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Abstract

One way to perform field theory computations for the bond percolation problem is
through the Kasteleyn and Fortuin mapping to the n + 1 states Potts model in the limit
of n→ 0. In this paper, we show that it is possible to recover the ε-expansion for critical
exponents in finite dimension directly using the M-layer expansion, without the need
to perform any analytical continuation. Moreover, we also show explicitly that the criti-
cal exponents for site and bond percolation are the same. This computation provides a
reference for applications of the M-layer method to systems where the underlying field
theory is unknown or disputed.
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1 Introduction17

The percolation problem provides one of the simplest examples of a second-order phase tran-18

sition, in both the versions of site or bond percolation. Despite the simplicity of the model, it is19

at the basis of different problems in many different fields, from condensed matter to telecom-20

munication engineering, from graph theory to epidemic spreading [1,2]. In the standard site21

(bond) percolation problem, each site (bond) is present independently of the neighbors with22

probability p. Above a certain threshold pc , a giant cluster of nearest-neighbor sites is present23

in the thermodynamic limit while below this threshold neighboring sites are grouped into many24

small clusters of non-extensive size. The value pc corresponds to the transition point and one25

can associate standard critical exponents that describe how critical observables behave near26

pc . Despite the deep similarities with respect to critical behavior, the main difference between27

percolation and other phase transition models is the absence of an associated Hamiltonian and28

a corresponding partition function.29

The renormalization group (RG) is the main tool to study second order phase transitions.30

It can be applied in two ways: the first one is by performing explicitly an RG transformation31

on a given two- or three-dimensional lattice while the second relies on field theory. The first32

method typically requires uncontrolled approximations (needed to close the RG equations and33

find a fixed point) while the second is more powerful as it allows one to systematically obtain34

the critical exponents in dimension D in powers of ε = Dc − D where Dc is the upper critical35

dimension. The first method can be applied to percolation as it is [3, 4] but one could think36

that the lack of a Hamiltonian would make the application of the second impossible. However,37

in a seminal paper, Kasteleyn and Fortuin showed that the bond percolation problem is exactly38

related to the n → 0 limit of an n-component (n + 1 states) Potts model [5]. It was then39

recognized [6] that this mapping allows the application of field-theoretical techniques and40

today the exponents are known up to the 5th order in an ε-expansion around the upper critical41

dimension [7–11] .42

In this paper, we reproduce the same expansion up to one-loop order by means of the M-43

layer construction. This construction has been introduced in Ref. [12], and then applied to a44

variety of models [13–18]. The useful property of the M-layer construction is that one also45

can study the critical behavior, in finite dimensions, of problems which are not defined by a46

Hamiltonian, such as the percolation. One has to introduce M − 1 independent lattices, in47

addition to the original one; the M layers will then be coupled together through a random48

rewiring of the bonds. The M →∞ limit gives the Bethe lattice solution [19] of the model,49

while if M = 1 one obtains the original model. An expansion in 1/M can be properly set50

up, that is in practice an expansion in the number of the topological loops considered. The51

M-layer construction can be applied to any model that can be defined on the Bethe lattice,52

including percolation. This is interesting, because, with this approach, there is no need to53

invoke the n → 0 analytic continuation discovered by Kasteleyn and Fortuin. Furthermore,54

with this method, we can also analytically verify that the critical exponents of site percolation55

are equal to those of bond percolation.56
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The additional value of this paper is methodological: we show for the first time that from57

the 1/M expansion on the M-layer lattice one can obtain the ε-expansion, through the suitable58

introduction of an adimensional beta function in analogy with what is usually done in standard59

field theory [20, 21]. This is a fundamental step that will help in applying in the future the60

same techniques to more complicated systems, for which a finite-dimensional solution is still61

not known, such as the Edward-Anderson spin-glass model [17] or Anderson localization [18].62

The paper is organized as follows: In Section 2 we present the model and the main results,63

in particular we sketch the derivation of the ε-expansion for the critical exponents from the64

1/M expansion of two- and three-point correlation functions. In Section 3 we introduce the65

problem on the Bethe lattice with a novel derivation of the cluster distribution function. In66

Section 4 we recall the general properties of the 1/M expansion and the operative rules to67

compute it. In Section 5 we present the actual computation for site percolation. In Section 668

we briefly show how the same computations easily generalize to the case of bond percolation.69

