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Abstract

We study classical lattice simulations of theories of electrodynamics coupled to charged matter

at finite temperature, interpreting them using the higher-form symmetry formulation of magneto-

hydrodynamics (MHD). We compute transport coefficients using classical Kubo formulas on the

lattice and show that the properties of the simulated plasma are in complete agreement with the

predictions from effective field theories. In particular, the higher-form formulation allows us to un-

derstand from hydrodynamic considerations the relaxation rate of axial charge in the chiral plasma

observed in previous simulations. A key point is that the resistivity of the plasma – defined in terms

of Kubo formulas for the electric field in the 1-form formulation of MHD – remains a well-defined

and predictive quantity at strong electromagnetic coupling. However, the Kubo formulas used to

define the conventional conductivity vanish at low frequencies due to electrodynamic fluctuations,

and thus the concept of the conductivity of a gauged electric current must be interpreted with care.
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I. INTRODUCTION

Essentially any interacting system at finite temperature is described at long distances and

times by hydrodynamics, i.e. by a classical theory describing the evolution of coarse-grained

degrees of freedom (e.g. the fluid velocity or charge density) close to thermal equilibirum. As
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it is typically only conserved charges that evolve slowly on such time scales, any discussion

of hydrodynamics invariably involves a careful understanding of the symmetry principles

that underly these conserved charges. In this work we will study the hydrodynamic limit of

lattice U(1) gauge theory close to finite temperature.

In fact, recent developments in quantum field theory have resulted in new generalizations

of the very idea of symmmetry itself. One such generalization is a higher-form symmetry

[1]. Just as a conventional symmetry is generally associated – through Noether’s theorem –

with the conservation of a density of particles, a higher-form symmetry can be understood

as the symmetry principle associated with the conservation of a density of extended objects,

such as strings1.

Many very familiar theories exhibit such a global symmetry. One such system is con-

ventional electrodynamics in four dimensions, coupled to electrically charged matter; the

conserved strings in question are simply magnetic field lines, and the higher-form symmetry

can be understood as the dynamical principle that ensures that magnetic field lines do not

end.

This provides a novel and practical perspective on the phases of electrodynamics. In

particular, in recent work this symmetry principle was used to provide a new formulation

of relativistic magnetohydrodynamics (MHD) in terms of the realization of a higher form

symmetry in thermal equilibrum [9]. We will briefly review the key ideas below, but we

note here that the key advantage of this formalism is that it allows a formulation of MHD

that is constrained only by principles of symmetry and effective field theory (EFT), and

thus works perfectly well even when the underlying microscopic electrodynamic theory is

strongly coupled. Importantly, in this formulation it is the resistivity of the plasma – and

not the electrical conductivity – that is a natural transport coefficient in the effective theory.

In this work we study classical lattice simulations of finite-temperature scalar quantum

electrodynamics as a representative of the MHD universality class. We measure the resis-

tivity of this system and show that it usefully characterizes the long-range physics. We

also show that within our simulations, there is no meaningful ways of defining the elec-

tric conductivity: in particular we explicitly show that the standard Kubo formula relating

the conductivity to the two point function of the electric current always gives zero, being

suppressed by the fluctuations of dynamical electromagnetic fields. We discuss this subtle

point further and explain how a well-defined conductivity, inverse to the resistivity, can arise

within the EFT framework at weak electromagnetic coupling and for long-lived electric field.

We conclude by showing that these considerations have the potential of being phenomeno-

logically relevant. In particular, we focus on a theory where axial charge is not conserved due

1 See [2–8] for recent reviews on this rapidly expanding field.
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to an Adler-Bell-Jackiw (ABJ) anomaly [10, 11]. The effective description of a dynamically

electromagnetic plasma with such an anomaly is usually called chiral magnetohydrodynam-

ics (see e.g. [12–14]) Recent developments in generalized symmetry have led to advances in

formalizing our understanding of anomalous transport from the point of view of EFTs and

hydrodynamics [15, 16]. We show that this progress can be used to explain curious features

of simulations of the chiral decay rate [17, 18] from MHD, using the resistivity determined

in this work.

The manuscipt is organised as follows. In Section II, we provide a brief background infor-

mation on the symmetry-guided EFT construction of a theory with ordinary (0-form) and

1-form symmetry as well as a short introduction to the classical lattice simulation. In Section

III we analyse relations, or lack thereof, between the conductivity σ and resistivity ρ that

appear in effective description of a theory with 0-form and 1-form symmetry respectively.

More specifically, Section IIIA focus on the lack of meaningful relation among them as illus-

trated in the lattice simulation in a strong coupling regime while Section III B illustrated on

how the usual relation among them emerges when the electric field is long-lived. In Section

IV, we employ the above insight to analyse the chiral decay rate of a lattice simulation with

addition chiral U(1) that suffers from a ABJ anomaly. This is also where we show that

such decay rate is controlled by the resistivity ρ and not σ in a regime away from the weak

electromagnetic coupling.

II. BACKGROUND

A. Higher-form symmetries and hydrodynamics

In this section we briefly review the formulation of relativistic magnetohydrodynamics

from the point of view of higher-form symmetry [9]. We take a somewhat leisurely route to

highlight the parallels with conventional hydrodynamics; the reader who is in a hurry may

skip quickly to Section III.

1. Brief review of ordinary hydrodynamics

We begin by noting that modern hydrodynamics can be usefully framed as an effective

field theory. A central role in hydrodynamics is played by the conserved currents, as these

evolve slowly compared to microcopic scales. The structure of the hydrodynamic theory

is generally completely dictated by the global symmetries and their realization at finite

temperature (see e.g. [19] for a review). To orient ourselves, we briefly recall how this works

for a the familiar example of a relativistic system – e.g. an interacting complex scalar field –
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with a conventional U(1) global symmetry. A microscopic Lagrangian for the system might

take the form:

S =

∫
d4x [−(∂µϕ)∗(∂µϕ) + V (|ϕ|)] . (2.1)

The hydrodynamic regime can be thought of as a late time limit where the dynamical

evolution are governed entirely by the conserved charges or densities. The hydrodynamic

description can be obtained by expressing these densities in a gradient expansion of the

temperature and the canonical conjugate of the conserved current. Using this scheme, we

can write the conserved current jµ(x) as

jt = χµ+ · · · ji = −σ
(
∂iµ− Eext

i

)
+ · · · . (2.2)

In this expression we have neglected stress energy fluctutations, thus freezing the tempera-

ture T . µ(t, x⃗) is the local chemical potential, and is the basic degree of freedom. χ – the

charge susceptibility – is a thermodynamic quantity. The expression for ji in terms of gra-

dients of the chemical potential is sometimes called Fick’s law. Eext
i is an external applied

electric field, and σ is a transport coefficient called the conductivity, which will play two

important roles in what follows. First, it determines the diffusion constant of the system:

imposing current conservation ∂µj
µ = 0 and setting Ei = 0, we find the following dispersion

relation for the diffusion of charge:

µ(t, x) ∼ µ0e
−iωt+ikx ω = −iDk2 D =

σ

χ
. (2.3)

It also determines the amount of current flow in response to an applied electric field. This

leads to the Kubo formula which allows one to compute σ in terms of a real-time current

correlation function:

σ = lim
ω→0

(
1

−iωG
jx,jx

R (ω, k⃗ = 0)

)
(2.4)

It is familiar yet non-trivial statement about hydrodynamics that the quantity obtained

from the Kubo formula in (2.4) determines real-time dynamics as in (2.3).

2. Relativistic magnetohydrodynamics and higher-form symmetry

We now turn to the question of interest in this work, the description of relativistic mag-

netohydrodynamics in terms of symmetry principles. For an illustrative microscopic de-

scription consider the quantum field theory of Maxwell electrodynamics in four dimensions,

coupled to electrically charged matter, as described e.g. by the following action:

S =

∫
d4x

[
−(Dµϕ)∗(Dµϕ) + V (|ϕ|)− 1

4e2
F µνFµν

]
, (2.5)
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with Dµϕ = ∂µϕ− iAµϕ and Fµν = ∂µAν − ∂νAµ.

Now we place this theory at finite temperature. The degrees of freedom of a thermally

excited plasma are electrically charged particles, interacting via electric and magnetic fields.

