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A varying number of particles is one of the most relevant characteristics of systems of interest
in nature and technology; ranging from the exchange of energy and matter with the surrounding
environment to the change of particle numbers through internal dynamics such as reactions. The
physico-mathematical modeling of these systems is extremely challenging, with the major difficulty
being the time dependence of the number of degrees of freedom and the additional constraint that
the increment or reduction of the number and species of particles must not violate basic physical
laws. Theoretical models, in such a case, represent the key tool for the design of computational
strategies for numerical studies that deliver trustful results. In this manuscript, we discuss com-
plementary physico-mathematical approaches of varying numbers of particles inspired by different
specific numerical goals. Based on the underlying structure of these models, we formulate a unifying
master equation for general dynamical systems with varying numbers of particles. This equation not
only embeds all the previous models but enables modeling a much larger range of complex systems
ranging from molecular to social agent-based dynamics.

I. INTRODUCTION

The conception of many-particle (or equivalently, many-body) systems has played a central role in modern the-
oretical and mathematical physics, from the many-electron systems of quantum mechanics to the tracers of fluid
dynamics. Many-particle models are ubiquitous in condensed matter and provide the paradigm of reference for study-
ing the properties of any existing substance. It is also an interesting approach per se in assessing the cascade of scales
that characterize the physics of matter, since, in principle, it allows to systematically pass from the microscopic quan-
tum mechanical resolution, up to the continuum hydrodynamics [3]. The models used in physics are in general based
on an interaction potential, usually of a two-body nature, (e.g. electrostatic, Lennard-Jones) and the corresponding
interlinked Newton’s equations of motion (or Schrödinger equations in quantum mechanics). This means that particle
systems can be mathematically described as dynamical systems moving along calculable trajectories, which enables
employing powerful mathematical and physical machinery to model, simulate and analyze them.

Most of the machinery developed to model and simulate molecular or particle-based dynamical systems focuses
on systems with a constant number of particles, this means they are closed but not necessarily isolated from heat
exchange. However, this is not the case in many real-world applications, where we often have to focus on subsystems
that exchange material with their surroundings; we refer to such systems as open systems. For instance, living cells
constantly exchange molecules and energy with their environment; they consume chemical energy and dissipate heat.
In terms of physical chemistry, every living system must be a nonequilibrium open system —a closed system has no
life [60]. These nonequilibrium processes at the molecular scale often drive fundamental phenomena such as symmetry
breaking, phase transitions and entropy production with profound impact on our understanding of living systems at
meso- and macroscopic scales [55, 61, 63]. Moreover, the exchange of heat and matter is one of the main processes
driving weather and climate phenomena, such as tipping events [73]. This manifests in the need for multiscale models
[1], as well as reduced/coarse-grained models [51] and stochastic closure techniques [6]. Thus, to understand, model
and simulate these processes, it is fundamental to develop mathematical and physical machinery to handle systems
with varying particle numbers.

From a mathematical perspective, it is a complex problem. The main difficulty is the on-the-fly change in the
number of degrees of freedom of the system. At a differential equation level, the number of equations would change
as the system changes particle numbers. The solution is to lift the dynamics to the space of densities/distributions,
where the dynamics become linear, albeit infinite-dimensional and thus complicated to analyze. This is analogous to
switching representation from a nonlinear dynamical system to the linear Liouville equation, or in the case of stochastic
dynamical systems to a Fokker-Planck equation. However, note some information is lost in the process, as we can no
longer track individual particles. Following this reasoning, some theoretical machinery has been developed in previous
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works to handle systems with varying particle numbers. We will overview the main ones in this manuscript. Other
similar approaches often employ methods based on quantum field theory [14, 23, 34], which are not a requirement
to neither write nor understand the equations. From a computational perspective, one possible solution would be
to consider a large enough closed subsystem that includes a substantial part of the environment. In this context,
numerical methods of particle simulation have enormously risen in the past decades, improving our capability of
performing precise calculations of large many-particle systems (see e.g. Refs.7, 27). However, despite the growing
computational power, many systems of major interest are not yet affordable with standard available models, so we
need alternative solutions that combine novel mathematical developments with computational approaches.

In recent years, multiscale models and simulations have been developed to improve the efficiency of particle-based
simulations. The basic idea is that one retains the degrees of freedom strictly required by the problem and simplifies
at much coarser level the degrees of freedom that are not directly involved in the process of interest [58]. A prototype
situation in most of the many-particle models is the necessity of coarse-graining the environment around the region
of interest while retaining all the necessary details in the region itself; since the region of interest is subject to particle
number fluctuations, the necessity of developing open many-particle systems rises naturally [64]. Moreover, once a
mathematical model for the dynamics with varying numbers of particles is developed, it can naturally be adapted
and applied to systems where the particle number fluctuations are provided not only by the external environment
but also by the change of composition of a system, when for example in a mixture different species interact forming
a third one. Despite the high dimensionality of the mathematical model, it can be used as a guiding framework to
unify models at multiple scales and to derive physically consistent multiscale numerical schemes.

The concept of subsystem is closely related to the concept of subdynamics for which there is a vast literature
available. For example, the model proposed by Prigogine and coworkers[30, 59], the model of Emch and Sewell[25],
and the model of Robertson[65, 67], to cite but a few. The idea is based on the projection method of Zwanzig[75] for
quantum systems (used also for classical systems). The evolution of the probability density of the system in the von
Neumann or Liouville equation is projected on a subspace with reduced number of variables and the rest of the system
is formally coarse-grained. The models discussed in this paper share the idea of integrating/coarse-graining the degrees
of freedom outside the subsystem, however they add the explicit treatment of the number of particles as a variable of
the problem. This characteristic is not explicitly mentioned in the literature cited above, thus leaving the impression
that the number of particles of the subsystem is assumed to be fixed. In a system with varying number of particles one
should explicitly discuss the normalization of the probability density of the subsystem; this operation is substantially
different from the case of a fixed number of particles. In addition, the equations proposed in Refs.25, 30, 59, 65, 67,
while mathematically rigorous and certainly elegant are characterized by a rather complex structure, difficult to
implement in modern computational techniques of simulation. Instead for computational implementation one needs
models that are certainly characterized by a certain level of mathematical rigor but at the same time are constructed
in a way that they efficiently capture the relevant physics. The model of Bergman and Lebowitz[49, 50], discussed
later on, can be considered the first historical attempt towards such an effort and became a source of inspiration for
most of the progress reported here.

