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Abstract

Continued improvement of heat control in mesoscopic conductors brings novel tools for
probing strongly correlated electron phenomena. Motivated by these advances, we com-
prehensively study transport due to a temperature bias in a quantum point contact device
in the fractional quantum Hall regime. We compute the charge-current noise (so-called
delta-T noise), heat-current noise, and mixed noise and elucidate how these observables
can be used to infer strongly correlated properties of the device. Our main focus is the
extraction of so-called scaling dimensions of the tunneling anyonic quasiparticles, of
critical importance to correctly infer their anyonic exchange statistics.
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1 Introduction47

Advancements in nanotechnology in the recent decade have paved the way towards detailed48

control of heat flows in small-scale electronic devices. This development permits experimental49

explorations of the quantum nature of heat [1], and in particular it introduces novel tools for50

probing quantum systems where strong electron correlations play an important role. A fun-51
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damental example is the quantum Hall effect [2, 3], where in recent years it has been exper-52

imentally established that the heat conductance of the quantum Hall edge is quantized. This53

quantization holds both for the simpler integer [4] and for the strongly correlated fractional54

quantum Hall (FQH) edges [5–10], including those expected to host the elusive non-Abelian55

Majorana modes [11,12]. The heat conductance provides crucial information about the edge56

structure, such as the number of edge channels and their chiralities: properties that are of-57

ten obscured in charge conductance measurements due to strong charge equilibration. This58

is particularly relevant in the case of composite edges, such as the 2/3 and 5/2 FQH states.59

Here, the interplay of charge and thermal equilibration lengths can lead to different values of60

the charge conductance [13–18]. Via the bulk-boundary correspondence, access to the edge61

structure gives further insights into the corresponding bulk topological order [19], thereby62

demonstrating quantum heat transport as a powerful tool to pin-point the topological order of63

FQH states.64

The possibility to accurately control and measure local temperatures has also spurred stud-65

ies of non-equilibrium charge-current noise in the absence of a voltage bias but instead due66

to temperature-biased contacts. Such noise has been termed “thermally activated shot noise”67

or “delta-T noise”. While delta-T noise bears some similarity to conventional voltage-bias-68

induced shot noise [20–22], it has the additional and quite peculiar feature that it arises when69

no net charge current flows in the system. Delta-T noise was first theoretically analyzed in70

diffusive conductors [23], while the first experimental observation was achieved in an atomic71

break junction [24], showing a good agreement with the scattering theory of non-interacting72

electrons [20]. Since then, delta-T noise has been analyzed for a broad range of systems and73

setups [25–45]. In the context of the FQH effect, delta-T noise was theoretically shown to dis-74

close important properties of quasiparticles with anyonic statistics [32, 37, 38]. In particular,75

this noise was proposed as an experimental tool to extract the anyons’ so-called scaling dimen-76

sions [46], which are observable parameters that, e.g., govern the degree of the quasiparticle77

correlations. Under certain circumstances, the scaling dimensions can be further related to78

the anyonic exchange statistics (a detailed discussion can be found, e.g., in Ref. [38]). As79

such, delta-T noise holds promise as an important tool in the quest to the detect and clas-80

sify anyons [47–50], where an accurate identification of scaling dimensions is paramount to81

correctly infer their exchange statistics. A complementary type of noise drawing increasing82

attention in recent years is heat-current noise, i.e., fluctuations in the heat current. Such fluc-83

tuations emerge due to, e.g., thermal agitation, coupling to an electromagnetic environment,84

or from partitioning of heat-currents due to scattering [1]. Various aspects of heat-current85

noise have been theoretically studied in several works [51–61] and, in particular, also heat-86

current noise was recently proposed to disclose scaling dimensions of FQH quasiparticles [62].87

However, despite these exciting developments, a more detailed picture of the relation between88

scaling dimensions and a broad range of experimentally accessible noise-quantities in the FQH89

effect remains to be presented.90

In this work, we significantly expand the scope for the relation between scaling dimensions91

and noise by analyzing delta-T , heat-current noise, and mixed charge-heat noise for a quantum92

point contact (QPC) device in the FQH regime at Laughlin fillings ν = 1/(2n + 1) (with n a93

positive integer). Our main achievements are:94

i) We perform a comprehensive derivation of expressions for charge and heat-current noise95

in the QPC device. These expressions not only recover previous results on auto-correlation96

and tunneling noise but also describe cross-correlation delta-T and heat-current noise.97

We further provide fully analytical expressions in the small and large temperature bias98

limits. To the best of our knowledge, expressions for the cross-correlated noise have not99

been reported so far. An important advantage of considering cross-, rather than, auto-100

correlation noise is that the former vanishes in equilibrium, and therefore requires no101
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subtraction of the thermal background noise. Moreover, our derived expressions manifest102

charge and energy conservation and can be used to accurately fit experimental data from103

both auto- and cross-correlation noise.104

ii) By introducing an effective density of states (EDOS) for the QPC region, we put strongly105

correlated tunneling on a similar footing as non-interacting tunneling analyzed within the106

scattering formalism. With this approach, we explicitly elucidate how delta-T and heat-107

current noise in fact probe properties of the EDOS and due to the device’s temperature108

bias, scaling dimensions of the tunneling particles naturally enter in both delta-T and heat109

current noise.110

iii) We generalize and extend a previously introduced heat Fano factor [62] and analyze how111

this quantity may be used to infer the scaling dimension tunneling particles.112

iv) We provide general expressions for so-called mixed noise, i.e., cross-correlations between113

tunneling charge and heat current fluctuations. We show that, close to equilibrium, these114

correlations are linked to thermoelectric conversion via the Seebeck coefficient. Our re-115

sults thereby go beyond previous ones [63] for non-interacting electrons.116

These achievements provide novel opportunities for experimentally probing FQH edge physics117

and collective electron behavior. Moreover, our detailed calculations establish a natural start-118

ing point for modeling delta-T noise and heat-current noise in other setups of strongly cor-119

related one-dimensional systems, e.g., disordered FQH line junctions [41,64–67], disordered120

quantum wires [68], and helical quantum spin Hall edges [69].121

We have organized this paper as follows: In Sec. 2, we introduce the FQH setup of interest122

and our theoretical formalism. In Sec. 3, we present expressions for delta-T noise in the small123

and large bias regimes. The analogous analysis for the heat-current noise is given in Sec. 4,124

which includes the evaluation of the heat Fano factors. In Sec. 5, we exploit the effective125

density of states to elucidate the properties of noise generated by a temperature bias. After126

that, we derive and analyze expressions of mixed noise in Sec. 6.127

For improved readability, in-depth details of our charge, heat, and mixed noise calcula-128

tions are delegated to Appendix A, B, and C respectively. In Appendix D we provide a simple129

toy-model to highlight how scaling dimensions are modified by local interactions. We fur-130

ther include some useful integral identities in Appendix E and Fourier transforms of Green’s131

functions in Appendix F. Finally, we provide a comprehensive analysis of charge- and heat-132

current noise for non-interacting electrons in Appendix G by using the scattering approach,133

calculations that we repeatedly refer to throughout the main text. As our unit convention, we134

generally set ħh = kB = 1 throughout our calculations, but restore these quantities for major135

results.136

2 Setup, conservation laws, and formalism137

2.1 Setup and conservation laws138

We study the setup in Fig. 1, consisting of two chiral quantum Hall edges bridged by a quantum139

point contact (QPC, indicated by the dashed line). The QPC brings the two edges in proxim-140

ity and causes inter-edge charge and energy exchange. Given a temperature difference ∆T141

between the two source contacts, labelled by α = 1, 2, our goal in this paper is to compute142

the resulting noise correlations in the two drain contacts, α= 3, 4. We define the correlations143
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between currents in contacts α and β in terms of the symmetrized noise powers144

SX X
αβ (ω)≡
∫ +∞

−∞
d t



{δX̂α(t),δX̂β(0)}
�

eiωt , (1)

where {..., ...} denotes the anticommutator, ω is the frequency, and δX̂α(t) = X̂α(t)− 〈X̂α(t)〉145

is the operator describing the charge (X = I) or heat (X = J) fluctuations at drain α. The146

operators evolve in the Heisenberg picture (see next section), and the bracket 〈. . .〉 denotes147

a statistical average with respect to the local equilibrium states in the two source contacts at148

t →−∞. From Eq. (1), it follows that the noise powers satisfy the symmetry relation149

SX X
αβ (ω) = SX X

βα (−ω). (2)

By using conservation of charge, we relate the incoming (α = 1,2) and outgoing (α = 3,4)150

charge currents, X̂ = Î in the device. Likewise, in the absence of a voltage bias in the device,151

V = 0, we can relate the incoming and outgoing heat currents by energy conservation. We152

thus have153

X̂3(t) = X̂1(t)− X̂T (t), (3a)

X̂4(t) = X̂2(t) + X̂T (t). (3b)

These relations define X̂T (t) as the charge (X̂ = Î) and heat (X̂ = Ĵ) tunneling current, namely154

the currents leaving the upper edge and entering the lower one. By inserting Eqs. (3) into155

Eq. (1), we further express the noise measured in the drains in terms of the noises from the156

source, or at the tunneling bridge, as157

SX X
33 (ω) = SX X

11 (ω)− SX X
1T (ω)− SX X

T1 (ω) + SX X
T T (ω), (4a)

SX X
44 (ω) = SX X

22 (ω) + SX X
2T (ω) + SX X

T2 (ω) + SX X
T T (ω), (4b)

SX X
34 (ω) = SX X

12 (ω) + SX X
1T (ω)− SX X

T2 (ω)− SX X
T T (ω), (4c)

SX X
43 (ω) = SX X

21 (ω) + SX X
T1 (ω)− SX X

2T (ω)− SX X
T T (ω), (4d)

Figure 1: A quantum point contact device in the fractional quantum Hall regime at
Laughlin filling ν = (2n+ 1)−1, with n a positive integer. The source contacts 1 and
2 have temperatures T1 and T2, respectively, and inject one right (φ̂R) and left (φ̂L)
moving edge mode at these temperatures, respectively. Tunneling of charge and heat
(IT and JT respectively) between the edge modes occur at x = 0. In this work, we
analyze the resulting charge and heat currents and their fluctuations in drain contacts
3 and 4.
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in which158

SX X
T T (ω)≡
∫ +∞

−∞
d t〈{δX̂T (t),δX̂T (0)}〉eiωt , (5a)

SX X
αT (ω)≡
∫ +∞

−∞
d t〈{δX̂T (t),δX̂α(0)}〉eiωt , (5b)

SX X
Tα (ω)≡
∫ +∞

−∞
d t〈{δX̂α(t),δX̂T (0)}〉eiωt . (5c)

At zero frequency,ω= 0, the charge and heat (i.e., energy) conservation (4) becomes manifest159

via the sum rule160

∑

α,β=3,4

SX X
αβ (0) = SX X

11 (0) + SX X
22 (0), (6)

where we used Eq. (2) together with SX X
12 (ω) = SX X

21 (ω) = 0, which follows since the two161

source current fluctuations are uncorrelated. Note that in our description, we have omitted162

currents and fluctuations propagating from contact 4 to contact 1 as well as from contact 3163

to contact 2. In the following sections, we compute the average currents 〈Xα(t)〉 and noise164

contributions SX X
αβ
(ω) in the FQH regime.165

2.2 Chiral Luttinger liquid formalism166

At low energies, the FQH edge dynamics is described by the chiral Luttinger model [70–72].167

Within this model, the combined Hamiltonian of the top and bottom edge segments is given168

as169

Ĥ0 =
vF

4π

∫ +∞

−∞
d x
�

: (∂x φ̂R)
2 : + : (∂x φ̂L)

2 :
�

, (7)

in which φ̂R/L are bosonic field operators describing low-energy excitations propagating to170

the right (R, on the top edge) or left (L, on the bottom edge) with speed vF . The notation171

“: . . . :” indicates the usual normal ordering in the bosonization formalism. For notational172

convenience, we will omit the normal ordering symbols from now on. The bosons obey the173

equal-time commutation relations174

�

φ̂R/L(x), φ̂R/L(x
′)
�

= ∓iπsgn(x − x ′). (8)

By using Eq. (8) and the Heisenberg equation of motion with Ĥ0, we obtain the time evolution175

of the free bosonic modes φ̂L,R as176

φ̂R/L(x , t) = φ̂R/L(x ∓ vF t), (9)

and we see that the R (L) boson indeed propagates to the right (left). From this chiral evolu-177

tion, it follows that the time derivative reads ∂t = ∓vF∂x when acting on φ̂R/L(x , t).178

We model the QPC region, taken at x = 0, by the tunneling Hamiltonian179

ĤΛ = ΛeieνV tψ̂†
R(0)ψ̂L(0) +H.c.. (10)

This Hamiltonian describes weak tunneling of quasiparticles with fractional charge q∗ = −νe180

(where −e is the electron charge) and includes, for the moment, also a voltage bias V ≡ V1−V2181
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between the two source contacts1. The operators ψ̂R/L are quasiparticle annihilation operators182

related to the bosonic fields via the well-known bosonization identity183

ψ̂R/L(x) =
FR/L
p

2πa
e±ikF x e−i

p
νφ̂R/L(x). (11)

Moreover, Λ in (10) is the tunneling amplitude, assumed as energy-independent within all184

relevant energy scales. In Eq. (11), a is a short-distance cutoff, FR/L are Klein factors, kF185

is the electronic Fermi momentum, and ν is the FQH filling factor. In this work, we limit186

our calculations to the Laughlin states (see, e.g., Refs. [13, 14, 37, 73, 74] for details on noise187

generation in QPCs for other FQH states) for which188

ν=
1

2n+ 1
, n ∈ N+ . (12)

In the bosonized language, the charge and heat current operators along the edges read189

ÎR/L ≡
evF
p
ν

2π
∂x φ̂R/L , (13a)

ĴR/L ≡ ±
v2

F

4π
(∂x φ̂R/L)

2 − V1,2 ÎR/L , (13b)

where V1,2 are the voltages applied at the source contacts 1 and 2, respectively. Having defined190

Ĥ0 and ĤΛ, we next compute the charge and heat tunneling currents at the generic position191

x0 along the device. To do so, we compute the time evolution of the charge and heat current192

operators perturbatively in Λ up to order |Λ|2 (amounting to the weak tunneling limit). We193

thus write194

X̂R/L(x0, t) = X̂ (0)R/L(x0, t) + X̂ (1)R/L(x0, t) + X̂ (2)R/L(x0, t), (14)

where the superscript (0) denotes time evolution with respect to the free Hamiltonian Ĥ0 and195

196

X̂ (1)R/L(x0, t) = −i

∫ t

−∞
d t ′
�

X̂ (0)R/L(x0, t), Ĥ(0)Λ (t
′)
�

, (15a)

X̂ (2)R/L(x0, t) = −
∫ t

−∞
d t ′
∫ t ′

−∞
d t ′′
�

Ĥ(0)Λ (t
′′),
�

Ĥ(0)Λ (t
′), X̂ (0)R/L(x0, t)
��

, (15b)

for X̂ = Î , Ĵ . The currents X̂R/L are related to the currents flowing into the drain contacts as197

X̂3(t) = X̂R(x3, t) , (16)

X̂4(t) = −X̂ L(x4, t) , (17)

where x3 and x4 are the locations of the drains and we adopted a convention where currents198

are positive when they enter the associated contact. In Secs. 3 and 4 below, we give the results199

for the charge and the heat transport, respectively.200

3 Charge currents and delta-T noise201

In this section, we present our results for the charge-current noise to leading order in the202

tunneling (10), based on Eqs. (14) and (15). Full details of our calculations are presented in203

1Although our focus in this work is the situation of only a temperature bias, we consider here the more general
case with finite voltage bias V ̸= 0, which is necessary in order to introduce the charge tunneling conductance (see
Sec. 3.1) and to have a nonvanishing mixed noise (see Sec. 6).
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Appendix A. The general expressions (25) below agree with several well-known results, see204

e.g., Refs. [37, 75, 76], and we have included them to make the paper self-contained. Our205

new results in this work are mainly the analysis of the cross-correlations, both in the small206

temperature bias regime —especially the explicit expressions (30)—, and in the large-bias207

regime (Sec. 3.3).208

3.1 General expressions and scaling dimension209

We start with the average charge tunneling current through the QPC, located at x = 0, which210

we obtain as (see Appendix A for details)211

IT ≡ 〈 ÎT 〉= 2ieν|Λ|2
∫ +∞

−∞
dτ sin(eνVτ)GR(τ)GL(τ), (18)

where V = V1 − V2 is the voltage difference between the source contacts and212

GR/L(τ)≡ GR/L(x = 0,τ) =
1

2πa
eλGR/L(τ), (19)

are the quasiparticle Green’s functions evaluated at the location of the QPC. In Eq. (19), the213

exponents are given in terms of equilibrium bosonic Green’s functions214

GR/L(τ) =



φ̂R/L(0,τ)φ̂R/L(0,0)
�

−
¬

φ̂2
R/L(0, 0)
¶

= ln

�

sinh(iπT1/2τ0)

sinh(πT1/2(iτ0 −τ))

�

, (20)

with τ0 ≡ a/vF being the short-time cutoff. The Green’s functions for the chiral right and left215

movers depend on T1 and T2, respectively (the temperatures of the two source contacts), and216

manifest that the edge states injected from the sources are in equilibrium with their respective217

contact until they reach x = 0.218

The exponent in Eq. (19) contains also λ, which is the so-called scaling dimension of the219

tunneling operator [46]. This parameter can be thought of as a dynamical exponent governing220

the decay of the time correlation of the tunneling particles. Generally, λ is affected by non-221

universal effects, e.g., inter-channel interactions [77–79], coupling to phonon modes [77],222

disorder [80], neutral modes [80–83], and 1/ f noise [84, 85]. For completeness, we present223

in Appendix D a simple toy model that showcases how scaling dimensions are modified by lo-224

cal density-density interactions near the QPC. We thus stress that for the Laughlin states (12),225

it is only in the very ideal case where such effects are absent that λ equals the filling factor ν226

(in the weak backscattering regime). We further emphasize that universal, topological prop-227

erties like the charge of the tunneling quasiparticles are not affected by any scaling dimension228

modification. In the present work, the fractional charge q∗ of the tunneling quasiparticles is229

always set by the filling factor ν via the relation q∗ = −νe. Due to a well-known duality (see230

e.g., Ref. [32]), our calculations in the ideal weak backsattering regime can be mapped onto231

the ideal strong backscattering regime by taking λ= 1/ν and q∗ = −νe→ q∗ = −e.232