We would like to understand the universal hydrodynamic theory describing the infrared

finite-temperature physics. This framework is usually called relativistic magnetohydody-

namics (see e.g. [20] for a review). It is traditionally constructed by considering Maxwell’s

equations coupled to a charge current that is assumed to be in thermal equilibirum as in

the previous section, i.e. we write an equation of motion of the form

1

e2
∂µF

µν = jνdyn (2.6)

where jµdyn is a conventional dynamical electric charge current determined from an expression

such as (2.2).

Note however that such a construction relies on knowledge of the microscopic equations

of motion, and implicitly requires the existence of a separation between the electromagnetic

degrees of freedom Aµ and the thermalized ϕ degrees of freedom. Such a separation may be

well-justified if the electromagnetic coupling e is weak; however in this work we would like

to study systems where e is generally O(1), and is not parametrically small in any sense.

More generally, it would be conceptually satisfying to have a construction of MHD that

relies only on global symmetries and does not require any access to microscopic degrees of

freedom such as Aµ. Such a formulation is made possible by the understanding of higher-

form global symmetries [1]. Indeed, as mentioned above, the global symmetry of Maxwell

electrodynamics is a higher-form symmetry associated with the conservation of magnetic

flux lines. This global symmetry results in a conserved current Jµν :

∂µJ
µν = 0 Jµν =

1

2
ϵµναβFαβ . (2.7)

In the language of [1] this is a 1-form symmetry. (Conventional symmetries associated with

conserved particle numbers as in (2.2) are 0-form symmetries.) This 1-form symmetry is the

true global symmetry of electromagnetism, and is a useful starting point for an understanding

of the phases of electrodynamics2.

In particular, it was shown in [9]3 that indeed one can reformulate MHD using this higher-

form symmetry – i.e. magnetic flux conservation – as the organizing principle, resulting in

a framework constrained only by thermodynamic consistency and the global symmetries.

2 For example, the regular massless 4d photon can be understood as a Goldstone mode for the spontaneous

breaking of this 1-form symmetry [1, 21, 22].
3 See earlier work formulating magnetohydrodynamics in terms of strings in [23], as well as some further

developments in [24–27].
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Here we present only the results of the construction, directing readers to [9] for a detailed

discussion. The basic idea is to treat Jµν on the same footing as the ordinary one-index

current jµ discussed in the previous section. For example, it is useful to consider coupling

an external 2-form source bµν to (2.5) as

S → S +

∫
d4x bµνJ

µν (2.8)

If we consider fluctuations about the thermal state with no background magnetic field as in

[28], then we can expand the magnetic flux current in constitutive relations in a higher-form

analogue of (2.2):

J ti = Ξµi J ij = −ρ (∂iµj − ∂jµi + (db)0ij) (2.9)

Here we have worked only to linear order in the magnetic field, and have ignored the stress-

energy tensor; the full construction can be found in [9].

The notation here has been picked to highlight the parallel with conventional hydro-

dynamics in (2.2), and we now unpack it. First, from (2.7) we see that in terms of the

conventional electric and magnetic fields, we have

J ti = Bi J ij = ϵijkEk (2.10)

Here µi is a vector-valued “chemical potential” which can be thought of as the thermody-

namic variable conjugate to magnetic flux 4. Ξ is a thermodynamic parameter that relates

the conserved density Bi to its chemical potential: in conventional language it is the mag-

netic permeability µ. As pointed out in [9] that the field strength db of an applied source b

in (2.8) can be understood as an applied external electric charge current

jµext = ϵµαβγ∂αbβγ (2.11)

This applied source is often called the “free charge current” in elementary electrodynamics.

Finally, ρ is a transport coefficient – it is precisely the resistivity. Note that it plays two

distinct roles. First, ρ determines the response of the electric field to an applied external

current density as in (2.11). Indeed, it can be obtained from the following Kubo formula:

ρ = lim
ω→0

(
1

−iωG
Jxy ,Jxy

R (ω, k⃗ = 0)

)
(2.12)

(This is a correlation function for the electric field, as we have Jxy = Ez). Also, if we

consider the equation of motion ∂µJ
µν = 0, then (setting the source db = 0) we find the

4 In fact, in elementary electrodynamics µi is often called Hi, i.e. the object whose curl is given by the free

charge current. This is further explained in Appendix B. Here we choose to use the notation µi here to

highlight the analogy with a conventional chemical potential.
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following diffusive dispersion relation for the magnetic field

Bz(t, x) ∼ B0e
−iωt+ikx ω = −iDk2 D =

ρ

Ξ
. (2.13)

This is the familiar expression for magnetic diffusion in a plasma. It is a non-trivial statement

about hydrodynamics that the quantity obtained from the Kubo formula in (2.12) determines

real-time dynamics as in (2.13).

We stress that in this formalism it is the resistivity which is the correct transport coef-

ficient to consider in a hydrodynamic theory involving dynamical electromagnetism. Note

also that the current ji associated with the U(1) phase rotations of ϕ is no longer associated

with a global symmetry, and thus does not obviously play a role in this discussion.

B. Classical lattice simulations

As described above, MHD ought to emerge from the sole existence of local thermal equi-

librium together with magnetic flux conservation, and a simple example of such a theory

is given by quantum electrodynamics coupled to some matter sector close to thermal equi-

librium. Of course, studying the full quantum dynamics of such a system directly from its

microscopic description is not tractable to this date. Fortunately, the corresponding classical

theory, regulated on a lattice, can also be in local thermal equilibrium and has magnetic

flux conservation built-in. As a result, its IR dynamics is expected to be described by MHD.

It can crucially be directly studied non-perturbatively through the use of classical lattice

simulations.

Concretely, we consider an interacting classical theory of a complex scalar field ϕ coupled

to an Abelian gauge field Aµ with the continuum action (2.5). The universal dynamics that

we will discuss does not depend on the precise form of the potential, at least as the field is

massive and so that we stay outside the Higgs phase. For the rest of this work, we use

V (ϕ) = m2 |ϕ|2 + λ |ϕ|4 , (2.14)

with real m and λ.

As is well known, classical field theory in thermal equilibrium is UV divergent. In the

real world, this “UV catastrophe” is regulated by (and gave birth to) quantum field theory.

An alternative way of regulating these divergences is to discretize space and introduce a

UV cutoff in the form of the lattice spacing a (see appendix D for more details). These

theories are different in the UV but have the same global symmetries and are described

by the same effective theory of MHD at long distances, and are thus in the same dynamic

universality class. In particular, this means that the long distance physics of both theories
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will be the same at the qualitative level. For instance, they both exhibit the same kind

of transport phenomena, magnetic flux diffusion, etc. which are described by the same

Kubo formulas. The differences between the two theories manifest themselves as different

matching coefficients, i.e. a priori different numerical values for the transport coefficients,

which are determined in a complicated manner by the UV definition of the theory and the

couplings in the potential.

To take advantage of this fact, we consider the following lattice Hamiltonian

H =
∑

n∈Λ

[
|πn|2 + (Diϕn)

∗Diϕn + V (ϕn) +
1

2e2

(
E⃗2

n + B⃗2
n

)]
. (2.15)

We denote our lattice by Λ and make it consist of N3 points. The continuous field ϕ(x) is

replaced by a discrete version ϕn. The same goes for its conjugate momentum π(x), which

is discretized to πn. We introduced the notation (Bi)n = ϵijk∆+
j (Ak)n to denote the discrete

equivalent of the magnetic field and ∆+
i fn = 1

a

(
fn+î − fn

)
is a finite difference version of

the continuum derivative in the ith direction, characterized by the unit vector î. Similarly,

E⃗n = (Ex, Ey, Ez)n is the electric field, canonical conjugate to A⃗n. The discrete covariant

derivatives are realized thanks to the introduction of discrete parallel transporters (“links”)

(Ui)n = e−iae(Ai)n , Diϕn = 1
a

(
(Ui)nϕn+î − ϕn

)
. We use periodic boundary conditions for

the fields ϕn, πn and En. In the absence of external magnetic field, An also has periodic

boundary conditions. In the cases where we consider a background magnetic field – which

is only in Section IVB – we implement it through twisted boundary conditions for the An

fields. We refer the interested reader to Appendix A of [29] for technical details. Note

that by writing down this Hamiltonian we decided to work in temporal gauge A0 = 0. In

particular, it represents a constrained Hamiltonian system and needs to be supplemented

by Gauss law

∆+
i E

i
n = 2e2Im(πϕ∗)n (2.16)

which selects the gauge invariant subspace in field space. Note also that, crucially, this

discretization automatically imposes Bianchi’s identity. this discretization automatically

imposes Bianchi’s identity.