In this work, we formulate a general master equation for systems varying number of particles inspired by two
frameworks to handle classical systems with varying particles (motivated by different physical problems and numerical
approaches). We first introduce these frameworks and investigate the relations between them to show how the general
master equation emerges. The two main different points of view correspond to: (i) the approach based on Liouville-
like equations of a subsystem embedded in a reservoir where the degrees of freedom are either explicitly integrated
out, reducing the effect of the environment on the boundary conditions of the subsystem of interest[19, 43], or
implicitly integrated out into a coupling term [49]; and (ii) a master equation where the diffusion process based on
the Fokker-Planck operator is coupled with a reaction process that can change the number of particles. In this case,
the particle description of the environment is not considered and its effect is modeled empirically a priori [14, 17].
The first approach is inspired by molecular simulations where the microscopic single molecular trajectories with
explicit chemical details are accessible and thus the probability distribution function of the phase space of system
and environment can be explicitly sampled [20]. This means that a simulation of an open system with the simplified
environment obtained analytically by formal integration of its related degrees of freedom should deliver the same
result as an equivalent subsystem in a simulation of the entire system; as a consequence, the validity of the theoretical
model of the open system can be directly tested numerically (see e.g. Ref.[32]). The second approach is inspired by
problems occurring at a larger scale than the microscopic molecular scale, e.g. processes at the scale of biological living
cells, where the number of molecules is large enough to render molecular models intractable but not large enough to
consider macroscopic approaches that neglect inherent stochastic fluctuations [62]. From a physics perspective, in this
approach, molecules are represented as particles undergoing diffusion and chemical reactions are coarse-grained into
events that simply change the chemical composition of the system. Thus, the effect of the environment is modeled
empirically through the diffusion constant, the reaction rates and the stochastic effects. This model does not only
provide a probabilistic model for reaction-diffusion processes [14, 17] but also serves as a starting point to derive other
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models at different scales. This yields a unifying theory that serves as the backdrop to derive numerical schemes that
are consistent across multiple scales [16, 48].

Independently from the original inspiration, both models deal with varying numbers of particles and thus must
retain a common general structure within a unique framework. In this work, we proceed with the formal analysis
of the similarities and differences between the two approaches. Based on this comparison, a generalized structure
emerges in the form of a unitary equation, from which the previous approaches are special cases. To finalize, we
discuss mathematical perspectives and potential problems of interest in physical and chemical applications both from
an analytical and numerical point of view. We further explore applications of the general master equation beyond the
fields that initially motivated the equation.

The paper is structured as follows. In section II, we present an intuitive derivation of the master equation for systems
with varying particle numbers, the main result of this paper. However, the equation itself is originally motivated by
the specific approaches presented in sections III and IV. More specifically, in section III, we explore two approaches
to handle systems with Hamiltonian structure that are in contact with a material reservoir(s). Section IV shows how
to write the master equation to describe the probabilistic dynamics of reaction-diffusion processes, and we extend
this to systems where the diffusion is governed by Langevin dynamics. In section V, we show how the mathematical
similarities between the approaches from sections III and IV inspire formulating the general master equation from
section II and how it recovers them as special cases. Finally, in section VI, we discuss the perspectives and future
scope of this work in the context of physical modeling, numerical simulations and applications in other fields.

II. A GENERAL MASTER EQUATION FOR SYSTEMS WITH VARYING NUMBER OF PARTICLES

The general master equation presented in this section was inspired by the frameworks presented in sections II
and III. For educational purposes, we first carry out an intuitive derivation of the equation. We formulate the master
equation for systems with varying numbers of particles starting from a general random dynamical system perspective.
This together with section V constitute the main results of the paper.

We first consider a random dynamical system with fixed dimension n, e.g. a system with a fixed number of particles.
The dynamics of the trajectories of the systems are given by the system of stochastic differential equations

ẋ = F (x), (1)

where x could be for instance the position of the particles, but it could also be another relevant variable. The function
F incorporates the deterministic drift as well as noise components. One can equivalently write the dynamics of the
probability distribution of the system in phase space given by the corresponding Fokker-Planck equation

∂

∂t
fn = Anfn, (2)

with An the infinitesimal generator of the Fokker-Planck equation for the corresponding n particle system, and
fn := fn(t,x) the probability density of the system being at x at time t, which naturally integrates to one when
integrating over the whole phase space. Reasonable boundary conditions for fn are usually reflective in a bounded
domain or vanishing at infinity for a non-bounded domain.

To write a similar description for a system with a variable number of particles, one cannot write it in the form of
eq. (1) since the dimension of the system changes as time evolves. However, we can write something similar to the
master equation from eq. (2). Consider the family of distributions f = (f0, f1, . . . , fn, . . . ), where fn := fn(t,x

n) is the
probability density of having n particles (or whatever else we are modeling) at positions or states xn = (x1, . . . , xn)
at time t. The phase space now has a much more complex structure with continuous and discrete degrees of freedom,
so the normalization condition is

∞∑
n=0

∫
fn(t,x

n)dxn = 1, (3)

where the integral is over the whole available space. The master equation for the system with varying particle numbers
can then be written as a family of Fokker-Planck equations, one for each n-particle level. These are then coupled by
operators Qnm that transfer probability from the m-particle state to the n one modeling processes that change the
particle numbers (e.g. interactions with a material reservoir or reactions). These operators form a coupling matrix,



4

which incorporates into the master equation

∂

∂t


f0
f1
...
fn
...

 =


A0f0
A1f1

...
Anfn

...

+


Q00 Q01 . . . Q0n . . .
Q10 Q11 . . . Q1n . . .

...
...

... . . .
Qn0 Qn1 . . . Qnn . . .

...
...

...
. . .




f0
f1
...
fn
...

 . (4)

Each row of the equation corresponds to the dynamics of the n-particle distribution. If the coupling matrix is removed,
one obtains a set of uncoupled Fokker-Planck equations, each for a different particle number. If the space dependence
is removed, one recovers a continuous-time Markov chain, where the operators Qnm become transition rates. This
master equation for systems with varying particle numbers can be written more compactly by focusing on the nth
component (

∂

∂t
−An

)
fn = Qnf, (5)

with Qnf =

∞∑
m=0

Qnmfm. Although these infinite sums might seem problematic at first, in practical cases most Qnm

are zero and the sums remain finite, as we will see later. Moreover, in analogy with stochastic matrices in continuous-
time Markov chains, we expect each matrix column to sum to zero to enforce the conservation of probability. As in
this case, we have a matrix of operators and space dependence, the probability conserving condition translates into
the following constraint imposed into the coupling operators

∞∑
n=0

∫
(Qnmηm) (xn)dxn = 0, (6)

for ηm any given test arbitrary probability density for m particles and where the integrals run over the whole available
space. Each of these integrals represents the probability flux associated with a transition. By forcing their sum to be
zero, we enforce that the net probability flux leaving one state is the same as the one entering another state. Thus,
enforcing probability conservation.

As we will see in the next sections, master equations of this form have been written before [14, 17, 19, 23, 43, 50],
but they were written for specific contexts. Moreover, there is a connection between this description and hybrid
switching diffusions [8, 13, 54, 74]. However, in the particle context, hybrid switching diffusions can only account for
a change in the state of a particle but cannot incorporate or remove particles. In sections III and IV, we will explore
specific physical systems that involve varying particle numbers. Then, in section V, we will show how these specific
systems inspired the general master equation (eq. (5)) and how they are recovered as particular cases.