In Section 7 we give our conclusions.70

2 Models and main results71

In this Section we list the results of the application of the M-layer construction to both the bond72

and site percolation problems on a hyper-cubic lattice in D dimensions. We briefly describe73

the steps needed to reach the final results which will be summarized next.74

In the standard site (respectively bond) percolation problem, each site (respectively bond)75

is present, or “active”, independently of the neighbors with probability p. In the site percola-76

tion problem one then defines a cluster as a subset of nearest-neighbour active sites, while in77

bond percolation a cluster is defined as a subset of sites connected by nearest-neighbour active78

bonds. At pc a giant cluster appears, that contains a finite fraction of all the sites N. Our anal-79

ysis will mainly apply to the non-percolating phase p < pc and from now on we refer to this80

case. The critical behavior in the non-percolating phase is characterized by considering the81

average number n(s , p) of clusters of size s in a system of size N. This distribution is cut off at82

a typical size s∗ that diverges at the critical point. We also consider the function Ck(x1, . . . , xk)83

that gives the probability that the points x1, . . . , xk belong to the same cluster. According to84

scaling arguments [1, 22], we expect that the two-point function obeys the following scaling85

form for large |x1 − x2| and for p close to pc:86

C2(x1, x2) =
1

|x1 − x2|D−2+η
fC2

�

|x1 − x2|
ξ

�

, (1)

where fC2
is a proper scaling function, η is the anomalous dimension and ξ is the correlation87

length that diverges at the critical point as:88

ξ ∼
1

|p − pc|ν
. (2)

The typical size s∗ scales with the correlation length as89

s∗ ∼ ξDf , (3)

where Df stands for the fractal dimension of the clusters. The distribution of the cluster sizes90

also obeys a scaling law [1,22]:91

n(s , p) = s−τ fn(|p − pc|sσ) , (4)
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where fn(x ) is another scaling function. We also consider the space integrals of the Cp(x1, . . . , xq),92

called susceptibilities,93

χq ≡
∑

x2,...,xq

Ck(x1, . . . , xq) (5)

that are independent of x1 in a homogeneous system (they only depend on the differences94

between the points). They are related to the moments of the n(s , p) through:95

χq =
∞
∑

s=0

sq n(s , p). (6)

The scalings of the typical size s∗ and the correlation length ξ give96

σ =
1

νDf
, (7)

while, given the relation97

τ = 1+
D

Df
, (8)

comparing Eqs. (5) and (6) and using the scaling of n(s , p) one can easily find that the98

susceptibilities diverge as99

χq ∼ ξ−D+Df q , (9)

from which it follows that the following quantity goes to a constant at the critical point:100

λ∝ ξ−D
χ2

3

χ3
2

. (10)

On the M-layer lattice χ2 and χ3 are given by the Bethe lattice result in the limit M →∞101

and we computed the first 1/M correction, for both site and bond percolation, this allows us102

to write λ as:103

λ = u −
7

4

u2

(4π)
D
2

Γ

�

3−
D

2

�

. (11)

The constant u is defined as u ≡ g mD−6, where m ≡ ξ−1 and g is a O(1/M) constant that104

depends on the microscopic details of the model including whether we consider bond or site105

percolation. Note that the adimensional constant u diverges at the critical point for D < 6106

because m vanishes, while λ remains finite at the critical point according to Eq. (9). More107

precisely we expect that:108

λ ≈ λc + c1 ξ
ω = λc + c1 m−ω , for ξ→∞, m→ 0 (12)

where c1 is a model-dependent constant, while ω is a universal exponent that controls the109

corrections to scaling [20]. Now, following a standard field-theoretical procedure (see Ref.110

[20], Chap. 8), we define the function b(λ), using the above relationships:111

b(λ) ≡ m2 ∂

∂ m2
λ ≈ −

ω

2
c1 m−ω ≈ −

ω

2
(λ−λc) , (13)

meaning that at the critical point112

b(λc) = 0 , ω = −2 b′(λc) . (14)

4



SciPost Physics Submission

From (11), we obtain an expression of b(λ) to second order in λ from which the following113

scenario emerges: for D ≥ Du = 6 only the solution λ = 0 exists meaning that λ tends to zero114

at the critical point with ω = 6− D, while for ε ≡ 6− D > 0 a new solution λc ̸= 0 appears:115

λc =
2 (4π)3

7
ε+ O(ε2) (15)

and λ tends to λc at the critical point, with ω = −ε + O(ε2). Following similar standard116

computations (see Ref. [20], Chap. 8), from the value of λc and the scaling laws, we obtained117

the ε-expansion for the critical exponents:118

ν =
1

2
+

5

84
ε+O(ε2) , (16)

119

η = −
1

21
ε+O(ε2) . (17)

Comparing Eq. (9) with the scaling law χ2 ∼ ξ2−η we obtain120

Df =
D + 2−η

2
, (18)

all the other critical exponents can be obtained from η and ν through the scaling laws given121

above. Note that the result is independent of the actual values of any non-universal constant,122

ensuring that the critical exponents are the same for bond and site percolation, as explained123

more extensively in Appendix 6. As it should, the results coincide with those obtained from124

the ε-expansion for the (n + 1)-state Potts models in the limit n → 0, which coincides with125

bond percolation according to the Fortuin-Kasteleyn mapping. In appendix D we have also126

computed the expansion of χ4 in powers of 1/M checking that it diverges at the critical point127

with an exponent equal to that predicted by Eq. (9).128

3 Percolation on the Bethe Lattice129

In this Section we will show how to write exact equations for the critical behavior of important130

observables for site percolation on a Bethe lattice, and how to derive the exact critical expo-131

nents in this case. Here and in the following we call “Bethe lattice” a random regular graph132

with fixed connectivity c.133

Given g (s , p) = s n(s , p)/p that is the probability that a randomly chosen site belongs to134

a cluster of size s , we accordingly define the cavity probability gcav(s , p) on a site where one135

of its edges is removed. The cavity probability obeys the following self-consistent equation on136

the Bethe lattice with fixed connectivity c:137

gcav(s , p) = (1− p)δs ,0 + p
∞
∑

s1=0

· · ·
∞
∑

sc−1=0

gcav(s1, p) . . . gcav(sc−1, p)δs ,1+s1+···+sc−1
. (19)