By inspecting Eq. (18), we see that IT vanishes for V = 0, as expected, independently233

of the temperatures T1 and T2. This feature is a consequence of the particle-hole symmetry234

of the linear spectrum of the edge modes, in combination with the assumption of an energy-235

independent tunneling amplitude Λ. Based on the tunneling current (18), we next define the236

associated differential charge tunneling conductance as237

∂ IT

∂ V
= 2i(eν)2|Λ|2
∫ +∞

−∞
dττ cos(eνVτ)GR(τ)GL(τ). (21)

8
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Close to equilibrium, i.e., for T1 = T2 = T̄ and V = 0, we have the conductance238

gT (T̄ )≡
∂ IT

∂ V

�

�

�

� V=0
T1=T2=T̄

=
e2ν2

2π

�

|Λ|
vF

�2

(2πT̄τ0)
2λ−2 Γ

2(λ)
Γ (2λ)

, (22)

which displays the well-known characteristic power-law scaling T̄2λ−2 of the edge channels239

(see, e.g., Ref. [72]). In Eq. (22), Γ (z) denotes Euler’s Gamma function. In the non-interacting,240

integer case λ= ν= 1, the conductance becomes241

gT (T̄ )
�

�

λ→1 =
e2

2π

�

|Λ|
vF

�2

=
e2

2π
D, (23)

where we defined242

D ≡
|Λ|2

v2
F

. (24)

A comparison to the scattering approach for tunneling of non-interacting electrons (see Ap-243

pendix G) shows that D is the QPC reflection probability for this setup.244

Considering next the charge-current noise, we obtain the following results for the zero245

frequency charge-current noise components (finite-frequency expressions are given in Ap-246

pendix A)247

S I I
11 = 2

νe2

h
kBT1, (25a)

S I I
22 = 2

νe2

h
kBT2, (25b)

S I I
T T = 4(eν)2|Λ|2

∫ +∞

−∞
dτ cos
�

eνVτ
ħh

�

GR(τ)GL(τ), (25c)

S I I
33 = 2

νe2

h
kBT1 + S I I

T T − 4
∂ IT

∂ V
kBT1, (25d)

S I I
44 = 2

νe2

h
kBT2 + S I I

T T − 4
∂ IT

∂ V
kBT2, (25e)

S I I
34 = 2

∂ IT

∂ V
kB(T1 + T2)− S I I

T T , (25f)

S I I
43 = S I I

34. (25g)

As a first check of the validity of these expressions, we see that indeed they fulfill the conser-248

vation equation (6). We also check the equilibrium case situation T1 = T2 = T̄ and V = 0249

which produces S I I
11 = S I I

22 = S I I
33 = S I I

44 = 2νe2kB T̄/h and S I I
34 = S I I

43 = 0. These are indeed the250

expected equilibrium (Johnson-Nyquist) noises. The equilibrium form of S I I
T T is given below251

in Eq. (27) and (28a).252

We now move on to the main focus in this work, i.e., the non-equilibrium noise under253

the condition where there is no voltage bias, V = 0, but instead a finite temperature bias254

T1−T2 ̸= 0. In this case, the integrals in Eq. (25) are analytically intractable, and we therefore255

resort to asymptotic expansions to obtain analytical expressions for two special cases of the256

temperature bias. To this end, we choose a symmetric parametrization257

T1,2 = T̄ ±
∆T
2

, (26)

and focus on two important regimes. In the small bias limit, we have |∆T | ≪ T̄ and we can258

expand all integrals in powers of the small parameter ∆T/(2T̄ ). In the opposite regime of259

9
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a large temperature bias, one temperature is negligible compared to the other. This limit is260

reached for |∆T | → 2T̄ . For positive ∆T we then have T1 → 2T̄ ≡ Thot and T2 → 0. When261

∆T is negative, T1 → 0 and T2 → 2T̄ ≡ Thot. We present results for the small and large bias262

limits in Secs. 3.2 and 3.3, respectively.263

3.2 Delta-T noise for a small temperature bias264

We start our charge-noise analysis with the tunneling noise S I I
T T in (25c). As shown in Ap-265

pendix G and further discussed in Sec. 5, for λ= ν= 1, S I I
T T coincides with the full noise of a266

weakly-coupled two-terminal system connected to reservoirs described by Fermi functions at267

temperatures T1 and T2, thus providing a link to standard scattering theory for non-interacting268

fermions.269

By expanding the integrand in (25c) in powers of ∆T/(2T̄ ) and integrating term by term270

(see Appendix E for additional details of this approach), we obtain271

S I I
T T = S I I

0

�

1+ C(2)
�

∆T
2T̄

�2

+ C(4)
�

∆T
2T̄

�4

+ . . .

�

, (27)

with the prefactor and two expansion coefficients given as272

S I I
0 = 4gT (T̄ )T̄ , (28a)

C(2) = λ
�

λ

1+ 2λ

�

π2

2
−ψ(1)(1+λ)
�

− 1

�

, (28b)

C(4) = λ
π4λ2 (4+ 3λ)− 12π2λ

�

2λ2 + 3λ− 3
�

+ 12
�

4λ3 + 4λ2 − 5λ− 3
�

24 (4λ2 + 8λ+ 3)

+λ2 4λ2 + 6λ− 6−π2λ (4+ 3λ)
8λ2 + 16λ+ 6

ψ(1) (λ+ 1) +λ3 4+ 3λ
2 (4λ2 + 8λ+ 3)

�

ψ(1) (λ+ 1)
�2

+λ3 4+ 3λ
12 (4λ2 + 8λ+ 3)

ψ(3) (λ+ 1) , (28c)

whereψ(n)(z) are polygamma functions. These expressions confirm those previously reported273

in Ref. [32] for λ= ν and in Ref. [38] for more generic tunneling setups and scaling dimensions274

λ. As noted in these works, C(2) takes negative values for λ < 1/2. Moreover, |C(4)| ≪ |C(2)|, so275

that in the small-temperature bias limit, |∆T | ≪ T̄ , the sign of the correction to the equilibrium276

term can be directly read off from the sign of the coefficient C(2). Moreover, all odd coefficients277

vanish, C(2n+1) = 0, as a consequence of equal edge structures on the top and bottom edge278

segments, together with the choice of a symmetric temperature bias, see Eq. (26). Linear terms279

in ∆T can only arise for asymmetric temperature biases and/or unequal edge structures [40].280

From an experimental perspective, the tunneling noise S I I
T T is not directly accessible, be-281

cause what is measured is either cross- or auto-correlations of current fluctuations detected282

in the drain contacts 3 and 4. Here, we choose to focus on the cross-correlations, as these283

have the advantage of being zero at equilibrium, in contrast to the auto-correlations which284

are finite. Before presenting the results in the FQH regime, we remark that for the integer285

case λ = ν = 1, the cross-correlation S I I
34 coincides with the shot noise component in a non-286

interacting two-terminal system (see Appendix G). Moving on to the FQH regime, we expand287

the cross-correlation delta-T noises (25f)-(25g) in powers of the temperature bias, integrate288

term by term, and obtain289

S I I
34 = S I I

43 = S I I
0

�

(−C(2) +D(2))
�

∆T
2T̄

�2

+ (−C(4) +D(4))
�

∆T
2T̄

�4

+ . . .

�

. (29)
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Here, we have parametrized this noise expansion by introducing an additional set of coeffi-290

cients D(n), in which the leading ones are291

D(2) = λ
�

3λ
1+ 2λ

�

π2

6
−ψ(1)(1+λ)
�

− 1

�

, (30a)

D(4) = −λ{12+λ[12+π4 + 12(π2 − 2)λ]}
24(1+ 2λ)

+
λ2(5π2 + 18λ)

6(1+ 2λ)
ψ(1)(1+λ),

−
5λ2

2(1+ 2λ)
[ψ(1)(1+λ)]2 −

5λ2

12(1+ 2λ)
ψ(3)(1+λ)

+
λ2(1+λ2)

8[3+ 4λ(2+λ)]

�

π4 − 20π2ψ(1)(2+λ) + 60[ψ(1)(2+λ)]2 + 10ψ(3)(2+λ)
	

. (30b)

The origin of the D(n) coefficients can be traced to the temperature dependence of the differ-292

ential charge tunneling conductance (21) which enters in Eq. (25f) and (25g), in addition to293

the tunneling noise S I I
T T . To the best of our knowledge, expressions for the the cross-correlated294

delta-T noise and the coefficients D(2) and D(4) have not been reported before. Notice again295

the absence of terms with odd powers of∆T/(2T̄ ) in Eq. (29) due to the symmetric setup and296

bias.297

We plot the expansion coefficients (28b), (28c), (30a), and (30b) as functions of the scaling298

dimensionλ in Fig. 2(a-b). We also mark the valuesλ= ν andλ= 1/ν (for ν= 1, 1/3,1/5,1/7),299

corresponding to ideal weak and strong backscattering limits. We thus confirm that the weak300

back-scattering regime for Laughlin states, i.e., λ < 1/2, produces negative delta-T noise [32],301

S I I
T T/S

I I
0 < 1, since for such scaling dimensions C(2) < 0 and |C(4)| < |C(2)|. For 1/2 < λ ≤ 1,302

we still have |C(4)| < |C(2)| but C(2) > 0 so that S I I
T T/S

I I
0 ≥ 1. In the strong back-scattering303

regime for Laughlin states, λ > 1, we see that |C(4)| > |C(2)| for λ ≳ 3. For completeness, we304

show in Fig. 2(c-d) the behavior of the combination −C(n) +D(n) (for n = 2, 4) that appears305

in the expansion of the cross-correlation noise S I I
34 in Eq. (29). We see that the leading-order306

correction is always negative, independently of the scaling dimension. Therefore, recalling that307

S I I
34 = 0 at equilibrium, the temperature induced cross correlation noise is always negative, in308

contrast to the tunneling noise.309

We find it further instructive to separately analyze the noise expansion terms for the special310

and important case of non-interacting electrons, obtained here for λ = ν = 1. Then, the311

coefficients (28b), (28c), (30a), and (30b) reduce to312

C(2) = π
2

9
−

2
3

,≈ 0.43 (31a)

C(4) = −7π4

675
+
π2

9
−

2
15
≈ −0.05, (31b)

D(2) = 0, (31c)

D(4) = 0, (31d)

where C(2),C(4) are precisely those reported in Ref. [32]. The coefficients (31) may be obtained313

also with a scattering approach (see Appendix G). We thus deduce that the finite coefficients314

D(2) and D(4) (which both vanish for in the non-interacting case λ = 1) are a result of the315

strongly correlated nature of the FQH edge, due to the non-trivial temperature dependence of316

the differential tunneling conductance (21). In turn, this temperature dependence is a conse-317

quence of the slow power-law decay of the dynamical correlations of the tunneling particles318

in the FQH regime.319
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Figure 2: (a-b) Second- and fourth-order delta-T noise expansion coefficients C(2),
C(4), D(2), and D(4) (Eq. (28b), (28c), (30a), and (30b), respectively) as functions
of the scaling dimension λ. Panels (c-d) show the difference D(n)−C(n) that appears
in the expansion for the full cross correlation noise (29). Triangles and circles mark
the values for λ = ν (panels a and c) and λ = 1/ν (panels b and d) for fillings
ν= 1,1/3, 1/5,1/7.
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Figure 3: Tunneling delta-T noise (32) in the large bias regime, normalized to the
equilibrium noise S I I

0 , as a function of the scaling dimension λ. Circles mark the
values for λ= ν for ν= 1,1/3,1/5, 1/7 (left panel) and λ= 1/ν for ν= 1,1/3,1/5
(right panel). The free-electron value 2 ln2, given by Eq. (34), is highlighted.
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3.3 Delta-T noise for a large temperature bias320

In the large bias limit, we choose T1 = Thot ≫ T2, effectively setting T2 → 0. Then, we find321

that the tunneling charge-current noise (25c) reduces to322

S I I
T T = 4gT (Thot)kBThot I−1(λ), (32)

with the integral function323

In(λ)≡
Γ (2λ)
πλΓ (λ)4

∫ +∞

0

d x e−x xλ+n

�

�

�

�

Γ

�

λ

2
+

i x
π

�

�

�

�

�

2

. (33)

For generic values of λ, we resort to a numerical integration of the function I−1(λ) and plot the324

tunneling noise in Fig. 3. We observe that for scaling dimensions λ < 1/2, the non-equilibrium325

delta-T noise is always smaller than the equilibrium contribution S I I
0 . This behavior is directly326

linked to that of the tunneling conductance gT (T̄ ) in Eq. (22), which is a decreasing function327

of the temperature when λ < 1/2. Then, given that Thot = 2T̄ in the large bias limit [see328

discussion below Eq. (26)], the decrease in gT (Thot) is the reason why S I I
T T < S I I

0 , despite that329

the function I−1(λ) grows with λ even for λ < 1/2.330

An exact evaluation of Eq. (32) is possible for λ = ν = 1 for which I−1(1) = ln2, thus331

reproducing the known result [29,34,86]332

S I I
T T = 4D

e2

h
kBThot ln2= 4D

e2

h
kB T̄ × 2 ln 2, (34)

where we reinstated h and kB, and identified the reflection probability D from Eq. (24).333

We confirm the result (34) with a scattering approach in Eq. (G.14) in Appendix G. Equa-334

tion (34) can be re-written in a form which is reminiscent of a fluctuation-dissipation relation,335

by defining an effective noise temperature [29]336

S I I
T T = 4D

e2

h
kBTnoise, Tnoise ≡ Thot ln 2. (35)

The effective noise temperature Tnoise = Thot ln 2 in the large temperature bias limit has been337

experimentally established [29] for non-interacting electrons in a two-terminal setup. We note338

that a corresponding effective noise temperature in the FQH regime is not straightforward to339

define, as in this case the charge tunneling conductance depends on the temperature, prevent-340

ing a clear separation between conductance and temperature. We point out here that Ref. [87]341

explored the possibility of defining an effective noise temperature associated with an effective342

distribution induced by the tunneling process. This requires the introduction of a second QPC343

(used as a detector), after which the noise is measured. We do not consider this situation here,344

as it goes beyond the scope of our work.345

For completeness, we also present the large-bias limit of the cross-correlation noise (25f).346

It reads347

S I I
34

S I I
0

= −
1
2
I−1(λ) +

22λ−1

πλ+1

Γ (2λ)
Γ 4(λ)

∫ +∞

0

d x e−x xλ−1

�

�

�

�

Γ

�

λ

2
+ i

x
π

�

�

�

�

�

2

Im
�

ψ(0)
�

λ

2
+ i

x
π

��

, (36)

where I−1(λ) is given in Eq. (33) and ψ(0)(z) is the digamma function. For λ = 1, the ex-348

pression reduces to S I I
34 = −S I I

0 (2 ln2− 1), corresponding (up to a sign) to the shot noise of a349

temperature-biased, two-terminal, non-interacting system [24,34].350
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Figure 4: Numerically computed backscattering charge-current noise S I I
T T , normal-

ized to S I I
0 (solid, dark green line) for different scaling dimensions λ. The values

λ = 1/3, 1/5 correspond to the ideal ones in the weak backscattering regime at fill-
ings ν = 1/3, 1/5, while λ = 3, 5 are the ideal values in the strong backscattering
regime at the same filling. We also plot the small-∆T expansions [see Eq. (27)] at sec-
ond and fourth order, (light green, dashed and yellow, dashed curves, respectively).
The large bias limits (32) are given as black, dot-dashed lines. The noise is plotted
vs T1/T2 = [1+∆T/(2T̄ )]/[1−∆T/(2T̄ )]. Note that the large bias limit T1/T2≫ 1
is obtained for ∆T → 2T̄ , T1 → Thot, whereas in the opposite limit T1/T2 ≪ 1,
T2→ Thot.
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3.4 Full delta-T noise and comparison to asymptotic limits351

We gain further insights into the delta-T noise by numerically computing the full noise ratio352

S I I
T T/S

I I
0 in Eq. (25c) and plotting it together with the asymptotic expansions (27) and (32).353

The result is presented in Fig. 4. The most striking feature is the very contrasting curve shape354

for non-interacting electrons, ν = λ = 1, in comparison to the ν = λ = 1/3 and ν = λ = 1/5355

FQH edge states. Whereas 1 ≤ S I I
T T/S

I I
0 ≤ 2 ln2 for ν = λ = 1 [see Eq. (34)], this ratio is356

instead bounded as S I I
T T/S

I I
0 ≤ 1 for the Laughlin edges. This feature reflects the non-trivial357

scaling dimension λ ̸= 1 of the tunneling quasiparticles in the FQH regime [32, 37, 38]. The358

bounded noise in the FQH regime further highlights that the noise on top of the equilibrium359

one is indeed negative in this case [32], i.e., the non-equilibrium conditions reduce the noise360

compared to equilibrium.361

We also observe an additional important and quite surprising feature. For λ= 1, 1/3,1/5,362

the small bias expansions (27) are in fact excellent approximations within a surprisingly broad363

range of the temperature bias ratio T1/T2. This result suggests that for these values, the coeffi-364

cients C(n) in the expansion (27) decrease rapidly in magnitude with increasing n. Notably, for365

λ= 1/3, the leading order expansion [i.e., keeping only C(2) in Eq. (27)] remains an excellent366

approximation to the full noise over two orders of magnitude of the temperature bias ratio.367

We anticipate that this observation will be very useful in future modelling of delta-T noise for368

more complex FQH edge structures (see, e.g., Refs. [39,41] for such cases). Furthermore, we369

remark that the results in Fig. 4 strongly suggest that the asymptotic value (32) provides an370

upper bound (for any temperatures T1 and T2) to the tunneling noise S I I
T T when λ > 1/2, but371

a lower bound when λ < 1/2. We leave a rigorous proof of this conjecture, along the lines of372

Refs. [34,86,88], for future work.373

While we focused our numerical evaluation on the tunneling noise, the same analysis can374

be repeated for the cross correlation S I I
34, and we find very similar results: The first two expan-375

sion coefficients in (29) provide an excellent approximation for S I I
34 over an extended range376

of the temperature bias ratio. Moreover, the cross-correlation noise is always negative and377

appears to be bounded from below by the large bias limit (36) for all scaling dimensions λ.378

