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Abstract

Identifying use cases with superconducting circuits not critically affected by the inherent
noise is a pertinent challenge. Here, we propose using a digital quantum computer to
showcase the activation of integrable effects in weakly dissipative integrable systems.
Dissipation is realized by coupling the system’s qubits to ancillary ones that are periodi-
cally reset. We compare the digital reset protocol to the usual Lindblad continuous evolu-
tion by considering non-interacting integrable systems dynamics, which can be analyzed
using scattering between the Bogoliubov quasiparticles caused by the dissipation. The
inherent noise would cause extra scattering but would not critically change the physics.
A corresponding quantum computer implementation would illuminate the possibilities
of stabilizing exotic states in nearly integrable quantum materials.
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1 Introduction17

Most of the quantum simulators and computers strive to eliminate any elements of openness,18

however, to some extent, it is unavoidable: atom loss and dipolar coupling in cold atoms,19

light leakage in cavities, heating, dephasing and other errors on gates, etc. In the pioneering20

experiments with trapped ions [1] and also in some more recent experiments with supercon-21

ducting qubit platform [2], there have been propositions on how to actually use engineered22

dissipation [3, 4] to prepare target/ground states [5, 6] or to measure phase transitions [7].23

Such protocols might also be more resilient to the inherent platforms’ noise. For example, in24

a recent implementation of Trotterized transverse field Ising model with the superconducting25

circuit [2], a dissipative cooling towards the ground state has been implemented by coupling26

the system’s qubits to ancilla ones that are periodically reset. This realization builds on a se-27

ries of theoretical works [8–15] proposing cooling in quantum computers by coupling to low28

entropy baths (ancilla qubits), involving tuning the Hamiltonian of the ancilla qubits and its29

coupling to the system qubits. While the above mentioned cooling protocols might be more30

naturally and efficiently implemented with an ergodic system [8], considering non-interacting31

models can assist to get more exact/analytical insight into the conditions required [16].32

In many cases, non-interacting many-body models are the cornerstone of our understand-33

ing and description of many-body physics. The fact that they are exactly diagonalizable via34

the Bogoliubov transformation makes them also a rare and appealing platform to study non-35

equilibrium many-body physics [17–19]. In the context of thermalization or its failure, non-36

interacting systems are an example of models with extensively many conserved quantities37

[17, 18]. The conserved quantities of translationally invariant models are simply the mode38

occupation operators of Bogoliubov quasiparticles [18] and one can use those to construct39

extensively many local conserved quantities [17]. The existence of macroscopically many40

conserved quantities places non-interacting many-body systems on the same footing as more41

general interacting integrable systems, in the sense that they fail to thermalize due to the pres-42

ence of additional conservation laws, or equivalently, limited quasiparticle scattering [17–19].43

Non-interacting models have been among the first for which the applicability of generalized44

Gibbs ensembles (GGEs) [20] as a local description of steady states reached after a sudden45

quench has been demonstrated [21–27]. Introducing additional Lagrange parameters, asso-46

ciated with the mode occupation operators or the local conserved operators, proved to be a47

successful way to take into account constraints on equilibration. More recent studies showed48

that a GGE description applies not only to quenches in isolated models but also to weakly49

dissipative integrable systems, including the non-interacting ones [28–41]. In that case, GGE50

gives the zeroth order approximation to the dynamics and the steady state density matrix. The51

main difference between the closed and open setup is that for the former, the Lagrange multi-52

pliers are determined by the post-quench state, while in the open setup, they are determined53

by the dissipation operator [28–33]. Only if the dissipators obeys detailed balance condition,54

the stabilized steady state is thermal [16,29]. In any other situations, such weakly dissipative,55

nearly integrable systems tend to converge to highly non-thermal GGEs. This explains why a56

careful tuning of parameters and coupling operators is necessary for an approximate ground57

state preparation on a quantum computer simulating an integrable system [2,16].58

In this work, we marry the two topics and show that for generic weak couplings between59
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integrable system and periodically reset ancilla qubits, highly non-thermal generalized Gibbs60

ensembles would be stabilized with quantum computers. We focus on the non-interacting inte-61

grable systems, for which we also review and compare different approaches to thermodynam-62

ically large systems. In Sec. 2, we review the general description of weakly open integrable63

systems in terms of time dependent generalized Gibbs ensembles. For non-interacting inte-64

grable models, this is reformulated in Sec. 3 as a generalized scattering theory between the65

Bogoliubov quasiparticles for a weakly dissipative continuous Lindblad model with transverse66

field Ising model coupled to Lindblad baths. In Sec. 4 we highlight that superconducting circuit67

platforms [2] or digital trapped ion quantum computers [42] would be ideal implementations68

of all elements required to show that highly non-thermal and possibly exotic GGEs emerge in69

weakly open nearly integrable systems. To make the connection, we derive the effective sys-70

tem’s equation of motion for the Floquet time propagated coupled system and ancilla qubits,71

involving the reset of ancilla qubits to implement the openness. This can be once again recast72

as a generalized scattering theory between the Bogoliubov quasiparticle. In the end, we pro-73

pose how reviving of integrability can be detected via measurement of anomalously slow decay74

of certain spatial correlations. In Sec. 5, we conclude that an actual experimental realization75

would prove the concept of GGEs to be applicable also for other platforms and, ultimately, for76

nearly integrable materials [43,44].77

2 Setup78

We first review the structure of the density matrix perturbation theory using the example of a79

traditional Lindblad setup with a continuous model. In Sec. 4, we generalize this to a Trotter-80

ized implementation with a reset protocol, relevant to digital quantum computers. Within the81

continuous implementations, we consider a system with dominant unitary dynamics described82

by a non-interacting translationally invariant Hamiltonian H0, which has a diagonal form in83

terms of mode occupation operators nq of Bogoliubov quasiparticles,84

H0 =
∑

q

ϵqnq + E0 (1)

where ϵq is the dispersion of a single particle excitation with momentum q and E0 is a constant85

shift in energy. In addition, the system is weakly coupled in bulk to baths described by the86

dissipator D̂,87

L̂ρ = −i[H0,ρ] + D̂ρ, D̂ρ = ε
∑

i

LiρL†
i −

1
2
{L†

i Li ,ρ}. (2)

Here, ε ≪ 1 is a weak coupling parameter, and Li are the Lindblad operators acting around88

site i.89

In our previous works [28–31], we showed that the zeroth order (in ε) approximation to90

the steady state and the slow evolution towards the steady state has the form of a generalized91

Gibbs ensemble (GGE). For the non-interacting translationally invariant H0 one can build a92

GGE using the local extensive conserved quantities Ci , [H0, Ci] = 0, or the mode occupation93

operators nq,94

ρµ(t) =
e−
∑

q µq(t)nq

Tr[e−
∑

q µq(t)nq]
. (3)