The probability g (s , t ) can then be expressed in terms of the cavity probability as:138

g (s , p) = (1− p)δs ,0 + p
∞
∑

s1=0

· · ·
∞
∑

sc=0

gcav(s1, p) . . . gcav(sc, p)δs ,1+s1+···+sc
. (20)

Next we define the generating function g̃ (t , p) ≡
∑∞

s=0 g (s , p)e−t s and its cavity counterpart,139

g̃cav(t , p). Eq. (19) becomes:140

g̃cav(t , p) = (1− p) + p (g̃cav(t , p))c−1e−t . (21)
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Deriving the above equation with respect to t and setting t = 0 we obtain141

g̃ ′cav(0, p) =
p

p (c − 1)− 1
, (22)

from which we obtain142

χ2(p) = −p g ′(0, p) =
p2(p + 1)

1− p(c − 1)
, (23)

that diverges, as expected, at the critical point pc = 1/(c − 1). We are interested in the143

functions g (s , p) for p close to the critical point and s large, that corresponds to small values144

of t in g̃ (t , p). We now define145

δg̃ (t , p) ≡ g̃ (t , p)− 1 =
∞
∑

s=0

g (s , p)(e−s t − 1) (24)

and its cavity counterpart δg̃cav(t , p) ≡ g̃cav(t , p)− 1. Differentiating Eq. (21) with respect146

to t we obtain, for small values of t and p close to pc:147

δg̃ ′cav(t , p)(1− p/pc − (c − 2)δg̃cav(t , p)) = −pc , (25)

from which we have148

δg̃cav(t , p) = a (1− (1+ t/t ∗)1/2) , (26)

where149

δp ≡ p − pc a ≡ −δp
c − 1

c − 2
, t ∗ ≡ δp2 (c − 1)3

2 c − 4
. (27)

For small values of t and δp we also obtain150

δg̃ (t , p) =
c

c − 1
δg̃cav(t , p) . (28)

Replacing the sum with an integral (which is justified by the fact that small values of t corre-151

spond to large values of s) we obtain, computing the inverse Laplace transform of Eq. (26)152

and using Eq. (28)153

g (s , p) ∼
1

s3/2
e−s t ∗ → n(s , p) ∼

1

s5/2
e−s t ∗ , (29)

that obeys Eq. (4) with exponents154

σ =
1

2
and τ =

5

2
, (30)

that we identify with the mean-field values. In the next Section we will consider percolation on155

the M-layer random lattice in finite dimension D. In the limit M →∞ the function n(s , p) of156

the M-layer becomes identical to that of the Bethe lattice and therefore τ = 5/2 and σ = 1/2.157

In addition, we will show that for M →∞ the two-point function obeys the scaling form (1)158

with exponents159

ν =
1

2
, η = 0 , (31)

in all dimensions D ≥ 2. Note that these relationships are consistent with (7) and (8) only160

for D = Du = 6. Indeed τ = D/Df + 1 is a hyperscaling relationship that is not generically161

valid [22] at variance with the more generalσ−1 = νDf , which implies Df = 4 for the M →∞162

model in any dimension. Computing the 1/M corrections around the M →∞ limit, we will163

show that for M finite the critical exponents are the same of the M →∞ limit for D ≥ Du = 6164

while they are different for D < Du = 6. On the other hand for D < 6 both relationships165

(7) and (8) hold. We note that the M →∞ model plays essentially the role of the Gaussian166

model in ferromagnetism, see [20], Chaps. 4 and 5.167
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4 The M-layer expansion168

Conceptually the M-layer method is rather straightforward: 1) one introduces a D−dimensional169

random lattice depending on a parameter M , the limit M →∞ of the model is solvable as170

it coincides with the Bethe lattice solution; 2) then one computes the finite-M corrections in171

powers of 1/M around the Bethe lattice solution. The goal is to study the critical behaviour172

near a second order phase transition for a model on a given lattice and, as we anticipated in173