4 Heat currents and heat-current noise379

In this section, we analyze the heat-current noise for a pure temperature bias, without any380

voltage bias: V = 0. In the same manner as for the charge currents and the charge-current381

noise (see Sec. 3), we derive zero-frequency expressions for heat currents and heat-current382

noise (detailed calculations including finite frequency noise expressions are presented in Ap-383

pendix B, which also includes the case V ̸= 0).384

First, we obtain the average heat tunneling current in Eq. (3) as385

JT = −2i|Λ|2
∫ +∞

−∞
dτGL(τ)∂τGR(τ), (37)

where the Green’s functions are given in Eq. (19). In contrast to the charge tunneling cur-386

rent (18), we see that the average heat tunneling current is finite even for V = 0. Indeed,387

a vanishing average heat tunneling current requires also T1 = T2, i.e., no temperature bias.388

From Eq. (37), we next define the heat tunneling conductance389

gQ
T (T̄ ) = lim

∆T→0

∂ JT

∂∆T
=
πλ2

1+ 2λ
|Λ|2

2v2
F

T̄ (2πT̄τ0)
2λ−2 Γ

2(λ)
Γ (2λ)

= γκ0 T̄ gT (T̄ )
2π
e2

. (38)

Here, in the final equality, we identified the charge tunneling conductance (22), and used that390

κ0 T̄ = πT̄/6 is the heat conductance quantum [in conventional units, κ0 T̄ = π2k2
B T̄/(3h)].391
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Moreover, the prefactor392

γ=
λ2

ν2
×

3
2λ+ 1

(39)

characterizes the deviation from the Wiedemann-Franz law [89–91] as393

gQ
T (T̄ )

gT (T̄ )T̄
= γL0, (40)

where L0 = (π2/3)(kB/e)2 is the Lorenz number. The deviation from the Wiedemann-Franz394

law (γ ̸= 1) in the FQH regime highlights that charge and heat are not carried by free electrons395

in the QPC tunneling, but instead by fractionalized quasiparticles.396

Next, we obtain the zero-frequency heat-current noise components as397

SJJ
11 = 2

π2k3
B

3h
T3

1 , (41a)

SJJ
22 = 2

π2k3
B

3h
T3

2 , (41b)

SJJ
T T = 4|Λ|2
∫ +∞

−∞
dτ∂τGR(τ)∂τGL(τ), (41c)

SJJ
33 = SJJ

11 + SJJ
T T − 4kBλT1JT − 8i|Λ|2kBT1

∫ +∞

−∞
dττ∂τGR(τ)∂τGL(τ), (41d)

SJJ
44 = SJJ

22 + SJJ
T T + 4kBλT2JT − 8i|Λ|2kBT2

∫ +∞

−∞
dττ∂τGL(τ)∂τGR(τ), (41e)

SJJ
34 = −SJJ

T T + 2λkB(T1 − T2)JT + 4i|Λ|2kB(T1 + T2)

∫ +∞

−∞
dττ∂τGR(τ)∂τGL(τ), (41f)

SJJ
43 = SJJ

34 . (41g)

By plugging these expressions into Eq. (6), we see that they satisfy energy conservation. Next,398

we evaluate the expressions (41) for equilibrium T1 = T2 = T̄ . We then have399

SJJ
11 = SJJ

22 = SJJ
33 = SJJ

44 = 2κ0kB T̄3, SJJ
34 = SJJ

43 = 0, and SJJ
T T = 4GQ

T (T̄ )T̄
2, which are precisely400

the expected equilibrium expressions [53,92]. We also have that for λ= 1, Eqs. (41) correctly401

reduce to the expressions for non-interacting electrons, obtained within scattering theory.402

In the following subsections, we consider, just as for the delta-T noise in Sec. 3, the two403

analytically tractable limits of small and large temperature biases. The results are presented404

below in Secs. 4.1 and 4.2, respectively.405

4.1 Heat-current noise for small temperature bias406

In the small temperature bias regime, ∆T ≪ T̄ with T1,2 = T̄ ±∆T/2, we expand the heat407

tunneling noise (41c) in powers of ∆T/(2T̄ ), and integrate term by term. We then find408

SJJ
T T = SJJ

0

�

1+ C(2)Q

�

∆T
2T̄

�2

+ C(4)Q

�

∆T
2T̄

�4

+ . . .

�

, (42)

where the zeroth order, or equilibrium, heat tunneling noise reads409

SJJ
0 =

2πλ2

1+ 2λ
|Λ|2

v2
F

T̄3(2πT̄τ0)
2λ−2 Γ

2(λ)
Γ (2λ)

= 4gQ
T (T̄ )T̄

2, (43)
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where we identified the heat tunneling conductance Eq. (38) in the final equality. Equa-410

tion (43) manifests the fluctuation-dissipation theorem for zero-frequency heat transport [53,411

92].412

The heat-current noise expansion coefficients in Eq. (42) read413

C(2)Q =

�

π2(3λ+ 4)− 2(2λ+ 7)
�

λ2 − 2(3λ+ 4)λ2ψ(1)(λ) + 8

2λ(2λ+ 3)
, (44a)

C(4)Q =
λ{12[(1+ 2λ)(2λ2 + 13λ+ 23)−π2(2+λ)(6λ2 + 23λ− 10)]}

24(3+ 2λ)(5+ 2λ)

+
λπ4(15λ3 + 60λ2 + 64λ+ 16)

24(3+ 2λ)(5+ 2λ)

−
λ[π2(15λ3 + 60λ2 + 64λ+ 16)− 2(2+λ)(6λ2 + 23λ− 10)]

2(3+ 2λ)(5+ 2λ)
ψ(1)(1+λ)

+
λ(15λ3 + 60λ2 + 64λ+ 16)

2(3+ 2λ)(5+ 2λ)
[ψ(1)(1+λ)]2 +

λ(15λ3 + 60λ2 + 64λ+ 16)
12(3+ 2λ)(5+ 2λ)

ψ(3)(1+λ).

(44b)

We plot these coefficients in Fig. 5. We see that the coefficient C(2)Q changes its sign at414

λ= λ∗ ≈ 0.28 which, somewhat surprisingly, shows that C(2)Q < 0 for all ideal Laughlin states,415

except ν = 1/3 for which it is positive. This feature stands in contrast to the charge tunneling416

noise expansion coefficient C(2) (see Eq. (28b) and the discussion below it), which is negative417

for all Laughlin states. However, we belive that this different behavior has no deeper meaning418

and, in particular, it does not imply any fundamental differences between the 1/3 state and419

the other Laughlin states. Rather, the difference between the delta-T and heat-current noise420

is their different dependence on the scaling dimensions. Ultimately, this feature is related to421

the fact that the transported heat depends on the energy at which it is transferred, while the422

charge does not [compare in particular Eqs. (68) and (71) in Sec. 5 below]. In turn, the scal-423

ing dimension dependency affects the results of those integrals that arise when the noises are424

expanded in powers of ∆T .425

Moving on to cross correlation heat-current noise (41f), we obtain the expansion426

SJJ
34 = SJJ

43 = SJJ
0

�

(−C(2)Q +D(2)Q )
�

∆T
2T̄

�2

+ (−C(4)Q +D(4)Q )
�

∆T
2T̄

�4

+ . . .

�

, (45)

with the additional coefficients427

D(2)Q =
λ(4+ 3λ)[π2 − 6ψ(1)(1+λ)] + 2(1+ 2λ)(λ− 3)

2(3+ 2λ)
, (46a)

D(4)Q =
3λ(1+ 2λ)(5− 5λ− 2λ2)

2(3+ 2λ)(5+ 2λ)
+
λ(6λ3 + 71λ2 + 54λ− 140)

6(3+ 2λ)(5+ 2λ)

�

6ψ(1)(1+λ)−π2
�

+
π2λ(16+ 64λ+ 60λ2 + 15λ3)

24(3+ 2λ)(5+ 2λ)

�

π2 − 20ψ(1)(1+λ)
�

+
5λ(16+ 64λ+ 60λ2 + 15λ3){ψ(3)(1+λ) + 6[ψ(1)(1+λ)]2}

12(3+ 2λ)(5+ 2λ)
. (46b)
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Figure 5: Second- and fourth-order delta-T noise expansion coefficients C(2)Q , C(4)Q ,

D(2)Q , and D(4)Q (Eq. (47a), (47b), (47c), and (47d), respectively) as functions of the
scaling dimension λ. Triangles and circles mark the values for λ = 1, 1/3,1/5,1/7
(panels a and c) and λ= 1,3, 5 (panels b and d).

For non-interacting electrons λ= 1, the expansion coefficients reduce to428

C(2)Q =
1

15
(7π2 − 15)≈ 3.6, (47a)

C(4)Q = 2π2
�

7
15
−

31
630

π2
�

≈ −0.37, (47b)

D(2)Q = 3, (47c)

D(4)Q = 0, (47d)

in full agreement with the scattering approach, see Appendix G. Importantly, as shown in the429

bottom panels of Fig. 5, the leading-order cross correlation expansion coefficient in Eq. (45),430

i.e., −C(2)Q +D(2)Q is always negative for all scaling dimensions λ ≤ 1. In particular, it has the431

same sign for all ideal Laughlin states, in contrast to the auto-correlation coefficient C(2)Q , which432

may change sign as discussed above.433

4.2 Heat-current noise for large temperature bias434

Here, we consider the heat-current noise in the large bias limit T1 = Thot ≫ T2, so that the435

cold temperature can effectively be set to T2 → 0. In this limit, we obtain the heat tunneling436
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Figure 6: Tunneling heat delta-T noise (48) in the large bias regime, normalized
to the equilibrium noise SJJ

0 in Eq. (43), as a function of the scaling dimension λ.
Circles mark the values for λ = ν for ν = 1,1/3, 1/5, 1/7 (left panel) and λ = 1/ν
for ν= 1, 1/3, 1/5 (right panel).

noise (41c) as437

SJJ
T T = 4(kBThot)

2 gQ
T (Thot)

8
π2

1+ 2λ
λ2

I1(λ), (48)

with I1(λ) given in Eq. (33). We have not been able to evaluate this integral analytically for438

generic λ, but for λ= 1 we find439

SJJ
T T =
|Λ|2

v2
F

8T3
hot

π2

3
8
πζ(3) =

3
π

Dζ(3)T3
hot, (49)

where ζ(z) is the Riemann zeta function with ζ(3)≈ 1.2. In the final equality in Eq. (49), we440

identified the QPC reflection probability D from Eq. (24). The expression (49) is equivalent441

to that which we obtain with a scattering approach (see Appendix G). The evolution of the442

asymptotic value (48) as a function of the scaling dimension is shown in Fig. 6.443

4.3 Full heat-current noise and comparison to asymptotic limits444

Here, we numerically compute the noise ratio SJJ
T T/S

JJ
0 and plot it together with the asymptotic445

limits (42) and (48) in Fig. 7. We first note the very contrasting behaviour between ν= λ= 1446

and the Laughlin states with λ < 1/3. This feature reflects the distinct scaling dimension447

dependence of the tunneling heat-current noise for λ > λ⋆ and λ < λ⋆, where λ⋆ ≈ 0.28448

marks the value where the dominant C(2)Q coefficient changes sign (see Sec. 4.1). We also see449

that for λ = ν = 1 and ν = 1/3, keeping four orders in the small bias expansion (42) is450

enough to quite accurately capture the tunneling heat-current noise over a very broad range451

of temperatures. In contrast, for λ = 1/5, terms beyond the fourth order are required for an452

accurate approximation.453

Another crucial difference in comparison to the charge tunneling noise is that, below the454

scaling dimension λ⋆ (for which C(2)Q = 0), the tunneling heat noise displays a non-monotonic455

behavior as a function of the temperature ratio T1/T2, particularly pronounced in Fig. 7 for456

λ = 1/5. Such features are absent in the charge tunneling noise S I I
T T . The non-monotonic457

behaviour of the tunneling heat noise allows us to conclude that the asymptotic large bias458

expression in Eq. (48) is neither an upper nor a lower bound on the heat tunneling noise459

when λ < λ⋆ ≈ 0.28.460
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Figure 7: Numerically computed backscattering heat-current noise (solid, green
line), normalized to SJJ

0 for different scaling dimensions λ. The values λ= 1/3, 1/5
correspond to the ideal ones in the weak backscattering regime at fillings
ν= 1/3, 1/5, while λ= 3, 5 are the ideal values in the strong backscattering regime
at the same filling. We also plot the small-∆T expansions [see Eq. (42)] to sec-
ond and fourth order (green, dashed and yellow, dashed curves, respectively). The
large bias limits (48) are given as black, dot-dashed lines. The noise is plotted vs
T1/T2 = [1 + ∆T/(2T̄ )]/[1 − ∆T/(2T̄ )]. Note that for T1/T2 ≫ 1, T1 → Thot,
whereas in the opposite limit T1/T2≪ 1, T2→ Thot.

The conclusion of the above analysis is that the heat-current noise has a scaling dimension461
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dependence that is quite distinct from the delta-T noise. As elaborated above, this follows462

since the heat transferred across the QPC depends on the energy at which it occurs while463

the charge transfer does not. Still, as detailed in the next section and in the same spirit of464

Ref. [37], it is possible to use heat current fluctuations to define Fano factors [62] that allows465

an extraction of the scaling dimension, thereby eliminating additional non-universal effects466

possibly present in the tunneling amplitude.467

4.4 Generalized heat Fano factors468

In Ref. [62], for the setup in Fig. 1, the authors define a “heat Fano factor” as469

F J ≡
∆SJJ

33

2JT
, (50)

where∆SJJ
33 ≡ SJJ

33−SJJ
11 is the excess heat-current noise in drain contact 3. The Fano factor (50)470

can be viewed as a heat transport analogue of the usual Fano factor in weak FQH tunneling471

used to detect fractional charges [93–95]. In contrast with the standard Fano factor, which472

involves both the scaling dimension and the charge of the tunneling quasiparticles [37], the473

heat Fano factor has the advantage of providing a way to extract the scaling dimension without474

any reference to the charge of the tunneling quasiparticles, thus providing a very appealing475

complementary tool for investigating complex FQH edge structures, especially those involv-476

ing neutral modes [80–83]. In the small temperature bias regime, with the parametrization477

T1 = Tcold and T2 = Tcold +∆T , Ref. [62] reports that the heat Fano factor evaluates to478

F J = (2λ+ 1)Tcold +O
�

∆T
Tcold

�

, (51)

thereby providing a measure of the scaling dimension λ. The result (51) follows as both∆SJJ
33479

and the tunneling current JT are linear in ∆T to leading order.480

In this section, we generalize the Fano factor (50) by introducing additional heat Fano481

factors as482

F J
αβ =

∆SJJ
αβ

2JT
, α,β = 3,4, (52)

where∆SJJ
αβ

are excess heat-current noises, in which the equilibrium contributions, if present,483

are subtracted. More specifically, we have ∆SJJ
44 ≡ SJJ

44 − SJJ
22 and ∆SJJ

34 = ∆SJJ
43 ≡ SJJ

43 , since484

the cross-correlation heat-current noises vanish in equilibrium. Due to energy conservation,485

Eq. (6) dictates that, in the absence of voltage bias,486

F J
44 +F J

33 + 2F J
34 = 0, (53)

so that there are only two independent heat Fano factors. Moreover, the explicit expressions487

for the heat Fano factors may depend on the chosen parametrization of the temperature biases.488

To investigate this, we next derive explicit results for the generic heat Fano factors (52) for489

different parametrizations and temperature bias strengths.490

4.4.1 Small bias regime491

Symmetric temperature bias: Here, we choose the symmetric temperature bias parametriza-492

tion (26). We then expand the heat tunneling current (37) to leading order in ∆T/(2T̄ )≪ 1493

and find494

JT = SJJ
0 ×

1
2T̄
∆T
2T̄
+O
�

�

∆T
2T̄

�2
�

, (54)
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where SJJ
0 = 4gQ

T (T̄ )T̄
2 is the equilibrium heat tunneling noise (43). Combining Eq. (54) with495

the expanded cross-correlation heat-current noise (45), we obtain the “crossed” heat Fano496

factor as497

F J
34 =

1
2

�

−C(2)Q +D(2)Q

�

∆T, (55)

with the scaling-dimension-dependent coefficients C(2)Q and D(2)Q given in Eq. (44a) and (46a),498

respectively. We see that the Fano factor (55) depends on the temperature difference ∆T , in499

contrast with Eq. (51) which was derived in Ref. [62]. The reason for this is that the excess500

auto-correlations satisfy ∆SJJ
33 = −∆SJJ

44 to linear order in ∆T . This observation, combined501

with the sum rule (53), shows that keeping second-order terms in∆T is required to get a finite502

Fano factor for the cross correlations. Explicitly, we find503

∆SJJ
33 = SJJ

0

�

−(2λ+ 1)
�

∆T
2T̄

�

+
�

C(2)Q −D
(2)
Q

�

�

∆T
2T̄

�2
�

, (56a)

∆SJJ
44 = SJJ

0

�

+(2λ+ 1)
�

∆T
2T̄

�

+
�

C(2)Q −D
(2)
Q

�

�

∆T
2T̄

�2
�

, (56b)

which upon division with 2JT from Eq. (54) results in the two additional heat Fano factors504

F J
33 = −(2λ+ 1)T̄ +

1
2

�

C(2)Q −D
(2)
Q

�

∆T , (57a)

F J
44 = +(2λ+ 1)T̄ +

1
2

�

C(2)Q −D
(2)
Q

�

∆T . (57b)

For non-interacting electrons, λ= 1, we find for the symmetric bias505

F J
33

�

�

λ=1 = −3T̄ −
�

2−
7π2

30

�

∆T, (58a)

F J
44

�

�

λ=1 = +3T̄ −
�

2−
7π2

30

�

∆T, (58b)

F J
34

�

�

λ=1 =

�

2−
7π2

30

�

∆T. (58c)

Asymmetric temperature bias: Here, we pick the alternative asymmetric bias parametriza-506

tion T1 = Tcold+∆T and T2 = Tcold. Noticing that T̄ = Tcold+∆T/2, and keeping terms up to507

second order in ∆T in expressions found in Eq. (55) and Eq. (57), we obtain508

F J
33 = −(2λ+ 1)Tcold +

1
2

�

C(2)Q −D
(2)
Q − (1+ 2λ)
�

∆T, (59a)