Classical thermal equilibrium in this system at temperature T is described by the statis-

tical partition function

Z[β] =

∫ ∏

nΛ

dϕndπndE⃗ndA⃗ne
−H/T , (2.17)

⟨O⟩T =

∫ ∏

nΛ

dϕndπndE⃗ndA⃗nOe
−H/T , (2.18)

with O some operator and we denote by ⟨O⟩T its thermal average. In practice, all ther-

mal averages of interest are computed by sampling field configuration from the Boltzmann
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distribution e−H/T using a standard Metropolis algorithm.

Our motivation to study this classical system is that unequal time correlation functions

can directly be computed. To do so, we evolve our sampled field configurations along classical

trajectories specified by the Hamiltonian dynamics

∂tπn = − ∂H

∂ϕn

, ∂tϕn = πn (2.19)

∂tE⃗n = − ∂H

∂A⃗n

, ∂tA⃗n = E⃗n . (2.20)

Note that here we are solving the pure classical theory. Only the IR modes have a chance of

being in some thermal equilibrium state. An alternative approach would be to use an effec-

tive Langevin theory with hard modes integrated out as stochastic noise. These trajectories

give us access to classical-statistical correlators of the type GOO
cl (t, n⃗) ≡

〈
O(t, n⃗)O(0, 0⃗)

〉
T

for any given operator O. In particular, they give us access to the classical counterparts of

the Kubo formulas (2.12) and (2.4):

ρ =
1

3

∑

i=x,y,z

∫ ∞

0

dt
∑

n⃗∈Λ
GEiEi

cl (t, n⃗) ≡
∫ ∞

0

dtGEE
cl (t) , (2.21)

σ =
1

3

∑

i=x,y,z

∫ ∞

0

dt
∑

n⃗∈Λ
G

jdyni jdyni
cl (t, n⃗) ≡

∫ ∞

0

dtGjdynjdyn

cl (t) , (2.22)

Where we introduced the shorthand notations GEE
cl (t) = 1

3

∑
i=x,y,z

∑
n⃗∈ΛG

EiEi
cl (t, n⃗) for

the isotropized version of the electric field two-point function at zero spatial momenta, and

similarly for the electric current. GOO
cl (t, n⃗) is the classical limit of the statistical propagator,

which is related to the retarded one near equilibrium by the KMS relation, whose expression

in the classical limit reads

GOO
cl (ω, n⃗) ≈ −2T

ω
Im
(
GOO

R

)
. (2.23)

More details on this correspondence are given in App. A.

In practice, and for the rest of this work, we work in units where the lattice spacing

a = 1, and we set the temperature to T = 1/a = 1, i.e. our temperature is at the lattice

scale. Let us briefly explain how to restore units to the dimensionless numerical results

presented. Consider an observable O with mass dimension ∆. On general grounds its

functional dependence on all parameters will be given by

O = T∆f(Ta,ma, · · · ) (2.24)

where f is a dimensionless function of all physical quantities measured in units of the lattice

scale. Our results should be interpreted as determining the dimensionless function f at a
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particular value of its arguments; the appropriate power of T can be restored by dimensional

analysis if required – e.g. if we restore units to the bottom panel of Figure 1 it would be

interpreted as a plot of ρT against tT – but as we are not in a continuum limit we stress

that the dependence on the UV cutoff a appearing in the scaling function f can never be

removed.

We also wish to fix the scalar mass m and the coupling λ. For our problem, the only

important consideration is that the parameters land the model in its unbroken phase. In

order to ease comparison with Ref. [18], we adopt the same choice, namely5 m2 = e2T 2/4 and

λ = e2

2
. This choice is motivated by phenomenological considerations and further discussed

in Ref. [18].

While we defer the details of equations (2.19)-(2.20) and a recap of our numerical schemes

in App. C, we want to emphasize a feature of our discretization. First, by solving for the real-

valued gauge fields Ai (and not the parallel transporters or links), we study a non-compact

U(1) gauge theory. This means that there are no dynamical magnetic monopoles in the

model and the continuous 1-form symmetry associated with the conservation of magnetic

flux is preserved on the lattice, as manifested in Bianchi’s identity. Indeed, one has, as in

the continuum,

∑

i

∆+
i Bi =

∑

ijk

ϵijk∆
+
i ∆

+
j Ak = 0 , (2.25)

∂tAk = Ek =⇒ ∂tBi − ϵijk∆
+
j Ek = 0 . (2.26)

These relations are together equivalent to the local conservation of the 2-form current

∂µJ
µν = 0 as in (2.7). This conservation law leads to the diffusion of the associated charge,

namely magnetic flux, as we will verify explicitly in Section IIIA 3. Note however that

with periodic boundary conditions the total magnetic flux threading the system is zero;

hydrodynamics describes the local diffusion of magnetic flux.

III. OF RESISTIVITY AND CONDUCTIVITY

To recap, when given a microscopic description of an electromagnetic plasma (2.5), it

would appear that two points of view coexist to describe the long-distance dynamics. The

“conventional” approach to MHD is based on electric charge conservation. It studies the

dynamics of the electric charge current – which is subsequently gauged – and thus introduces

the conductivity σ as a transport coefficient, telling us how electric charges move in response

to an electric field. It couples the electric charge to matter by assuming Ohm’s law j⃗dyn = σE⃗

5 We also use the improved lattice mass of [30], see [18] for more discussions.
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and builds dynamics around this point of view, explicitly imposing Maxwell’s equations with

an electromagnetic coupling e.

Another approach is based on the conservation of magnetic flux, and is thus directly con-

nected to the global 1-form symmetry of dynamical electromagnetism. It directly describes

the dynamics of electric and magnetic fields, and thus directly introduces resistivity ρ as

a transport coefficient as in (2.12). This describes how dynamical electric fields move in

response to an external charge current. Importantly, the equations of motion for MHD close

by themselves with no choice needed for dynamics of ji or explicit mention of Maxwell’s

equations.

As argued above, when the electromagnetic coupling e is weak, these points of view are

equivalent and should agree. Indeed on elementary grounds one expects a relationship of

the form ρ = σ−1. The precise nature of this agreement is however somewhat subtle: the

definition we gave for σ was in terms of a low-frequency limit in (2.4). However the low

frequency limit clearly does not commute with the weak coupling e → 0 limit in a theory

with a hydrodynamic description.

Here we will show from direct simulations that when the electromagnetic coupling e is

strong – as it is in our lattice simulations – the “conventional” point of view is not practical

anymore. In particular, a useful non-perturbative notion of conductivity appears to be lost,

in a sense that we will make precise. On the other hand, the organization around magnetic

flux conservation and in terms of resistivity ρ still provides practical predictions.

In more detail, we study the classical equilibrium (2.15) described in the previous sec-

tion and focus on its long-range dynamics. In this section we will simultaneously describe

numerical results in parallel with their theoretical explanation.

A. ρ and σ from lattice simulation

We begin from the point of view of magnetic flux conservation and compute the resistivity

ρ from the Kubo formula (2.12). To this end, we need a reliable estimation of the zero

momentum electric correlator. We show the results for e2 = 1, N = 200 in the upper panel

of Fig. 1. The correlator is obtained from an average of 500 simulations see App. C for more

information about the simulation parameters. By the Kubo formula (2.21), the resistivity

is the integral of this correlator. In practice, we define the quantity

ρt =

∫ ∞

0

dt′GEE
cl (t′) (3.1)

As shown in the bottom panel of Fig. 1, it saturates to a constant value. Our final estimate

of ρ is obtained by averaging ρt at late time t > 200.
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FIG. 1: Electric correlator (upper panel) and extraction of resistivity ρ (lower panel). The integral

saturates, giving rise to a finite value for ρe2=1 = 1.06± 0.03.
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FIG. 2: Left: Electric current correlator (upper panel) and extraction of σgauged (lower panel).

The correlator integrates to zero within statistical uncertainties, of order of a part in 103 (note the

rescaled axis). Right: Frequency dependent gauged conductivity (Fourier transform of left hand

side). As argued in the main text, Maxwell’s equations predicts that σgauged goes to zero like ρω2.

This is what is shown as a dashed line on the picture, with ρ|e2=1 determined above.

