly ionic crystals [38]. The trend is most visible in the bottom right panel353

displaying the strong bound. The valence-only values for ℓ−, ℓ+, and ℓ++ are compiled in354

Table 2.355
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Figure 2: Bounds on ℓ for the rocksalt alkali halides, plotted using the scheme out-
lined in Fig. 1. The weak and strong bounds are represented on the left and right
panels, respectively, while the top and bottom panels show all-electron and valence-
electron results, respectively, with EP defined accordingly in each case. Note that
each panel has its own scale.
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Figure 3: Same as the bottom two panels of Fig. 2, but for materials with the diamond
or the zincblende structure. On the left panel, the data point for InAs is out of bounds.

14



SciPost Physics Submission

Crystal a (�A) ε EG (eV) ℓ− (a0) ℓ+ (a0) ℓ++ (a0)
LiF 4.02 1.96 12.6 0.40 0.65 1.04
NaF 4.62 1.74 10.6 0.31 0.59 1.13
KF 5.35 1.85 9.8 0.34 0.63 1.18

RbF 5.64 1.96 9.5 0.30 0.60 1.20
CsF 6.01 2.16 9.25 0.30 0.60 1.21
LiCl 5.13 2.78 8.6 0.50 0.80 1.26
NaCl 5.64 2.34 7.9 0.41 0.73 1.31
KCl 6.29 2.19 7.8 0.40 0.72 1.32

RbCl 6.58 2.19 7.5 0.34 0.68 1.35
LiBr 5.50 3.17 7.2 0.41 0.75 1.37
NaBr 5.97 2.59 6.7 0.35 0.70 1.43
KBr 6.60 2.34 6.7 0.34 0.70 1.43

RbBr 6.58 2.19 7.5 0.31 0.67 1.44
LiI 6.00 3.80 5.62 0.39 0.78 1.56
NaI 6.47 2.93 5.6 0.34 0.72 1.56
KI 7.07 2.62 5.8 0.34 0.72 1.53

RbI 7.34 2.59 5.7 0.31 0.70 1.54

Table 2: Bounds on ℓ for the valence electrons in rocksalt alkali halides, esti-
mated from experimental data: lattice constant a (the density of valence electrons
is ne = 32/a3, corresponding to eight valence electrons per formula unit), electronic
permittivity ε, and optical gap EG. The values for a and ε are from Ref. [38], and
those for EG correspond to the lowest absorption peaks in Ref. [39]; the exceptions
are LiF and LiI, for which EG are the excitonic gaps reported in Refs. [40] and [41],
respectively. Note that lattice constants are quoted in Angstroms while localization
bounds are in atomic units.
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Crystal a (�A) ε EG (eV) ℓ− (a0) ℓ+ (a0) ℓ++ (a0)
C 3.57 5.7 7.1 0.68 0.97 1.38
Si 5.43 11.97 4.19 1.51 1.65 1.80
Ge 5.66 16.00 0.90 0.87 1.84 3.89

3C-SiC 4.36 6.38 6.0 0.91 1.17 1.51
c-BN 3.62 4.46 14.5 0.86 0.91 0.97
AlP 5.46 7.5 3.63 1.09 1.45 1.94
AlAs 5.66 8.2 3.13 1.12 1.53 2.08
AlSb 6.14 10.24 2.3 1.23 1.73 2.43
GaAs 5.65 10.86 1.52 0.91 1.65 2.99
InAs 6.06 12.37 0.42 0.57 1.80 5.71
ZnSe 5.68 5.7 2.82 0.86 1.38 2.20

Table 3: Same as Table 2, but for materials with the diamond or the zincblende
structure. We assume four valence electrons per atom on average, so that ne = 32/a3.
The experimental data is from Ref. [42], where EG is the direct gap.