F J
44 = +(2λ+ 1)Tcold +

1
2

�

C(2)Q −D
(2)
Q + (1+ 2λ)
�

∆T, (59b)

F J
34 = F J

43 =
1
2

�

−C(2)Q +D(2)Q

�

∆T, (59c)

which thus extends the Fano factor from Ref. [62] with a correction that is linear in ∆T . Note509

that an explicit calculation of the Fano factors with the asymmetric parametrization requires510

an expansion to second order in ∆T also for the tunneling current. We also remark that the511

opposite sign in the leading term of F J
33 compared to the result (50) in Ref. [62] follows from512

the fact that the authors choose T1 as the coldest temperature, which leads to a sign change513

22



SciPost Physics Submission

in the tunneling current. For λ= 1, we have for the asymmetric bias514

F J
33

�

�

λ=1 = −3Tcold +

�

7π2

30
− 5

�

∆T, (60a)

F J
44

�

�

λ=1 = +3Tcold +

�

7π2

30
+ 1

�

∆T, (60b)

F J
34

�

�

λ=1 =

�

2−
7π2

30

�

∆T. (60c)

4.4.2 Large bias regime515

For the large temperature bias, we take T1 = Thot and T2 → 0. Then, the heat-current516

noises (41d)-(41f) simplify to517

∆SJJ
33 = SJJ

T T − 8λThotJT , (61a)

∆SJJ
44 = SJJ

T T , (61b)

∆SJJ
34 = −SJJ

T T + 4λThotJT . (61c)

Plugging into these expressions the heat tunneling current (37) in the large bias regime,518

JT = Thot g
Q
T (Thot)

4
π2

1+ 2λ
λ2

I0(λ) (62)

and the tunneling heat-current noise SJJ
T T from Eq. (48), we find519

F J
33 = 2Thot

�I1(λ)
I0(λ)

− 2λ
�

, (63a)

F J
44 = 2Thot

I1(λ)
I0(λ)

, (63b)

F J
34 = 2Thot

�

λ−
I1(λ)
I0(λ)

�

, (63c)

with the integral functions In(λ) from Eq. (33). For free electrons, the large bias heat Fano520

factors reduce to521

F J
33

�

�

λ=1 = 2Thot

�

9ζ(3)
π2
− 2
�

≈ −1.8Thot, (64a)

F J
44

�

�

λ=1 = 2Thot

�

9ζ(3)
π2

�

≈ 2.2Thot, (64b)

F J
34

�

�

λ=1 = 2Thot

�

1−
9ζ(3)
π2

�

≈ −0.2Thot. (64c)

We note that the different form ofF J
33 andF J

44 is simply due to the chosen bias parametriza-522

tion. By inverting the temperature bias (i.e., taking instead T1→ 0 and T2 = Thot), we simply523

get F J
33↔−F

J
44, while the cross-correlation noise, F J

34, does not change. This feature is very524

distinct from voltage-biased charge-current noise, where the noise and Fano factor depend on525

the voltage difference between the source contacts. Our results in this subsection thus highlight526

that temperature biased induced noise behaves very differently, as there is no corresponding527

“gauge invariance” for the temperature bias.528

Just as for the noise, it is instructive to compare the derived asymptotic limits for the Fano529

factors with the exact results obtained by numerical integration of both the tunneling current530

and the noise. We plot the exact results for all Fano factors as a function of T1/T2 in Fig. 8,531
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Figure 8: Numerically computed heat Fano factors normalized to T̄ = (T1 + T2)/2,
for different scaling dimensions λ. The full lines are the exact results for F J

33, F J
44,

and F J
34, while the dashed lines refer to the small-∆T results (55) and (57). The

large bias limits (63) are shown as horizontal, dot-dashed lines. The Fano factors are
plotted as a function of T1/T2 = [1+∆T/(2T̄ )]/[1−∆T/(2T̄ )]. The legend in the
box applies to all plots.

together with the asymptotic expressions that we have derived in the previous sections. As532

expected, F J
34 vanishes when T1 = T2, while the other two Fano factors do not and approach533

the values ±(2λ+ 1)T̄ , as derived in Eq. (57). The dashed lines show the effect of the linear-534

in-∆T corrections of Eq. (57), which must be included to better estimate the Fano factors,535

even for small ∆T . Finally, we also see that the symmetry F J
33 ↔ −F

J
44 upon exchange of536

T1↔ T2 is valid for generic values of T1/T2 and not only in the large bias regime as discussed537

previously. This property can be proven explicitly by manipulating the integral expressions for538

JT , SJJ
33 , and SJJ

44 (Eqs. (37), (41d), and (41e), respectively).539

5 Effective single-particle picture540

To gain additional insights into the properties of the delta-T and heat-current noise, we find541

it useful to introduce an effective density of states (EDOS) [38, 96, 97]. We define the EDOS542

Dλ(E) by the relation543

Pα(E)
2πa

= Dλ(E, Tα) fα(−E), (65)
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where fα(E) = [exp(E/Tα) + 1]−1 is the Fermi-Dirac distribution at zero electrochemical po-544

tential µα = 0 and Pα(E) is the quasiparticle Green’s function (19) in energy space (see Ap-545

pendix F for details). Alternatively, one may interpret the product Dλ(E, Tα) fα(−E) as an546

effective anyon distribution, an approach recently pursued in Ref. [98]. Straightforward ma-547

nipulation of Pα(E) gives the explicit expression548

Dλ(E, T ) =
1
vF

�

2πa
vF

�λ−1

Tλ−1

�

�

�Γ
�

λ
2 + i E

2πT

�

�

�

�

2

Γ (λ)
�

�

�Γ
�1

2 + i E
2πT

�

�

�

�

2 , (66)

along with its zero-temperature limit549

Dλ(E, 0) =
1

vFΓ (λ)

�

a
vF

�λ−1

Eλ−1. (67)

For non-interacting electrons, D1(E, T ) = 1/vF , which, notably, has no energy and temperature550

dependencies.551

With the EDOS (66), we use a Fourier transform to write the charge tunneling noise S I I
T T552

in Eq. (25c) as553

S I I
T T =

4e2ν2|Λ|2

(2πa)2
1

2π

∫ +∞

−∞
dE P1(E)P2(−E)≡

4ν2e2

2π

∫ +∞

−∞
dE Deff(E) f1(−E) f2(E). (68)

Here, in the final equality, we defined the effective energy-dependent tunneling probability554

Deff(E)≡ |Λ|2Dλ(E, T1)Dλ(−E, T2), (69)

which reduces to Deff(E) = |Λ|2/v2
F = D [see Eq. (24)] for λ = ν = 1. In this case, the555

expression (68) is fully equivalent to the scattering formula in Eq. (G.9) (see Appendix G), for556

weak tunneling. By inspecting Eqs. (66) and (69), we see that both Dλ(E, Tα) and Deff(E) are557

even functions of energy. This feature is a consequence of the particle-hole symmetry inherent558

to the linearized bosonic spectrum, which is a key feature of the chiral Luttinger model. By559

using this symmetry, we further express the tunneling charge noise (68) as560

S I I
T T = 2(eν)2(Γ1→2 + Γ2→1), (70a)

Γ1→2 ≡
1

2π

∫ +∞

−∞
dE Deff(E) f1(E)[1− f2(E)], (70b)

Γ2→1 ≡
1

2π

∫ +∞

−∞
dE Deff(E) f2(E)[1− f1(E)]. (70c)

Here, Γ1↔2 are tunneling rates, in terms of which the charge tunneling current (18) reads561

IT = −2eν(Γ1→2 − Γ2→1).562

The expressions for the tunneling current and the associated noise in terms of rates are a563

special instance of a general behavior of weak tunneling links [99]. An advantage of writing564

the tunneling noise in this way is that it permits a transparent interpretation of the large tem-565

perature bias regime discussed in Sec. 3.3. Indeed, setting T2 = 0, the rates Γ1→2 and Γ2→1566

select only negative and positive energies, respectively. For free-electron tunneling, this limit567

permits a clear interpretation of the non-interacting tunneling noise (34) as being proportional568

to the sum of electron and hole fluxes emanating from the hot source contact [86]. By analogy,569

the strongly correlated expression (32) can, via Eq. (70), viewed as a sum of fluxes of fraction-570

ally charged quasi-particles and quasi-holes, mediated by the effective tunneling probability571

Deff(E) in Eq. (69).572
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Analogously to the delta-T noise, we can also express the heat-current noise by exploiting573

the EDOS. In particular, the heat tunneling noise (41c) can be written as574

SJJ
T T =

4
2π

∫ +∞

−∞
dE E2Deff(E) f1(−E) f2(E), (71)

which reduces to the scattering formula Eq. (G.9) when λ= ν= 1 (see Appendix G). However,575

in contrast to the charge noise, it is not possible to introduce rates in such a way that the576

tunneling current is given by their difference and the noise by their sum. The reason for this is577

that the transported heat depends on the energy at which it is transferred. As a consequence,578

the rates for the heat transfers includes integration over EDeff(E), while the noise instead579

includes integration over E2Deff(E). For non-interacting systems, this fact was recently noted580

in Ref. [86], and we thus establish here the same property also for weak tunneling in the FQH581

regime.582

The above approach shows that by introducing Deff(E), we can put our perturbative ap-583

proach to weak tunneling in the FQH regime on a similar footing as non-interacting particles584

treated with a scattering approach. As such, insofar as the tunneling currents and the associ-585

ated noise are concerned, we may view the FQH setup in Fig. 1 as two fermionic reservoirs (the586

sources) bridged by a conductor fully captured in terms of the energy-dependent transmission587

Deff(E). With the EDOS and the effective tunneling probability, we see that the non-trivial588

scaling dimension behavior of the tunneling delta-T and heat-current noises, S I I
T T and SJJ

T T , re-589

spectively, comes entirely from the correlation-induced energy and temperature dependence in590

Deff(E). Furthermore, the peculiar feature of negative excess charge noise can with the EDOS591

be seen to be essentially the same energy filtering mechanism that was identified in scattering592

theory in Ref. [100] (see also Ref. [38] for a discussion).593

6 Mixed noise594

While our focus in this work is on delta-T and heat-current noise —corresponding to Eq. (1),595

with both involved operators referring to either charge, or heat current— we may consider also596

correlations between a charge current operator and a heat current operator. Such quantities597

are known as mixed noise (see e.g. Ref. [63]). Explicitly, the mixed charge-heat noise is598

defined as599

S I J
αβ(ω) =

∫ +∞

−∞
d t



{δ Îα(t),δĴβ(0)}
�

eiωt , (72)

with α,β labelling the drain contacts 3 and 4.600

In this section, we comment briefly on this type of noise for the QPC device in Fig. 1.601

Before presenting our results in the FQH regime, we recall previously known results, based on602

scattering theory, for non-interacting systems. In this case, it was shown in Ref. [63] that, near603

equilibrium, the zero-frequency mixed noise is closely related to thermoelectric conversion.604

More specifically, at equilibrium temperature T̄ , one finds for a non-interacting electron system605

S I J
0 (0) = 2kB T̄2S gT (T̄ ), (73)

where gT (T̄ ) is the charge tunneling conductance and S is the Seebeck coefficient. It is well-606

known that finite thermoelectric conversion (i.e., S ̸= 0) always requires some sort of energy607

filtering mechanism (via an energy-dependent transmission) of the transferred particles and608

holes, i.e., a mechanism that breaks particle-hole symmetry, see e.g., Ref. [101]. This feature609

suggests that, also in the FQH regime, particle-hole symmetry breaking is required to generate610

non-vanishing mixed noise. In the following, we show that this is indeed the case. When611
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we evaluate the mixed noise, we exclude band curvature effects, or an asymmetric tunneling612

amplitude Λ(E) ̸= Λ(−E). Instead, we focus on the simple option of breaking particle-hole613

symmetry with a finite voltage bias V ̸= 0 on top of the temperature bias.614

With the same approach we used for the charge and heat noises, we compute (details are615

provided in Appendix C) all possible combinations S I J
αβ

, with α,β = 3,4. At zero frequency,616

we have617

S I J
33(0) = +MT T −

V
2

S I I
T T − 2T1(1+λ)IT + 4T1∂V 〈Ĵ

(2)
3 〉 , (74a)

S I J
44(0) = +MT T +

V
2

S I I
T T + 2T2(1+λ)IT − 4T2∂V 〈Ĵ

(2)
4 〉 , (74b)

S I J
34(0) = −MT T −

V
2

S I I
T T − 2λT2 IT + 2(T1 + T2)∂V 〈Ĵ

(2)
4 〉 , (74c)

S I J
43(0) = −MT T +

V
2

S I I
T T + 2λT1 IT − 2(T1 + T2)∂V 〈Ĵ

(2)
3 〉 . (74d)

Here, we introduced the tunneling-induced components of the average heat currents in the618

drains in the presence of a finite voltage bias, denoted 〈Ĵ (2)α 〉. We obtain these components619

from the perturbative expansion in Eq. (15b) (see also Eq. (B.7) in Appendix B) as620

〈Ĵ (2)3 〉= 2i|Λ|2
∫ +∞

−∞
dτ cos(eνVτ)GL(τ)∂τGR(τ), (75a)

〈Ĵ (2)4 〉= 2i|Λ|2
∫ +∞

−∞
dτ cos(eνVτ)GR(τ)∂τGL(τ). (75b)

For V = 0, they reduce to 〈Ĵ (2)4 〉 = −〈Ĵ
(2)
3 〉 = JT , i.e., the heat tunneling current (37). In621

Eq. (74), we also introduced the integral622

MT T = 2eν|Λ|2
∫ +∞

−∞
dτ sin(eνVτ)[GL(τ)∂τGR(τ)− GR(τ)∂τGL(τ)]. (76)

The first two terms on each line in Eq. (74) represent contributions from correlations of the623

first-order correction to the charge and heat currents, namely Î (1)α and Ĵ (1)
β

, cf. Eqs. (C.3-C.4)624

in Appendix C. As a consequence, these terms are of similar nature as the tunneling charge625

noise, as they involve correlations between the tunneling charge current and the heat transfer626

between the upper and lower edge (note, however, that due to lack of heat conservation at627

V ̸= 0, the tunneling heat current from the upper to the lower edge is not the same as the628

tunneling heat current in the opposite direction, i.e., 〈Ĵ (1)3 〉 ̸= −〈Ĵ
(1)
4 〉).629

To the best of our knowledge, the full expressions in Eq. (74) have not been previously630

reported, especially the terms stemming from the correlations between the tunneling currents631

and the unperturbed currents that flow unimpeded along the edges (these are the crossed632

terms denoted by M (02)
αβ

and M (20)
αβ

in Appendix C). We see that all the terms involved in the633

mixed noises in Eq. (74) vanish when particle-hole symmetry is restored, i.e., by taking V = 0.634

This feature is in agreement with the intuitive anticipation stated at the beginning of this635

Section, that a finite mixed noise requires the breaking of particle-hole symmetry.636

Importantly, just as for for the charge and heat noises (see Sec. 5), the “tunneling” con-637

tributions, MT T ± VS I I
T T/2, can be written in a form that is reminiscent of a scattering-theory638

expression for non-interacting systems, thus providing a link to the thermoelectric response.639
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Explicitly, defining the electrochemical potentials µ1,2 so that µ1 −µ2 = eνV , we find that640

MT T ∓
V
2

S I I
T T = 2eν|Λ|2
∫ +∞

−∞

dE
2π
(E −µ1,2)Dλ(E −µ1, T1)Dλ(E −µ2, T2)

× { f1(E −µ1) [1− f2(E −µ2)] + f2(E −µ2) [1− f1(E −µ1)]} ,
(77)

with fα(E) = [1+ exp(E/Tα)]−1 and Dλ(E, Tα) given in Eq. (66). For λ= 1, Eq. (77) matches641

exactly the scattering theory result (at weak and energy-independent transmission) for a two-642

terminal system with reservoirs at temperatures T1,2 and chemical potentials µ1,2, see, e.g.,643

Eq. (13) in Ref. [63]. When λ ̸= 1, the effect of strong correlations is fully captured by the644

effective density of states Dλ(E, Tα).645

The above analogy with scattering theory allows us to establish the termoelectric rela-646

tion (73) also for edges in the FQH effect, at least when we analyze the tunneling contribu-647

tions. Indeed, we can formally show that in equilibrium, i.e., in the limit V,∆T → 0, Eq. (77) is648

related to the Seebeck coefficient S. We achieve this connection by differentiating the charge649

tunneling current (18) with respect to the temperature bias ∆T and evaluating the result at650

equilibrium, which defines the thermoelectric conductance651

L ≡
∂ IT

∂∆T

�

�

�

� V→0
∆T→0

= eν|Λ|2
∫ +∞

−∞

dE
2π

D2
λ(E, T̄ )

E
T̄2

f (E)[1− f (E)] , (78)

with the global equilibrium Fermi distribution f1(E) = f2(E) ≡ f (E) = [1 + exp(E/T̄ )]−1.652

It is known [101] that L is related to the Seebeck coefficient S and the charge tunneling653

conductance as L = S gT (T̄ ). Considering then Eq. (77) in the limit V,∆T → 0, we find that654

MT T ±
V
2

S I I
T T → S I J

0 (0) = 4T̄2 L, (79)

which shows that Eq. (73) holds also in the FQH regime. However, as elaborated above, we655

have in our model S = 0 due to the intrinsic particle-hole symmetry. Indeed, given the sym-656

metry Dλ(E, T̄ ) = Dλ(−E, T̄ ), the integrand in (78) is odd, so that the relation S I J
0 = S = L = 0657

becomes trivial. Nonetheless, it follows that measuring a nonzero mixed noise is a clear signa-658

ture of mechanisms that violate particle-hole symmetry, resulting in an asymmetric effective659

density of states.660

Complementary to the analogy with scattering theory, we further establish another relation661

between the mixed noise and the thermoelectric conductance in the linear response regime,662

i.e., for eV/T̄ ≪ 1 but finite. This connection is possible since in linear response all mixed noise663

terms in Eq. (74) become proportional to eV/T̄ . Likewise, also the finite-bias thermoelectric664

conductance L̃ = ∂∆T IT |∆T→0 [notice the difference compared to the definition of L in (78)]665

becomes proportional to eV/T̄ . It follows that666

S I J
33(0) = −S I J

44(0) = 2λT̄2 L̃, (80a)