We can already note that ρ|e2=1 = 1.06± 0.03. has a finite value that can be accurately

determined. We also see oscillations in the propagators. They are of a non-universal ori-

gin. They are plasmon-like oscillations generated by our classical lattice equivalent of hard

thermal loops. We discuss this further in Appendix D.

13



1. On extracting the conductivity when the gauge field is dynamical

In our system, we have access to the microscopic electric charge current j⃗dyn. It thus

allows us to directly compute an associated electric conductivity. We proceed in the same

way as with the resistivity: we compute the current-current correlator Gjdynjdyn

cl and define

σgauged
t =

∫∞
0

dt′Gjdynjdyn

cl (t′). The superscript indicates that this quantity is calculated in

the gauged theory from the Kubo formula (2.4). We show the results in the left panel of

Fig. 2. We find that the conductivity, defined from the Kubo formula, vanishes in this

system σgauged|e2=1 = −000010± 0.00014.

The vanishing of the conductivity might seem surprising but can easily be explained. It

is a direct consequence of Maxwell’s equations. The current reads

e2jdyni = ∂tEi + (∇×B)i. (3.2)

This implies the following relation between the electric and electric current correlator at

zero spatial momentum

Gjdynjdyn

cl (ω, k = 0) = −ω
2

e4
GEE

cl (ω, k = 0) . (3.3)

The left-hand side determines the resistivity through the Kubo formula (2.12). We see that

as long as the resistivity is non-zero and finite, the extra factors of ω on the right-hand

side mean that the Kubo formula for conductivity necessarily vanishes in the presence of

dynamical electromagnetic fields.

Physically, this is a consequence of electric screening. The conductivity measures the

linear response to an applied external electric field. If electromagnetism is dynamical, there

is no precise meaning to the concept of an “external electric field”, indeed any putative

external electric field will always be screened by a dynamical one, resulting in a vanishing

jdyn at late times. This is illustrated in Fig. 3, where we attempt to add an external

electric field. There is no completely canonical way to do this in a theory of dynamical

electromagnetism, but in Appendix C we demonstrate a physically reasonable scheme.

Note that the dynamical electric field asymptotes to a constant value which precisely

cancels the external one. Recalling Maxwell’s equations, the time derivative of the dynamical

electric field sources the electromagnetic current. An electric current is then produced while

the dynamical electric field readjusts to screen the external one but vanishes eventually, in

the steady state.

Given these results, one may be confused about the meaning of the conductivity that

is often computed from the current-current two point function in a theory of dynamical

electromagnetism, e.g. as in [31, 32]. It seems that giving a precise meaning to σ involves an

order of limits. The Kubo formula for conductivity assumes that the probe electric field is
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FIG. 3: Left: Mean electric field along the z direction subject to an external electric field quench in

the z direction. The quench we implement simply corresponds to a change in the initial conditions

of the electric fields. As a result of electric screening, it quickly relaxed to the external field

value. Right: Mean dynamical electric current subject to an external electric field quench in

the z direction. As the electric current is sourced by the time derivative of the electric field

which is constant at late time, it is not possible to source a non-zero steady current in this way.

We observe the emergence of an approximately steady current at intermediate times. For less

strongly interacting systems, this intermediate regime is the one giving rise to well-defined electric

conductivity.

non-dynamical, and that the electric field is decoupled. This notion of decoupling acquires

meaning in the dynamical theory only if the electric field evolves on a timescale τE that is

sufficiently long that the electric field can be thought of as being fixed over the timescale

of the conductivity measurement. In Section III B we will estimate τE and show that it

depends on the electromagnetic coupling; the required hierarchy of scales does not exist if e

is large.

Operationally, this can be thought of in light of linear response and Fig. 3. A transient

current appears for the time it takes to screen the external electric field. If the electric

field is sufficiently long-lived, the linear response regime can be reached. The dynamical

electric field slowly varies to screen the external one. This in turns creates an approximately

constant current and the conductivity could in principle be extracted from this transient

current. It is also clear from Fig. 3 that this separation of scales does not happen in our

current system. The external field is swiftly quenched and no current is produced.
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2. Linear response and resistivity

Before moving on to this, we explore further the consequence of magnetic flux conserva-

tion. In particular, it is interesting to consider the meaning of resistivity from the point of

view of linear response theory. As recalled in (2.12)-(2.11), ρ measures the linear response

of the electric field to an external charged current. Physically, from the point of view of

magnetic fluxes, a current of probe charges rearranges magnetic field lines, which in turns

produce some electric field by induction. This phenomenon is illustrated in Fig. 4, where

we study the time evolution of our system in the presence of a constant external current jext

of charges along the third direction as defined in (2.11); see App. C for further details.

On the left, we show the mean value of the electric field along the third direction. As

expected, the field quickly reaches some constant value. The dashed line is the prediction

of linear response, using the resistivity from the Kubo formula (3.1). The agreement is

impressive.

On the right-hand side, we show the average value of the dynamical electromagnetic

current. To create a stable steady state, it has to cancel the applied external one, and it

does. Note also that in this way one effectively recovers a version of Ohm’s law, whereby

⟨jdyni ⟩ = −jexti = −1

ρ
⟨Ei⟩ . (3.4)

In this sense, one can always define conductivity as the inverse of resistivity, computed

from the Kubo formula of the electric field (2.21). However, as discussed above and in

section III B, it acquires a meaning of its own as the response of charged matter to an

external electric field only at weak coupling.

3. Magnetic diffusion

Finally, we also examine magnetic diffusion, as predicted by Eq. (2.13). This is illustrated

in Fig. 5, where we consider the time-dependence of the magnetic field correlator at different

values of spatial momentum k. While the k2 dependence of the exponent is clear, and

the qualitative behavior of the correlator is the one expected and compatible with ρ ≈
1.06, a quantitative analysis proves harder to conduct. The main limiting factor is that an

independent extraction of the magnetic susceptibility Ξ – which measures fluctuations of

magnetic flux which wraps the whole system – is hard in the presence of periodic boundary

conditions. While the local fluctuations of magnetic fluxes are unconstrained, the total fluxes

in the box are frozen to zero as a result of the local nature of our Monte Carlo updates.

While in principle it is possible to extract the susceptibility from local measurements – see

for instance [33] for related discussions in the context of the QCD topological susceptibility
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FIG. 4: Left: Mean electric field along the z direction in the presence of an external electric

current along the z direction. As predicted by linear response, a nonzero electric field is generated,

whose magnitude is perfectly predicted by the resistivity determined above from its Kubo formula.

Right: Mean dynamical electric current along the z direction in the presence of an external electric

field along the z direction. A steady state is created by creating a flow of charge in the opposite

direction to the external probe.

– it is beyond the scope of this work and of no intrinsic value per se. We see that using the

bare value of Ξ = e2 = 1 describes the data fairly well, suggesting that this parameter is

only weakly renormalized if at all.

B. Electric field relaxation at weak coupling

As discussed in the previous section, a key role in interpreting the conductivity is played

by the relaxation time of the electric field. Here we study this phenomenon quantitatively

by introducing a generalization of the effective theory of MHD and comparing it to weak

coupling.

The required formalism is a modification of magnetohydrodynamics that allows for a finite

electric field lifetime, as discussed in [34] (see also [35]). Following that work, we have an

expression for the slightly broken conservation of the electric field, which is a generalization

of (2.9).

∂tJ
ti + ∂jJ

ji = 0 , ∂tJ
ij +

ρ

τE
(∂iµj − ∂jµi +Htij) = − 1

τE
J ij . (3.5)

The new parameter τE controls the decay rate of the electric field via J ij(t) ∼ e−t/τE .

The universal formulation of MHD in terms of 1-form global symmetry reviewed in Section

IIA 2 corresponds to an effective description for long times t ≫ τE; in this case the term

in ∂tJ
ij may be neglected, and J ij has no independent dynamics, being fully determined by
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FIG. 5: Transverse magnetic correlator for different momenta. The dashed line corresponds to

the naive expectation G
By

cl ∼ e−Dk2t with D = ρ/Ξ, ρ is extracted from the left-hand side. As

explained in the text, Ξ is difficult to extract independently with periodic boundary conditions. It

does appear that it is only weakly renormalized from the bare value Ξ = 1 which we use in this

plot. The k2 dependence is clear.

gradients of µi. Note that τE is an independent parameter and there is no a priori relation

between the coefficient ρ and the decay rate 1/τE.