5.2 Tetrahedrally-coordinated materials356

Figure 3 and Table 3 show the valence-only results obtained for materials with the diamond or357

the zincblende structure from groups IV, III-V, and II-VI in the periodic table. The trends are not358

as uniform as in the case of the halides because there is a larger range of gaps and susceptibil-359

ities. Nevertheless, one observes that the values of ℓ estimated from Eq. (48) tend to decrease360

with increasing ionicity, e.g., along the isoelectronic series Si→ AlP and Ge→ GaAs→ ZnSe,361

as also found in Ref. [10]; this is consistent with the intuition that ionic bonding yields more362

localized electrons than covalent bonding [38]. Accordingly, the estimated localization lengths363

in Table 3 tend to be larger than those in Table 2 for the strongly ionic alkali halides.364

How well do the ℓ values estimated from experimental data via Eq. (48) compare with365

those obtained from first-principles calculations? To address this question, in Fig. 4 we com-366

pare them with the ab initio values reported in Ref. [10]. The correlation is quite satisfactory,367

although the theoretical values tend to be somewhat larger. To explain this trend, one could368

invoke the band gap underestimation in density functional theory, which may well lead to a369

systematic overestimation of the calculated localization lengths. Since expressing ℓ as the av-370

erage of ℓ− and ℓ+ is an approximation, however, it is difficult to draw definitive conclusions,371

especially for cases like Ge where ℓ− and ℓ+ are rather different. Yet, it is interesting to note372

that the upper bounds in Fig. 4 essentially fall on the diagonal in all cases, which means that373

they closely match the available theoretical data. (The lower bounds, involving the minimum374

gap, display a much larger scatter.) This gives further credit to our earlier statements that ℓ+375

is indeed a more robust indicator of the polarization fluctuation amplitude compared to ℓ−.376

6 Conclusions377

The use of sum-rule inequalities to estimate the electronic polarizability has a long tradition378

in atomic and molecular physics [19,33]. The extension of those ideas to crystals and to other379

physical properties is not as well established, and the results are scattered in the literature.380

In this work, we provided a unified perspective on several sum-rule inequalities for bulk sys-381

5Such replacement assumes that valence-only versions of the sum rules in Eq. (10) can be formulated, which
requires the excitation energies of core electrons to be well separated in energy from those of valence electrons [22,
37].
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Figure 4: Comparison, for tetrehedrally-cordinated materials, between the ℓ values
for valence electrons estimated from experimental data (Table 3), and those calcu-
lated from first principles in Ref. [10] using a pseudopotential method. The error
bars indicate the range [ℓ−,ℓ+].

tems, and organized them into chained inequalities bracketing three electronic properties of382

insulators: localization length ℓ, static susceptibility χ, and optical gap EG. As they are based383

on exact sum rules, those inequalities remain valid for correlated, disordered, and topologi-384

cal insulators, and in the presence of relativistic effects including spin-orbit coupling. As an385

application, we used them to estimate ℓ (a ground-state property) from readily available ex-386

perimental data on the response properties χ and EG, together with the electron density. By387

focusing on the valence electrons, we obtained meaningful estimates for their average local-388

ization length that follow simple chemical trends.389

The study of several exactly solvable models, from the hydrogen atom to isolated and390

coupled oscillators, provided useful insights. In particular, the coupled oscillator models il-391

lustrated how the fluctuation-dissipation relation breaks down at the mean-field level and392

critically requires an explicit treatment of dynamical correlations.393
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A Polarization and localization in band insulators404

In Eqs. (3) and (4), the electronic polarization and the electron localization tensor were written405

down for a generic bulk insulator (possibly correlated and/or disordered) using Kohn’s center-406

of-mass operator. Alternatively, those expressions can be recast in terms of the Berry phase407

and quantum metric defined by the change in the many-body ground state under twisted408

boundary conditons [5, 43]. Here we specialize to the single-particle picture, and review the409

corresponding formulas for uncorrelated crystalline insulators.410

The electronic polarization of a band insulator takes the form of a Berry phase of the cell-411

periodic Bloch states in momentum space [3,4],412

Pe =
−|e|
(2π)3

∫

d3k
J
∑

n=1

Ann(k) ; (A.1)

here Amn(k) = i〈umk|∇kunk〉 is the Berry connection matrix, the integral is over the first Bril-413

louin zone (BZ), and the summation is over the valence bands. Alternatively, Pe can be written414

as [3,4]415

Pe =
−|e|
Ω

J
∑

n=1

〈r〉n , (A.2)

where 〈r〉n is the center of charge of a Wannier function constructed for band n. This expression416

remains valid for a disordered insulator, in which case Ω, J →∞.417

The localization tensor can be obtained from the fluctuation-dissipation relation in Eq. (6).418