III. LIOUVILLE-LIKE EQUATIONS FOR CLASSICAL OPEN SYSTEMS

The two approaches reported in this section were developed (the first one) or used (the second one) to conceptually
frame a numerical method for the molecular simulation of open systems that exchange energy and matter with a large
reservoir. The specific numerical code embedded in this theoretical framework is the Adaptive Resolution Simulation
(AdResS) [20]; however, any molecular simulation approach that is characterized by the system-reservoir exchange of
energy and particles could be framed as well in such models. The models presented here have been used as inspiration
for designing and rationalizing the system-reservoir coupling [24, 32, 44]. Systems of molecular simulation are in
general characterized by an explicit particle-particle Hamiltonian and by its corresponding phase-space probability
density. This latter is not known explicitly, however it is statistically sampled either through single long trajectory
or through a collection of short trajectories, each with an initial condition uncorrelated to the initial condition of
the others. As a consequence the statistical calculation of physical quantities is done by sampling and averaging the
physical quantity of interest along such trajectories [27]. The natural complete framework for the treatment of these
systems is the Liouville equation, thus it seemed natural to manipulate the Liouville equation of the total system to
obtain an equivalent equation for a subsystem where the surrounding (rest of the total system) has been explicitly
integrated out in its particle degrees of freedom or, alternatively, the particle degrees of freedom have been empirically
removed by modeling the reservoir as a generic thermodynamic bath.



5

FIG. 1. Graphical representation of the open system and associated formalism. The open system Ω, with its boundary surface
∂Ω, is defined as a subsystem of U with n particles. The reservoir is defined as a large system, U\Ω = Ωc, with N −n particles,
since U contains N particles. The n dimensional domain of the phase-space of particles in Ω is defined as Sn = R3n ×Ωn while
the N − n dimensional domain of the phase-space of particles in Ωc is defined as SN−n

c = R3(N−n) × Ω(n−N).

A. From a large system of N particles to an open subsystem of n particles

The model of open systems based on the Liouville equation of the total system of Ref 19 is here described in its
essential features. Let us consider a large dynamical system of N particles in equilibrium (called here Universe, U) and
define an open subsystem, Ω, containing n particles (with the corresponding reservoir, U\Ω = Ωc, of N − n particles,
with N >> N − n), as illustrated pictorially in Figure 1. Starting from the Liouville equations for the probability in
phase space of the Universe and integrating out all the degrees of freedom of U\Ω = Ωc one would wish to derive a
Liouville-like equation for the particles in Ω taking into account that particles can freely move from the subsystem to
the reservoir and vice versa. The Hamiltonian of the Universe is defined as:

HN =

N∑
i=1

p⃗2i
2M

+ Vtot(q
N ) (7)

with p⃗i the momentum of the i-th particle, M is the mass of an individual particle; the potential of particle-particle
interaction is defined as: Vtot(q

N ) =
∑N

i=1

∑N
j=1,j ̸=i

1
2V (q⃗j − q⃗i), with i and j labeling two different molecules with

corresponding positions q⃗i and q⃗j . The corresponding probability density in phase-space is given by:

FN : R+ × (U × R3)N → R(t,XN ) 7→ FN (t,XN ) (8)

where ∫
SN

FN dXN = 1 , (9)

with XN ∈ SN = (U × R3)N the space of the position and momentum variables of the N particles.
The Liouville equation for U is then given by:

∂FN

∂t
= ΛNFN (10)

with ΛN the Liouville operator for an N particle system

ΛNFN = {FN , HN} =

N∑
i=1

[
∇q⃗i · (v⃗iFN ) +∇p⃗i

·
(
F⃗iFN

)]
, (11)

{∗, ∗} are the canonical Poisson brackets, v⃗i = p⃗i/Mi is the velocity of the ith particle and the total force, F⃗i, acting
on particle i is given by

F⃗i = −∇qiVtot(q
N ) = −

N∑
j=1;j ̸=i

∇q⃗iV (q⃗i − q⃗j). (12)
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The Hamiltonian of the subsystem Ω is accordingly defined as:

Hn =

n∑
i=1

p⃗2i
2M

+

n∑
i=1

n∑
j ̸=i

1

2
V (q⃗j − q⃗i) (q⃗i, q⃗j ∈ Ω) (13)

while the corresponding phase-space probability density is:

fn : R+ × Sn → R; (t,Xn) 7→ fn(t,X
n) for (n = 0, ..., N)

fn(t,X
n) =

(
N

n

) ∫
(Sc)N−n

FN (t,Xn,ΞN
n ) dΞN

n (14)

ΞN
n ≡ [Ξn+1, .....ΞN−n] where Ξi = (q⃗i, p⃗i) ∈ SN−n

c

The collection of n-particle functions, (fn)Nn=0 defines the probability density with the normalization condition derived
from the normalization of FN for the universe (e.g. (9)). As a consequence one has that:

N∑
n=0

∫
Ωn

∫
(R3)n

fn(t, (q,p)) dp dq = 1 . (15)

The integration of Eq. 10 w.r.t. the variables of SN−n
c implies a straightforward calculation procedure which does not

carry any relevant conceptual aspects and thus it is not reported here; the corresponding details of can be found in
Refs. 19, 44, here the final results are reported:

∂fn
∂t

+ Λnfn = Ψn +Φn+1
n (16)

with

Ψn = −
n∑

i=1

∇p⃗i
·
(
F⃗av(q⃗i)fn(t,X

i−1, Xi,X
n−i
i )

)
, (17)

and

F⃗av(q⃗i) = −
∫
Sc

∇q⃗iV (q⃗i − q⃗j)f
◦
2 (Xj |Xi)dXj (18)

the latter corresponds to the mean field force that the outer particles exert onto the ith particle in Ω. f◦
2 (Xout|Xin)

is defined as the conditional distribution of an outer particle at the given state of an inner particle; one can assume
that it is known or a model can be proposed. Furthermore,

Φn+1
n = (n+ 1)

∫
∂Ω

∫
(p⃗i·n⃗)>0

(p⃗i · n⃗)
(
fn+1 (t,X

n, (q⃗i, p⃗i))− fn (t,X
n) f◦

1 (q⃗i,−p⃗i)
)
d3pidσi. (19)

In Eq. 19 f◦
1 (q⃗i,−p⃗i) corresponds to the (modeler’s) assumption of the reservoir’s one particle distribution calculated

at the interface boundary ∂Ω. It must be also added that the addition of an external thermostat in the reservoir does
not change the equation and allows to extend the model to situations of non-equilibrium like thermal gradient [43].In
general, such a theoretical framework rationalizes the numerical scheme AdResS; the idea is explicitly discussed in
the section below.

1. Theoretical scheme and AdResS method

The Adaptive Resolution (AdResS) scheme for molecular dynamics is a numerical approach where a region of
interest is treated at high molecular resolution while the surrounding is treated at a coarser level. Molecules can
freely move from one region to the other and accordingly change their resolution [57]. The model of open systems
discussed above (section IIIA) allows a further simplification of the environment around the system of interest. In fact,
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FIG. 2. Graphical representation of the AdResS model. On the left part, one has the equivalent of the open system Ω, which is
the system of interest in simulation and whose molecules are characterized by high resolution. In the middle, there is a transition
region, equivalent to the interface region of the theoretical model where molecules coming from the reservoir are equilibrated
at molecular resolution. The right region corresponds to the integrated out environment of the theoretical model which here is
modeled with non-interacting point-particles (tracers). The thermodynamic force, −∇iχ(xi), acts on the environment of Ω and
enforces the condition that f◦

2 and f◦
1 are the same as in a simulation at full resolution in the whole box. The latter condition

assures physical consistency to Ω as compared to a subsystem of a large system at full molecular resolution.