Section 2, from the 1/M expansion one can obtain the ε-expansion. The M-layer expansion174

has been introduced in Ref. [12]where diagrammatic rules were derived to compute 1/M cor-175

rections, in this Section we recall these rules, referring to the original paper for their derivation176

and all the details. Note that percolation itself is particularly useful to understand the origin177

of these rules and it is treated as an example in Section D of Ref. [12].178

One can build the so-called M-layer construction considering M different layers of the orig-179

inal model, and then rewiring the bonds between each nearest-neighboring node among the180

layers in such a way that each node on each layer still has the same number of neighbors, that181

now can be placed at different layers [23]. In the following we will focus on D-dimensional182

hyper-cubic lattices (for which the connectivity is 2D), even if the M-layer construction can183

be applied to any type of lattice. In the end of the procedure, the number of topological loops184

in the M-layer lattice will typically be reduced and in the M → ∞ limit there will be no185

loops of finite length: the M →∞ solution of the model will correspond to the Bethe solu-186

tion [19], computed on a random regular tree-like graph with the same fixed connectivity as187

the original model. At this point we can expand around this Bethe solution, introducing the188

small parameter 1/M . The original model corresponds to M = 1, thus in principle one should189

need all orders in 1/M to obtain the correct solution for the original model. However, we are190

interested in the critical behaviour of the model, which should be independent of the actual191

value of M due to universality. This expectation will indeed be confirmed in the context of192

percolation by the present computation. Furthermore, this implies that at each order in the193

1/M expansion we only need to consider the contributions that diverge the most approaching194

the critical point. One can show that the 1/M expansion for a generic observable corresponds195

to an expansion in the number of topological loops considered when computing that observ-196

able. In particular, if one wants to compute the 1/M expansion for a generic observable O,197

the following steps are required:198

• Step 1: Identify the possible topological diagrams199

Depending on the order at which one wants to perform the expansion, one should iden-200

tify the possible topological diagrams over which one needs to compute the chosen ob-201

servable. If one is interested in the leading order, one should only look at diagrams202

without loops, that correspond to the Bethe locally tree-like topology. If one wants to203

compute the next-to-leading order, one has to identify all the possible topological dia-204

grams that correspond to a Bethe lattice in which it has been manually injected a single205

topological loop, while any additional topological loop inserted will bring a new factor206

1/M in the expansion.207

• Step 2: Weights, number of projections and symmetry factors208

For any diagram G identified in Step 1, one needs to associate to it:209

– a weight W(G), that will be a power of 1/M and will indicate the probability that210

a topological diagram of that kind is obtained in the rewiring procedure;211

– a symmetry factor S(G), completely equivalent to that introduced in field theory212

for Feynman diagrams [21], that takes into account the number of ways in which213

7
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vertices and lines can be switched leaving the topological structure of the diagram214

unaltered;215

– the number of realizations of the chosen topological diagram on the original lattice,216

N (G): just as an example, if the chosen diagram is a line of length L between two217

points x1 and x2, the number of such diagrams in the M-layered lattice having218

a different projection on the original lattice corresponds to the number of non-219

backtracking paths (NBP) of length L between the two points and its analytical220

expression is known in the literature [12, 24]. One can define NL(x1, x2, µ̂, ν̂) as221

the number of NBP of length L where the directions µ̂ and ν̂ of the lines entering222

respectively in the external points x1 and x2 is fixed to one among the 2D possible223

ones. In the large L limit, the actual value of the number of NBP will be independent224

on those directions, and we will simply define this number as NL(x1, x2). The225

total number of the simple line diagrams of length L between two points x1 and x2226

will thus be N (G) = (2D)2NL(x1, x2), where the factor (2D)2 counts the possible227

entering directions of the line in the two external points. If one has a more complex228

diagram, to identify N (G) it is sufficient to multiply a factor NL(xi , x j) for each229

internal line of length L, a factor 2D for each external vertex and a factor
(2D)!
(2D−k)!230

for any internal vertex of degree k, to count the different possible directions of the231

lines entering the vertex.232

• Step 3: Computation of the line-connected observable on the chosen diagram233

For any diagram G identified in Step 1, one then needs to compute the value O(G) of234

the chosen observable computed on a Bethe lattice in which the topological structure of235

that diagram has been manually injected. This observable will depend on the topology236

of the diagram and on the length of the lines. One then needs to compute the line-237

connected observable [12], subtracting to O(G) the value of the observable computed on238

the sub-graphs G′ ⊂ G with proper coefficients in such a way that the final line-connected239

observable tends to zero if any line of G has a diverging length.240

• Step 4: Sum of the contributions241

At the end, we need to sum the contributions to the chosen observable coming from the242

different chosen diagrams. Because the values of the chosen observable only depend on243

the projection of the considered diagrams, for each diagram G, we multiply the value244

of the line-connected observable Olc(G) by N (G), S(G), W(G), and we sum over the245

position of internal vertices and over the length of the internal lines.246

5 M-layer on site percolation in D dimensions247

In this Section we apply the procedure described in the previous Section to the percolation248

problem. We consider firstly the problem of site percolation on a hypercubic lattice in D249

dimensions, which we denote alZ
D , considering al the lattice spacing. Following the notation250

of Sec. 2 we define p (where 0 < p ≤ 1) as the probability that a site is present. Since the M-251

layer approach is a way to construct an expansion for observables around the Bethe solution,252

we define the “bare mass”253

µ ≡ − ln

�

p

pc

�

for p ∼ pc , (32)

where pc = 1/(2D−1) is the critical value for site percolation on a Bethe lattice with branching254

ratio 2D − 1, above which the so-called “giant cluster” is present.255
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Following the prescriptions of the M-layer construction [12,23] we report here the results256

of the application to the site percolation problem in the non-percolating phase, p < pc . We257

are interested in two observables: the two and three-point correlation functions C2(x1, x2)258

and C3(x1, x2, x3), where · denotes the average over the rewirings of the M-layer procedure.259