Using the Kubo-Greenwood formula for the optical conductivity, one finds the sum rule [5,8]419

∫ ∞

0

dωω−1 ReσS
ab(ω) =

πe2

(2π)3ħh

∫

d3k
J
∑

n=1

gnn,ab(k) ; (A.3)

on the right-hand side, g is the quantum metric tensor [6] of the valence manifold [4,9],420

gmn,ab(k) =
1
2
〈∂aumk|Q(k)|∂bunk〉+

1
2
〈∂bumk|Q(k)|∂aunk〉 . (A.4)

Here ∂a = ∂ /∂ ka, and Q(k) = 1−
∑J

n=1 |unk〉〈unk| is the projection operator for the conduction421

states. Inserting Eq. (A.3) in Eq. (6) gives422

〈rarb〉c =
1

(2π)3ne

∫

d3k
J
∑

n=1

gnn,ab(k) , (A.5)

which expresses the bulk localization tensor as a ground-state quantity, without any reference423

to the excitation spectrum.424

For a one-dimensional (1D) insulator the tensor 〈rarb〉c reduces to a scalar ℓ2, and Eq. (A.5)425

can be written in terms of maximally-localized Wannier functions as426

ℓ2 =
1
J

J
∑

n=1

�

〈x2〉n − 〈x〉2n
�

, (A.6)

which follows from the relation between the BZ integral of the metric and the quadratic Wan-427

nier spread [9]. Thus, in 1D the localization tensor is equal to the average spread of the428

maximally-localized Wannier functions. More generally, in d dimensions its trace
∑d

a=1 ℓ
2
a429

equals the gauge-invariant part of the average Wannier spread, which for d > 1 is smaller430

than the actual spread in any gauge [9].431

In summary, electronic polarization is related to the Wannier centers of the valence bands,432

and the electron localization length squared (polarization fluctuations) gives a lower bound433

to the average Wannier spread.434
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B Longitudinal optical bounds435

Here, we outline the extension to long-wave longitudinal modes of the analysis carried out436

in Secs. 2 and 3 for transverse modes; a related discussion is given in Refs. [15, 25]. We first437

define the moments of the energy-loss spectrum as438

Mp =
2
π

∫ ∞

0

dωωp Im
�

−
1
ε(ω)

�

. (B.1)

The moments with p = 1, 0,−1 satisfy the relations439

M1 =ω
2
p , (B.2a)

M0 =
2e2

ħhε0
neℓ̃

2 , (B.2b)

M−1 = 1− ε−1 , (B.2c)

where ε−1 stands for ε−1(0). These are respectively the longitudinal counterpart of the oscillator-440

strength sum rule (10a) [22], the longitudinal fluctuation-dissipation relation (7), and the441

longitudinal counterpart of the Kramers-Krönig relation (10c) [44].442

Next, we introduce average gaps for longitudinal excitations by analogy with Eqs. (11-13),443

ẼL =
ħhM1

M0
, Ẽ2

P =
ħhM1

ħh−1M−1
, (B.3)

444

ẼL =
ħh2

2meℓ̃2
⇔
�

ℓ̃

a0

�2

=
Ry

ẼL
(B.4)

445

1− ε−1 =

�

ħhωp

ẼP

�2

. (B.5)