Here, µq are the associated Lagrange multipliers. Since the dissipator weakly breaks the inte-95

grability properties of H0, mode occupations are slowly changing, in the lowest order described96

by the rate equations97

〈ṅq〉(t)≈ Tr

�

nqD̂
e−
∑

q′ µq′ (t)nq′

Tr[e−
∑

q′ µq′ (t)nq′ ]

�

, (4)

3



SciPost Physics Submission

where contribution of order ε2 and higher are neglected. Equivalently, the Langrange multipli-98

ers µq will be changing on the timescale O(1/ε) according to the following equation derived99

in Ref. [30],100

µ̇q(t) = −χ−1
q,q(t) 〈ṅq〉(t), χq,q(t) =

e−µq(t)

(1+ e−µq(t))2
. (5)

Here, we used 〈O〉(t)≡ Tr[Oρµ(t)] and that χ matrix with χq,q′(t) = 〈nqnq′〉−〈nq〉〈nq′〉 entries101

is diagonal for free fermions.102

We should note that this is only one possible approach to the steady state calculation.103

In App. A, we review alternative direct steady state calculations where Lagrange multipliers104

are determined via the root finding procedure for the stationarity condition for: (i) all mode105

occupations nq, Eq. (4), (ii) iteratively constructed leading conserved quantities [33], and106

(iii) for the most local conserved quantities Ci [28]. In App. A, we also compare the scaling107

complexity of those different approaches.108

3 Continuous Model109

We consider the transverse field Ising model110

H0 =
∑

i

Jσx
i σ

x
i+1 + hσz

i , (6)

as a paradigmatic non-interacting integrable model, which can be (at least approximately) re-111

alized with quantum simulators [45–50]. In order to obtain its mode occupation operators, we112

perform the Jordan-Wigner tranformation from spin-1
2 degrees of freedom to spinless fermions113

σz
j = 2c†

j c j − 1, σ+j = eiπ
∑

l< j nl c†
j , (7)

and the Fourier transform from the positional basis to the momentum basis114

c j =
e−iπ/4

p
L

∑

q

eiq jcq. (8)

Finally, the Bogoliubov transformation115

cq = uqdq − vqd†
−q, (9)

uq =
ϵq + aq
Æ

2ϵq(ϵq + aq)
, vq =

bq
Æ

2ϵq(ϵq + aq)
,

aq = 2(J cos q+ h), bq = 2J sin q,

brings the Hamiltonian into a diagonal form116

H =
∑

q

ϵq

�

nq −
1
2

�

, ϵq = 2
Æ

J2 + 2hJ cos q+ h2, nq = d†
q dq. (10)

Therefore, the Hamiltonian and all the local conserved charges, Ci =
∑

q c(i)q nq, can be ex-117

pressed in terms of mode occupation operators nq. One should note that periodic boundary118

conditions in the spin picture are translated to periodic boundary conditions in the fermion pic-119

ture for an odd number of particles and anti-periodic for an even number of particles. Conse-120

quently, the two cases are diagonalized by a different set of wave vectors, K+ = {2πL (q+ 1
2), q =121

0, . . . L − 1} for the even sector and K− = {2πL q, q = 0, . . . L − 1} for the odd sector. The two122
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Figure 1: (a) Time evolution from an initial thermal mode occupation with β = 0.323
to a highly non-thermal steady state distribution, stabilized by our choice of Lindblad
operators, Eq. (12). (b) Relative error

∑

q |(〈nq〉(t)−〈nq〉0(t))/〈nq〉0(t)|/L of the oc-
cupations 〈nq〉(t) obtained with Euler method with time steps εδt = 0.01, ..., 0.6 and
the reference 〈nq〉0(t) evaluated with smallest εδt = 0.005. At late times differences
are tiny. (c) Steady state expectation values of local conserved quantities (30). With
increasing support, the importance of even conserved quantities decays exponen-
tially. Expectation values of odd observables are zero due to symmetry. Parameters:
J = 1, h= 0.6, L = 105.

symmetry sectors are uncoupled by the Hamiltonian dynamics and should be treated sepa-123

rately.124

As an example of coupling to baths that stabilize a nontrivial steady state we consider the125

following Lindblad operator126

L j = S+j S−j+1 + Sz
j +

1
2
1 j . (11)

We choose an operator which after the Jordan-Wigner, Fourier and Bogoliubov transformations127

obtains a compact form without any string operators,128

L j =
∑

q,q′

e−i j(q−q′)

L
(1+ eiq′)(uqd†

q − vqd−q)(uq′dq′ − vq′d
†
−q′). (12)

However, due to the form of dissipator with Li and L†
i pairs, Eq. (2), analysis is not much more129

complicated in the presence of string operators as well. These Lindblad operators preserve130

the parity, i.e., some terms preserve the number of fermions while others change it by two.131

Therefore, we get two steady states, one for the even and one for the odd parity sector. Ther-132

modynamically, the two solutions behave the same. We consider only the even sector in the133

following and work with momenta K+.134

To calculate the time evolution as described in Sec. 2, the central object to be evaluated is135

the expression (4) for 〈ṅq〉, which can be split as136

〈ṅq〉= ε
∑

j

〈L†
j nq L j〉 − 〈nq L†

j L j〉 (13)

Here, we took into account the cyclicity of trace and the expectation value 〈·〉 with respect137

to the GGE ρµ(t), Eq. (3). Due to the diagonal form of the GGE, only the combinations of138

creation d†
q and annihilation dq operators, which are in total diagonal in the mode occupation139

operators, contribute to the expectation values with respect to the GGE Ansatz. After extracting140
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the contributing Wick contractions and simplifying the remaining terms, Eq. (13) obtains a141

compact and meaningful form142

〈ṅq〉=
2ε
L

∑

q′
fq′,q〈nq′〉〈1− nq〉 − fq,q′〈nq〉〈1− nq′〉+ f̃q′,q〈1− nq′〉〈1− nq〉 − f̃q,q′〈nq〉〈nq′〉.