S I J
34(0) = −S I J

43(0) = 2(λ− 1)T̄2 L̃, (80b)

to leading order in eV/T̄ . The explicit derivation of Eq. (80) is provided in Appendix C. Taking667

the limit V → 0 in Eq. (80) produces vanishing left- and right-hand sides, in agreement with668

the previous analysis at equilibrium.669

Since our main focus of this paper FQH tunneling induced by a pure temperature biases (in670

which case the mixed noise vanishes, as discussed above), we leave a broader analysis of the671

mixed noise correlators, with both temperature and voltage biases present, for future studies.672
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7 Summary673

With the chiral Luttinger liquid model, we computed quantum transport observables in a QPC674

device (see Fig. 1) in the FQH regime at Laughlin fillings ν = (2n + 1)−1. With focus on675

the more unconventional configuration with a temperature bias between the source contacts,676

we derived detailed expressions for charge and heat currents entering the drain contacts, their677

auto- and cross-correlation noises, as well as mixed charge- and heat-current correlation noise.678

We complemented our calculations with an interpretation of the transport in terms of an ef-679

fective density of states, and highlighted differences between voltage- and temperature-biased680

noise. In essence, injecting particles into the QPC region via edge states results in noise that,681

when the edge temperatures are different, probes the properties of the effective density of682

states.683

We end by discussing experimental aspects of our work. Regarding the feasibility to ex-684

perimentally measure our proposed noise components, FQH setups with temperature gradi-685

ents across QPCs have been realized in GaAs-based devices (see e.g, Ref. [102]) and charge686

currents, heat currents, and charge noise are by now routinely measured. To also measure687

heat-current noise, it was proposed in Refs. [62, 103] that edge-coupled quantum dots, via688

thermoelectricity, may convert edge channel heat-current fluctuations to more easily measur-689

able charge-current fluctuations. Alternatively, heat-current fluctuations can be converted to690

temperature fluctuations [1] in a floating probe contact [56]. Devices with such implementa-691

tions remain, to the best of our knowledge, yet to be fabricated, but we believe they should be692

within reach with current experimental techniques.693

It is a well-known difficulty to experimentally extract scaling dimensions from the expo-694

nents of the temperature and voltage dependence of QPC tunneling conductances that agree695

with theory [72] (however, see Refs. [49, 104] for recent developments). Since the scaling696

dimensions enter also in the temperature-induced delta-T and heat-current noise, these two697

observables, and in particular our derived formulas when fitted to experiments, may there-698

fore provide a complementary approach towards identifying these exponents. As elaborated699

in Refs. [37, 38], for some FQH edges (such as ideal Laughlin edges) scaling dimensions are700

further directly related to the anyonic exchange statistics of tunneling quasiparticles. In ad-701

vancing towards the important goal of a full classification of anyons (including non-Abelian702

ones), it will be beneficial to rely on a broad range of complementary tools to identity the703

anyon’s properties. Our present work suggests that temperature bias-induced noise is indeed704

one such tool.705
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A Derivations of charge currents and delta-T noise714

A.1 Currents715

As our starting point, we recall that the unperturbed operators representing the charge currents716

entering the drain contacts 3 and 4 are given by717

Î (0)3 (t) =
evF
p
ν

2π
∂x φ̂R(x3, t) +

e2ν

2π
V1, (A.1)

Î (0)4 (t) = −
evF
p
ν

2π
∂x φ̂L(x4, t) +

e2ν

2π
V2, (A.2)

where x3 and x4 are the locations of the drains and V1,2 are the voltages applied at the source718

contacts. The corrections induced by the tunneling are given in Eqs. (15), which we evaluate719

at leading order to720

Î (1)3 (t) = ieν[Λe−ieνV t̃ψ̂†
R( t̃)ψ̂L( t̃)−Λ∗eieνV t̃ψ̂†

L( t̃)ψ̂R( t̃)] (A.3a)

Î (1)4 (t) = −ieν[Λe−ieνV t̄ψ̂†
R( t̄)ψ̂L( t̄)−Λ∗eieνV t̄ψ̂†

L( t̄)ψ̂R( t̄)]. (A.3b)

Here, V = V1− V2 is the voltage bias between the two edges and t̃ = t − x3/vF , t̄ = t + x4/vF .721

Notice that Î (1)3 (t) = − Î (1)4 (t) when x3 = −x4, reflecting current conservation. The expres-722

sions (A.3) are valid “downstream” of the QPC on the respective edge (i.e., for x3 > 0 and723

x4 < 0), because corrections to the unperturbed currents may only occur on these sides of the724

QPC due to the chiral propagation along the edge. Due to the imbalance of Klein factors in725

Eq. (A.3), the first-order corrections vanish when taking the average:726

¬

Î (1)3 (t)
¶

=
¬

Î (1)4 (t)
¶

= 0. (A.4)

Moving on to the second-order corrections, we find that they are given by727

Î (2)3 (t) = eν|Λ|2
∫ t̃

−∞
d t ′′e−ieνV (t ′′− t̃)[ψ̂†

R(t
′′)ψ̂L(t

′′), ψ̂†
L( t̃)ψ̂R( t̃)]

− eν|Λ|2
∫ t̃

−∞
eieνV (t ′′− t̃)[ψ̂†

L(t
′′)ψ̂R(t

′′), ψ̂†
R( t̃)ψ̂L( t̃)],

(A.5a)

Î (2)4 (t) = −eν|Λ|2
∫ t̄

−∞
d t ′′e−ieνV (t ′′− t̄)[ψ̂†

R(t
′′)ψ̂L(t

′′), ψ̂†
L( t̄)ψ̂R( t̄)]

+ eν|Λ|2
∫ t̄

−∞
eieνV (t ′′− t̃)[ψ̂†

L(t
′′)ψ̂R(t

′′), ψ̂†
R( t̄)ψ̂L( t̄)],

(A.5b)

where we only kept the terms with balanced Klein factors. Just as for the first-order correc-728

tions, we have Î (2)3 (t) = − Î (2)4 (t) if x3 = −x4. Taking the averages, and making the change of729

variable τ= t ′′ − t̃ (for α= 3) and τ= t ′′ − t̄ (for α= 4), we get730

¬

Î (2)3 (t)
¶

= −2ieν|Λ|2
∫ +∞

−∞
dτ sin(eνVτ)GR(τ)GL(τ)≡ −IT , (A.6a)

¬

Î (2)4 (t)
¶

= +2ieν|Λ|2
∫ +∞

−∞
dτ sin(eνVτ)GR(τ)GL(τ)≡ IT , (A.6b)

where we identified the charge tunneling current in Eq. (18). Note that the average cur-731

rents (A.6) do not depend on time, as expected for the constant voltage bias, and the currents732
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are equal and opposite, as required by charge current conservation. Gathering the above re-733

sults, we have that the average charge currents that enter the drains are given by734




Î3

�

=
e2ν

2π
V1 − IT , (A.7)




Î4

�

=
e2ν

2π
V2 + IT . (A.8)

A.2 Zeroth order (or equilibrium) charge-current noise735

Similarly to the charge current, we decompose the charge-current noise S I I
αβ

as736

S I I
αβ = S(00)

αβ
+ S(11)

αβ
+ S(02)

αβ
+ S(20)

αβ
+O(|Λ|4), (A.9)

where737

S(i j)
αβ
(t1 − t2) =
¬¦

Î (i)α (t1), Î ( j)
β
(t2)
©¶

− 2



Î (i)α (t1)
�

¬

Î ( j)
β
(t2)
¶

. (A.10)

Here, the two superscripts i, j denote the order of the current operator expansion terms in738

Eq. (14), while the subscripts α,β take the values 3 or 4, describing the drain contacts. We739

further note that the “crossed” terms S(02)
αβ

and S(20)
αβ

represent cross-correlations between the740

unperturbed currents along the edges and the tunneling current induced by the QPC. These741

terms are nothing but the contributions S I I
αT and S I I

Tα appearing in Eq (4).742

Next, we compute the zeroth order noise terms in (A.10). We start with743

S(00)
44 (t1 − t2) =

e2ν

(2π)2



∂t1
φ̂L( t̃1)∂t2

φ̂L( t̃2)
�

+ (t1↔ t2)

=
e2ν

(2π)2
−π2T2

2

sinh2[πT2(iτ0 − (t1 − t2))]
+ (t1↔ t2),

(A.11)

where we used the expression (20) for the bosonic Green’s function. Next, by Fourier trans-744

forming with respect to the time difference τ≡ t1 − t2, we get745

S(00)
44 (ω) =

e2ν

(2π)2

∫ +∞

−∞
dτ

�

−π2T2
2 eiωτ

sinh2[πT2(iτ0 −τ)]
+ (τ→−τ)
�

=
e2ν

2π
ω coth
�

ω

2T2

�

. (A.12)

In the zero-frequency limit, this expression reduces to the expected Johnson-Nyquist expres-746

sion747

S(00)
44 (ω→ 0) = 2

e2ν

2π
T2 . (A.13)

This expression coincides with S I I
22 in the main text, cf. Eq. (25b), as it represents the fluctu-748

ations reaching drain 2 in the absence of tunneling. The results for S(00)
33 (ω) and S(00)

33 (0) are749

obtained from Eqs. (A.12) and (A.13), respectively, by substituting T2→ T1, yielding Eq. (25a).750

Identical calculations for the cross-correlation noises lead to751

S(00)
34 (ω) = S(00)

43 (ω) = 0, (A.14)

since at zeroth order, the two bosonic fields φ̂R/L are uncorrelated.752
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A.3 First order, or tunneling, charge-current noise753

The first order term in the noise (A.10) reads754

S(11)
αβ
(t1 − t2) =
¬¦

Î (1)α (t1), Î (1)
β
(t2)
©¶

− 2�����
 Î (1)α (t1)
�

�
����¬

Î (1)
β
(t2)
¶

, (A.15)

where we used that the first-order corrections to the average current vanish. By next using the755

first order corrections (A.3), we see that756

S(11)
44 (t1 − t2) = S(11)

33 (t1 − t2) = −S(11)
34 (t1 − t2) = −S(11)

43 (t1 − t2), (A.16)

so there is only one independent term. Inserting Eq. (A.3b) into Eq. (A.15) we obtain757

S(11)
44 (t1 − t2) = 2(eν)2|Λ|2 cos[eνV (t1 − t2)]GR(t1 − t2)GL(t1 − t2) + (t1↔ t2), (A.17)

and thus, after a Fourier transform, we arrive at758

S(11)
44 (ω→ 0) = 4(eν)2|Λ|2

∫ +∞

−∞
dτ cos(eνVτ)GR(τ)GL(τ)≡ S I I

T T , (A.18)

which defines the tunneling current noise S I I
T T in Eq. (25c).759

A.4 Crossed charge-current noise terms S(02)
αβ
+ S(20)

αβ
760

Here, we compute the remaining last terms in the noise expansion (A.10). These terms rep-761

resent correlations between the unperturbed currents on the edge and the tunneling current762

induced by the QPC.763

A.4.1 S(02)
44 + S(20)

44764

We start with the contribution S(02)
44 . By using the previously found expressions for the current765

operators, Eqs. (A.2) and (A.5b), and recalling that vF∂x φ̂L = ∂tφ̂L , due to chiral propagation,766

we obtain [37,75,76]767

S(02)
44 (t12) = −

2i|Λ|2(eν)2

2π

∫ t̄2

−∞
d t ′′ cos[eνV (t ′′ − t̄2)]

�

GR(t
′′ − t̄2)GL(t

′′ − t̄2)K( t̄1, t ′′, t̄2)

+ GR( t̄2 − t ′′)GL( t̃2 − t ′′)K( t̄1, t̄2, t ′′)
�

+
2i(eν)2|Λ|2

2π

∫ t̄2

−∞
d t ′′ cos[eνV (t ′′ − t̄2)]

�

GR(t
′′ − t̄2)GL(t

′′ − t̄2)K(− t̄1,−t ′′,− t̄2)

+ GR( t̄1 − t ′′)GL( t̄2 − t ′′)K(− t̄1,− t̄2,−t ′′)
�

,

(A.19)

where we abbreviated t12 = t1 − t2, t̄ i = t i + x4/vF for i = 1,2, and also defined the function768

K(t1, t2, t3) = πT2{coth[πT2(iτ0 − (t1 − t2))]− coth[πT2(iτ0 − (t1 − t3))]}. (A.20)

Finally, taking advantage of the permutation identity K(1,3, 2) = −K(1,2, 3) and introducing769

the variable τ= t ′′ − t̄2, we arrive at770

S(02)
44 (t12) = −

2i(eν)2|Λ|2

2π

∫ 0

−∞
dτ cos(eνVτ)K0(t12,τ)[GR(τ)GL(τ)− GR(−τ)GL(−τ)]

−
2i(eν)2|Λ|2

2π

∫ +∞

0

dτ cos(eνVτ)K0(−t12,τ)[GR(τ)GL(τ)− GR(−τ)GL(−τ)]

(A.21)
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in which771

K0(t12,τ)≡K( t̄1, t̄2+τ, t̄2) = πT2{coth[πT2(iτ0−(t12−τ))]−coth[πT2(iτ0−t12)]}. (A.22)

Equation (A.21) explicitly shows that the noise only depends on the time difference t12 = t1−t2,772

as expected in the steady state.773

The procedure to evaluate S(20)
44 is identical to that for S(02)

44 . We find774

S(20)
44 (t12) = −

2i(eν)2|Λ|2

2π

∫ +∞

0

dτ cos(eνVτ)K0(t12,τ)[GR(τ)GL(τ)− GR(−τ)GL(−τ)]

−
2i(eν)2|Λ|2

2π

∫ 0

−∞
dτ cos(eνVτ)K0(−t12,τ)[GR(τ)GL(τ)− GR(−τ)GL(−τ)].

(A.23)

We can therefore combine Eqs. (A.21) and (A.23) into a single integral775

S(02+20)
44 (t12) = −

2i(eν)2|Λ|2

2π

∫ +∞

−∞
dτ cos(eνVτ)GR(τ)GL(τ)[K0(t12,τ)−K0(t12,−τ)]

−
2i(eν)2|Λ|2

2π

∫ +∞

−∞
dτ cos(eνVτ)GR(τ)GL(τ)[K0(−t12,τ)−K0(−t12,−τ)],

(A.24)

and we obtain the finite-frequency expression by Fourier transforming with respect to the time776

difference t12. The final result thus involves the function777

K0(ω,τ) =

∫ +∞

−∞
d t12 eiωt12K0(t12,τ), (A.25)

which can be evaluated with the residue theorem. We obtain778

S(02+20)
44 (ω) = −4i(eν)2|Λ|2 coth

�

ω

2T2

�

∫ +∞

−∞
dτ cos(eνVτ)GR(τ)GL(τ) sin(ωτ). (A.26)

Taking the zero-frequency limit, we get779

S(02+20)
44 (0) = −4T2 × 2i(eν)2|Λ|2

∫ +∞

−∞
dτ cos(eνVτ)τGR(τ)GL(τ) = −4T2

∂ IT

∂ V
, (A.27)

where in the final equality, we identified the differential charge tunneling conductance (21).780

A.4.2 S(02)
33 + S(20)

33781

We evaluate these terms by following an identical procedure as in the previous subsection.782

The result is simply obtained by the substitutions L→ R and T2→ T1:783

S(02+20)
33 (ω) = −4i(eν)2|Λ|2 coth

�

ω

2T1

�

∫ +∞

−∞
dτ cos(eνVτ)GR(τ)GL(τ) sin(ωτ), (A.28)

S(02+20)
33 (0) = −4T1 × 2i(eν)2|Λ|2

∫ +∞

−∞
dτ cos(eνVτ)τGR(τ)GL(τ) = −4T1

∂ IT

∂ V
. (A.29)
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A.4.3 S(02)
34 + S(20)

34 and S(02)
43 + S(20)

43784

The evaluation of these contributions is very similar to the calculation of the previous terms.785

The only difference is that we find not only the function K0 defined in Eq. (A.22), but also a786

corresponding one with T1 instead of T2. As a result, the final expression reads787

S(02+20)
34 (ω) = 2i(eν)2|Λ|2

�

coth
�

ω

2T1

�

+ coth
�

ω

2T2

��

∫ +∞

−∞
dτ cos(eνVτ)GR(τ)GL(τ) sin(ωτ).

(A.30)
The zero-frequency limit is therefore788

S(02+20)
34 (0) = 2(T1 + T2)× 2i(eν)2|Λ|2

∫ +∞

−∞
dτ cos(eνVτ)τGR(τ)GL(τ) = 2(T1 + T2)

∂ IT

∂ V
.

(A.31)

A.5 Summary of charge current fluctuations789

Gathering the results from all above subsections in Appendix A, we have that the tunneling790

current, tunneling conductance, and the associated noise to leading order in the tunneling791

amplitude Λ are given by792

IT = 2ieν|Λ|2
∫ +∞

−∞
dτ sin(eνVτ)GR(τ)GL(τ), (A.32a)

∂ IT

∂ V
= 2i(eν)2|Λ|2
∫ +∞

−∞
dττ cos(eνVτ)GR(τ)GL(τ), (A.32b)

S I I
T T = 4(eν)2|Λ|2

∫ +∞

−∞
dτ cos(eνVτ)GR(τ)GL(τ). (A.32c)

These expressions are stated in Eqs. (18), (21), and Eq. (25c) in the main text. The expressions793

for the auto- and cross-correlated charge-current noises at zero frequency, S I I
αβ
(0), are summa-794

rized in Tab. 1. It can readily be checked that these noise components obey the conservation795

law (6).

S I I
αβ
(0) 3 4

3 2
e2ν

h
kBT1 + S I I

T T − 4kBT1
∂ IT

∂ V
2kB(T1 + T2)

∂ IT

∂ V
− S I I

T T

4 2kB(T1 + T2)
∂ IT

∂ V
− S I I

T T 2
e2ν

h
kBT2 + S I I

T T − 4kBT2
∂ IT

∂ V

Table 1: Auto- and cross-correlation charge-current noise at zero frequency S I I
αβ

with
the drain reservoir indices α,β = 3,4 (see Fig. 1). All expressions are given to
O(|Λ|2) in the tunneling amplitude Λ.