On the other hand, the equations of motion of the conventional formulation of plasma,

in e.g. [20] where the electromagnetic field is weakly coupled to the matter sector – can be

cast precisely in the form (3.5). In Appendix B we perform a careful matching and find the

relations

τE =
1

σe2
ρ =

1

σ
(3.6)

(In this expression σ is defined in the conventional way, as the quantity apearing in Ohm’s

law that relates the dynamical current jdyn to the dynamical electric field E; see Appendix

B for details).

We see that the basic differentiating ingredient in a “conventional” formulation of the

plasma is that the electric field is introduced as a degree of freedom, with its relaxation time

τE determined by the microscopic coupling e. Note that hydrodynamics is valid for t≫ τE,

and that as expected this timescale diverges as we take the coupling to zero.

Within the theory defined by (3.5) we can compute various two-point functions. We find
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that the resistivity ρ can be written6 as

ρ = lim
ω→0

1

ω
ImGJxyJxy

R (ω, k⃗ = 0) , GJxyJxy

R (ω, k⃗ = 0) =
ωρ(i− ωτE)

1 + ω2τ 2E
(3.7)

It is instructive to compute the dynamical current-current correlation function for the con-

ductivity of jdyni defined from (2.11). Using ∂tn
dyn + ∂ij

dyni = 0 and nel = e−2∂iEi, from

(3.5) we find that

Gjdynz jdynz

R (ω, k⃗ = 0) = lim
kz→0

ω2

k2z
Gndynndyn

R (ω, kz) =
1

e4
ρω3

i+ ωτE
(3.8)

We can use this to define the conductivity σgauged of the electric charge current in a theory

of dynamical electromagnetism as

σgauged(ω) ≡
1

ω
ImGjdynz jdynz

R (ω, k⃗ = 0) =
1

e4
ρω2

1 + ω2τ 2E
. (3.9)

The vanishing of this quantity at low frequencies was previously shown in (3.3) and seen

numerically in Figure 2. Here we have included the effects of a finite electric field lifetime τE.

Indeed if we now match τE to a microscopic description using (3.6) (and further assume that

the electric field is the only longest-lived nonconserved operator), then we can extrapolate

ω ≫ 1/τE and find the expression

σgauged(ω ≫ 1/τE) =
1

e4
ρ

τ 2E
= σ (3.10)

where in the last equality we have used (3.6).

Thus the effects of dynamical electrodynamics soften the correlator, but if one goes to

higher frequencies, in this simple framework with one timescale one can extract a finite result

for the conductivity. This regime exists only over intermediate frequency scales τ−1
E ≪ ω ≪

Λ, where Λ denotes a microscopic scale in the theory beyond which hydrodynamics is not

valid. Thus the existence of the regime requires a hierarchy of scales, which is indeed

expected to exist in weakly coupled electrodynamics due to (3.6).

It seems that the classic perturbative (in e) calculations of σ in a plasma of dynamical

electromagnetism (see e.g. [31, 32]) should be interpreted as extracting σ in this regime.

We are not aware of any perturbative calculation that explicitly shows the crossover to the

vanishing value of σgauged. Note that through (3.6) the value of σ in this regime is indeed

numerically equal to ρ−1, and thus – provided the hierarchy of frequency scales exists – this

approach should correctly provide a characterization of the plasma.

6 On the other hand, the parameter 1/τE can be obtained from G∂tJ
xy∂tJ

xy

R (ω, k⃗ = 0) via the memory

matrix formalism [34] with no prior relation to ρ.
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We attempted to investigate this crossover in our simulations. However we found that

the presence of a sharp gapped resonance, which we interpret as a plasmon – as shown in the

right panel of Figure 2 – made it impossible to enter a regime where the correlation function

of jdyn saturates to a constant as in (3.10). In the language above the plasmon frequency

plays the role of Λ and the required hierarchy does not exist.

IV. APPLICATION: CHIRAL TRANSPORT

We conclude this work with a concrete application where these considerations may have

an impact: chiral transport. We start by briefly discussing chiral transport from the point

of hydrodynamics before presenting our numerical results.

A. Background: chiral magnetohydrodynamics

Consider the theory of electrodynamics coupled to massless Dirac fermions, i.e.

S =

∫
d4x

[
ψ̄ /Dψ − 1

4e2
F µνFµν

]
+ Sϕ (4.1)

(The inclusion of a charged scalar field in Sϕ does not modify the universality class, and we

include it for later convenience). This theory now has extra structure compared to (2.5):

in particular its 0-form axial current jµA ≡ ψ̄γ5γµψ is not conserved at the quantum level

because of the Adler-Bell-Jackiw anomaly:

∂µj
µ
A = κϵµνρσJµνJρσ (4.2)

where κ = 1
16π2 is an anomaly coefficient. Note that we have chosen to express the non-

conservation in terms of the 2-form symmetry current in (2.7). This highlights that the

breaking of the symmetry due to this anomaly is in fact a kind of intertwining of the

0-form axial symmetry and the 1-form magnetic flux symmetry. Indeed, it was recently

explained that the most precise characterization of this structure is in terms of a non-

invertible symmetry [36, 37]7, which lets one construct conserved axial charge operators that

are deformed by the anomaly to obey a composition law which is not that of a normal U(1)

group.

One can now place this theory at finite temperature and ask about the long distance

hydrodynamic behavior. The resulting framework is called chiral magnetohydrodynamics.

7 For an alternative way to write the non-invertible symmetry generator, see [38, 39]. See also [8] for a

recent review on the non-invertible symmetry of this type.
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Despite intense study due to its phenomenological importance – see e.g. [14, 40–42] – ques-

tions remain. Much of the literature predates the recent refined understanding of symmetry

structure and is not framed in the discussion of effective field theory, leading to potential

confusion about the domain of validity of the resulting theory.

We briefly review the conventional approach to this problem; one splits the theory into

a Maxwell sector and a matter sector, and imposes Maxwell’s equations in the form (2.2),

assuming that the the gauged U(1) current jdyn takes the form

jdyni = σEi + 8κµABi (4.3)

where the second term in the axial chemical potential µA arises due to the anomaly in the

ungauged theory (see e.g. [43] for a review).

As explained extensively above in the context of ordinary MHD, one may expect dif-

ficulties with this framework if the electromagnetic coupling is large and σ is difficult to

define.

For example, a basic quantity of interest is the axial charge relaxation rate. Due to the

anomaly, the axial charge density nA is no longer conserved, and instead decays with a

rate ΓA. One can attempt to obtain an expression for ΓA from elementary hydrodynamic

arguments [17], relating it to the electric conductivity (2.4) of the ungauged theory. See

Section IVB for more discussion. Fasciatingly, previous real-time simulations [17, 18] appear

to disagree with this formula; in particular, a reasonable estimate for the electric conductivity

results in a decay rate that is off from the hydrodynamic prediction by about an order of

magnitude.

We now turn to more recent work an effective field theory framework, including [15, 16].

These theories allow for the computation of various observables: In particular, [15] obtained

an expression for ΓA in terms of the resistivity ρ. This leads to a universal formula for this

decay rate at small magnetic field:

ΓA =
64κ2

χA

B2ρ (4.4)

Importantly, here the resistivity ρ is expressed in terms of the Kubo formula (2.12).

Though to the best of our knowledge this relation was first expressed in this form following

hydrodynamic considerations in [15], the Kubo formula (4.4) is not a surprise. It can also be

obtained from a more microscopic point of view as consequence of the fluctuation-dissipation

theorem which relates the chiral decay rate to the Chern-Simons diffusion rate – see Ap-

pendix B of [18] for a derivation. The Kubo formula follows from equation (B.17) there,

where the input from hydrodynamics is in the interpretation of the correlation function of

the electric field in terms of the resistivity.
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A holographic study in the same universality class was performed in [44], and demon-

strated agreement with this relation. In this work we demonstrate that (4.4) is in perfect

agreement with observations of the axial charge decay rate in real-time simulations, thus

resolving the discrepancy noted in [17, 18].