(14)

The first two terms correspond to the transitions between q′ and q momenta, weighted by143

parameter-dependent positive function144

fq′,q =u2
qu2

q′(1+ cos q′) + v2
q v2

q′(1+ cos q)− uqvquq′ vq′(1+ cos q′ + cos q+ cos(q+ q′)), (15)

while the last two terms correspond to creation/annihilation of q′ and q modes, weighted by145

another positive function146

f̃q′,q =v2
q u2

q′(1+ cos q) + u2
q v2

q′(1+ cos q′)− uqvquq′ vq′(1+ cos q′ + cos q+ cos(q− q′)). (16)

Terms with 〈1−nq〉, corresponding to transitions into the q mode, have a positive sign. On the147

other hand, terms with 〈nq〉, where q mode is annihilated, have a negative sign. In the GGE,148

the expectation value of the mode occupation operator is given by 〈nq〉= e−µq/(1+ e−µq). The149

rate equation (14) thus has the structure of the Boltzmann equation but without the usual150

assumption of thermal Fermi functions.151

We should note that fq′,q and f̃q′,q can be factorized over variables q, q′ and therefore sum-152

mation over q′ in Eq. (14) can be performed independent of q. The complexity of evaluating153

〈ṅq〉 for all q thus scales as O(L). A similar factorization property over an arbitrary number154

of momentum varibles should also hold for other choices of Lindblad operators, implying that155

〈ṅq〉 is calculated in O(L) generically.156

We perform calculations of time-dependent Lagrange parameters µq(t) from Eq. (5) by157

summation over discrete momenta on L = 105 sites. Fig. 1(a) shows how the momentum158

distributions change from an initial thermal Gaussian distribution around q = π (where the159

minimum of dispersion ϵq, Eq. (9), lies for our choice J = 1, h= 0.6), to a highly non-thermal160

distribution, double-peaked around some non-trivial momenta. This result is the main message161

of our example: since our Lindblad operators Li , Eq. (12), do not obey detailed balance, a162

highly non-thermal steady state is stabilized even if the coupling to the baths is only weak.163

The calculation is performed using the Euler method with time step δtε = 0.6, which is164

sufficiently small that errors do not affect the dynamics significantly and the system converges165

to the right steady state. Namely, Fig. 1(b) shows the difference between calculations done166

at chosen εδt = [0.01,0.05, 0.1,0.5, 0.6] with respect to the smallest εδt = 0.005 time step167

tested. In an absolute sense, the relaxation time is given by the strength of the coupling to the168

bath. i.e., the distributions relax to the steady state on 1/ε timescale since the rate of change169

for the mode occupations is proportional to ε, Eqs. (13, 14). However, for the same reason,170

we can use scaled εδt in our discrete-time propagation scheme.171

In App. A, we compare the performance of time evolution used above to the iterative steady172

state construction introduced in Ref. [33]. For calculations in the basis of mode occupation173

operators, the two approaches are comparable in the studied case.174

Structured distribution of quasiparticle mode occupations, Fig. 1(a), in the spin language175

implies a non-thermal steady state expectation values of local conserved quantities, C2ℓ =176
∑

q cos (qℓ)εqnq and C2ℓ−1 = 2J
∑

q sin (qℓ)nq [26]. Since the stabilized distribution is sym-177

metric under momentum inversion 〈nq〉 = 〈n−q〉, odd conserved quantities are not stabilized178

〈C2ℓ−1〉 = 0. Fig. 1(c) shows that the expectation values of even conserved quantities decay179

exponentially with their support, implying that a truncated GGE description involving the most180

local conserved quantities can be a reasonable approximation as well.181
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Figure 2: Scheme of our dissipative transverse field Ising realization, similar to
Refs. [2, 8] and realistic to implement with a digital quantum computer. In this
setup, the system’s qubits are coupled to ancillary ones. After every T system-ancilla-
coupling propagations, ancilla qubits are reset to the spin-down state.

4 Digital quantum computer protocol182

We continue by discussing a contemporary possible realization of such non-thermal states183

using a digital quantum computer. There, dissipation can be realized by coupling system’s184

qubits to auxiliary ones and resetting the latter to, e.g., spin down state every T steps [2]. A185

sketch of a possible realization is shown in Fig. 2. While Ref. [2] used such a reset protocol for186

an approximate ground state preparation by dissipative cooling for the transverse field Ising187

model, we would like to point out that due to the proximity to integrability such a weakly188

dissipative setup is prone to realize highly non-thermal GGEs, with the steady state mode189

occupations fixed by the form of coupling to the ancilla qubits.190

As the integrable system we again consider a transverse field Ising model, now realized via191

Trotterized gate propagation with gate duration chosen to be π/2,192

US = e−i πJ
2

∑

j σ
x
j σ

x
j+1 e−i πh

2

∑

j σ
z
j ≡ e−iHFTFI , (17)

where HFTFI is the corresponding Floquet Hamiltonian derived below. Ancilla qubits are prop-193

agated by simple194

UA = e−i πhA
2

∑

j σ̃
z
j , (18)

where σ̃αj represent operators acting on ancilla qubits. In addition, at each time step τ ≤ T195

within the reset cycle before the reset, system and ancilla qubits are coupled by196

USA,τ =
∏

j

e−iλτQ j⊗A j . (19)

We use coupling operators resembling the Lindblad operators (12) from the previous section,197

Q j = S+j S−j+1 + S−j S+j+1, A j = σ̃
x
j , (20)

where Q j operators act on the system’s qubits, while A j operators act on the ancilla qubits.198

Applying multi-qubit gates has been relized before [51]. One cycle contains T system-ancilla-199

coupling propagations200

UT = USA,T UAUS · · ·USA,1UAUS , (21)

followed by the reset of ancilla qubits to the down spin state.201

Following Ref. [52] and assuming that the coupling between the system and ancilla qubits202

is small λτ ≪ 1, we derive the system’s density matrix interaction-picture evolution for one203

7
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reset cycle, from cycle number Nc to Nc + 1,204

ρS,I(Nc + 1)−ρS,I(Nc) (22)

≈
∑

j,ω,ω′
−i Im(Aω,ω′)[Q

†
j,ω′Qj,ω,ρµ(Nc)] + aω,ω′

�

Qj,ωρµ(Nc)Q
†
j,ω′ −

1
2
{Q†

j,ω′Qj,ω,ρµ(Nc)}
�

.

Above we introduced ancilla correlation functions205

Aω,ω′ =
T
∑

τ=1

τ
∑

τ′=1

λτλτ′e
i(ω′τ−ωτ′+πhA(−τ+τ′)), (23)

aω,ω′ =
T
∑

τ=1

λτeiτ(ω′−πhA)
T
∑

τ′=1

λτ′e
−iτ′(ω−πhA).