the molecular resolution outside the system of interest can be drastically reduced to non-interacting point-particles
embedded in a mean-field [20]; the properties of this mean-field are defined by the coupling terms, Ψn and Φn+1

n , of
the model discussed in section III A.
Below we report the basic idea, while Fig.2 illustrates the numerical scheme and its correspondence to the theoretical
model. The system-reservoir coupling terms of the model discussed in IIIA, are:

Ψn = −
n∑

i=1

∇p⃗i
·
(
F⃗av(q⃗i)fn(t,X

i−1, Xi,X
n−i
i )

)
(20)

and

Φn+1
n = (n+ 1)

∫
∂Ω

∫
(p⃗i·n⃗)>0

(p⃗i · n⃗)
(
fn+1 (t,X

n, (q⃗i, p⃗i))− fn (t,X
n) f◦

1 (t, q⃗i,−p⃗i)
)
d3pidσi. (21)

All the physical quantities involved in eqs. (20) and (21) are directly accessible in a simulation (i.e. can be explicitly
calculated in ∂Ω) except for f◦

2 and f◦
1 which, lacking molecular resolution in the reservoir, cannot be calculated

and need to be modeled/assumed. For physical consistency, such quantities must correspond to those calculated in a
large molecular system that contains the open system as a subsystem. In terms of the algorithm, the conditions from
eqs. (20) and (21) imply the assumption that, at the interface, f◦

1 (t, q⃗i,−p⃗i) and f◦
2 (t,Xout|Xin) are the ones expected

in a simulation at full molecular resolution. To this aim, in AdResS, at the interface region has been imposed a
so-called thermodynamic force, −∇iχ(xi), derived self-consistently in the simulation scheme during the equilibration
stage (see also [28]). This enforces a particle density (i.e. f◦

1 ) equivalent to the particle density of the reference
fully resolved system together with a thermostat that fixes the temperature at the target value. Thus, χ(xi) is the
mean-field one-particle potential in which the molecules at the interface and in the reservoir are embedded. For f◦

2 ,
it has been found that fixing f◦

1 , for molecular systems of practical interest, leads to a two-body distribution function
(i.e. f◦

2 ), which closely reproduces the two-body distribution function of the reference fully resolved system. However,
in case of necessity, a two-body thermodynamic force, in the same fashion of the one-body force that fixes f◦

1 , can
be imposed as well [69]. Once one can be assured that f◦

1 and f◦
2 in ∂Ω are as expected, it follows that the coupling

terms of eq. (20) and eq. (21) are implicitly realized in the simulation since all the other quantities can be explicitly
calculated. This means the set up of the simulation contains all the information to reproduce the physics expressed
by the Liouville-like equation for fn. It must be mentioned that the model of section III A is valid also for situations
out of equilibrium, e.g. a thermal or density gradient imposed on the system by a fluctuating reservoir or by multiple
reservoirs at different thermodynamic conditions. Such features have been incorporated in the AdResS scheme and
were numerically tested with satisfactory results [32, 44].
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B. The Bergman-Lebowitz equation of open systems

Bergmann and Lebowitz, and Lebowitz and Shimony in two seminal papers [49],[50], have proposed an equation
based on the extension of the Liouville equation that models open systems embedded in a reservoir of particles and
energy. The essence of the model is to consider an impulsive, Markovian interaction between the reservoir and the
system; the reservoir is considered stationary and not influenced by the changes occurring in the system, thus the
thermodynamic state point of the reservoir is fixed. The interaction between the system and the reservoir is modeled
as a discontinuous transition of the system from a state with N particles (Xn) to one with M particles (Y m),
where Xn corresponds to the canonical variables (position and momenta). The change of the state of the system
state is described by a time-independent Markovian transition kernel, Knm(Xn,Y m) . The kernel, Knm(Xn,Y m),
corresponds to the probability per unit time that the system at Y m makes a transition to Xn as a result of the
interaction with the reservoir. The probability density, fn(X

n, t), in some point Xm of the phase space is then
regulated by an extension of the Liouville equation:

∂fn(X
n, t)

∂t
= Λnfn+

+

∞∑
m=0

∫
dY m[Knm(Xn,Y m)fm(Y m, t)−Kmn(Y

m,Xn)fn(X
n, t)]

(22)

The first line of eq. (22) corresponds precisely to the Liouville equation for the n particle system, while the second
line establishes a coupling with the reservoir(s). This last term is composed of negative or positive contributions
corresponding either to the outflux/loss of probability from the current n state or to the influx/gain of probability
into the current state, respectively.

If the kernel satisfies the condition of flux balance:
∞∑

m=0

∫
[e−βH(Xm)+βµmKnm(Xn,Y m)−Kmn(Y

m,Xn)e−βH(Xn)+βµn]dXm = 0 , (23)

it follows that the stationary Grand Ensemble is the Grand Canonical ensemble; here β = 1
kBT where kb is the

Boltzmann constant and T the temperature, while µ is the chemical potential of the system. The key difference
between the approach of section IIIA and the approach of Bergman and Lebowitz lies in the assumption about
the reservoir and the corresponding term of system-reservoir exchange in the equation. The model of section III A
does not require any assumption about the reservoir, but directly integrates its particle’s degrees of freedom. As
a consequence, the system-reservoir coupling term is explicitly written in terms of particle quantities without any
stochastic assumption. In the model shown here, the reservoir is modeled a priori without any explicit link to its
particle resolution and the system-reservoir coupling term is modeled, as a consequence, with a probabilistic process.
The model of Bergman and Lebowitz has been very important for the numerical implementation of the open system
approach AdResS in an intermediate step. Such model, differently from the model of section III A (as reported above
in section IIIA 1) could not provide an explicit numerical receipt for the system-reservoir coupling, nevertheless it
allowed for a physical qualitative interpretation of the coupling conditions of the AdResS code [2, 24].

IV. MASTER EQUATIONS FOR REACTION-DIFFUSION PROCESSES

Molecular dynamics are limited to the study of complex biochemical phenomena at the scale of living cells. While
the most sophisticated molecular simulations can achieve simulations of a few macromolecules in the scale of micro-
or milliseconds when being optimistic, biochemical processes at these scales often involve thousands or millions of
macromolecules and occur over timescales of seconds. Moreover, the chemical events at the molecular scale happen
at a much faster scale than those relevant to life processes, and thus their detailed molecular kinetics do not play a
key role in the dynamics. It is thus appropriate to consider particle-based reaction-diffusion models (fig. 3), where
molecules are represented as particles undergoing random motion due to thermal fluctuations of the solvent (diffusion),
and chemical reactions due to instantaneous reaction events, which often occur after chancy encounters between two
or more molecules. The relevant features of the molecular scale are captured in the diffusion coefficients and the
reaction rate functions.

Particle-based reaction-diffusion models are often the standard to model biochemical processes at the scale of living
cells. At these scales, the so-called chemical diffusion master equation (CDME) provides a probabilistic model in terms
of the numbers of particles of each of the chemical species involved, as well as their spatial configuration [14, 17, 23].
One of the original objectives of developing the CDME was to serve as an underlying ground model upon which one
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a. b.