796
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B Derivations of heat currents and heat-current noise797

B.1 Currents798

The unperturbed operators representing the heat currents entering the drain contacts 3 and 4799

are given by800

Ĵ (0)3 (t) =
v2

F

4π
[∂x φ̂R(x3, t)]2 −

q2ν

4π
V 2

1 , (B.1a)

Ĵ (0)4 (t) =
v2

F

4π
[∂x φ̂L(x4, t)]2 −

q2ν

4π
V 2

2 . (B.1b)

The corresponding average values are readily obtained as801

¬

Ĵ (0)3 (t)
¶

=
πT2

1

12
−

q2ν

4π
V 2

1 , (B.2a)

¬

Ĵ (0)4 (t)
¶

=
πT2

2

12
−

q2ν

4π
V 2

2 . (B.2b)

Here, we identified the free boson stress energy tensor T̂R,L(t) = [∂x φ̂R,L(x3,4, t)]2/2, and used802

that 〈T̂R,L(t)〉 = π2T2
1,2/(6v2

F ) at finite temperature [46, 105]. We find the corrections to the803

unperturbed current operators by evaluating the commutators in Eq. (15). At first order, we804

find805

Ĵ (1)3 (t) = −
�

Λe−ieνV t̃
�

∂tψ̂
†
R( t̃)
�

ψ̂L( t̃) +Λ
∗eieνV t̃ψ̂†

L( t̃)
�

∂tψ̂R( t̃)
�	

, (B.3a)

Ĵ (1)4 (t) = −
�

Λe−ieνV t̄ψ̂†
R( t̄)
�

∂tψ̂L( t̄)
�

+Λ∗eieνV t̄
�

∂tψ̂
†
L( t̄)
�

ψ̂R( t̄)
	

, (B.3b)

where t̃ = t − x3/vF and t̄ = t + x4/vF . Similarly to the charge transport, the expressions806

in Eq. (B.3) are finite only “downstream” of the QPC on the respective edge (i.e., for x3 > 0807

and x4 < 0), because corrections to the unperturbed currents may only occur on these sides of808

the QPC due to the chiral propagation. Due to the imbalance of Klein factors, the first-order809

corrections vanish on average:810

¬

Ĵ (1)3 (t)
¶

=
¬

Ĵ (1)4 (t)
¶

= 0. (B.4)

We find that the second-order corrections become811

Ĵ (2)3 (t) = −i|Λ|2
∫ t̃

−∞
d t ′′
¦

e−ieνV (t ′′− t̃)
�

ψ̂†
R(t
′′)ψ̂L(t

′′), ψ̂†
L( t̃)∂tψ̂R( t̃)
�

+eieνV (t ′′− t̃)
�

ψ̂†
L(t
′′)ψ̂R(t

′′),∂tψ̂
†
R( t̃)ψ̂L( t̃)
�

©

, (B.5a)

Ĵ (2)4 (t) = −i|Λ|2
∫ t̄

−∞
d t ′′
¦

e−ieνV (t ′′− t̄)
�

ψ̂†
R(t
′′)ψ̂L(t

′′),∂tψ̂
†
L( t̄)ψ̂R( t̄)
�

+eieνV (t ′′− t̄)
�

ψ̂†
L(t
′′)ψ̂R(t

′′), ψ̂†
R( t̄)∂tψ̂L( t̄)
�

©

, (B.5b)

where we kept only the terms with balanced Klein factors. Evaluating the averages, we find812

¬

Ĵ (2)3

¶

= 2i|Λ|2
∫ +∞

−∞
dτ cos(eνVτ)GL(τ)∂τGR(τ), (B.6a)

¬

Ĵ (2)4

¶

= 2i|Λ|2
∫ +∞

−∞
dτ cos(eνVτ)GR(τ)∂τGL(τ). (B.6b)
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These results can be also expressed in the following equivalent form:813

¬

Ĵ (2)3

¶

= −i|Λ|2
∫ +∞

−∞
dτ cos(eνVτ)[GR(τ)∂τGL(τ)− GL(τ)∂τGR(τ)] +

V
2

IT , (B.7a)

¬

Ĵ (2)4

¶

= +i|Λ|2
∫ +∞

−∞
dτ cos(eνVτ)[GR(τ)∂τGL(τ)− GL(τ)∂τGR(τ)] +

V
2

IT , (B.7b)

with V = V1 − V2. Differently from the charge currents, these expressions are not equal and814

opposite, as the edge heat current is not conserved for V ̸= 0. The terms V IT/2 in Eq. (B.7)815

are Joule heating contributions. When there is no bias between the edges, V = 0, the heat816

current coincides with the energy current and is then conserved. Then, Eq. (B.7) reduces to817

¬

Ĵ (2)4

¶

= −
¬

Ĵ (2)3

¶

= 2i|Λ|2
∫ +∞

−∞
dτGR(τ)∂τGL(τ)≡ JT , (B.8)

which is indeed the heat tunneling current at zero voltage bias, as defined in Eq. (37).818

B.2 Zeroth order, or equilibrium, heat-current noise819

We use the following notation to indicate the decomposition of the heat noise:820

SJJ
αβ = Σ

(00)
αβ
+Σ(11)

αβ
+Σ(02)

αβ
+Σ(20)

αβ
, (B.9)

with821

Σ
(i j)
αβ
(t1 − t2) =

�

Ĵ (i)α (t1), Ĵ ( j)α (t2)
	�

− 2



Ĵ (i)α (t1)
� 


Ĵ ( j)α (t2)
�

. (B.10)

We start with the evaluation of the equilibrium noise Σ(00)
αβ

, beginning with α = β = 4. From822

the definition (B.10), we have823

Σ
(00)
44 (t1 − t2) =
¬

Ĵ (0)4 (t1)Ĵ
(0)
4 (t2)
¶

− 〈Ĵ (0)4 (t1)〉〈Ĵ
(0)
4 (t2)〉+ (t1↔ t2)

=
2v4

F

(4π)2
�

〈∂x φ̂L(x0, t1)∂x φ̂L(x0, t2)〉
�2
+ (t1↔ t2) =

2v4
F

(4π)2

�

lim
y→x

∂x∂yGL(x − y,τ)
�2

+ (τ→−τ) =
2v4

F

(4π)2
π4T4

2

v4
F

�

sinh(πT1/2(iτ0 −τ))
�4 + (τ→−τ). (B.11)

Here, in the second equality, we used the heat current operator definition (13b) together with824

Wick’s theorem. In the third equality, we used the definition of the boson Green’s function (20)825

and abbreviated τ = t1 − t2. We evaluate the Fourier transform with the residue theorem as826

in previous sections and find827

Σ
(00)
44 (ω) =

∫ +∞

−∞
dτeiωτΣ

(00)
44 (τ) =

ω

24π

�

(2πT2)
2 +ω2
�

coth
�

ω

2T2

�

, (B.12)

which in the zero frequency limit reduces to828

Σ
(00)
44 (ω→ 0) =

πT3
2

3
= 4 〈Ĵ (0)4 (t)〉 T2, (B.13)

upon using Eq. (B.2) for V = 0. Equation (B.13) is the equilibrium contribution that we829

denoted SJJ
22 in the main text. Equations (B.12)-(B.13) manifest the equilibrium fluctuation-830

dissipation relation for heat transport [53].831
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The remaining non-vanishing contribution to the equilibrium noise, i.e., Σ(00)
33 (ω), is ob-832

tained by substituting T2 → T1 in Eqs. (B.12)-(B.13). The zero frequency component thus833

reads834

Σ
(00)
33 (0) =

πT3
1

3
= 4 〈Ĵ (0)3 (t)〉 T1, (B.14)

which gives SJJ
11 in the main text. We also have trivially from Eq. (B.10) that835

Σ
(00)
34 (ω) = Σ

(00)
43 (ω) = 0, (B.15)

since the bosonic fields φ̂R/L are independent at zeroth order.836

B.3 First order or tunneling, heat-current noise837

We now consider the heat-current noise for vanishing bias voltage V1 = V2 = 0. Using the heat838

current Eq. (B.3b), we obtain839

Σ
(11)
44 (t12) = 〈{Ĵ

(1)
4 (t1), Ĵ (1)4 (t2)}〉 − 2�����〈Ĵ (1)4 (t1)〉�����〈Ĵ (1)4 (t2)〉

= |Λ|2 〈ψ̂†
R( t̄1)ψ̂R( t̄2)〉∂t1

∂t2
〈ψ̂L( t̄1)ψ̂

†
L( t̄2)〉+ (t1↔ t2)

+ |Λ|2 〈ψ̂R( t̄1)ψ̂
†
R( t̄2)〉∂t1

∂t2
〈ψ̂†

L( t̄1)ψ̂L( t̄2)〉+ (t1↔ t2)

= 2|Λ|2[GR( t̄1 − t̄2)∂t1
∂t2

GL( t̄1 − t̄2) + GR( t̄2 − t̄1)∂t1
∂t2

GL( t̄2 − t̄1)]. (B.16)

By performing a Fourier transform, we find840

Σ
(11)
44 (ω) = 2|Λ|2

∫ +∞

−∞
d t12eiωt12[GR(t12)∂t1

∂t2
GL(t12) + GR(−t12)∂t1

∂t2
GL(−t12)]

= −4|Λ|2
∫ +∞

−∞
dτ cos(ωτ)GR(τ)∂

2
τ GL(τ). (B.17)

In the zero-frequency limit, we thus obtain841

Σ
(11)
44 (0) = −4|Λ|2

∫ +∞

−∞
dτGR(τ)∂

2
τ GL(τ) = 4|Λ|2

∫ +∞

−∞
dτ∂τGR(τ)∂τGL(τ)≡ SJJ

T T , (B.18)

which defines the tunneling heat-current noise SJJ
T T in Eq. (41c). With similar calculations, we842

also find Σ(11)
33 = −Σ(11)

34 = −Σ(11)
43 = SJJ

T T . Similar calculations for the finite bias case V ̸= 0,843

give844

Σ
(11)
33 = −4|Λ|2
∫ +∞

−∞
dτ cos(ωτ) cos(eνVτ)GL(τ)∂

2
τ GR(τ), (B.19a)

Σ
(11)
44 = −4|Λ|2
∫ +∞

−∞
dτ cos(ωτ) cos(eνVτ)GR(τ)∂

2
τ GL(τ), (B.19b)

Σ
(11)
34 = −4|Λ|2
∫ +∞

−∞
dτ cos(ωτ) cos(eνVτ)∂τGL(τ)∂τGR(τ) = Σ

(11)
43 . (B.19c)

By summing all the contributions, we find845

Σ
(11)
33 +Σ

(11)
44 +Σ

(11)
34 +Σ

(11)
43 = V 2S I I

T T , (B.20)

which corresponds to the conservation of power fluctuations for the tunneling current (i.e.,846

the equality of thermal power fluctuations and electrical power fluctuations).847

37



SciPost Physics Submission

B.4 Crossed heat-current noise terms Σ(02)
αβ
+Σ(20)

αβ
848

B.4.1 Σ
(02)
44 +Σ

(20)
44849

We start with the contribution850

Σ
(02)
44 (t1 − t2) =
¬

δĴ (0)4 (t1)δĴ (2)4 (t2)
¶

+
¬

δĴ (2)4 (t2)δĴ (0)4 (t1)
¶

. (B.21)

Considering the term 〈Ĵ (0)4 (t1)Ĵ
(2)
4 (t2)〉, we have851

〈Ĵ (0)4 (t1)Ĵ
(2)
4 (t2)〉= −

i|Λ|2

4π

∫ t̄2

−∞
d t ′′
�




(∂t1
φ̂L( t̄1))

2ψ̂†
R(t
′′)ψ̂L(t

′′)∂t2
ψ̂†

L( t̄2)ψ̂R( t̄2)
�

−



(∂t1
φ̂L( t̄1))

2∂t2
ψ̂†

L( t̄2)ψ̂R( t̄2)ψ̂
†
R(t
′′)ψ̂L(t

′′)
�

+



(∂t1
φ̂L( t̄1))

2ψ̂†
L(t
′′)ψ̂R(t

′′)ψ̂†
R( t̄2)∂t2

ψ̂L( t̄2)
�

−



(∂t1
φ̂L( t̄1))

2ψ̂†
R( t̄2)∂t2

ψ̂L( t̄2)ψ̂
†
L(t
′′)ψ̂R(t

′′)
�

�

.

(B.22)

By performing the averages, and subtracting the product of the currents, we obtain852

〈δĴ (0)4 (t1)δĴ (2)4 (t2)〉=
iλ|Λ|2

2π

∫ t̄2

−∞
d t ′′GR(t

′′ − t̄2)∂t2
[K( t̄1, t ′′, t̄2)GL(t

′′ − t̄2)]
︸ ︷︷ ︸

J1

−
iλ|Λ|2

2π

∫ t̄2

−∞
d t ′′GR( t̄2 − t ′′)∂t2

[K( t̄1, t̄2, t ′′)GL( t̄2 − t ′′)]
︸ ︷︷ ︸

J2

,

(B.23)

with the function853

K(τ1,τ3,τ4) =
π2T2

2 sinh2[πT2(τ3 −τ4)]

sinh2[πT2(iτ0 − (τ1 −τ3))] sinh2[πT2(iτ0 − (τ1 −τ4))]
= K(τ1,τ4,τ3).

(B.24)
By making a change of variable t ′′ − t̄2 = τ and expanding the derivatives, the integrals J1,2854

in (B.23) become855

J1(t12) =

∫ 0

−∞
dτGR(τ) [h(t12,τ)GL(τ)− K0(t12,τ)∂τGL(τ)] , (B.25)

J2(t12) =

∫ 0

−∞
dτGR(−τ) [h(t12,τ)GL(−τ)− K0(t12,τ)∂τGL(−τ)] , (B.26)

where856

K0(t12,τ) =
π2T2

2 sinh2(πT2τ)

sinh2[πT2(iτ0 − t12)] sinh2[πT2(iτ0 − (t12 −τ))]
, (B.27)

h(t12,τ) = −2π2T2
2
πT2 coth[πT2(iτ0 − t12)]−πT2 coth[πT2(iτ0 − (t12 −τ))]

sinh2[πT2(iτ0 − t12)]
. (B.28)

The other term of interest, 〈Ĵ (2)4 (t2)Ĵ
(0)
4 (t1)〉, can be handled in a similar way. We find:857

〈Ĵ (2)4 (t2)Ĵ
(0)
4 (t1)〉 − 〈Ĵ

(2)
4 (t2)〉 〈Ĵ

(0)
4 (t1)〉=

iλ|Λ|2

2π

�

J3(t12)−J4(t12)
�

, (B.29)
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with858

J3(t12) =

∫ 0

−∞
dτGR(τ) [−h(−t12,−τ)GL(τ)− K0(−t12,−τ)∂τGL(τ)] , (B.30)

J4(t12) =

∫ 0

−∞
dτGR(−τ) [−h(−t12,−τ)GL(−τ)− K0(−t12,−τ)∂τGL(−τ)] . (B.31)

Performing an analogous calculation for Σ(20)
44 , and taking a Fourier transform, we obtain859

Σ
(02)
44 (ω) +Σ

(20)
44 (ω) =

iλ|Λ|2

2π

�

eJ1(ω)− eJ2(ω) + eJ3(ω)− eJ4(ω)

+ eJ1(−ω)− eJ2(−ω) + eJ3(−ω)− eJ4(−ω)
�

,
(B.32)

where860

eJα(ω) =
∫ +∞

−∞
d t12Jα(t12)e

iωt12 . (B.33)

It is clear from the expressions of the integrals Jα(t12) that we need the Fourier transforms861

eK0(ω,τ) and h̃(ω,τ). The former is readily found by using the residue theorem and reads862

eK0(ω,τ) = πi
�

1+ coth
�

ω

2T2

��

�

iω
�

1+ eiωτ
�

+ 2πT2 coth(πT2τ)
�

1− eiωτ
��

. (B.34)

For the latter, we use the following manipulation863

h̃(ω,τ)≡
∫ +∞

−∞
d t12h(t12,τ)eiωt12 = eiωτ

∫ +∞

−∞
d t12 eiωt12h(t12 +τ,τ). (B.35)

The reason for this is that864

h(t12 +τ,τ) = 2π2T2
2
πT2 coth[πT2(iτ0 − t12)]−πT2 coth[πT2(iτ0 − (t12 +τ))]

sinh2[πT2(iτ0 − (t12 +τ))]
=
�

∂y K0(t12, y)
�

y=−τ = −∂τK0(t12,−τ),
(B.36)

Therefore,865

h̃(ω,τ)=−eiωτ∂τ

∫ +∞

−∞
d t12 eiωt12 K0(t12,−τ) = −eiωτ∂τeK0(ω,−τ)=eiωτ

�

∂y eK0(ω, y)
�

y=−τ ,

(B.37)
which allows us to obtain h̃(ω,τ) from (B.34), yielding866

h̃(ω,τ) = iπ
�

coth
�

ω

2T2

�

+ 1
�

�

πT2

2πT2

�

1− eiτω
�

+ iω sinh(2πτT2)

sinh2(πτT2)
−ω2

�

. (B.38)

By combining all integrals in Eq. (B.32), we arrive at the expression867

Σ
(02)
44 (ω) +Σ

(20)
44 (ω) =

iλ|Λ|2

2π

∫ +∞

−∞
dτ
�

GR(τ)[(h̃(ω,τ)− h̃(ω,−τ))GL(τ)

− (eK0(ω,τ) + eK0(ω,−τ))∂τGL(τ)] + (ω→−ω)
	

.

(B.39)

This formula, together with Eqs. (B.38) and (B.34), provides the expression for the finite fre-868

quency noise. We can also obtain an equivalent formula, which is more convenient to evaluate869
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the zero-frequency limit. By repeatedly integrating by parts, and exploiting the relation (B.37)870

between the functions h̃ and eK0, we arrive at871

Σ
(02)
44 (ω) +Σ

(20)
44 (ω) =

iλ|Λ|2

2π

∫ +∞

−∞
dτ
�

∂τGR(τ)GL(τ)
�

eK0(ω,τ)e−iωτ + eK0(ω,−τ)eiωτ
�

+ GR(τ)∂τGL(τ)
��

e−iωτ − 1
�

eK0(ω,τ) +
�

eiωτ − 1
�

eK0(ω,−τ)
�

−iωGR(τ)GL(τ)
�

eK0(ω,τ)e−iωτ − eK0(ω,−τ)eiωτ
�

+ (ω→−ω)
	

.
(B.40)

The zero-frequency limit is therefore given by872

Σ
(02)
44 (0) +Σ

(20)
44 (0) = 2×

iλ|Λ|2

2π

∫ +∞

−∞
dτ∂τGR(τ)
�

eK0(0,τ) + eK0(0,−τ)
�

GL(τ)

= 8iT2λ|Λ|2
∫ +∞

−∞
dτ∂τGR(τ) [−1+πT2τ coth(πT2τ)]GL(τ).