Operator Q j,ω =
∑

α,β ,Ẽβ−Ẽα=ω
|α〉 〈α|Q j |β〉 〈β | represents Q j , Eq. (20), projected between the206

many-body eigenstates of the system’s unitary operator US that differ in quasi-energy for ω.207

Namely, |α〉 is a many-body eigenstate of the systems’s unitary US with a corresponding eigen-208

value e−i Ẽα , where Ẽα is the quasi-energy of the Floquet Hamiltonian HFTFI. While operators209

Q j can be arbitrary, the form of ancilla correlation functions Eq. (23) is obtained from the spe-210

cific choice of ancilla dynamics UA, Eq. (18), and the coupling operator acting on the ancilla211

qubits A j , Eq. (20). Notably, the equation of motion (22) for the system’s density matrix is of212

a Lindblad form. A general system’s density matrix time evolution as well as more detailed213

derivation for our model are given in App. C.214

We again use periodic boundary conditions for the system’s gates under which the sys-215

tem’s propagation operator factorizes over momenta US =
∏

q≥0 e−iΦ†
qXqΦq e−iΦ†

q ZqΦq , with Φq =216

{cq, c†
−q}

T representing the bispinor of fermionic operators in momentum space, Eq. (8). Xq217

and Zq are 2x2 matrices, derived by representing the first and the second term in US , Eq. (17),218

with fermionic operators in the momentum space, using relations (7, 8). Explicit expressions219

for Xq, Zq are given in App. B, where we also derive that Floquet quasi-energy dispersion ϵ̃q220

takes the form221

cos(ϵ̃q) = cos(πJ) cos(πh)− sin(πJ) sin(πh) cos(q). (24)

Coefficients ũq, ṽq, connecting fermionic operators to the Bogoliubov ones, cq = ũqdq − ṽ∗q d†
−q,222

are for the Trotterized transverse field Ising model of the form223

ũq =
ξq + ãq
Æ

2ξq(ξq + ãq)
, ṽq =

b̃q
Æ

2ξq(ξq + ãq)
, ξq =
r

ã2
q + |b̃q|2, (25)

ãq = sin(πJ) cos(πh) cos(q) + cos(πJ) sin(πh), b̃q = −e−iπh sin(πJ) sin(q),

which is very similar to the original (9). See App. B for the derivation. Finally,224

HFTFI =
∑

q

ϵ̃q

�

nq −
1
2

�

, nq = d†
q dq. (26)

After the above mapping, the coupling operators Q j acting on the system qubits, Eq. (20),225

obtain a bilinear form226

Q j =
1
L

∑

q,q′
e−i j(q−q′)(e−iq + eiq′)(uqd†

q − vqd−q)(uq′dq′ − v∗q′d
†
−q′). (27)

In the case of weak coupling to ancilla qubits, λτ ≪ 1, changes within one reset cycle227

are small. Therefore, one can still use the Euler propagation method to calculate the time-228

dependent Lagrange multipliers, parametrizing ρµ(Nc), from the rate equations for the HFTFI229

8
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Figure 3: (a) Time evolution of the mode occupation from an initial infinite temper-
ature state. A highly non-thermal steady state distribution is reached, which could
be stabilized by the system-ancilla coupling in a digital quantum computer. Param-
eters: J = 0.8, h = 0.45, hA = 0.8, T = 6, L = 500,λτ =

p
ε = 0.1. (b) Decay of

correlations |〈S y y
i,i+ℓ〉|, Eq. (30), as a function of ℓ in the steady-state GGE and the

ground state for the same parameters as in panel (a). As a signature of the stabilized
non-thermal GGE, operators that overlap with local conserved quantities of trans-
verse field Ising models show a slower decay of spatial correlations compared to the
ground state. (c) Different choices of system-ancilla coupling parameters (field hA
and cycle duration T) yield different correlation lengths ξ. Quite generically, longer
cycles lead to slower decay of spatial correlations and thus more non-thermal states.
Other paramters are the same as in panel (a) and (b): J = 0.8, h= 0.45, L = 500.

mode occupation operators. The latter obtains a compact and meaningful form, similar to the230

continuous model,231

〈nq(Nc + 1)〉 − 〈nq(Nc)〉=
2
L

∑

q′
gq′,q

�

〈nq′〉〈1− nq〉aϵq′−ϵq
− 〈nq〉〈1− nq′〉aϵq−ϵq′

�

(28)

+ g̃q′,q

�

〈1− nq′〉〈1− nq〉a−ϵq′−ϵq
− 〈nq〉〈nq′〉aϵq′+ϵq

�

.

For a GGE form of the density matrix, Eq. (22) gets simplified in such a way that only the232

diagonal contributions aω ≡ aω,ω survive, while the term with Aω,ω′ drops out completely.233

One should note that the periodicity aω = aω+n2π, n ∈ N, is consistent with quasienergies ϵ̃q234

being defined up to shift in multiples of 2π. Transitions caused by the coupling to the ancillas235

are thus well behaved in the Floquet sense. While function aω captures the type of coupling236

to the ancilla qubits, positive real functions237

gq′,q = (1+ cos(q+ q′))|ũq′ ũq − ṽ∗q′ ṽq|2, g̃q′,q = (1+ cos(q′ − q))|ũq′ ṽq − ṽ∗q′ ũq|2, (29)

take into account the transverse field Ising parameters.238

We consider a time evolution from an infinite temperature state with µq = 0, which239

would locally describe an initial state in the digital quantum computer prepared by apply-240

ing a few layers of (translationally invariant) random two-site gates on some product state241

[32]. In Fig. 3, we show the (zeroth order) GGE evolution from this state for parameters242

J = 0.8, h = 0.45, hA = 0.8, T = 6, L = 500 and constant λτ =
p
ε = 0.1 for which243

aω = ε sin2( T
2 (ω−πhA))/ sin2(1

2(ω−πhA)). If the exact density matrix was considered, sub-244

leading correction of order O(ε2) would be present. We see that out of a featureless infinite245

temperature state, some non-thermal features quickly start to appear, and the steady state is246

reached after approximately Nc ∼ 100 reset cycles for the above parameters. The steady state247
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itself has a clearly non-thermal occupation of eigenmodes, which depends on the system pa-248

rameters J , h via function gq′,q, g̃q′,q and on the parameters of system-ancilla coupling hA, T via249

function aω. Our main observation is that without a careful tuning of the ancilla parameters250

and coupling operators Q j , A j , weak constant coupling λτ =
p
ε≪ 1 of integrable evolution to251

the ancilla qubits stabilizes a highly non-thermal population of eigenmodes. For the purpose252

of dissipative cooling, one has to tune the protocol such that (single- or multi-) quasiparticle253

decay processes (for our case last term in Eq. (28)) are enhanced, as done in Refs. [2,16]254

While mode occupation clearly exposes the non-thermal nature of the stabilized state,255

it cannot be measured directly in a digital quantum computer, which has access only to local256

observables in the spin language. Local observables, which can expose the non-thermal nature257

of the stabilized state, are observables that strongly overlap with the local conserved quantities258

of the transverse field Ising model in the spin language [17,53],259

C0 = H0, C2 =
∑

j

JS x x
j, j+2
− hS y y

j, j+1 − hS x x
j, j+1 − Jσz

j (30)