B. Numerical results on the chiral decay rate

Direct computations of anomalous transport using semiclassical methods from a micro-

scopic theory are possible [45–49] but computationally very challenging. Ref. [18] follows

a different approach. An anomalous sector is added in an effective way to the microscopic

action (2.5), leading to a hybrid microscopic-effective model. An additional homogeneous

degree of freedom a(t) is added to the theory as follows

Sa = S +

∫
dx3

(χA

2
∂ta∂ta+ κaϵµνρσF

µνF ρσ
)
. (4.5)

The time derivative of a plays the role of the axial chemical potential ∂ta = µA. In particular,

Ref. [18] takes κ = 1
16π2 and χA = T 2

3
as motivated by QED8. We use the same parameters

in the subsequent analysis. The homogenous dynamics of the axial charge is expected to be

described by the anomalous MHD framework of [15].

The effective chiral chemical potential is conjugate to the chiral charge density in the full

microscopic theory nA = χAµA. Indeed, its dynamics is dictated by the following “anomaly”

equation

χAµ̇A = κFµνF̃
µν . (4.6)

The backreaction into the gauge fields equations happens through the generation of a chiral

magnetic current− 1
2π2µAB⃗. The scalar sector is not affected by these modifications. Its role

is to simply provide a microscopic implementation of a electrically charged matter sector.

This theory allows us to directly check the Kubo formula (4.4). We start by computing

again ΓA by fitting the exponential decay of the chemical potential µA, see [18] for more

information. After checking that our results are in agreement, we extent the determination

of ΓA to larger magnetic fields. We show the results in Fig. 6. The dashed line corresponds

to the prediction of the Kubo formula (4.4), using the resistivity computed in Fig. 1. The

agreement up to moderate values of B is impressive. The deviations at larger values of B2

simply signal the breaking of linear response.

8 We use slightly different notations from Ref. [18] in order to make more direct contact to Ref. [15]. In

particular, writing a, u5 the “axion” and the chemical potential of [18], we have a = a
2Λ , µA = u5

2 and

indeed χA = 4Λ2 = T 2

3 , with Λ the axionic coupling of [18].
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FIG. 6: Chiral decay rate as a function of the external magnetic field. The linear response prediction

in terms of the resistivity is shown as a dashed line; the agreement is impressive. We also show the

dependence of the rate for stronger field and see a departure from the B2 dependence.
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FIG. 7: Left: Ratio of the dynamical current generated by the decay of the chiral chemical

potential to the chiral chemical potential. While both jdynz and µA are time dependent, their ratio

is constant. Right: Ratio of the electric field to the chiral chemical potential. We see that it also

well described by linear response theory and simply related to the chiral magnetic current by the

resistivity determined in the previous section.

It also allows us to illustrate a simple physical insight coming from these considerations.

The decay of the axial charge is easily explained once the presence of a chiral magnetic

current is known. Equation (4.4) is immediate if one assumes that the electric field is

related to the chiral magnetic current through linear response E⃗ = ρjdynCME = ρ 1
2π2µAB⃗ and

inserts it in the anomaly equation (4.6). The elementary derivation mentioned in Section

IVA proceeds in the same way except it assumes Ohm’s law jdynCME = σE⃗ and predicts
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Γσ
A = 64κ2

χA

1
σ
B2. The conceptual difference between the two is whether linear response should

be applied to the electric field or the current. Our results simply show that when σ cannot

be unambiguously defined, the universal approach is to consider the electric field as being

sourced from the chiral magnetic current.

We confirm that this is what happens in our system on the left-hand side of Fig. 7, where

we plot the ratio of the mean electric current to the chemical potential. We see that this

ratio is well described by the CME prediction. More to the point, we see that it then induces

a constant response electric field E⃗ = ρjdynCME.

To conclude, we verify that these results hold for different values of the electromagnetic

coupling e. Concisely, we compare the e-dependence of ρ obtained through three different

methods: from the ΓA data of [18], by fitting the linear response of E to an external current

and from the Kubo formula (2.12).

We demonstrate the results in Fig. 8. Let us start by commenting that the extraction

using the Kubo formula is much more costly than the linear response extraction. It requires

averages over hundred of samples to extract a signal, compared to a single sample. This

explains why we generated more charges for the “quench” data. Second, the extraction from

ΓA and the direct linear response are in alsmost perfect agreement. This further supports

the above explanation; the electric field created from the chiral decay is a response to the

chiral magnetic current. The agreement with the Kubo formula is also very good. The few

percent discrepancy at larger charges can be taken as an assessment of our systematic errors.

For instance, the linear response regime decreases at larger charge, making the extraction

of ρquench and ΓA less controlled. We illustrate this on the right-hand side of Fig. 8, where

we showed the response of the electric field to a small external current. We see that even

for e2 = 1, deviation from linear response are seen for small external currents. Note also

discretization artefacts are also expected to be stronger for larger charges [17].

The precision of our data allows us to look at the coupling- dependence of the resistivity.

For simplicity, we fit only the data obtained from the quenches, as they are more numerous.

We observe the dependence close to being quadratic but with clear subleading corrections.

As shown on the figure, they are compatible with logarithmic corrections (our range of

data is not large enough to distinguish it from a fractional power). This behavior, already

reported in [18] for ΓA is interesting, as it is of the same functional form as the known

subleading correction to 1
σ
.
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FIG. 8: Left: Charge dependence of the resistivity for different methods. Black dots corresponds to

extracting the resistivity from the chiral decay rates of [18]. The red dots are obtained by applying

a constant external current to the system and fit the linear response of the electric field. The purple

dots are obtained from the Kubo formula. The chiral decay rate data are indistinguishable from the

linear response extraction. This is not surprising as both methods have similar systematics. The

Kubo formula results are in good agreement a small charges but display a few percent tension at

larger charges. We attribute this small discrepancy to small uncontrolled systematics (small region

of validity of linear response and potential remaining finite volume effects). Right: Example

of the extraction of the resistivity from the linear response to an external current. We perform

simulations for different external currents and extract the linear response of the electric through a

polynomial fit. We also note that the regime of validity of linear response seems relatively limited

in this system.

V. CONCLUSION

In this work we performed a study of classical lattice simulations of electrodynamics

coupled to charged matter (and – in the last section – an effective axial dynamics). We have

shown that the dynamics of the plasma are in agreement with a recent formulation of MHD

organized around the 1-form symmetry associated with the magnetic flux conservation.

A key point here is that the resistivity of the plasma – as determined from Kubo formulas

arising from 1-form symmetry – remains finite and correctly predicts dynamical quantities

such as the rate of magnetic field diffusion and axial charge relaxation.

A conventional formulation of the plasma would normally use the conductivity instead;

here some care must be taken, as in a theory of dynamical electromagnetism, if the plasma

is fully thermalized then the conductivity cannot be non-perturbatively defined in terms of

its usual Kubo formula, as electrodynamic fluctuations drive the low-frequency limit of this
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FIG. 9: Schematic illustration of effect on current-current correlation function of weakly coupling

dynamical electromagnetism to U(1) global symmetry current. As shown in Section III B, correlator

in theory with dynamical EM vanishes at low frequencies ω ≪ τ−1
E . If e is sufficiently small, the

effect at intermediate frequencies is expected to be small, and then the conductivity of the ungauged

theory will determine the inverse resistivity of the gauged theory.

formula to zero.

However if one can arrange a hierarchy of scales so that the electric field relaxation rate

τ−1
E is much slower than any other time-scale in the problem, then the appropriate correlation

function for the electric current saturates at a constant value over an intermediate range

of frequencies τ−1
E ≪ ω ≪ Λ and can be used to define the conductivity, which is then

numerically equal to the inverse resistivity. Such a hierarchy is not present in the lattice

simulations presented in this work. This hierarchy is however in principle present in weakly-

coupled electromagnetism, and existing perturbative calculations of the conductivity in a

theory of dynamical electromagnetism should presumably be interpreted in this context.

Indeed, if the electromagnetic coupling is small enough, we expect it to have little effect

in the intermediate range of frequencies above, and the conductivity of the ungauged theory

would then be essentially equal to the inverse resistivity in the gauged theory, as schemati-

cally illustrated in Figure 9, and implicitly assumed in much of the literature. We believe a

completely convincing argument to this effect would require explicitly incorporating dynam-

ical long-range electromagnetic fields in a microscopic transport calculation to show from

first principles the crossover exhibited on hydrodynamic grounds in Eq (3.9).