According to the M-layer rules these correlation functions will be written as sums, over dif-260

ferent diagrams, of Cn, lc(G; {L}), the n-point line-connected correlation, averaged over the261

realizations of the percolation problem and computed on the diagram G, embedded on a tree262

graph, where {L} indicates the length of the different lines of the diagram. The two-point263

(three-point) correlation is defined as the probability that two (three) sites, at positions x1264

and x2 (x1, x2 and x3) are occupied and belong to the same cluster. In the end, at one loop265

level, we must subtract pieces already considered in loop-free diagrams, to compute the “line-266

connected” observable [12,23]. We analyse the two observables separately, following for each267

of them the steps listed in the previous Section.268

Observable: C2(x1, x2)269

• Step 1: Identify the possible topological diagrams270

The simplest diagram connecting two points is the bare line, which we will call G1. Includ-271

ing the possibility of a loop to be present we consider the diagram composed of four lines with272

two vertices of degree three, where the two internal lines compose a loop. We will call this273

diagram G2.274

Figure 1: Diagrams that contribute to the two-point correlation functions up to one
loop.

Other possibilities are the tadpole-type diagrams, connecting two points with a loop gen-275

erated by one four-degree vertex or connecting two points by two three-degree vertices, re-276

spectively the diagrams G′ and G′′ in Fig. 1. Nevertheless, these last two diagrams give no277

contributions to the line-connected two-point observable for percolation, as we will see in Step278

3 below. We won’t consider them in the following steps.279

• Step 2: Weights, number of projections and symmetry factors280

Diagram G1:281

◆ W(G1) =
1
M ;282

◆ N (G1; L; x1, x2) = (2D)2NL(x1, x2);283

◆ S(G1) = 1.284

Diagram G2:285

◆ W(G2) =
1

M2 ;286

◆ N (G2; L⃗; x1, x2) = (2D)2
� (2D)!
(2D−3)!

�2∑

x0,x ′0
NL1
(x1, x0)NL2

(x ′0, x2)
∏

i=A,B
NLi
(x0, x ′0);287

9
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◆ S(G2) = 2.288

where L⃗ = (L1, LA, LB, L2).289

• Step 3: Computation of C2, lc(G1; L) and C2, lc(G2; L⃗)290

Given the definition of the line-connected two-point correlation for the site percolation291

problem, we compute the two contributions:292

C2, lc(G1; L) = p pL ; (33)
293

C2, lc(G2; L⃗) = −pL1+L2+LA+LB . (34)

The first result is immediate since, in the non-percolating phase, all the L+ 1 sites, connected294

by a line of length L, must be active, in order to connect the two sites at the extremities.295

The second result appears because, for the sites at the extremities to be connected, one or296

both lines of the loop must consist on active sites, in addition to the external lines, which297

also need to be composed of active sites. The associated probability for this to happen is298

pL1+1(pLA−1 + pLB−1 − pLA+LB−2)pL2+1. The aforementioned result is obtained subtracting299

the straight line contributions, already taken into account with G1: pL1+1pLA−1pL2+1 and300

pL1+1pLB−1pL2+1. This last operation is the application of the “line-connected” definition [12].301

Performing the same computation for diagrams G′ and G′′ we obtain zero, as anticipated.302

The reason is that the two tadpoles, that enter the site x0, do not change the probability that303

sites x1 and x2 belong to the same cluster with respect to the case where the loop is not present.304

Indeed, independently of the lines of the tadpole, site x0 must be active in order to connect the305

two sites, then, subtracting the contributions needed to define the line-connected observable,306

that are the simple lines without tadpoles, the net contribution is zero. These diagrams are307

instead relevant in the percolating phase that we aim to study in subsequent work.308

• Step 4: Sum of the contributions309

C2(x1, x2) =
1

M

∑

L

N (G1; L; x1, x2)C2, lc(G1; L)+

+
1

2M2

∑

L⃗

N (G2; L⃗; x1, x2)C2, lc(G2; L⃗) +O
�

1

M3

�

. (35)

Observable: C3(x1, x2, x3)310

• Step 1: Identify the possible topological diagrams311

The simplest diagram connecting three points is the bare three-degree vertex, which we will312

call G3. Including the possibility for a loop to be present, we consider the diagram, composed313

of six lines, with three vertices of degree three, we will call this diagram G4. At one-loop314

level there are three more diagrams connecting three points with a single loop, which are the315

same as G3, but where one of the external legs is dressed with G2. We call such a diagram G5,316

including all the permutations. All these diagrams are reported in Fig. 2.317
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Figure 2: Diagrams that contribute to the three-point correlation functions up to one
loop.