C2ℓ>2 =
∑

j

JS x x
j, j+ℓ+1
− hxS y y

j, j+ℓ
− hxS x x

j, j+ℓ
+ JS y y

j, j+ℓ−1
, C2ℓ−1 = J
∑

j

S y x
j, j+ℓ
− S x y

j, j+ℓ
.

where Sαβi, j = σ
α
i σ

z
i+1 . . .σz

j−1σ
β
j . Observables S x x

i, j and S y y
i, j are experimentally accesible and260

have been measured also in Ref. [2]. In Fig. 3(b), we plot |〈S y y
i,i+ℓ〉| in the GGE steady state as a261

function of ℓ and compare it to expectation values in the ground state (〈nq〉= 0). Because we262

choose a non-critical set of system parameters, J = 0.8, h= 0.45, ground state and steady state263

correlations are decaying exponentially. The smoking gun for the GGE stabilization is a slow264

decay of spatial correlations in the steady state, |〈S y y
i,i+ℓ〉| ∼ e−ℓ/ξ, which is even slower than265

the ground state one, ξ > ξgs. For the chosen Ising parameters J and h, ξgs ≈ 1, which is not266

true generically. In Fig. 3(c) we show that with different choices of system-ancilla coupling267

parameters, one can tune the correlation length ξ. Quite generically, a longer reset time T268

induces slower (more non-thermal) decay of spatial correlations. However, this requires a269

larger number of gates and in total a longer circuit, which comes with a stronger influence of270

the inherent noise.271

A slow decay of correlations in the steady state for the operators that are overlapping with272

the conserved quantities of the transverse field While the steady state quasiparticle distribution273

would change quantitatively, its non-thermal, structured nature would persist. In that sense274

such reviving of integrable effects is rather stable.275

5 Conclusions276

We derived an effective description of non-interacting integrable many-body systems that are277

weakly coupled to baths and discussed how such setups could be realized with digital quantum278

computers, such as superconducting circuits [2] or trapped ions [42].279

Using mapping of the non-interacting model to free fermions, we show that generalized280

Gibbs ensembles with generalized chemical potentials associated with mode occupation op-281

erators offer a compact interpretation of time evolution and stabilized steady states. Namely,282

weak integrability breaking perturbations cause scattering between Bogoliubov quasiparticles,283

and we derived a generalized scattering theory, reminiscent of the Boltzmann equations, which284

yields the time-dependent eigenmode population, see also [16, 34, 37–39]. The non-thermal285

nature of the stabilized steady states can be inferred from the structured distribution over286

eigenmodes, which is related to the transition rates between different quasiparticles caused287

by the integrability-breaking bath coupling.288
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We proposed how to use digital quantum computers to realize such highly non-thermal289

GGEs due to proximity to integrability. There, driven-dissipative effects can be implemented290

by weakly coupling the system and ancilla qubits and resetting the latter at the end of every291

reset-cycle [2]. We derived the effective system’s density matrix time evolution for such a292

Floquet-reset protocol. By optimizing the system-ancilla coupling strength, Refs. [2, 16] re-293

cently prepared correlated many-body states close to the ground state. Our example shows294

that integrable systems that are weakly but generically coupled to ancilla qubits are actually295

prone to relax to highly non-thermal and structured GGEs. We comment on how such a highly296

non-thermal nature could be detected by measuring the decay of correlations that are slower297

than in the ground state. Additional native noise of the proposed platform is not detrimen-298

tal for the observation of desired physics; while it would alter the time evolution and the299

steady state momentum occupations, it would preserve its highly non-thermal nature. A dig-300

ital quantum computer realization of our proposal would be the first to support a series of301

theory works [28–33] revealing a peculiar nature of nearly integrable models that can show302

a strong non-linear response to weak coupling to non-thermal baths. It would demonstrate303

that a similar activation of integrable effects could be possible also in nearly integrable mate-304

rials [43,44].305

Note: During the preparation of this manuscript, a related work appeared on arXiv [16],306

optimizing the cooling process and interpreting the dissipative steady state preparation of307

Ref. [2] in terms of the scattering theory equivalent to ours.308
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A Comparison of approaches for the steady state calculation316

Since different approaches to nearly integrable, weakly dissipative system are still rather new317

[28–30, 33, 34, 36–39] and not necessarily fully optimal, we review them here and compare318

their complexity:319

(1) Direct steady state calculation: If aiming directly for the steady state, one can find the320

steady state Lagrange parameters µq(t →∞) from the stationarity condition 〈ṅq〉= 0, Eq. (4),321

for all momenta. If considering a system of L sites with L mode occupation operators, the com-322

plexity of such a root finding procedure is O(Lb+1), where O(L) is the complexity of evaluating323

the expression 〈ṅq〉 and O(Lb) is the complexity of finding the root for L variables. For exam-324

ple, b = 2 for Powell method [54].325

(2) Iterative steady state calculation: In Ref. [33], we developed an iterative approach for con-326

structing the conserved quantities C̃k, which play the leading role in a truncated generalized327
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Gibbs ensemble description of the steady state,328

ρ
(k)
λ̃
=

e−
∑k

k′=0 λ̃
(k)
k′ C̃k′

Tr
�

e−
∑k

k′=0 λ̃
(k)
k′ C̃k′
�

(A.1)

As the zeroth approximation to the steady state a Gibbs ensemble is taken, ρ(0)
λ̃
∝ e−λ̃

(0)
0 H0 ,329

with the zeroth iterative conserved quantity being the Hamiltonian, C̃0 = H0. In next iterative330

steps, the kth iterative conserved quantity is constructed in the basis Qm, [H0,Qm] = 0 as331

C̃k =N−1
k

∑

m

w(k)m Qm, w(k)m = −
∑

n

�

χ−1
(k−1)

�

mn
Tr[QnD̂ρ(k−1)

λ̃
]. (A.2)

For the non-interacting H0, a natural choice is Qm = nm, the basis of mode occupation opera-332

tors. In this case, (χ(k))m,n = 〈QmQn〉 − 〈Qm〉〈Qn〉 = e−µ
(k)
m /(1+ e−µ

(k)
m )2δm,n the susceptibility333

matrix is diagonal, which further reduces the complexity of performing the iterative procedure.334

Here, µ(k)m is an effective Lagrange parameter associated to the mode occupation operator nm335

at kth iterative step, µ(k)m = λ̃(k)0 ϵm +
∑k

k′=1 N−1
k′ λ̃

(k)
k′ w(k

′)
m , and ϵm is the dispersion. The ap-336

proximation to the steady state is established by finding {λ̃(k)k′ } for ρ(k)
λ̃
∝ e−
∑k

k′=0 λ̃
(k)
k′ C̃k′ from337

the set of k + 1 conditions 〈 ˙̃Ck′〉 = 0, Eq.(4), for {C̃k′}kk′=0. We set normalization Nk to be 1,338

thereby absorbing it into the corresponding Lagrange parameters.339

The complexity of the procedure scales as O(k3 L) for the Powell method. If k ∼O(1) and340

small, for thermodynamically large systems, the iterative method is clearly advantageous to341

the previous approach.342

(3) Truncated GGE (most local conserved quantities): In principle, another possibility is the343

truncation in the Fourier modes of 〈nq〉 or in the number of local conserved quantities Ci of344

the spin model that are considered [17, 26, 28, 30, 31, 55, 56]. Ci are for the transverse field345