Such considerations can have consequences on predictions for anomalous transport in

systems with dynamical electromagnetic fields. We discussed the example of the chiral

decay rate. Due to the presence of the chiral magnetic current induced by the anomaly, the

chiral charge exponentially decays into gauge fields. We showed in this work that the rate

previously measured in [17, 18] is completely consistent with hydrodynamic expectations,
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provided the transport coefficients are obtained from the Kubo formula derived in [15], thus

resolving a previous confusion.

One might wonder whether we could also make a similar statements for axial charge

relaxation in non-Abelian gauge theories. Here it is helpful to note that the key expression

(4.4) is in fact a special case of the more general expression

ΓA = lim
Ω→0

k2

χAΩ
ImGR

QQ(Ω, p⃗ = 0) (5.1)

where GR
QQ(Ω, p⃗) is the retarded correlation function of the topological density Q(x), which

is Q = FµνF̃
µν in the Abelian case (see [50] for more details 9) and Tr(F a

µνF̃
aµν) in the non-

Abelian case. In this work we exploited the continuous 1-form U(1) symmetry in Abelian

gauge theory to relate the above observable to a transport coefficient ρ. However in a non-

Abelian plasma there is generally at most only a discrete ZN 1-form symmetry, with no

corresponding transport coefficient or universal hydrodynamic description, and we do not

expect to be able to make any universal statements.10

One interesting direction for future research is the study of fluctuation effects in MHD. It

is well-known that generically in hydrodynamics fluctuations can result in long-time tails in

hydrodynamic observables [55, 56]. These are suppressed by loop factors and are not visible

in classical calculations, and can result in non-analyticities in the ω-dependence of various

correlation functions. Numerically we do not currently see any smoking-gun evidence for

such non-analyticity: e.g. the ω-dependence of the gauged conductivity in Figure 2 appears

to be well approximated by the classical ω2 dependence, though a small shift in the exponent

would likely not be visible numerically. Theoretically we are not aware of much study of

long-time tails in the relativtistic MHD context. One recent result is [50] in the context

of chiral MHD, essentially showing that hydrodynamic loop corrections to the decay of the

axial charge at zero magnetic field result in non-analytic behavior in ω that is nevertheless

irrelevant, consistent with the numerical results exhibited here. It would be very interesting

to systematically study long-time tails in MHD using the techniques of [55, 56] and confront

the results with more detailed numerics at low frequencies.

Finally, the fact that the conductivity is a useful dynamical quantity only for weakly

coupled matter is not well appreciated in the literature. As we have shown, this can have

9 [50] was released by a subset of the current authors after the first version of this work was placed on the

arXiv.
10 In the non-Abelian context the quantity computed in (5.1) is generally called the Chern-Simons diffusion

rate, and represents the topologically induced axial charge dissipation stemming from the axial anomaly

in non-Abelian theories. This quantity has been extensively studied both at weak-coupling [51–53] and

from holography [54].
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quantitative consequences. Our results suggest that it may make sense to reevaluate current

descriptions of chirally assisted phenomena in cosmology, see for instance [40, 41, 57, 58]

and references therein for a few examples. Similarly, recent developments considered the

interplay of the chiral dynamics discussed in this work and on non-Abelian topology changing

processes (sphalerons) [59]. The precise value of the chiral decay rate also impacts any

resulting predictions.
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Appendix A: Correlators and the classical limit

We use this appendix to collect our conventions regarding correlators and make elabo-

rate how classical correlators are related to the quantum ones. We will mostly follow the

discussion presented in [60]. Out of equilibrium, two independent unequal time two-point

functions can be defined for each operator O. They can be chosen as the statistical correlator

GO
s (x; y) and the spectral correlator GO

ρ (x; y)

GOO
s (x; y) =

1

2
{O(x)O(y)} , (A1)

GOO
ρ (x; y) = −i[O(x), O(y)] . (A2)

At the level of two-point functions, thermal equilibrium is expressed by the KMS relation,

which relates the two correlators

GOO
s (k) =

(
1

eω/T − 1
+

1

2

)
ρ(k) . (A3)

with k = (ω, k⃗) and

ρ(k) = iGOO
ρ (k) (A4)
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the spectral function of the operator O, which is real and positive definite.

Transport properties are usually expressed in terms of the retarded correlator GOO
R

GOO
R (x; y) = θ(x0 − y0)G

OO
ρ (x; y) . (A5)

More precisely, transport can be read from the imaginary part of GOO
R , which is nothing

less than the spectral function itself

Im(GOO
R (k)) = −ρ(k)

2
. (A6)

In the classical limit, the classical correlator is a good approximation to the statistical

one GOO
cl (x) ≈ GOO

s . It also captures transport properties, as the classical spectral function

can be recovered through the KMS relation (A3) in the classical limit

GOO
cl (x) ≈ T

ω
ρ(k) . (A7)

Plugging this into (2.4)–(2.12), one gets the classical Kubo formula (2.21)-(2.22) (note that

a factor of two is absorbed in the symmetric integration from zero to infinity).

Appendix B: A global symmetry interpretation of weak coupling

Given a system with a conserved magnetic flux, when is it useful to think of it as Maxwell

electrodynamics weakly coupled to charged degrees of freedom11?

In this Appendix we seek to give a universal definition of the concept of “weak electro-

magnetic coupling”, relating it to emergent hydrodynamic timescales discussed in the main

draft. We take a somewhat leisurely exposition here, taking opportunities to connect to

elementary electrodynamics.

To orient ourselves, let us consider pure Lorentz-invariant electrodynamics, i.e. the action

S =

∫
d4x

(
− 1

4e2
FµνF

µν + bµνϵ
µνρσFρσ

)
(B1)

Here bµν is the coupling to the external source for the 2-form magnetic flux current Jµν =
1
2
ϵµνρσFρσ. To interpet this source, write Fµν = ∂µAν − ∂νAµ and note that the coupling

now takes the form
∫
d4xjµextAµ, where as in (2.11) we have

jµext ≡ ϵµνρσ∂νbρσ (B2)

In other words, the natural source for the 2-form current can be understood as a fixed

external electric charge current. In conventional electrodynamics, this external source is

11 We are grateful to S. Hartnoll for discussions related to the content of this section.

29



often called the free charge current. In textbooks we often consider the 3-vector fields H

and D, which the reader might (grudgingly) recall are defined as the objects who obey the

bare Maxwell’s equations sourced by the free charge current, i.e.

∇×H = jext +
∂D

∂t
∇ ·D = ρext (B3)

Comparing (B3) with (B2) we see that the components of the 2-form source bµν are actually

precisely H and D:

bti = Hi bij =
1

2
ϵijkD

k (B4)

This identification involves derivatives and so is actually ambiguous up to the following

transformation parametrized by an arbitrary 1-form:

bµν → bµν + ∂µΛν − ∂νΛµ, (B5)

which leaves invariant jext. It will nevertheless turn out to be helpful in relating the universal

higher-form language with elementary concepts in textbook electrodynamics.

Now let us examine a slightly more general situation: consider a Coulomb phase of

electrodynamics in a medium that is no longer Lorentz-invariant, and is expected to be

characterized by two parameters ϵ and Ξ (i.e. the electric and magnetic permeabilities).

The Maxwell action is then modified to be:

S =

∫
d4x

(
− 1

4Ξ
FijF

ij − 1

2
ϵFtiF

ti +
1

2
bµνϵ

µνρσFρσ

)
(B6)

It is instructive to write the general expression for the 2-form current Jµν in the presence of

b. After a short computation we find

J ti = Ξ
(
bti + ∂tÃi − ∂iÃt

)
J ij =

1

ϵ

(
bij + ∂iÃj − ∂jÃi

)
(B7)

We obtained this expression by varying the action with respect to the ordinary photon A

and then parametrized the solution to the resulting equation of motion in terms of a new

dynamical vector field Ã – one can think of this as the dual magnetic photon.

The form of the currents that one obtains from here should be familiar: it is precisely

the 1-form version of a spontaneously broken symmetry, with Ã being the 1-form Goldstone

mode. Indeed it is well-known that the ordinary Coulomb phase of electrodynamics is

the phase where the 1-form magnetic flux symmetry is spontaneously broken [1, 21, 22].