• Step 2: Weights, number of projections and symmetry factors Diagram G3:318

◆ W(G3) =
1

M2 ;319

◆ N (G3; L⃗′; x1, x2, x3) = (2D)3
(2D)!
(2D−3)!

∑

x0

∏3
i=i NLi

(xi , x0);320

◆ S(G3) = 1.321

Diagram G4:322

◆ W(G4) =
1

M3 ;323

◆ N (G4; L⃗′′; x1, x2, x3) = (2D)3
� (2D)!
(2D−3)!

�3
×

324
∑

x0,x ′0,x ′′0
NL1
(x1, x0)NL2

(x2, x ′0)NL3
(x3, x ′′0 )NLA

(x0, x ′0)NLB
(x0, x ′′0 )NLC

(x ′0, x ′′0 );325

◆ S(G4) = 1.326

Diagram G5:327

◆ W(G5) =
1

M3 ;328

◆ N (G5; L⃗′′′; x1, x2, x3) = (2D)3
� (2D)!
(2D−3)!

�3
×

329
∑

x0,x ′0,x ′′0
NL1
(x1, x0)NL2A

(x0, x ′0)NL2B
(x2, x ′′0 )NL3

(x3, x0)
∏

i=A,B
NLi
(x ′0, x ′′0 );330

◆ S(G5) = 2 ,331

where L⃗′ = (L1, L2, L3), L⃗′′ = (L⃗′, LA, LB, LC ) and L⃗′′′ = (L1, L2A
, LA, LB, L2B

, L3).332

• Step 3: Computation of C3, lc(G3; L⃗′), C3, lc(G4; L⃗′′) and C3, lc(G5; L⃗′′′)333

As for the two-point function we compute the contributions:334

C3, lc(G3; L⃗′) = p pL1+L2+L3 ; (36)
335

C3, lc(G4; L⃗′′) = −2pL1+L2+L3+LA+LB+LC ; (37)

11



SciPost Physics Submission

336

C3, lc(G5; L⃗′′′) = −pL1+L2A+L2B+LA+LB+L3 . (38)

The result for G3 is easily derived, considering that all the sites of the topology must be active337

for the extremities to be connected. The result for G5 is obtained by multiplying the contri-338

bution for the bare vertex by the loop correction of the two-point function, diagram G2, with339

the corresponding lengths. The contribution of G4 is a generalization of the computation for340

G2; to connect the three extremities two of the three (or all the three) lines of the loop must341

consist on all active sites. Moreover, in this case we have to subtract three contributions, cor-342

responding to cutting LA, LB, and LC respectively, already included in the bare contribution343

G3.344

• Step 4: Sum of the contributions345

C3(x1, x2, x3) =
1

M2

∑

L⃗′

N (G3; L⃗′; x1, x2, x3)C3, lc(G3; L⃗′)+

+
1

M3

∑

L⃗′′

N (G4; L⃗′′; x1, x2, x3)C3, lc(G4; L⃗′′)+

+
1

2M3

∑

L⃗′′′

N (G5; L⃗′′′; x1, x2, x3)C3, lc(G5; L⃗′′′) +O
�

1

M4

�

. (39)

In appendix C we discuss why we didn’t include other possible but irrelevant diagrams to346

study the critical behavior of the percolation problem and we present the explicit computation347

of the leading order critical behaviour of the four-point correlation function.348

Computation of the moments of n(s , p) In order to compute χ2 and χ3 we Fourier trans-349

form C2(x1, x2) and C3(x1, x2, x3), given in Eqs. (35) and (39), using the following conven-350

tion:351

bh(k) = aD
l

∑

x∈alZD

h(x )eikx , h(x ) =

∫

�

− πal
,
π
al

�

dDk

(2π)D
bh(k)e−ikx ; (40)

that implies352
�

2π

al

�D

δD(k) =
∑

x∈alZD

eikx . (41)

We also use the fact that NL(x1, x2) is a function of the difference between the starting and353

arrival point only, so that, in Fourier space, we have354

ÒNL(k1, k2) = (2π)
Dδ(k1 + k2)ÒNL(k1) (42)

where, for small k [12,15],355

ÒNL(k) ≈ 2D(2D − 1)L−1aD
l e−k2 a2

l
L/(2D−2) . (43)

In view of the fact that in the critical region the sums will be dominated by large L contribu-356

tions, we may write the sums over the lengths as integrals:357

∞
∑

L=1

→
∫ ∞

1/Λ2

dL , (44)

where we introduced the UV cutoff Λ = 1 to make contact with field theory. Note that while in358

field-theory the UV cutoff is inserted manually, in the M-layer construction it arises naturally359
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due to the lattice spacing (see more details in appendix B). The resulting expressions for the360

two and three-point functions are respectively361

bC2(k, k′) =
bC bB2aD

l

bAµ

1
bk2 + 1

(2π)DδD(k + k′)×
 

1−
bAµ

D
2 −3

2(bk2 + 1)

∫

dD
bq

(2π)D

∫

dbLAdbLBe−(1+(
bk−bq)2)bLAe−(1+bq

2)bLB

!