Ising model linearly related to the mode occupation operators as C2ℓ =
∑

q cos (qℓ)εqnq for346

even ones (C0 = H0) and as C2ℓ−1 = 2J
∑

q sin (qℓ)nq for odd ones [26]. If one includes only347

Ni most local ones, 2ℓ < Ni , then the complexity of finding the truncated steady state GGE348

scales as O(LN2
i ).349

(4) Time propagation: As done in the main text, one can calculate the whole time evolution350

from some initial µq(0), using a discretized version of Eq. (5) and, for example, the Euler351

method. The complexity of such a calculation is O(Nt L), where Nt is the number of steps352

needed to reach the steady state. If we aim to calculate the steady state, the initial µq(0)353

can be a guess for the steady state. On the other hand, if we aim to describe a realistic time354

evolution from a state |ψ0〉, the initial µq(0) are given by the initial state through the condition355

〈ψ0|nq|ψ0〉 = Tr
�

nq
e
−
∑

q′ µq′ (0)nq′

Tr[e
−
∑

q′ µq′ (0)nq′ ]

�

. However, this itself is a root-finding procedure which356

requires O(Lb+1) steps.357

The approach (1) is clearly disadvantageous to others and will not be considered. Below we358

compare approach (4) to the iterative approach (2) from Ref. [33]. We perform the comparison359

for the model introduced in Sec. 3, where the time-dependent calculation (4) has already been360

performed.361

Fig. 4 shows results for the iterative steady state calculation, Eq. (A.2). We start with an362

initial approximation in the form of a Gibbs ensemble, with Hamiltonian being the only con-363

served quantities. Then, we perform our iterative procedure for constructing a truncated GGE364

steady state description. The leading conserved quantities C̃k, Eq. (A.2), are a linear super-365

position of the basis mode occupation operators nq with weights selected by the dissipator.366

Fig. 4(a) shows momentum distributions obtained after k iterative steps. The initial k = 0367
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Figure 4: (a) Convergence to the steady state mode occupation at different iterative
steps k. In the k = 0 step, the steady state is approximated by a thermal state. In
the following iterative steps, additional leading conserved operators are added to
a truncated GGE. A decent convergence is obtained in finite number of steps. (b)
After the initial improvement of results with increasing number of iterative steps, for
chosen parameters, k > 18 iterative steps fail to improve the results further. However,
this happens in the regime where results are converged for all practical purposes.
Parameters: J = 1, h = 0.6, L = 105. (c) Ratio of computing times t t/t i , where t t
corresponds to time evolution with εδt = 0.6 and t i to calculation with the iterative
scheme, as a function of (1/L)

∑

q |〈ṅq〉|, characterizing the accuracy of steady state
calculation. Points are labeled by the number of iterative step taken for t i calculation.
The two methods are comparable. Which one is more efficient in absolute terms
depends on parameters. Parameters: J = 1, L = 105.

distribution corresponds to the thermal ensemble at a temperature that best represents the368

steady state, as obtained from a steady state rate equation for the energy. We observe that369

convergence to the steady state is obtained in a finite number of k = 8 steps when we cannot370

discern this distribution from the ones of the following iterative steps. In Fig. 4(b), we push371

the number of iterative steps further, even though this is not needed for practical purposes.372

We observe that improvement is obtained only up to k = 18 iterative steps. The reason might373

be that with further steps, we are not adding new direction to the GGE manifold or that we are374

dealing with extremely small weights in (A.2) that can be numerically unstable and prone to375

errors. However, this problematic behavior appears in, for all practical purposes, an irrelevant376

regime.377

In Fig. 4(c) we compare the efficiency of the direct time propagation, Eq. (4), and the itera-378

tive approach, Eq. (A.2) by plotting the ratio of CPU times for the former vs the latter. We show379

that as a function of the average remaining flow of the mode occupations, (1/L)
∑

q |〈ṅq〉|,380

characterizing how far from the steady state is the approximate description at a given itera-381

tive or finite time step. Fig. 4(c) reveals that the two methods are comparable, as anticipated382

from the scaling arguments. Namely, the numerical complexity of time propagation scales as383

O(Nt L), where Nt is the number of propagation steps, while the iterative method scales as384

O(k3 L), where k is the number of needed iterative steps. For the case studied, direct propa-385

gation can be performed at rather large εδt = 0.6 time steps, meaning that the direct prop-386

agation is rather efficient. We could have gained some efficiency for the iterative method by387

not converging the steady state equations at intermediate iterative steps, however, we did not388

play with that knob. Which approach is quantitatively advantageous depends on the choice of389

parameters J , h.390
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In Fig. 1(c) of the main text, we plot the steady state expectation values of local conserved391

quantitites 〈Ci〉, Eq. (30). Since the steady state mode occupation is symmetric, 〈nq〉= 〈n−q〉,392

only parity-even conserved quantities have finite expectation values. Fig. 1(c) reveals expo-393

nentially decaying contribution with growing support, which indicates that also more standard394

truncation using the most local conserved quantities is meaningful. If Ni conserved quantities395

are used, the complexity of calculating the steady state scales as O(LN2
i ). Because we expect396

that our iterative construction is more efficient, we do not perform a detailed comparison.397

Our main conclusion from this analysis is that a direct, steady state calculation of all La-398

grange parameters for all the mode occupation operators from the stationarity condition of399

Eq. (4) is the most costly (O(L3)) and should be avoided. Other approaches are comparable;400

which one is the most efficient depends on the model parameters.401

B Floquet transverse field Ising model402

In this section, we discuss the generalized Bogoliubov rotation for the Floquet transverse field403

Ising model,404

US = e−i πJ
2

∑

j σ
x
j σ

x
j+1 e−i πh

2

∑

j σ
z
j = e−iHFTFI , (B.1)

relevant for a digital quantum computer realization, Sec. 4. Using the Jordan-Wigner trans-405

formation, Eq. (7), the Fourier transform, Eq. (8), and periodic boundary conditions, system’s406

time evolution factorizes over momenta as407

US =
∏

q≥0

e−iΦ†
qXqΦq e−iΦ†

q ZqΦq , (B.2)

with Φq = {cq, c†
−q}

T representing the bispinor of fermionic operators in momentum space,408

Eq. (8) and 2× 2 matrices409

Xq = πJ

�

cos(q) − sin(q)
− sin(q) − cos(q)