Comparing this to an ordinary (0-form) spontaneously broken symmetry, we see that Ξb is

the 1-form charge susceptibility, whereas 1
ϵ
plays the role of the 1-form superfluid stiff-ness.
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Let us now connect to elementary electrodynamics. Using (B3) and expressing the two-

form current Jµν in terms of the regular E and B12 fields we find:

B = ΞH E =
1

ϵ
D (B8)

which are the usual relations relating the magnetic and electric fields to D and H. The main

point to note here is that the macroscopic electric and magnetic permeability ϵ and Ξ have a

precise meaning in terms of the thermodynamic parameters characterizing the spontaneous

breaking of 1-form symmetry in a material. Indeed the speed of the gapless photon is

c2 =
1

ϵΞ
(B9)

which can now be re-interpeted as the usual expression for the speed of the Goldstone mode

in a conventional symmetry broken phase with stiffness ϵ−1 and susceptibility Ξ (see e.g.

[61]).

Now, let us consider what it means to add dynamical charges to this system. We can

consider modifying the action as follows:

S =

∫
d4x

(
− 1

4Ξ
FijF

ij − 1

2
ϵFtiF

ti +
1

2
bµνϵ

µνρσFρσ + jdynµ Aµ

)
(B10)

where here jdynµ is an extra density of dynamical charges. In their absence the system is in

a Coulomb phase; once they are present the system may be in a different phase. Thus in a

universal sense one can simply imagine that adding charges has the effect of disordering the

spontaneous breaking of 1-form symmetry in the Coulomb phase.

To proceed we need a choice for their dynamics. We now specialize to the choice that is

relevant for plasma, i.e. we assume that there exists a parameter σ such that the following

relation is true:

jidyn =
1

2
σϵijkJjk (B11)

This is stating that if the gauge potential A is frozen, then the electrical charge current jidyn

responds to the application of an electric field with 0-form conductivity σ. The equation of

motion that one finds from here is now simply:

1

Ξ
ϵijk∂jJtk + ϵ∂tϵ

ijkJjk = jidyn (B12)

This is simply the in-medium Maxwell equation, which we have written in terms of Jµν

so that it may be related to (3.5), which we recall made no mention of any microscopic

description. We find the following matching of parameters:

τE =
ϵ

σ
ρ =

1

σ
(B13)

12 Note that the shift of bµν by ∂[µÃν] is exactly the ambiguity (B5).
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In other words, by viewing the plasma as a deformation of a phase where the 1-form sym-

metry is spontaneously broken (i.e. the free photon phase), we have obtained information

about an extra non-universal scale τE, expressed in terms of thermodynamic data ϵ charac-

terizing the spontaneously broken phase. At times t≫ τE we obtain a description in terms

of MHD alone.

Finally, let us note that for a system where the electrodynamic sector alone (i.e. in the

absence of jdyn) is Lorentz-invariant, then from (B9) we find ϵ = Ξ−1, and the electrody-

namic number is characterized by a single number, the electromagnetic coupling e; further

comparing (B6) to (B1) we see that Ξ = e2, and we find

τE =
1

σe2
ρ =

1

σ
. (B14)

Note in particular that as the electromagnetic coupling e is taken to zero, τE grows and the

MHD description’s range of validity t≫ τE is smaller, as one might expect.

Appendix C: Numerics

We summarize briefly here our numerics, more information can be found in [17, 18]. See

for instance [29] for a review on classical lattice techniques. The thermal initial conditions for

the system are sampled thanks to a standard Metropolis algorithm applied to (2.15). At this

stage, Gauss law is only mildly satisfied. We remedy this situation by cooling the system.

The configuration generated by the Monte-Carlo is brought to the closest configuration

satisfying Gauss law through steepest descent. For simulations with a background magnetic

field, we impose non-zero fluxes by using the twisted boundary conditions described in [18].

The external electric current and electric fields scenario described in the main text are

realized as quenches; they are turned on at the beginning of the time evolution. The same

is true for the chiral chemical potential.

Concretely, we solve the following discretized set of equations

∂tφ = π ∂tπ =
∑

i

D−
i D

+
i φ− V,φ∗ (C1)

∂tAi = Ei + Eext
i ∂tEi = 2e2Im{φ∗D+

i φ} −
∑

j,k

ϵijk∆
−
j Bk −

1

2π2
µAB

(8)
i + jexti (C2)

µ = ∂ta ∂tµ =
3

2π2

1

T 2

1

N3

∑

n⃗

1

2

∑

i

E
(2)
i (B

(4)
i +B

(4)
i,+0) (C3)

with ∆±
µ f = ± 1

dx
(f±µ − f), D±

µ f = ± 1
dx
(e∓iedxµAµ(n± 1

2
)f±µ − f) the forward/backward finite
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difference operator and covariant derivatives, Bi =
∑

jk ϵijk∆
+
j Ak, and

E
(2)
i ≡ 1

2
(Ei + Ei,−i) B

(4)
i ≡ 1

4
(Bi +Bi,−j +Bi,−k +Bi,−j−k) (C4)

B
(8)
i ≡ 1

2

(
B

(4)
i +B

(4)
i,+i

)
. (C5)

as composite operators necessary to have a proper discretization E⃗ · B⃗ as a total derivative.

The external sources Eext
i and jexti are used for our linear response analysis. As already

mentioned in the main text, adding an external current jexti is unambiguous. On the other

hand, the meaning of an external electric field Eext
i in the dynamical system is less clear.

We implement it as a shift in the momentum operator. Its effect is to effectively change the

initial conditions for the gauge field and force the system out of thermal equilibrium. It is

worth nothing that when Eext
i is applied the 1-form symmetry current J ij is proportional to

E − Eext.

To perform the time evolution, we use a simple leapfrog scheme, detailed in [17].

e2 # confs. Kubo

0.5 50

1 500

1.5 250

2 249

TABLE I: Lattice parameters.

Appendix D: More on classical field theory in thermal equilibrium

We use this appendix to clarify the meaning of a classical thermal equilibrium for the

reader not used to thinking about this problem.

A standard classical field theory cannot be in thermal equilibrium in the continuum, this

is the standard Rayleigh-Jeans UV-catastrophe of classical field theory. The full quantum

theory is regulated by generating the Bose-Einstein/Fermi-Dirac distribution instead of the

Boltzmann. Technically, this can be seen in Euclidean time as the periodicity in time.

While this is the way nature appears to regulate thermal states, this is not unique. A

classical field theory on a lattice with lattice spacing a is also UV finite, even though the

UV cutoff a cannot be removed in a meaningful way.

To illustrate these ideas, let us compute the thermal mass of a massless scalar field

in a quartic potential. From Chapter 3 of [62], we have the thermal correlator at finite
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temperature for the λϕ4 theory, in momentum space, as:

∆(iωn, k) = ∆(F )(iωn, k)

[
1−

(
λT

2

∑

n

∫
d3k′

(2π)3
∆(F )(iωn, k

′)

)
∆(F )(iωn, k)

]
, (D1)

where ωn are Matsubara frequencies and k denotes the spatial 3-momentum. The above can

be readily derived from a Feynman diagram of the following form,

= + + O(λ2) (D2)

where the term on the left hand side is the full propagator, the first term in the right hand

side is the free propagator and the second term is the O(λ) correction to it.

The correction to the self-energy is Π(iωn, k) using, ∆
−1(iωn, k) =

(
∆(F )

)−1
+Π(iωn, k).

From (D1) we obtain,

∆(iωn, k)
−1 =

(
∆(F )(iωn, k)

)−1

[
1 +

(
λT

2

∑

n

∫
d3k′

(2π)3
∆(F )(iωn, k

′)

)
∆(F )(iωn, k) +O(λ2)

]

(D3)

which in position space becomes13,

∆−1 =
(
∆(F )

)−1
+
λT

2
∆(F )(z = 0). (D4)

where z = 0 is the point where the loop intersects the line, the black dot, as shown in the

second term on the RHS of (D2).

Now we put the above theory on a lattice with lattice spacing ‘a’ and compute the self-

energy from above as, upto O(λ2),

Π =
λT

2
∆(F )(z = 0) =

λT

4π2

∫ kmax

0

dk
k2

k2 +m2

m → 0
=

λT

4π2
kmax =

λT

4π2

2π

a
=

λT

2πa
, (D5)

We see that now the UV cutoff, which should be in this case interpreted as some scale

in the problem, enters the results. Instead of the expected “quantum” T 2 dependence, we

obtain T/a.

The plasmon peak we observe in the right side of Fig. 2 is conceptually of the same

character; the lattice cutoff induces “classical” hard thermal loop. They can in principle be

computed analytically. We abstained as it did not have direct relevance to our results.
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