(B.41)

Finally, we exploit the Green’s function identity873

λπT2 coth(πT2τ)GL(τ) = −∂τGL(τ) (B.42)

and we arrive at two equivalent final expressions874

Σ
(02)
44 (0) +Σ

(20)
44 (0) = 4(λ− 1)T2 JT + 8i|Λ|2T2

∫ +∞

−∞
dττGL(τ)∂

2
τ GR(τ) (B.43)

= 4λT2 JT − 8i|Λ|2T2

∫ +∞

−∞
dττ∂τGL(τ)∂τGR(τ), (B.44)

where we recalled the expression for the heat tunneling current (B.8).875

The remaining terms are obtained with very similar calculations and they read876

Σ
(02)
33 (0) +Σ

(20)
33 (0) = −4λT1 JT − 8i|Λ|2T1

∫ +∞

−∞
dττ∂τGL(τ)∂τGR(τ), (B.45)

Σ
(02)
34 (0) +Σ

(20)
34 (0) = 2λ(T1 − T2) JT + 4i|Λ|2(T1 + T2)

∫ +∞

−∞
dττ∂τGL(τ)∂τGR(τ). (B.46)

In the presence of a finite voltage bias, V ̸= 0, in addition to the temperature bias, the877

above results are generalized as follows:878

Σ
(02)
44 (0) +Σ

(20)
44 (0) = 4λT2 〈Ĵ

(2)
4 〉 − 4V T2∂V 〈Ĵ

(2)
4 〉

− 8i|Λ|2T2

∫ +∞

−∞
dττ cos(eνVτ)∂τGL(τ)∂τGR(τ),

(B.47)

Σ
(02)
33 (0) +Σ

(20)
33 (0) = 4λT1 〈Ĵ

(2)
3 〉 − 4V T1∂V 〈Ĵ

(2)
3 〉

− 8i|Λ|2T1

∫ +∞

−∞
dττ cos(eνVτ)∂τGL(τ)∂τGR(τ),

(B.48)

Σ
(02)
34 (0) +Σ

(20)
34 (0) = 2λT1 〈Ĵ

(2)
4 〉+ 2λT2 〈Ĵ

(2)
3 〉

+ 4i|Λ|2(T1 + T2)

∫ +∞

−∞
dττ cos(eνVτ)∂τGL(τ)∂τGR(τ),

(B.49)

where the expressions for the average heat currents 〈Ĵ (2)3,4〉 are given in Eq. (B.6).879
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B.5 Summary of heat-current noises880

Gathering the results from all above subsections in Appendix B, we summarize the expressions881

for the auto- and cross-correlated heat-current noises in Tab. 2. These results are those stated882

in Eqs. (37) and (41) in the main text.

SJJ
αβ

3 4

3 2
π2k3

B

3h
T3

1 − 4λkBT1JT + SJJ
T T − 2kBT1J −SJJ

T T + 2λkB(T1 − T2)JT + kB(T1 + T2)J

4 −SJJ
T T + 2λkB(T1 − T2)JT + kB(T1 + T2)J 2

π2k3
B

3h
T3

2 + 4λkBT2JT + SJJ
T T − 2kBT2J

Table 2: Auto- and cross-correlation heat-current noises at zero voltage bias and zero
frequency, SJJ

αβ
with α,β = L, R. The expressions are given to O|(Λ|2) in the tunneling

amplitude Λ, and we have defined the integral J ≡ 4i|Λ|2
∫ +∞
−∞ dττ∂τGR ∂τGL .

883

C Derivation of mixed noise components884

C.1 General expressions885

We decompose the mixed noise perturbatively as886

S I J
αβ = M (00)

αβ
+M (11)

αβ
+M (02)

αβ
+M (20)

αβ
, (C.1)

where, in analogy to the charge and heat noise components, we define887

M (i j)
αβ
=
¬¦

δ Î (i)α (t1),δĴ ( j)
β
(t2)
©¶

. (C.2)

We readily find that the equilibrium component M (00)
αβ

vanishes, as it reduces to expectation888

values of the form 〈∂t1
φ̂α(t1)[∂t2

φ̂β(t2)]2〉, which contain an unbalanced number of bosonic889

operators and thus evaluates to zero by Wick’s theorem. With the same approach as for the890

charge and heat noises in the above Appendixes, we obtain the “tunneling” terms as891

M (11)
33 = 4eν|Λ|2
∫ +∞

−∞
dτ sin(eνVτ)GL(τ)∂τGR(τ) = −M (11)

43 ≡ MT T −
V
2

S I I
T T , (C.3)

M (11)
44 = −4eν|Λ|2

∫ +∞

−∞
dτ sin(eνVτ)GR(τ)∂τGL(τ) = −M (11)

34 ≡ MT T +
V
2

S I I
T T , (C.4)

with892

MT T ≡ 2eν|Λ|2
∫ +∞

−∞
dτ sin(eνVτ)[GL(τ)∂τGR(τ)− GR(τ)∂τGL(τ)]. (C.5)

We note here the relations M (11)
33 = −M (11)

43 and M (11)
44 = −M (11)

34 which are a direct conse-893

quence of the operator identity Î (1)3 = − Î (1)4 , see Eq. (A.3). These relations also show that the894

“tunneling” mixed noise components satisfy the sum rule
∑

αβ M (11)
αβ
= 0 for α= 3, 4.895

Next, a straightforward but long calculation of the correlations between the unperturbed896

currents and their corrections induced by the tunneling lead to the following expressions for897
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the crossed terms898
¨

M (20)
33 = −2λT1 IT + 2T1∂V 〈Ĵ

(2)
3 〉

M (02)
33 = −2T1 IT + 2T1∂V 〈Ĵ

(2)
3 〉

→ M (02+20)
33 = −2T1(1+λ)IT + 4T1∂V 〈Ĵ

(2)
3 〉 , (C.6a)

¨

M (20)
44 = +2λT2 IT − 2T2∂V 〈Ĵ

(2)
4 〉

M (02)
44 = +2T2 IT − 2T2∂V 〈Ĵ

(2)
4 〉

→ M (02+20)
44 = +2T2(1+λ)IT − 4T2∂V 〈Ĵ

(2)
4 〉 , (C.6b)

¨

M (20)
34 = −2λT2 IT + 2T2∂V 〈Ĵ

(2)
4 〉

M (02)
34 = +2T2∂V 〈Ĵ

(2)
4 〉

→ M (02+20)
34 = −2λT2 IT + 2(T1 + T2)∂V 〈Ĵ

(2)
4 〉 , (C.6c)

¨

M (20)
43 = +2λT1 IT − 2T1∂V 〈Ĵ

(2)
3 〉

M (02)
43 = −2T2∂V 〈Ĵ

(2)
3 〉

→ M (02+20)
43 = +2λT1 IT − 2(T1 + T2)∂V 〈Ĵ

(2)
3 〉 , (C.6d)

with the average heat currents 〈Ĵ (2)α 〉 given in Eq. (B.6). Combining all components, we arrive899

at the mixed noise components900

S I J
33 = +MT T −

V
2

S I I
T T − 2T1(1+λ)IT + 4T1∂V 〈Ĵ

(2)
3 〉 , (C.7a)

S I J
44 = +MT T +

V
2

S I I
T T + 2T2(1+λ)IT − 4T2∂V 〈Ĵ

(2)
4 〉 , (C.7b)

S I J
34 = −MT T −

V
2

S I I
T T − 2λT2 IT + 2(T1 + T2)∂V 〈Ĵ

(2)
4 〉 , (C.7c)

S I J
43 = −MT T +

V
2

S I I
T T + 2λT1 IT − 2(T1 + T2)∂V 〈Ĵ

(2)
3 〉 , (C.7d)

which are given in Eq. (74) in the main text.901

C.2 Relation with the thermoelectric response902

In this section, we prove Eq. (80) in the main text, namely the relation between mixed noise903

and the differential thermoelectric conductance.904

To this end, consider a nonequilubrium situation with finite voltage bias (V ̸= 0), but905

vanishing temperature bias,∆T → 0. As a result, our calculations involve only a single Green’s906

function at temperature T̄ , denoted as907

GL(τ) = GR(τ)≡ G(τ) =
1

2πa

�

sinh(iπT̄τ0)
sinh[πT̄ (iτ0 −τ)]

�λ

. (C.8)

As our next step, we combine the mixed noise components (C.3), (C.4), the average heat908

currents (B.6), and the charge tunneling current (A.32a) and perform an expansion at first909

order in eV/T̄ . This expansion results in910

M (11)
33 = +4(eν)2|Λ|2

V
T̄

∫ +∞

−∞
d x x G(x/T̄ )G′(x/T̄ )≡ +4L1

V
T̄

, (C.9a)

M (11)
44 = −4(eν)2|Λ|2

V
T̄

∫ +∞

−∞
d x x G(x/T̄ )G′(x/T̄ )≡ −4L1

V
T̄

, (C.9b)

T1,2∂V 〈Ĵ
(2)
3 〉= −2i(eν)2|Λ|2

V
T̄

∫ +∞

−∞
d x x2 G(x/T̄ )G′(x/T̄ )≡ −2L2

V
T̄

, (C.9c)

T1,2∂V 〈Ĵ
(2)
4 〉= −2i(eν)2|Λ|2

V
T̄

∫ +∞

−∞
d x x2 G(x/T̄ )G′(x/T̄ )≡ −2L2

V
T̄

, (C.9d)

T1,2 IT = +2i(eν)2|Λ|2
V
T̄

∫ +∞

−∞
d x x [G(x/T̄ )]2 ≡ +2L0

V
T̄

, (C.9e)
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where we introduced the dimensionless variable x = T̄τ and defined the three integrals911

L0 = i(eν)2|Λ|2
∫ +∞

−∞
d x x [G(x/T̄ )]2, (C.10a)

L1 = (eν)
2|Λ|2
∫ +∞

−∞
d x x G(x/T̄ )G′(x/T̄ ), (C.10b)

L2 = i(eν)2|Λ|2
∫ +∞

−∞
d x x2 G(x/T̄ )G′(x/T̄ ). (C.10c)

We define the finite-bias thermoelectric conductance as912

L̃ =
∂ IT

∂∆T
= 2i(eν)2|Λ|2
∫ +∞

−∞
dτ sin(eνVτ)

∂

∂∆T
[GR(τ)GL(τ)] . (C.11)

In the limit ∆T → 0 and eV/T̄ ≪ 1, we get913

L̃ =
2i(eν)2|Λ|2

T̄2

V
T̄

∫ +∞

−∞
d x x2 G(x/T̄ )G′(x/T̄ ) =

2L2

T̄2

V
T̄

. (C.12)

The integrals (C.10) can be evaluated analytically as follows (see also App. E)914

L0 = (eν)
2 T̄2λτ2λ−2

0
|Λ|2

v2
F

∫ +∞

−∞

d x
4π2

i x

�

iπ
sinh[π(i T̄τ0 − x)]

�2λ

= (eν)2
T̄2λ

8π
(πτ0)

2λ−2 |Λ|
2

v2
F

∫ +∞

−∞

dz
[cosh(z)]2λ

= (2πτ0)
2λ−2 |Λ|

2

v2
F

(eν)2
T̄2λ

4π
Γ 2(λ)
Γ (2λ)

,

(C.13a)

L1 = (eν)
2τ2λ−2

0
|Λ|2

v2
F

∫ +∞

−∞

d x
4π2

x

�

iπT̄
sinh[π(i T̄τ0 − x)]

�λ

∂x

�

iπT̄
sinh[π(i T̄τ0 − x)]

�λ

= −(eν)2
T̄2λ

4π
(πτ0)

2λ−2 |Λ|
2

v2
F

λ

∫ +∞

−∞
dz

z sinh(z)
[cosh(z)]1+2λ

= −L0,

(C.13b)

L2 = (eν)
2τ2λ−2

0
|Λ|2

v2
F

∫ +∞

−∞

d x
4π2

i x2

�

iπ
sinh[π(i T̄τ0 − x)]

�λ

∂x

�

iπ
sinh[π(i T̄τ0 − x)]

�λ

= −(eν)2
T̄2λ

4π
(πτ0)

2λ−2 |Λ|
2

v2
F

λ

∫ +∞

−∞
dz

z sinh(z)
[cosh(z)]1+2λ

= −L0.

(C.13c)

In evaluating all these integrals, we performed the change of variable x = z/π+ τ0 − i/2 in915

the complex plane and deformed the contour back to the real axis, exploiting the finite cutoff916

τ0 [21]. Substituting the evaluated Li integrals into the mixed noise components (C.9) and917

then into Eq. (C.7), we find the relations918

S I J
33(0) = −S I J

44(0) = −4λL0
V
T̄

, (C.14a)

S I J
34(0) = −S I J

43(0) = 4(1−λ)L0
V
T̄

. (C.14b)

Similarly, the conductance in Eq. (C.12) becomes919

L̃ = −
2L0

T̄2

V
T̄

, (C.15)

and therefore we obtain Eq. (80) in the main text.920
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D Scaling dimension modification by inter-channel interaction921

D.1 Charge transport922

In this Appendix, we give an example on how the addition of a local density-density interaction923

at the QPC modifies the scaling dimension λ of the tunneling quasiparticles, from the ideal case924

λ= ν to λ ̸= ν.925

To this end, we consider adding to the free Hamiltonian Ĥ0 in (7), not only the tunneling926

term (10), but also the following local coupling between the R/L channels:927

Ĥu =
2u
4π

∫ +∞

−∞
d x δ(x)∂x φ̂R(x)∂x φ̂L(x). (D.1)

Here, u parametrizes the interaction strength and the location of the interaction coincides with928

that of the QPC, here at x = 0. With this addition, Ĥ0+ Ĥu is not diagonal in the bosons φ̂R/L929

anymore. Still, we need to evaluate the local quasiparticle Green’s functions930

GR/L(0, t) = 〈ψ̂†
R/L(0, t)ψ̂R/L(0,0)〉 (D.2)

to compute observables related to the charge tunneling. To find these Green’s functions when931

u ̸= 0, we use the following approach: First, we locally diagonalize Ĥ0+ Ĥu with the transfor-932

mation933

�

φ̂+(0, t)
φ̂−(0, t)

�

=

�

α β

β α

��

φ̂R(0, t)
φ̂L(0, t)

�

. (D.3)

Here, the coefficients α,β depend on the interaction strength u and the velocity vF as934

α= cosh(θ ), β = sinh(θ ), tanh(2θ ) = u/vF . (D.4)

For u = 0, we have α = 1 − β = 1, so that in this case φ̂±(0, t) = φ̂R/L(0, t) as expected.935

The new modes φ̂±(0, t) are the local eigenmodes at the point x = 0 and the local Green’s936

functions at this point can be straightforwardly evaluated. We may thus write937

〈ψ̂†
R(0, t)ψ̂R(0, 0)〉 × 〈ψ̂†

L(0, t)ψ̂L(0,0)〉=
1

(2πa)2
eν(α

2+β2)[G+(0,t)+G−(0,t)], (D.5)

in terms of the diagonal bosonic Green’s functions G±(0, t) =



φ̂±(0, t)φ̂±(0, 0)
�

−



φ̂2
±(0,0)
�

.938

Our next step is to express G±(0, t) in terms of the known, “incoming” Green’s functions,939

i.e., GR/L(x ̸= 0, t), which are given in terms of the original bosonic fields φ̂R/L(t,∓x1/2).940

These bosons are in equilibrium with their respective sources, at temperatures T1 and T2 and941

at the locations ∓x1/2. To this end, we solve a bosonic scattering problem with three regions:942

1) the region left of the QPC, 2) the central QPC region x = 0, and 3) the region right of the943

QPC. In brief, the matrix (D.3) constitutes the transfer matrix, T for this scattering problem:944

T =
�

α β

β α

�

=
1
T

�

1 R
R 1

�

, (D.6)

with T2 + R2 = 1. Solving the scattering problem for the central region bosons, φ̂±(0, t) in945

terms of the incoming modes, we find946

φ̂+(0, t) =
R
T
φ̂L(x2, t) +

1
T
φ̂R(−x1, t), (D.7a)

φ̂−(0, t) =
1
T
φ̂L(x2, t) +

R
T
φ̂R(−x1, t), (D.7b)
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and since the bosons φ̂R/L at the sources are uncorrelated, it follows that947

G+(0, t) =
R2

T2
GL(x2, t) +

1
T2

GR(−x1, t), (D.8a)

G−(0, t) =
1
T2

GL(x2, t) +
R2

T2
GR(−x1, t). (D.8b)

Finally, we identify R2/T2 = β2 and 1/T2 = α2 and upon inserting into Eq. (D.5), we arrive948

at949

〈ψ̂†
R(0, t)ψ̂R(0, t)〉 × 〈ψ̂†

L(0, t)ψ̂L(0, t)〉=
1

(2πa)2
eν(α

2+β2)2[GR(−x1,t)+GL(x2,t)]. (D.9)

Thus, we see that Hu changes the scaling dimension from ν to950

λ≡ ν(α2 + β2)2 = ν cosh2(2θ ) =
ν

1− u2/v2
F

. (D.10)

For u= 0 (i.e., without the coupling term Ĥu), we have α= 1/T = 1, β = R/T = 0 and λ= ν951

as expected. We emphasize that the temperatures entering the problem are the two source952

contact temperatures T1/2.953

D.2 Heat transport954

In the above calculation, we evaluated the product of L and R quasiparticle Green’s functions,955

which is sufficient to obtain the observables related to the charge transport, as is clear from956

Eqs. (18) and (25). The situation changes when the heat transport is considered: in this case,957

we deal with (for example) quantities like GR(t)∂t GL(t), see Eq. (41). Thus, it is important to958

critically analyze the behaviour of the L and R local Green’s functions separately. Within the959

toy model in this Appendix, we have (in terms of the “incoming” Green’s functions)960

〈ψ̂†
R(0, t)ψ̂R(0, t)〉=

1
2πa

eλ+GR(t)+λ−GL(t), (D.11)

〈ψ̂†
L(0, t)ψ̂L(0, t)〉=

1
2πa

eλ−GR(t)+λ+GL(t), (D.12)

with961

λ+ = α
4 + β4, (D.13)

λ− = 2α2β2. (D.14)

When calculating the tunneling heat noise, this renormalization gives rise to the usual expan-962

sions in powers of ∆T/2T̄963

SJJ
T T = SJJ

0

�

1+ C(2)Q

�

∆T
2T̄

�2

+ . . .