FIG. 3. Illustration of particle-based models. a. Change of resolution from molecular to particle resolution, where each molecule
is considered as one bead. b. A particle-based reaction-diffusion process for A + A → A, where λ(y, x1, x2) is the position
dependent rate function.

can construct particle-based reaction-diffusion simulations consistently. Moreover, one can in principle recover most
other reaction-diffusion models as limits of the CDME, e.g. in the well-mixed limit, one recovers the well-known
chemical master equation (CME) [29, 33, 62, 66]; in the thermodynamic limit, one recovers reaction-diffusion PDEs;
and when doing spatial discretizations, one recovers the reaction-diffusion master equation [40] or the spatiotemporal
master equation [71]. Thus, it serves as a unifying framework from which one can develop numerical schemes that are
consistent across scales. For instance, some mathematicians are interested in branching and annihilating Brownian
motion [5] and its connection to the Kolmogorov-Petrovsky-Piskunov-Fisher (KPPF) equation. Following an applied
mathematics/mathematical physics approach, one can frame these processes in terms of the CDME and study the
limiting cases to recover the KPPF reaction-diffusion PDE, as done recently for other reaction systems [12]. This could
yield alternative insights to the research community on that field, as well as methodologies for multiscale simulations.

One of the main virtues of the CDME is its capability to handle systems with varying numbers of particles while
maintaining spatial resolution. This is an inherent characteristic of the CDME since reaction events often change the
number of particles in the system. In this section, we will overview the CDME for a simple example, and we will show
how it extends when the diffusion term is replaced by Langevin dynamics.

A. Chemical diffusion master equation: coupling diffusion with reaction processes

As a starting point, we follow [17] and consider a system with a varying number of particles, all corresponding to
one chemical species, enclosed in a finite domain X (reflecting boundaries in the boundaries of X). The configuration
of the system is given by the number of particles and their positions, so its probability distribution is given as an
ordered family of probability density functions:

f = (f0, f1, f2, . . . , fn, . . . ) , (24)

where fn := fn(t, q
n) is the probability density of finding n particles at the positions qn = (q1, . . . , qn) ∈ Xn at time

t, or simply q if clear from context. The phase space of these distributions is depicted in fig. 4. As the particles are
statistically indistinguishable from each other, the densities must be symmetric with respect to permutations of labels,
for instance, f3(t, x, y, z) = f3(t, x, z, y) = f3(t, y, x, z) and so on. The probability distribution should be normalized,
thus

∞∑
n=0

∫
Xn

fn(t, q)dq = 1. (25)

For a system with M reactions, the nth component of the CDME has the general form

∂fn
∂t

= Dnfn +

M∑
r=1

R(r)
n f. (26)

The generator of the CDME is decomposed into the reaction and diffusion components: D is the diffusion operator
and R(r) corresponds to the reaction operator for the rth reactions. Each reaction operator can be split into two
contributions

R(r)
n = G(r)

n − L(r)
n , (27)

representing the gain or loss of probability respectively due to all possible reactions in a given configuration.
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FIG. 4. Phase space for a general reaction-diffusion process involving one chemical species. The space X represents the phase
space of one particle A (e.g. R3), and the distributions described by the chemical diffusion master equation reside in this phase
space.

To exemplify the formulation of the CDME for a reaction involving only one chemical species, we focus on a reaction
that models social friction in population dynamics (fig. 3b.)

A+A → A. (28)

The rate at which a reaction event occurs is given by λ(y;x) > 0, and it depends on the positions x = (x1, x2) ∈ X2

of the reactants and the position y ∈ X of the products. Note that the rate function must be symmetric with respect
to the positions of the reactants (as well of the products if more than one), i.e. λ(y;x1, x2) = λ(y;x2, x1). The nth
component of the CDME then is given by

∂fn
∂t

= Dnfn + Gnfn+1 − Lnfn, (29)

where Dn, Gn, Ln refer to the corresponding diffusion, gain and loss operators, respectively. Note as we are only
considering one reaction, we dropped the upper index. Reactions at the n-particle state transfer probability to the
(n − 1)-particle state, so they are represented by the loss term. Reactions at the (n + 1)-particle state transfer
probability to the n-particle state state, so they are represented by the gain.

For non-interacting particles, the diffusion operator Dn is the infinitesimal generator of the n-particle Fokker-Planck
equation.

Dnfn =

n∑
i=1

∇i · (Aifn) +

n∑
i,j=1

∇i · (Dij∇jfn) , (30)

where Ai = Ai(q, t) is the drift, Dij = Dij(q) are the 3 × 3 diffusion matrices and ∇i denotes differentiation with
respect to ith component of the position q [14]. If the drift is consequence of an interaction potential U(q) then

Ai = −
n∑

j=1

Dij∇jU. (31)

In the absence of drift and assuming isotropic diffusion, Dn would simply be the Laplacian, Dn =
∑n

i=1 D∇2
i with

a scalar diffusion constant D. Considering this structure and assuming there are no reactions, the CDME would
correspond to an infinite family of uncoupled Fokker–Planck equations, where each member of the family corresponds
to a different number of particles.

The loss operator acting on the n-particle density will output the total rate of probability loss of fn due to all
possible combinations of reactants. It is given in terms of the loss per reaction Li,j , which acts on 2 particles at
a time, with (i, j) denoting the indexes of the particles that it acts on. The loss per reaction quantifies how much
probability is lost to the current state due to one reaction, it is thus the integral over the density and the rate function
λ over all the possible positions of the products:

(Li,jfn) (q) = fn(q)

∫
X
λ(y; qi,j)dy, (32)

with q ∈ Xn and where qi,j = (qi, qj) represent the ith and jth components of q. The total loss is then the sum of
the loss per reaction over all possible reactions,

Ln =
∑

1≤i<j≤n

Li,j . (33)
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The form of the ordered sum guarantees that we count all the possible ways of picking up k particles without double
counting. Similarly, the gain operator acting on the n-particle density will output the total rate of probability gain
of fn. It can be expressed in terms of the gain per reaction resulting from 2 reacting particles producing one product
with index k. The gain per reaction, termed Gk, quantifies how much probability is gained by the current state due
to one reaction, it is thus the integral over the density and the rate function λ over all the possible positions of the
reactants:

(Gkρn+1) (q) =

∫
X2

λ(qk; z)ρn+1(q\{k}, z)dz, (34)

with q ∈ Xn and where the subscript \{k} means that the entry with index k is excluded from the tuple q of particle
positions. The total gain is then the sum of the gain per reaction over all possible reactions,

Gn =
n(n+ 1)

2

1

n

n∑
k=1

Gk, (35a)

=
(n+ 1)

2

n∑
k=1

Gk (35b)

where in the first line, the first fraction represents all the possible ways of picking two particles of the same species
from state n+ 1, and the second fraction and sum represent all the ways of adding a particle into the n state (while
preserving symmetry). Gathering all the terms, the CDME then has the form

∂fn(q)

∂t
=

n∑
ν=1

Dνfn +
(n+ 1)

2

n∑
k=1

∫
X2

λ(qk; z)fn+1(q\{k}, z)dz −
∑

1≤i<j≤n

fn(q)

∫
X
λ(y; qi,j)dy,

where the notation omitted the time dependence of fn for simplicity. The extension to multiple species is reported in
section IV A 1. The CDME for general one-species and multiple-species reactions were formulated in detail in [14, 17].