�

, Zq = πh

�

1 0
0 −1

�

. (B.3)

Factorization (B.2) is possible since Xq commute amongst each other for positive momenta410

but not necessarily with their negative momenta counterparts. Dispersion relation ϵ̃q and the411

Bogoliubov transformation are obtained by diagonalizing each q-block e−iXq e−iZq separately,412

P−1e−iXq e−iZq P = diag[e−iϵ̃q , eiϵ̃q], (B.4)

yielding413

cos(ϵ̃q) = cos(πJ) cos(πh)− sin(πJ) sin(πh) cos(q). (B.5)

The Bogoliubov transformation, Φ†
qP = (d†

q , d−q), then takes a similar form as in the continuous-414

time propagation415

cq = ũqdq − ṽ∗q d†
−q, ũq =

ξq + ãq
Æ

2ξq(ξq + ãq)
, ṽq =

b̃q
Æ

2ξq(ξq + ãq)
, ξq =
r

ã2
q + |b̃q|2 (B.6)

ãq = sin(πJ) cos(πh) cos(q) + cos(πJ) sin(πh), b̃q = −e−iπh sin(πJ) sin(q).

The system’s unitary time propagator in the diagonal form then equals416

US = e−i
∑

q ϵ̃q(d†
q dq−

1
2 ). (B.7)

Above we were able to consider the diagonalization of one q-block e−iXq e−iZq = e−iHq,FTFI from417

Eq. (B.4) as a matrix and not as an operator, e−iΦ†
qXqΦq e−iΦ†

q ZqΦq = e−iĤq,FTFI , since we can show418
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that the Floquet Hamiltonian is of form Ĥq,FTFI = Φ†
qHq,FTFIΦq. This is shown by realizing419

that for any matrices Φ†
qAΦq and Φ†

qBΦq, where Φq = {cq, c†
−q}

T is the fermionic bispinor in420

momentum space, the following commutation relation holds: [Φ†
qAΦq,Φ†

qBΦq] = Φ†
q[A, B]Φq.421

From this, it follows that finding the effective Floquet transverse field Ising Hamiltonian for422

momentum q in the operator form is equivalent to finding it in the matrix form (e.g., via the423

Baker-Hausdorff-Campbell formula) and applying bispinor operator Φ†
q left and Φq right of the424

Floquet Hamiltonian matrix.425

C Lindblad evolution of system’s density matrix in a digital quan-426

tum computer propagation427

Here, we derive the discrete time evolution of the system’s density matrix, Eq. (22), for the428

Trotterized gate propagation in a digital quantum computer, where dissipation is due to the429

coupling and reset of ancillary qubits. We first derive the equation of motion for a general case430

and then narrow it down for our model.431

The system’s Trotterized time evolution is for one step given by a unitary US . Simultane-432

ously, Trotterized time evolution on ancilla qubits is performed by UA. This is always followed433

by a weak hermitian system-ancilla coupling434

USA,τ =
∏

j

e−iλτQ j⊗A j ≈ e−iλτ
∑

j Q j⊗A j−
1
2λ

2
τ

∑

j, j′ [Q j ,Q j′ ]⊗A jA j′ ≡ e−iWτ , (C.1)

where Q j and A j are hermitian operators acting on system and ancilla qubits respectively.435

We assumed that A j are single site operators, while Q j can be multi-site operators. We have436

introduced an effective coupling Hamiltonian Wτ at time step τ ≤ T , which includes the first437

and second order terms of the expansion in λτ ≪ 1. Higher order terms are neglected. One438

cycle contains T system-ancilla-coupling propagations439

UT = USA,T UAUS · · ·USA,1UAUS , (C.2)

followed by a reset of ancilla qubits to a chosen spin direction,440

P̂ = 1̂⊗
∏

j

P̃j . (C.3)

Following Ref. [52], we derive the system’s density matrix time evolution in the interac-441

tion picture, which is slightly non-standard due to the Trotterized nature of the setup. The442

interaction picture propagator for one cycle (before the reset) equals443

UT ≡ U−T
0 UT = T̂ e−i

∑T
τ=1 WIτ , U0 = UAUS , (C.4)

where WIτ = U−τ0 Wτ Uτ0 is the first and second order of the effective coupling Hamiltonian444

(C.1) propagated in the interaction picture for τ steps and T̂ is the time ordering operator. In445

App. D, we prove Eq. (C.4).446

Due to the projection (C.3), the whole density matrix operator has a product form at the447

end of each cycle,448

ρI(Nc) = ρS,I(Nc)⊗
∏

j

P̃j . (C.5)
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One reset cycle evolution of the system’s density matrixρS,I , obtained by tracing out the ancilla449

qubits, is approximated to second order in coupling strength λτ by450

ρS,I(Nc + 1)−ρS,I(Nc) = TrA

�

UTρI(Nc)U†
T

�

−ρS,I(Nc)

≈ −iTrA

�

T
∑

τ=1

[WIτ,ρ]
�

− TrA

�

T
∑

τ=1

τ
∑

τ′=1

[λτVIτ, [λτ′VIτ′ ,ρI(Nc)]]
�

(C.6)

=
T
∑

τ=1

τ
∑

τ′=1

∑

i, j

λτλτ′
�

�

Q i,IτQ j,Iτ′ρS,I(Nc)−Q j,Iτ′ρS,I(Nc)Q i,Iτ

�

Ai, j,τ,τ′

+
�

ρS,I(Nc)Q j,Iτ′Q i,Iτ −Q i,IτρS,I(Nc)Q j,Iτ′
�

A∗i, j,τ,τ′

�

.

The linear term in (C.6) can be set to zero by shifting the A j operators [52]. But for our choice451

A j = σ̃x
j it vanishes trivially since TrA

�

U−τ0 A jU
τ
0 (1̃ − σ̃

z
j )
�

= 0. In a compact notation, all452

effects of ancilla qubits (unitary evolution UA, the coupling operator acting on ancilla A j and453

the resetting of ancillas), is represented by454

Aτ,τ′,i, j = TrA

�∏

k

P̃k Ai,IτA j,Iτ′
�

. (C.7)

While the above derivation and expressions are generic, we now simplify them further455

by turning to our model with ancilla propagator UA = e−i πhA
2

∑

j σ̃
z
j , ancilla term A j = σ̃x

j and456

resetting projection P̃k =
1
2

�

1̃− σ̃z
k

�

,457

Aτ,τ′,i, j = TrA

�∏

k

1
2

�

1̃− σ̃z
k

�

Ai,IτA j,Iτ′
�

δi, j = e2ihA(−τ+τ′)δi, j ≡Aτ,τ′ . (C.8)