�

, (D.15)

with prefactor964

SJJ
0 =
|Λ|2

v2
F

T̄3 2πλ2

1+ 2λ
(2πT̄τ0)

2λ−2 Γ
2(λ)
Γ (2λ)

, λ= λ+ +λ−, (D.16)

and coefficient965

C (2)Q =
λ
�

−4λ+π2(λ+ 2)− 2(λ+ 2)ψ(1)(λ+ 1)− 2
�

2(2λ+ 3)

+ (λ+ −λ−)2 ×
λ
�

π2(λ+ 1)− 6
�

− 2λ(λ+ 1)ψ(1)(λ+ 1)− 3

λ2(2λ+ 3)
.

(D.17)

45



SciPost Physics Submission

By comparing this result with Eq. (44a) in the main text, we see that, at least within this966

toy model, the two expressions agree only for λ− = 0, which implies the ideal case λ = ν.967

Otherwise, both parameters λ± appear in the result. This feature stands in stark contrast with968

the charge transport properties, where the relevant parameter is always the sum λ= λ++λ−.969

This happens because it is the simple product of L and R Green’s functions that determines970

all the relevant observables. Then, for charge transport, we can equivalently assume that both971

local Green’s functions separately have a renormalized exponent ν→ λ. The same assumption972

is required for the validity of the results concerning heat-related observables in the main text973

(beyond the ideal case λ = ν, for which they are obviously valid). This does not happen in974

our toy model, but it might apply in more complicated ones, where the scaling dimension975

renormalization relies on different physical mechanisms (see the discussion below Eq. (20)976

for examples).977

D.3 Unequal scaling dimensions on the two edges978

Another possibility is that the two edges coupled by the tunneling Hamiltonian have inherently979

different scaling dimensions [106], which implies that the local quasiparticle Green’s functions980

read981

〈ψ̂†
R,L(0,τ)ψ̂R,L(0,τ)〉=

1
2πa

�

sinh(iπT1,2τ0)

sinh[πT1,2(iτ0 −τ)]

�λ1,2

≡ G1,2(τ), (D.18)

with λ1 ̸= λ2. This property breaks the symmetry of the setup, introducing a difference be-982

tween the top and the bottom edge. The heat transport observables now read983

JT = −2i|Λ|2
∫ +∞

−∞
dτG2(τ)∂τG1(τ), (D.19a)

SJJ
T T = 4|Λ|2
∫ +∞

−∞
dτ∂τG1(τ)∂τG2(τ), (D.19b)

SJJ
33 = SJJ

11 + SJJ
T T − 4λ1T1JT − 8i|Λ|2T1

∫ +∞

−∞
dττ∂τG1(τ)∂τG2(τ), (D.19c)

SJJ
44 = SJJ

22 + SJJ
T T + 4λ2T2JT − 8i|Λ|2T2

∫ +∞

−∞
dττ∂τG1(τ)∂τG2(τ), (D.19d)

SJJ
34 = −SJJ

T T + 2(λ1T1 −λ2T2)JT + 4i|Λ|2(T1 + T2)

∫ +∞

−∞
dττ∂τG1(τ)∂τG2(τ), (D.19e)

SJJ
43 = SJJ

34 . (D.19f)

As a consequence of the broken symmetry, we expect to find also odd coefficients in the ∆T984

power expansion, even in the presence of a symmetric bias. Indeed, using as an example the985

heat tunneling noise, we find the usual expansion986

SJJ
T T = SJJ

0

�

1+ C(1)Q

�

∆T
2T̄

�

+ C(2)Q

�

∆T
2T̄

�2

+ C(3)Q

�

∆T
2T̄

�3

. . .

�

, (D.20)

with prefactor987

SJJ
0 =
|Λ|2

v2
F

2πT̄3 λ1λ2

1+ 2λ̄
(2πT̄τ0)

2λ̄−2 Γ
2(λ̄)
Γ (2λ̄)

, where λ̄≡
λ1 +λ2

2
, (D.21)

and coefficients988

C(1)Q = (λ1 −λ2)
1+ λ̄− 2λ̄2

2λ̄(1+ λ̄)
, (D.22a)
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989

C(2)Q =

�

π2(3λ̄+ 4)− 2(2λ̄+ 7)
�

λ̄2 − 2(3λ̄+ 4)λ̄2ψ(1)(λ̄) + 8

2λ̄(2λ̄+ 3)

+ (λ1 −λ2)
2 ×

4− 3(4+π2)λ̄+ 8λ̄2 + 6λ̄ψ(1)(λ̄)

8λ̄(2λ̄+ 3)
,

(D.22b)

990

C(3)Q = (λ1 −λ2)

�

12λ̄4 + 38λ̄3 − 12λ̄2 − 38λ̄− 12

12λ̄(1+ λ̄)(2+ λ̄)
+
λ̄2(3λ̄2 + λ̄− 6)[6ψ(1)(1+ λ̄)− 3π2]

12λ̄(1+ λ̄)(2+ λ̄)

�

+ (λ1 −λ2)
3 ×

π2(9λ̄2 − 9λ̄− 6)− 4λ̄(λ̄− 1)(2λ̄− 1) + 6(3λ̄2 − 3λ̄+ 2)ψ(1)(λ̄)

64λ̄(λ̄+ 1)(λ̄+ 2)
.

(D.22c)

As expected, the odd coefficients vanish when λ1 = λ2 and the even ones reduce to those991

given in the main text.992

E Some useful integral identities993

Our approach to evaluating integrals over Green’s functions and their derivatives is based on994

the integral identity [107]995

∫ ∞

−∞

cosh(2bz)

(cosh(z))2a dz = 2× 4a−1B(a+ b, a− b). (E.1)

Here,996

B(z1, z2) =
Γ (z1) Γ (z2)
Γ (z1 + z2)

(E.2)

is Euler’s beta function and Γ (z) is the Gamma function. By repeated differentiation of Eq. (E.1)997

with respect to b, we further obtain, for any positive integer m,998

∫ ∞

−∞

z2m cosh(2bz)

(cosh(z))2a dz =
1

22m

∂ 2m

∂ b2m

�

2× 4a−1B(a+ b, a− b)
�

, (E.3)

∫ ∞

−∞

z2m−1 sinh(2bz)

(cosh(z))2a dz =
1

22m−1

∂ 2m−1

∂ b2m−1

�

2× 4a−1B(a+ b, a− b)
�

. (E.4)

Our strategy in this paper is to expand all integrals involving Green’s functions and their deriva-999

tives into terms on the form (E.1), (E.3), or (E.4) and then sum up all contributions.1000

F Fourier transforms of the Green’s function1001

In the time-domain, the exponentiated bosonic (retarded) Green’s function at temperature Tα1002

is given as1003

eλGR/L(τ) =

�

sinh(iπTτ0)
sinh(πT1,2(iτ0 −τ))

�λ

, (F.1)

where τ0 = a/vF is the UV cutoff in the time domain. The Fourier transform of (F.1) can be1004

evaluated to [21]1005

P1,2(E)≡
∫ +∞

−∞
dτeiEτeλGR/L(τ) = (2πT1,2τ0)

λ−1 τ0

Γ (λ)
eE/2T1,2

�

�

�

�

Γ

�

λ

2
+ i

E
2πT1,2

��

�

�

�

2

. (F.2)
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At zero temperature, this expression reduces to1006

P1,2(E)
�

�

T1,2→0 =
2πτλ0
Γ (λ)

Eλ−1Θ(E), (F.3)

where Θ(E) is the Heaviside step function. Finally, by comparing to the quasiparticle Green’s1007

function (19), we have the Fourier transforms1008

∫ ∞

−∞
dτeiEτGR/L(τ) =

1
2πa

P1,2(E). (F.4)

G Scattering theory for non-interacting electrons1009

To describe the setup in Fig. 1 in the integer quantum Hall regime, here described by setting1010

ν = 1, we can alternatively use scattering theory, closely following Ref. [20]. The scattering1011

matrix describing the setup reads1012

s =







0 0 0 1
0 0 1 0
t −r 0 0
r t 0 0






, (G.1)

where the element sαβ is the amplitude for electron scattering from terminal β to α. In1013

Eq. (G.1), we have introduced t and r (assumed to be energy independent) as the trans-1014

mission and reflection amplitude, respectively, at the QPC. It holds that |t|2+ |r|2 ≡ T +R= 1.1015

Note that the top right corner of s describes ballistic propagation (unit entries) from terminal1016

4 to 1 and 3 to 2. These entries ensures the unitarity of s as well as fully capturing that the1017

ballistic edge channels propagate along the boundary of a two-dimensional electron gas. Note1018

that this propagation was not included in Sec. (2). For consistency, we shall therefore neglect1019

these terms in the following.1020

With the scattering matrix (G.1), the net charge (X̂ = Î) and heat (X̂ = Ĵ) current flowing1021

out of terminal α reads1022

〈X̂α,out〉=
1
h

4
∑

β=1

∫ +∞

−∞
dE xα
�

δαβ − (sαβ)2
�

fβ(E), (G.2)

with xα = −e for X̂ = Î , xα = E−µα for X̂ = Ĵ , and fβ(E) = {1+exp[(E−µβ)/kBTβ]}−1 is the1023

Fermi function in reservoir β . Likewise, the zero-frequency correlations SX X
αβ
(ω = 0) ≡ SX X

αβ
1024

between the X current in terminal α and the X current in terminal β read1025

SX X
αβ =

2
h

4
∑

γ,δ=1

∫ +∞

−∞
dE xαxβ
�

δαγδαδ − sαγsαδ
��

δβδδβγ − sβδsβγ
�

×
�

fγ(E)(1− fδ(E)) + fδ(E)(1− fγ(E))
�

. (G.3)

If we further assume that there are no voltage biases in the setup, it is possible to setµα = µ0 ,∀α1026

and µ0 ≡ 0 can be taken as energy reference. In such case, xα loses the dependence on the1027

chemical potential µα and we can just write a single x = −e for X̂ = Î and x = E for X̂ = Ĵ .1028

Note that this simplification arises in our setup also for x3 and x4, because terminal 3 and 41029

are kept at the reference energy.1030
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Of key interest in this section are the auto-correlation functions in the drain contacts, i.e.1031

α,β = 3, 4. By using the scattering matrix (G.1) in the correlation function (G.3), we find1032

SX X
33 =

2
h

∫ +∞

−∞
dEx2
�

RT ( f1(E)− f2(E))
2 + T f1(E)(1− f1(E)) + Rf2(E)(1− f2(E)))

�

, (G.4)

SX X
44 =

2
h

∫ +∞

−∞
dEx2
�

RT ( f1(E)− f2(E))
2 + Rf1(E)(1− f1(E)) + T f2(E)(1− f2(E))

�

, (G.5)

SX X
34 = SX X

43 = −
2
h

∫ +∞

−∞
dEx2
�

RT ( f1(E)− f2(E))
2
�

. (G.6)

We see that the correlators (G.4), (G.5), and (G.6) satisfy the conservation laws (6).1033

Next, we define the charge and heat tunneling currents as1034

〈X̂T 〉 ≡ 〈X̂1,out〉 − 〈X̂3,in〉 . (G.7)

Inserting this expression into the noise definition (1) leads to the tunneling noise1035

SX X
T T = SX X

11 + SX X
33 + 2SX X

31 , (G.8)

which, via Eq. (G.3), we evaluate as1036

SX X
T T =

2
h

∫ +∞

−∞
dEx2
�

RT ( f1(E)− f2(E))
2 + Rf1(E)(1− f1(E)) + Rf2(E)(1− f2(E))

�

. (G.9)

Here, we note that the tunneling charge-current noise in the four-terminal setup we are investi-1037

gating coincides with the total (thermal and shot) noise in a two-terminal setup with reservoirs1038

described by Fermi functions f1 and f2 [20,24]. Similarly, the cross correlation noise S I I
34 coin-1039

cides with the shot noise component (up to a sign) in the said two-terminal setup [34]. Now,1040

since we assume energy independent tunneling, we can compare Eqs. (G.6) and (G.8) to relate1041

SX X
34 and SX X

T T as1042

SX X
T T = −SX X

34 + R
�

SX X
11 + SX X

22

�

. (G.10)

As follows, we are interested in the weak tunneling limit. We thus assume that R= 1− T ≪ 1,1043

which we employ as taking1044

R→ D, RT → D, T → 1 (G.11)

for D≪ 1, in the following subsections.1045

G.1 Delta-T noise1046

For the delta-T noise, we have X̂ = Î and x = −e. By inserting these specifications, to-1047

gether with the weak tunneling expressions (G.11), into the tunneling noise (G.9), we set1048

µ1 = µ2 = 0, T1/2 = T̄ ±∆T/2, and then expand in powers of ∆T/(2T̄ ). We then obtain1049

S I I
T T = S I I

0 ×
�

1+
π2 − 6

9

�

∆T
2T̄

�2

+

�

−
7π4

675
+
π2

9
−

2
15

�

�

∆T
2T̄

�4

+ ...

�

. (G.12)

Here, S I I
0 = 4e2DkB T̄/h ≡ 4gT (T̄ )kB T̄ . Note here that gT (T̄ ) is independent of T̄ . We thus1050

obtain the expansion coefficients C(2) and C(4) as presented in Eqs. (31a)-(31b).1051
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We repeat the above procedure for the cross correlation noise (G.6) and find1052

S I I
34 = S I I

43 = −S I I
0 ×
�

π2 − 6
9

�

∆T
2T̄

�2

+

�

−
7π4

675
+
π2

9
−

2
15

�

�

∆T
2T̄

�4

+ ...

�

(G.13)

Upon identification of C(2) and C(4), we readily see that the coefficients D(2) and D(4) [see1053

Eqs. (30a)-(30b)] both vanish at ν = 1. This result is clear also from a direct compari-1054

son between the noises (G.6) and (G.9). In essence, absence of D(2) and D(4) follows be-1055

cause in contrast to strongly correlated electrons, the tunneling conductance for free electrons,1056

gT (T̄ ) = e2D/h, does not depend on the temperature T̄ .1057

In the large temperature bias limit, T1 = Thot and T2 → 0, the integrals (G.9) and (G.6)1058

evaluate to1059

S I I
T T =

4e2D
h

kBThot ln2, (G.14)

S I I
34 = S I I

43 = −
2e2D

h
kBThot(2 ln 2− 1), (G.15)

which we obtained in Sec. 3.3 by setting λ= ν= 1.1060

G.2 Heat-current noise1061

For the heat-current noise, we have X̂ = Ĵ and x = E. Just as for the delta-T noise, we use1062

these specifications, set µ1 = µ2 = 0, assume weak tunneling (G.11), and expand in∆T/(2T̄ )1063

the tunneling noise (G.9) and the cross correlation noise (G.6). We then obtain1064

SJJ
T T = SJJ

0

�

1+
1
15
(7π2 − 15)
�

∆T
2T̄

�2

+ 2π2
�

7
15
−

31
630

π2
��

∆T
2T̄

�4

+ . . .

�

, (G.16)

SJJ
34 = SJJ

43 = SJJ
0

�

1
15

�

60− 7π2
�

�

∆T
2T̄

�2

+ 2π2
�

−
7
15
+

31
630

π2
��

∆T
2T̄

�4

+ . . .

�

. (G.17)

Here, we have identified the equilibrium heat tunneling conductance1065

SJJ
0 =

2π2

3h
Dk3

B T̄3. (G.18)

By comparing SJJ
T T and SJJ

34 term by term, we see that our scattering theory is in full agreement1066

with the expansion coefficients (47a)-(47d).1067

Let us here briefly comment why we have D(2)Q = 3 for the heat-current noise, in contrast1068

to the delta-T noise where D(2) = 0. If we compare the cross-correlation noise (G.6) to the1069

tunneling noise (G.9), we see that they differ both by a negative sign and that the tunneling1070

noise contains two contributions present even in equilibrium. For the charge-current noise,1071

these parts contribute only to S I I
0 . However for the heat-current noise, these contributions,1072

when expanded in ∆T/(2T̄ ), produce1073

D
�

SJJ
11 + SJJ

22

�

=
D
h

∫ +∞

−∞
dEE2
�

f1(E)(1− f1(E)) + f2(E)(1− f2(E))
�

=
2π2

3h
Dk3

B(T
3
1 + T3

2 )

=
2π2

3h
Dk3

B T̄3

�

1+ 3
�

∆T
2T̄

�2
�

. (G.19)

We thus see that while the zero-frequency charge-current noise is linear in the temperature1074

S I I ∼ kB T̄ , the heat-current noise is instead cubic: SJJ ∼ (kB T̄ )3. The reason for this is that1075
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for heat flow, the transported quantity depends on the energy (an E2 weight to the Fermi1076

functions) but for the charge flow, the charge e does not depend on the energy. From the1077

result (G.19), we thus see that already the lowest order term in (G.9) contributes a factor of1078

3 to the C(2) coefficient. We see that this contribution is absent in the cross-correlation noise1079

and is thus accounted for by the finite D(2)Q coefficient.1080

Finally, we compute the heat-current noise in the large temperature bias limit. We thus1081

take T1 = Thot and T2→ 0, and the integrals (G.9) and (G.6) for the heat-current noise then1082

evaluate to1083

SJJ
T T =

3D
h
(kBThot)

3ζ(3), (G.20)

SJJ
34 = SJJ

43 = −
3D
h
(kBThot)

3

�

ζ(3)−
π2

3

�

, (G.21)

where ζ(z) is the Riemann zeta-function with ζ(3)≈ 1.2. These results were also obtained in1084

the ν= 1 limit in Sec. 4.2.1085
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