1. Multiple species extension

To exemplify the CDME for a reaction involving multiple species, we follow [17] again and consider the reaction

A+B → C (36)

with rate function λ(y;xA, xB), where xA and xB are the locations of one pair of reactants and y is the location of
the product. The stochastic dynamics of the system is described in terms of the distributions fa,b,c

(
qa, qb, qc

)
, where

a, b, c indicate the numbers of A, B, and C particles, respectively, and qa indicates the positions of the A particles,
qb of the B particles, and qc of the C particles. The normalization condition eq. (25) generalizes to multiple species

∞∑
a,b,c=0

∫
Xa×Xb×Xc

fa,b,c
(
qa, qb, qc

)
dqa dqb dqc = 1. (37)

Applying analogous reasoning as before, we can derive the CDME for the bimolecular reaction [17]. Here we just
state the final equation

∂fa,b,c
∂t

=

a∑
µ=1

DA
µ fa,b,c +

b∑
ν=1

DB
ν fa,b,c +

c∑
ξ=1

DC
ξ fa,b,c

+
(a+ 1)(b+ 1)

c

c∑
ξ=1

∫
X2

λ
(
qcξ; z, z

′) fa+1,b+1,c−1

(
(qa, z), (qb, z′), qc

\{ξ}

)
dz dz′

− fa,b,c

a∑
µ=1

b∑
ν=1

∫
X
λ
(
y; qaµ, q

b
ν

)
dy,

(38)

where to simplify notation, the dependence of ρa,b,c on time t has been omitted, as well as its dependence on the
positions

(
x(a), x(b), x(c)

)
if clear from context. The first line corresponds to the diffusion of each chemical species,

the second line to the gain term and the last one to the loss.
The works [14, 17] developed a comprehensive and formal mathematical framework to formulate the CDME for any

given reaction system.
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B. Langevin dynamics with varying number of particles

There is a close mathematical link between section III and section IV A; the resulting equations from both approaches
describe the dynamics of densities in the phases space of systems with varying number of particles. In section IV A, we
introduced the diffusion operator, as well as the densities, only dependent on the position of the particles. However,
one can in principle define these operators on more general dynamics. For instance, the state of the system can also
depend on the velocities of the particles, as well as on the interactions between particles. In section III we had already
incorporated velocities, but in a classical context, where there was no stochastic component and the changes in particle
numbers were due to being in contact with a reservoir. A natural question arises: what is the physical/mathematical
connection between these approaches?

In this section, we focus on Langevin dynamics with varying copy numbers as a middle ground to hint at the
similarities between the classical open systems approach from section III and the stochastic reaction-diffusion approach
from section IVA. This will hint at a general approach to model the dynamics of systems with varying number of
particles, enabling richer models of open systems.

To start, consider the Langevin dynamics of a system with n point particles in a spatial domain X with positions
and velocities q ∈ Xn and v ∈ Vn, where V is the space of one-particle velocities (in generalR3). The particle’s masses
are m, and they are under an interaction potential U(q) with a configuration-dependent friction tensor η to model
velocity-dependent hydrodynamic interactions (assuming approximation of pair-wise additivity [26]), then Langevin
dynamics are given by

dq(t) = v(t)dt m · dv(t) = −η · v(t)dt−∇qU(q)dt+
√
2kBTη

1/2dw(t), (39)

where w(t) corresponds to a 3n dimensional vector of independent Wiener processes or standard Brownian motion; kB
is the Boltzmann constant, and T is the temperature. The corresponding Fokker-Planck equation for these dynamics
—also named Klein-Kramers equation [68]— determines the dynamics of the probability density fn(t, q,v) in phase
space, and it is given by [26]

∂fn
∂t

= Knfn (40)

with Kn =

n∑
i=1

(
−vi · ∇qifn +

1

m
∇qiU · ∇vifn

)
+

n∑
i,j=1

1

m
∇vi · ηij

(
vjfn +

kBT

m
∇vjfn

)
(41)

where Kn simply denotes the infinitesimal generator of this Fokker-Planck equation for an n particle system —in three
dimensions, the equation would be a Fokker-Planck equation in 6n dimensions. We would like to now incorporate
processes that change the number of particles. This can be framed quite generally following section IVA in terms of
reactions. Reaction events can be thought of more generally as instantaneous events that follow a Poisson process in
terms of rate functions λ. Note these rates must not be constant; they can depend on time, on the state of the system
or on external variables. The master equation for this process will have the same form as the CDME in eq. (26), but
now instead of the diffusion operator, we have the Klein-Kramers one

∂fn
∂t

= Knfn +

M∑
r=1

R(r)
n f. (42)

Here M denotes the number of processes changing the number of particles, and we assume that f = (f0, f1, . . . , fn, . . . )
now also depends on the velocities. Note we again assume the densities are symmetric with respect to particle indexing
permutations and that the normalization from eq. (25) requires additional integration over the velocity variables

∞∑
n=0

∫
Xn×Vn

fn(q,v) dq dv = 1, (43)

In addition, the rate functions within the R operators could also depend explicitly on the velocities of particles,
allowing for richer particle-base models and generalizing the depth of field of the CDME. The approach presented
here based on Langevin dynamics is an ideal starting ground to couple open particle-based models with fluids and
to incorporate hydrodynamic and electrostatic interactions. As a final remark, note that if we take the overdamped
limit of the Langevin dynamics, we in principle recover the CDME from section IVA.
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V. PREVIOUS MODELS AS SPECIAL CASES

In this section, we first show what are the mathematical connections between the approaches from sections III A
and III B and the other two approaches in sections IV A and IV B. Based on the insight gained in section IVB, we
compare to the previous results and show how this inspired the general master equation for classical systems with
varying numbers of particles from section II.

In both previous sections III and IV we introduced equations to describe the dynamics of densities in the phase
space of systems with varying numbers of particles. The first insight is that mathematically the n-particle Liouville
equation is a special case of the n particle Fokker-Planck equation (Klein-Kramers eq.). To show this, we start with
the classical approach from section IIIA. The resulting equation for the distribution dynamics in the phase space of
the open system is given by a family of Liouville n-particle equations coupled by the terms Ψn +Φn+1

n (eq. (16))

∂fn
∂t

+

n∑
i=1

(
∇q⃗i · (v⃗ifn) +∇p⃗i

·
(
F⃗ifn

))
= Ψn +Φn+1

n . (44)

The Bergman-Lebowitz model from section III B shares the same mathematical structure but with different coupling
terms due to different conceptual starting points of view: section III A employs an explicit particle reservoir whose
coupling with the open system has been achieved by explicit integration of its degrees of freedom, while section III B
employs a reservoir modeled a priori with a stochastic term for the exchange with the open system. In practice, the
Bergman-Lebowitz model conceptually lies in between the other two approaches shown here. We can compare this
equation with the nth component of the master equation eq. (42) from section IVB

∂fn
∂t

−Knfn =

M∑
r=1

R(r)
n f (45)

with

Knfn =

n∑
i=1

(
−vi · ∇qifn +

1

m
∇qiU · ∇vifn

)
+

n∑
i,j=1

1

m
∇vi

· ηij

(
vjfn +

kBT

m
∇vjfn

)
. (46)

We can rewrite the first term of the diffusion operator in exactly the same form as eq. (44)

Knfn = −
n∑

i=1

(
∇qi(vi · fn) +

1

m
∇vi · (Fifn)

)
+

n∑
i,j=1

1

m
∇vi · ηij

(
vjfn +

kBT

m
∇vj

fn

)
, (47)

where Fi is the net force acting on particle i due to potential-based interactions and ∇pi
= ∇vi/m. If the noise term

of the Langevin equation is removed, the second term of Knfn vanishes recovering exactly the Liouville equation.
Thus, the Liouville equation can be mathematically understood as a special case of the Fokker-Planck equation for
Langevin dynamics in the deterministic limit. Note the emphasis on “mathematically” since from a physical perspective
Langevin dynamics are often understood as a coarse-grained representation of classical molecular dynamics.