+O
�

1

M3

�

(45)

and362

bC3(k1, k2, k3) =
bC bB3a2D

l

bAµ3

(2π)DδD(k1 + k2 + k3)

(bk2
1 + 1)(bk2

2 + 1)(bk2
3 + 1)

×

�

1− 2bAµ
D
2 −3

∫

dD
bq

(2π)D

∫

dbLAdbLBdbLC e−(1+(
bk2+bk3+bq)2)bLAe−(1+(

bk2+bq))2)bLBe−(1+bq
2)bLC+

−
1

2

bAµ
D
2 −3

(bk2 + bk3)2 + 1

∫

dD
bq

(2π)D

∫

dbLAdbLB e−(1+(
bk2+bq)2)bLAe−(1+bq

2)bLB + per m.

�

+O
�

1

M4

�

, (46)

where µ is the one defined in Eq. (32). We also defined the following non-universal constants:363

bA ≡
1

M

� (2D)!
(2D − 3)!

�2

p−1 (2D − 2)
D
2

�

2D

2D − 1

�3

, (47)

bB ≡
1

M
2D

� (2D)!
(2D − 3)!

� �

2D

2D − 1

�2

, (48)

bC ≡ (2D − 2)
D
2 , (49)

and we rescaled the momenta and lengths according to:364

bk ≡ k
al

p

µ(2D − 2)
, and bLi ≡ Liµ . (50)

Note that in Eqs. (45), (46) we have omitted the the extremes of integration (µ/Λ2,∞) of365

the integrals over bL. In appendix A we show how to generalize this kind of computation for a366

Ve-point function, with Ve ≥ 2, moreover we explain the reasoning behind the identification367

of the constants bA, bB and bC . In appendix B we show that the above expression, for bC2(k, k′)368

and bC3(k1, k2, k3), are precisely the same that appear from the Feynman diagrams of the369

corresponding scalar cubic field-theory obtained from the Fortuin-Kasteleyn mapping to the370

n + 1-state Potts model in the limit n→ 0, corresponding to percolation [6–9].371

From the above expressions we compute the functions χq introduced in Section 2. Notice372

that we did not rescale the momenta inside the momentum conservation delta functions, thus,373

to compute χq , according to Eq. (5), we have simply to divide by a(q−1)D
l

, remove (2π)D times374

the conservation delta function and set the external momenta to zero. This leads to375

χ2(µ) =
bC bB2

bAµ

 

1−
bAµ

D
2 −3

2(4π)
D
2

∫

dbLAdbLB

(bLA +bLB)
D
2

e−bLA−bLB

!

, (51)

376

13



SciPost Physics Submission

χ3(µ) =
bC bB3

bAµ3

�

1−
2bAµ

D
2 −3

(4π)
D
2

∫

dbLAdbLBdbLC

(bLA +bLB +bLC )
D
2

e−bLA−bLB−bLC+

−
3

2
bAµ

D
2 −3

∫

dbLAdbLB

(bLA +bLB)
D
2

e−bLA−bLB

�

. (52)

Introducing the function bG(k), corresponding to the propagator in the field-theoretical lan-377

guage, as378

bC2(k, k′) ≡ (2π)DδD(k + k′)bG(k) , (53)

we can define the correlation length ξ:379

ξ2 ≡ bG(0)
∂ bG−1(k)
∂ k2

�

�

�

�

k2=0

, (54)

where, with a little abuse of notation, we identify with k the modulus of the corresponding380

vector. Since381

∂

∂ k2
=
∂ bk2

∂ k2

∂

∂ bk2
=

a2
l

µbC
2
D

∂

∂ bk2
(55)

we have:382

bG(0) =
bC bB2aD

l

bAµ

 

1−
bAµ

D
2 −3

2(4π)
D
2

∫

dbLAdbLB

(bLA +bLB)
D
2

e−bLA−bLB

!

, (56)

and for small bA (that is for large M):383

bG−1(k) ≃
bAµ

bC bB2aD
l

 

bk2 + 1+
bAµ

D
2 −3

2(4π)
D
2

∫

dbLadbLb

(bLa +bLb)
D
2

e
−

bLabLb
bLa+bLb

bk2−bLa−bLb

!