It is more convenient to represent the coupling operator Q j in terms of transitions it causes.458

Therefore we introduce459

Q j,ω =
∑

α,β ,Ẽβ−Ẽα=ω

|α〉 〈α|Q j |β〉 〈β | , (C.9)

which represents Q j operator projected between many-body eigenstates of HFTFI that differ460

in energy for ω. Here, |α〉 is a many-body eigenstate of the systems’s unitary US with a cor-461

responding eigenvalue e−i Ẽα , where Ẽα is called the quasi-energy of the Floquet Hamiltonian462

HFTFI. Then463

Q j,Iτ =
∑

ω

U−τ0 Q j,ωUτ0 ,=
∑

ω

e−iωτQ j,ω, (C.10)

Accompanying, we introduce the ancilla correlations functions represented in the frequency464

space465

Aω,ω′ =
T
∑

τ=1

τ
∑

τ′=1

λτλτ′e
iω′τ−iωτ′Aτ,τ′ = aω,ω′ −A∗ω′,ω

aω,ω′ =
T
∑

τ=1

λτei(ω′−πhA)τ
T
∑

τ′=1

λτ′e
−i(ω−πhA)τ′ (C.11)

Putting all these together, we derive a compact form466

ρS,I(Nc + 1)−ρS,I(Nc)
∑

j,ω,ω′
−i Im(Aω,ω′)[Q

†
j,ω′Q j,ω,ρS,I(Nc)]

+ aω,ω′

�

Q j,ωρS,I(Nc)Q
†
j,ω′ −

1
2
{Q†

j,ω′Q j,ω,ρS,I(Nc)}
�

. (C.12)
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To obtain the propagation equation (22) presented in the main text, we approximate the sys-467

tem’s density matrix with a GGE ansatz that, notably, does not evolve under U0, making the468

transformation back to the Schrödinger picture trivial.469

D Floquet interaction picture time propagator470

In this section, we show that UT , Eq. (C.4), is really the interaction picture propagator for one471

cycle consisting of T system-ancilla-coupling propagations.472

The Schrödinger picture propagator (C.2) can be written as473

UT = USA,T UAUS · · ·USA,1UAUS , (D.1)

= USA,T U0USA,T−1U0 · · ·USA,1U0

= U T
0 U−T

0 USA,T U0U T−1
0 U−(T−1)

0 USA,T−1U0 · · ·U0U−1
0 USA,1U0

= U T
0 UI ,SA,T UI ,SA,T−1 . . . UI ,SA,1

Above we introduce the interaction picture coupling propagator UI ,SA,τ = U−τ0 USA,τUτ0 ≈474

e−iWIτ at step τ. The interaction picture time propagator for one reset cycle of length T is475

then476

UT = U−T
0 UT = e−iWI T e−iWI T−1 . . . e−iWI1 = T̂ e−i

∑T
τ=1 WIτ (D.2)

In the last step, we used the following property of the time ordering operator: e−iÔ(t2)e−iÔ(t1) =477

T̂ e−i(Ô(t2)+Ô(t1)) for any operator Ô(t), if t2 > t1. Thus, we have shown that Eq. (C.4) holds.478

E Examples and symmetries in the Trotterized setup479

In order to illustrate the variety of different non-thermal steady states stabilized, we show480

here a few examples of steady state mode occupations that were considered to demonstrate481

anomalously long spatial correlations in the main text, Fig. 3(c). In Fig. 5(a), we show the482

full time evolution of the mode occupation from the initial infinite temperature state, for J =483

0.8, h= 0.45, hA = −0.4, T = 6. It is interesting to observe that even though these parameters484

yield a comparable correlation length ξ for the decay of spatial correlations in Fig. 3(c) as485

hA = 0.8, the steady state distribution is completely different from the distribution at hA = 0.8486

shown in the main text, Fig. 3.487

In Fig. 5(b), we show the steady state distributions of momentum occupations at three488

different lengths of the reset cycle, T = 2,6, 30, again for parameters J = 0.8, h = 0.45,489

hA = 0.8, L = 500, λτ =
p
ε = 0.1 shown in the main text in Fig. 3(c). Consistently with490

results from the main text, longer reset-cycles lead to more clearly non-thermal steady states491

yielding longer spatial correlations in |〈S y y
i,i+ℓ〉|.492

The equation of motion for the mode occupation,493

〈nq(Nc + 1)〉 − 〈nq(Nc)〉=
2
L

∑

q′
gq′,q

�

〈nq′〉〈1− nq〉aεq′−εq
− 〈nq〉〈1− nq′〉aεq−εq′

�

(E.1)

+ g̃q′,q

�

〈1− nq′〉〈1− nq〉a−εq′−εq
− 〈nq〉〈nq′〉aεq′+εq

�

,

has certain symmetries, which imply symmetric relations also for the steady state occupations.494

Since aω(−hA) = a−ω(hA), the steady state occupations at −hA are inverted around the infi-495

nite temperature value, 〈nq〉(−hA) = 1/2 − 〈nq〉(hA), with respect to the occupations at hA,496

see Fig. 5(c). This is a consequence of the exchanged roles of aω between the first and the497
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Figure 5: (a) Time evolution of the mode occupation from an initial infinite temper-
ature state. Evolution correspond to the system-ancilla coupling in a digital quan-
tum computer at parameters: J = 0.8, h = 0.45, hA = −0.4, T = 6, L = 500,
λτ =

p
ε = 0.1. (b) Steady state distributions of the mode occupation for different

lengths of the reset cycle T . Parameters: J = 0.8, h = 0.45, hA = 0.8, L = 500,
λτ =
p
ε = 0.1 and T = 2,6, 30. (c) Steady state mode occupations under different

symmetry transformations of the model. Taking hA→−hA will invert the steady state
population, whereas h→ 1/2− h will invert the population and shift momentum by
π. Parameters: J = 0.8, T = 6, L = 500, λτ =

p
ε= 0.1.

second, as well as between the third and the fourth term in Eq. (E.1). Also, 〈S y y
i,i+ℓ〉(−hA) =498

−〈S y y
i,i+ℓ〉(hA). The second symmetry comes from reflecting the Ising parameter h→ 1/2− h.499

Taking into account the form of functions gq′,q, g̃q′,q, Eq. (29), one gets 〈nq〉(1/2 − h) =500

1/2− 〈nq+π〉(h), see Fig. 5(c). Under this transformation only the correlations between even501

distances get a minus sign, 〈S y y
i,i+2ℓ〉(1/2 − h) = −〈S y y

i,i+2ℓ〉(h). Same properties hold for the502

J → 1/2− J transformation. In addition to the symmetries discussed above, the equations of503

motion are invariant under shifting Ising parameters J , h and bath field hA by multiples of 2.504
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