The second insight is that these equations have an analogous mathematical structure. One part is essentially a
transport term for the n-particle density given by a Fokker-Planck equation, which simplifies to a Liouville equation
in deterministic cases. The other part is a coupling term that models the change in the number of particles across
the family of densities f = (f0, f1, . . . , fn, . . . ). We can write both equations in the form of eq. (5):(

∂

∂t
−An

)
fn︸ ︷︷ ︸

n-particle
transport term

= Qnf︸︷︷︸
coupling

term

. (48)

We can recover all models investigated in the previous sections as follows:

• Section III A, Liouville-like equation for an open subsystem:

Anfn → Λnfn and Qnf → Ψn +Φn+1
n . (49)

In this case, the dynamics of the system are deterministic with Hamiltonian structure, so we only need the
Liouville operator for the transport part. All the physics for the coupling between the subsystem with n
particles and the larger system (universe) with N particles are condensed in the coupling term. As an additional
verification of physical consistency, it was further shown that in equilibrium and under the hypothesis of short-
range interactions, this approach recovers automatically the standard stationary grand canonical distribution
[19].
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• Section III B, Bergman-Lebowitz equation of open systems:

Anfn → Λnfn and Qnf →
∞∑

m=0

∫
dY m[Knm(Xn,Y m)fm(Y m, t)−Kmn(Y

m,Xn)fn(X
n, t)]. (50)

Once again the dynamics of the transport process are deterministic with Hamiltonian structure, so we can use
again the Liouville operator. However, the interaction with the reservoir is modeled stochastically using the
Markovian transition kernel Kmn. This can be understood under the same light as the reaction in section IV A.
We can even separate the terms into a general loss and a gain term Qn = Gn − Ln where

Lnf =

∞∑
m=0

∫
dY m[Kmn(Y

m,Xn)fn(X
n, t)] (51)

Gnf =

∞∑
m=0

∫
dY m[Knm(Xn,Y m)fm(Y m, t)] (52)

In this sense, this approach is a middle ground between the approach in section IIIA and the one in section IV A.

• Section IV A, Chemical diffusion master equation for reaction diffusion:

Anfn → Dnfn and Qnf →
M∑
r=1

R(r)
n f. (53)

In this case, the transport dynamics are stochastic, but they correspond to Brownian dynamics (overdamped
Langevin dynamics to be precise), so there is no velocity dependence. Thus the transport part is governed by
the Fokker-Planck generator for the standard Brownian diffusion of n-particles: Dn. The reaction operators
R(r)

n transport probability between configurations with different number of particles. These can be separated
into the gain and loss parts: R(r)

n = G(r)
n − L(r)

n . The total gain and loss due to all the reactions is

Gn =

M∑
r=1

G(r)
n Ln =

M∑
r=1

L(r)
n (54)

Following [17], we can use the local rate functions for each reaction with these relations and write a global
Markovian transition kernel in the form of eqs. (51) and (52), which establishes a direct connection with the
Bergman-Lebowitz approach. The main difference is that in the Bergman-Lebowitz approach this kernel can
depend on velocities while here it would only depend on positions.

• Section IV B, Langevin dynamics with varying particle numbers:

Anfn → Knfn and Qnf →
M∑
r=1

R(r)
n f. (55)

From a mathematical point of view, this case covers the most general transport dynamics in this work; all
the other cases are special cases of this one. Here, the transport dynamics are stochastic and track positions
and velocities. Thus, the transport operator is given by the generator of the Klein-Kramers equation; the
Fokker-Planck equation for Langevin dynamics. In the overdamped limit, we recover the diffusion operator
Dn from section IV A. Alternatively, if we remove the noise term, we recover the Liouville operator Hn from
sections III A and III B. The coupling term works exactly as before, with the slight difference that now the
reaction rate functions can also depend on the velocity. Following the same reasoning as before, we could once
again write this in the form of eqs. (51) and (52), but unlike the overdamped Langevin case, we would also have
a dependence on velocities.

All the cases are special cases of eq. (48). However, its mathematical structure is even more general and does
not need to be constrained to Langevin dynamics, Hamiltonian structure or a specific form of the coupling terms.
The Liouville/Fokker-Planck term can be written for very general dynamical systems, and the coupling terms can
model reactions, interactions with external reservoirs or any other process that changes the number of particles. The
only constraint is that every term in the equation must conserve the total probability. We know the Fokker-Planck
equation part is probability preserving, so we only need to make sure that the couplings Qnf also preserve the total
probability ( eqs. (15), (25) and (43)) following eq. (6). This was shown in [19, 49] for the classical cases and in [14]
for the reaction-diffusion case.
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VI. PERSPECTIVES: PHYSICAL, NUMERICAL AND BEYOND

The general formulation of the master equation for systems with varying particle numbers presented in this work
provides a novel and synergetic link between different fields and how they handle open settings. Through its general
formulation, it unveils new perspectives and opens up the application scope to a diverse range of fields within and
beyond physics. There is ample potential for future applications, specifically in the design of multiscale theory and
simulation of complex systems. In this section, we discuss new perspectives inspired by this work, as well as current
and future applications.

From a physics perspective, understanding the dynamics of systems with varying numbers of particles requires
imposing fundamental physical constraints to eq. (48). In most cases, these systems will have —partly— a Hamiltonian
structure, which is represented by the Liouville part of the equation section III. Thus, in the spirit of the Bergman-
Lebowitz approach, it is illustrative to present an alternative separation of eq. (48) into the following components:

∂fn
∂t

− Λnfn︸ ︷︷ ︸
n-particle
Liouville

= Tnfn︸ ︷︷ ︸
heat

exchange

+ Qnf︸︷︷︸
material
exchange

, (56)

where the infinitesimal generator in eq. (48) for the corresponding Fokker-Planck equation is An = Λn+Tn. The terms
represent the Liouvillian dynamics (Hamiltonian); the contribution due to stochastic fluctuations, often a thermostat
modeling heat exchange with a reservoir(s); and the coupling terms capturing the material/particle exchange with
a reservoir(s). If we assume Langevin dynamics, the thermostat will have the form of section IV B and An → Kn;
however, eq. (56) is not limited to Langevin thermostats. The material exchange can model reactions, interactions with
a reservoir or any other process that changes the number of particles. Analyzing and manipulating these components
offer insights into the intricate interplay between system dynamics and its surroundings, shedding light on emergent
behaviors and equilibrium states. The form of eq. (56) hints at the possibility of performing a two-level coarse-graining
of a Hamiltonian system. First, coarse-graining the fast-scales, e.g. the solvent dynamics into a thermostat. Then, a
second coarse-graining following section III A to model the material exchange of the subsystem with the environment.
Although these two effects produced by different types of reservoir interaction were also captured in the seminal work
[49] with equations in the form of eq. (22), the approach here presented is more general and conceptually different.