Since the loss function Im
�

−ε−1(ω)
�

is non-negative, one can immediately write down in-446

equalities anlogous to those in Eqs. (14), (15), and (17),447

Mp−q ≤
ħh
ẼG

Mp−q+1 ≤ . . .≤
�

ħh
ẼG

�q

Mp (B.6)

(ẼG is the plasmon gap),448

M2
p ≤ Mp−1Mp+1 , (B.7)

and449

ẼL ≥ Ẽp ≥ ẼG , Ẽ2
P ≥ ẼG ẼL . (B.8)

Finally, by forming the chained inequalities450

Ẽ2
P/ẼG ≥ ẼL ≥ ẼP ≥ ẼG , (B.9a)

Ẽ2
L ≥ Ẽ2

P ≥ ẼG ẼL ≥ Ẽ2
G , (B.9b)

ẼG ≤ Ẽ2
P/ẼL ≤ ẼP ≤ ẼL (B.9c)

and combining them with Eqs. (B.4) and (B.5), we obtain weak and strong bounds on ℓ̃2,451

1− ε−1 and ẼG, respectively. Those bounds are given by Eqs. (18) and (19), with the replace-452

ments indicated in Eq. (20).453
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C Zero-point energy of the van der Waals crystal model454

In this appendix we return to the van der Waals crystal model of Sec. 4.4, and calculate its455

zero-point energy in two different ways. First we use a Brillouin-zone integral,456

E =
ħh
2
Ω

(2π)3

∫

d3q
∑

i

ωi(q) . (C.1)

To verify that the normalization factors are correct, note that in the absence of interactions we457

recover the correct result for the isolated 3D oscillator,458

E0 =
3
2
ħhω0 . (C.2)

The interaction is regarded as a small perturbation, so we can Taylor-expand the square root459

of Eq. (41) for ω2
i (q),460

ωi =
q

ω2
0 +λi ≃ω0 +

1
2
λi

ω0
−

1
8

λ2
i

ω3
0

. (C.3)

As the C(q) matrix defined by Eq. (39) is traceless for all q, the second term above drops out461

from Eq. (C.1). The leading correction is then given by the third term,462

∆E = −
ħh

16ω3
0

Ω

(2π)3

∫

d3q
∑

i

λ2
i (q) . (C.4)

Overall, the interaction energy is negative and in view of Eq. (42) it appears to scale as Ω−2,463

which at first sight seems consistent with van der Waals. This is confirmed by a numerical464

evaluation of Eq. (C.4) for a simple-cubic lattice (Fig. 5), which shows a Ω−2 behavior for ∆E465

in the limit of a dense q mesh.466

As further validation, we have computed the same energy as a real-space sum of pair467

interactions. We start from the interaction energy of the 3D dimer model of Sec. 4.3, which is468

obtained by expanding Eqs. (31) and (32) according to Eq. (C.3). The result [33]469

∆E12 = −
3
4

�

α′0
R3

�2

ħhω0 , (C.5)

which is enhanced by a factor of 3/2 relative to that of the 1D dimer model [36], leads to a470

crystal energy of471

∆E = −ħh
�

e2/me

4πε0

�2
3

8ω3
0

∑

R̸=0

1
R6

. (C.6)

(Note the additional factor of 1/2 to avoid double counting of the pair interactions.) As shown472

in Fig. 5, the converged value of this real-space summation agrees with that of the reciprocal-473

space summation (C.4). The plotted quantity is ∆E/(ω−3
0 Ω
−2) in Hartee atomic units, and its474

converged value is precisely −(3/8)A6, where475

A6 ≡
′
∑

i, j,k

(i2 + j2 + k2)−3 ≃ 8.40192 (C.7)

(with i = j = k = 0 excluded) is a lattice sum tabulated by Lennard-Jones and Ingham [45].476
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Figure 5: Convergence of the reciprocal- and real-space sums for the dispersion in-
teraction energy using meshes of dimension 2n. The plotted values correspond to
Eqs. (C.4) and (C.6) for a simple-cubic lattice, in units of ω−3

0 Ω
−2 using Hartree

atomic units (a. u.).
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