In the context of coarse-graining techniques, the Mori-Zwanzig formalism stands out as a powerful tool for capturing
the relevant/slow dynamics of complex systems while accounting for memory effects and non-Markovian behavior.
Although it is not trivial how to apply it to systems with varying particle numbers, it sheds light on what kind
of dynamics we should expect in the coarse-grained variables. When applying the Mori-Zwanzig formalism to a
Hamiltonian system, it not only yields a noise term representing the thermostat but also a term modeling non-
Markovian memory effects. What are the memory effects emerging from the coarse-graining due to particle exchange
with the reservoir? Can these memory effects be incorporated into the master equation eq. (56)? Can we incorporate
memory effects into reaction-diffusion processes and what is their relevance? These are open questions motivated by
this work that are tremendously relevant to the physics community.

The quantum mechanical perspective could also be framed in similar terms, particularly through analysis of frame-
works like the Lindblad equation [53], a generalization of the von Neumann’s equation that describes the time evolution
of density matrices/operators for open quantum systems subject to dissipative processes. Von Neumann’s equation is
the quantum analog to Liouville’s equation, where the classical Poisson bracket is substituted by the commutator and
the density by the density matrix/operator. The Lindblad equation corresponds to von Neumann’s equation with an
additional term to model the interactions with the environment. This term is constructed using the so-called jump
operators that can be understood as operators that model probability “jumping” from one state to another due to
interactions with the environment, analogously to the Qf term in eq. (56). However, to the best of our knowledge,
the Lindblad equation in its most common form employed in the literature cannot describe the exchange of particles
in equilibrium between the system and the environment. Recently an approach similar to that of Ref.19 and applied
to the von Neumann equation has been proposed by A. Djurdjevac and one of us [18]. Nevertheless, a more precise
connection to quantum systems and situations out of equilibrium requires a more detailed analysis beyond the current
scope and is left for future work.

From a numerical perspective, multiscale simulations play a pivotal role in understanding complex open systems.
More specifically, systems in contact with material reservoirs are essential for real-world applications, such as molecu-
lar dynamics, biochemical kinetics and weather modeling. Reservoirs in these systems can exhibit dynamic behavior
and undergo changes in properties over time. Modeling such reservoirs accurately requires sophisticated simulation
techniques that account for multiscale phenomena and ensure physical consistency across scales. The models investi-
gated in this work, encode the underlying physics of the reservoir interaction into the mathematical structure. Then
these models can finally be used to develop numerical schemes that handle the coupling with dynamic reservoirs
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accurately [16, 20, 48, 58], including thermodynamical aspects [16, 31]. Moreover, these master equations can be
used to derive meso/macroscopic models by calculating expectations, higher moments [42, 48] or even by applying
probabilistic limits, such as the law of large numbers, the central limit theorem or large deviation principles [4, 16, 41].
Through these methodologies, a physical and mathematical consistency is established across scales, often in the form
of relations between the parameters of the models used at different scales. Then these relations can be used to develop
numerical schemes that are physically consistent across multiple scales [13, 15, 21, 38].

In the context of data-driven modeling and simulation, a large range of methods have been recently constructed
based on the Koopman operator [10, 45–47, 70]. One can intuitively construct the Koopman operator of system with
fixed number of particles n as follows: (i) the infinitesimal generator of the process is given by An from eq. (48),
this could be the Liouville, the Fokker-Planck generator or something more complex (Qn is not relevant for now as
the particle number is fixed); (ii) the solution of the equation is given in terms of the exponential of the infinitesimal
generator An, which for a chosen time-step defines a propagator. This propagator can be understood as the Ruelle or
Perron–Frobenius operator, which propagates probability densities forward in time; (iii) the adjoint of this operator is
the Koopman operator and instead of propagating probability densities, it propagates observables. This last property
is why it is suitable for data-driven methods. To the best of our knowledge, we are not aware of the construction
or application of the Koopman operator for particle-based systems with varying copy numbers, such work would
precipitate applications on diverse fields and this work provides the cornerstones to construct it.

Many of these methods and techniques based on the general master equation can be applied to fields beyond
physics. As the equation is written for a general random dynamical system, it can be applied to a large range of
complex systems with varying particle numbers beyond reaction-diffusion and molecular systems. We believe it will
have significant applications in the development of numerical schemes and multiscale modeling of the spread of diseases
[9, 52, 72], innovations [22], opinion dynamics [11, 36], and power, transportation and communication systems [35, 56]
among other agent-based social systems.

To finalize, we list some relevant examples of how the master equations presented in this work aid in the numerical
simulation of complex molecular systems. In particular in the treatment of multiscale molecular simulations that
go beyond equilibrium, for example, systems in a temperature gradient [24]. Such a situation can be realized by
embedding the open system in two distinct reservoirs, each at a different thermodynamic condition. In such a case
the prescription for the simulator is reduced to the boundary conditions of the equation of section III at the interface
between the system and each reservoir. In general, the embedding of the open system in multiple reservoirs at
different thermodynamic conditions allows the design of numerical algorithms where the reservoir can be modeled as
a thermodynamically fluctuating (in time) region via the fluctuating hydrodynamics method [32]. The instantaneous
thermodynamic condition of the reservoir corresponds to boundary conditions for the open systems which then it is
simulated and whose averaged molecular properties are given, in the next step, as input to the reservoir; the procedure
is then repeated thus producing the dynamics of the open system. Without the information on the boundary conditions
of the equations of section III, such a numerical scheme could not be implemented with such a physical consistency.

In the realm of reaction-diffusion processes, the chemical diffusion master equation can be expanded in terms of
classical creation and annihilation operators acting on the basis of the underlying space (a Fock space) [14, 17].
Based on this formulation, it is straightforward to develop Galerikin discretizations of the master equation [14]. This
immediately yields the so-called reaction-diffusion master equations [37, 71], where the space is discretized in voxels,
and the diffusion is modeled as jumps between neighboring voxels. However, unlike previous standard derivations
[37], the scaling of the rates for nonlinear reactions (involving two or more particles) is automatically adjusted to the
size of the lattice grid chosen, which enforces a consistent convergence to the micro and macroscopic scale [14, 39, 48].
It further provides a relation between the microscopic parameters and the partial differential equation model at the
macroscopic scale [48], enabling particle-based simulations that are consistent with the macroscopic model and thus
facilitating the implementation of reservoirs as macroscopic models that are coupled to a particle-based model [48].

The methodologies emerging from the theoretical constructs presented in this work not only provide physical insight,
numerical schemes and solutions to the master equation; they also have unifying capabilities and insights into the
underlying physics through the analysis of convergence properties, stability, and approximation errors. Exploring the
application of these methods in diverse complex systems will allow researchers from several fields to uncover novel
phenomena, unify models across scales and design efficient multiscale computational strategies for studying systems
with varying numbers of particles.
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