, (57)

where in the r.h.s. we have replaced k with k̂ according to the definition given in (50). We384

then obtain:385

∂ bG−1(k)

∂ bk2

�

�

�

�

bk2=0

=
bAµ

bC bB2aD
l

 

1+
bAµ

D
2 −3

2(4π)
D
2

∫

dbLadbLb

(bLa +bLb)
D
2

e−bLa−bLb
∂

∂ bk2

�

e
−

bLabLb
bLa+bLb

bk2
��

�

�

�

bk2=0

!

,

(58)
where386

∫

dbLadbLb

(bLa +bLb)
D
2

e−bLa−bLb
∂

∂ bk2

�

e
−

bLabLb
bLa+bLb

bk2
��

�

�

�

bk2=0

= −
∫

dbLadbLb

(bLa +bLb)
D
2 +1

bLAbLBe−bLa−bLb . (59)

Defining387

Iα(µ) ≡
∫ ∞

µ/Λ2

dbLadbLb
e−bLa−bLb

(bLa +bLb)
D
2

(60)

and388

Iβ(µ) ≡
∫ ∞

µ/Λ2

dbLadbLb

bLabLb

(bLa +bLb)
D
2 +1

e−bLa−bLb , (61)

we have389

ξ2(µ) =
1

m2(µ)
=

a2
l

bC
2
Dµ

 

1−
1

2

bAµ
D
2 −3

(4π)
D
2

�

Iα(µ) + Iβ(µ)
�

!

. (62)
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In the integrals in Eqs. (60), (61), we have written explicitly the extremes of integration that390

we have omitted previously. Notice that the integral Iα(µ) is divergent in D = 6 for µ → 0391

(i.e., p → pc). Now we can simply invert the relation, to express µ as a function of m2:392

µ(m2) = a2
l
bC−

2
D m2



1−
1

2

bAmD−6
bC

6
D−1aD−6

l

(4π)
D
2

�

Iα
�

µ(m2)
�

+ Iβ
�

µ(m2)
�

�



 . (63)

Notice that the previous equations for χ2 and χ3 are written as functions of µ, which is not393

the “physical mass”, thus they can be divergent, for µ→ 0, near the upper critical dimension,394

DU = 6. To avoid the divergences we need the expression of µ as a function of m2, to correctly395

write λ, as defined in Eq. (67). To this aim we compute ξ2(µ) (and so m2(µ)) from its396

definition.397

At this point we have all the ingredients to write χ2 and χ3 as functions of the physical398

parameter m2. Plugging Eq. (63) into Eqs. (51) and (52) we obtain:399

χ2
�

m2� =
bC bB2

bC
2
D

bAa2
l

m−2



1+
1

2

bAmD−6
bC

6
D−1aD−6

l

(4π)
D
2

�

Iα
�

µ(m2)
�

+ Iβ
�

µ(m2)
�

�



×

×



1−
1

2

bAmD−6
bC

6
D−1aD−6

l

(4π)
D
2

Iα
�

µ(m2)
�





=
bC bB2

bC
2
D

bAa2
l

m−2



1+
1

2

bAmD−6
bC

6
D−1aD−6

l

(4π)
D
2

Iβ
�

µ(m2)
�



 , (64)

χ3
�

m2� =
bC bB3

bC
6
D

bAa6
l

m−6



1+
3

2

bAmD−6
bC

6
D−1aD−6

l

(4π)
D
2

�

Iα
�

µ(m2)
�

+ Iβ
�

µ(m2)
�

�



×

×



1− 2
bAmD−6

bC
6
D−1aD−6

l

(4π)
D
2

Iγ
�

µ(m2)
�

−
3

2

bAmD−6
bC

6
D−1aD−6

l

(4π)
D
2

Iα
�

µ(m2)
�





=
bC bB3

bC
6
D

bAa6
l

m−6



1+
bAmD−6

bC
6
D−1aD−6

l

(4π)
D
2

�

3

2
Iβ
�

µ(m2)
�

− 2Iγ
�

µ(m2)
�

�



 , (65)

where400

Iγ(µ) ≡
∫ ∞

µ/Λ2

dbLAdbLBdbLC
e−bLA−bLB−bLC

(bLA +bLB +bLC )
D
2

. (66)

Notice that χ2(µ) and χ3(µ) have UV divergences near 6 dimensions due the presence of401

Iα(µ), which disappears when they are written as functions of m, i.e. χ2
�

m2
�

and χ3
�

m2
�

402

are free of UV divergences near 6 dimensions.403

Critical exponents in fixed dimension In this Section we perform the fixed-dimension com-404

putation of the critical exponents [20]. Led by the scaling laws discussed in Sec. 2, we compute405

the following adimensional ratio:406

λ ≡
�

al

ξ

�D χ2
3 (m

2)

χ3
2 (m

2)
. (67)
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On the other hand m2 is connected to the bare distance from the critical point by407

m2 ∼ |µ−µc|2ν and ξ ∼ |µ−µc|−ν , (68)

where ν is the critical exponent for the divergence of the correlation length. In the end,408

defining409

u ≡ bAbC
6
D−1aD−6

l mD−6 ≡ g mD−6 , (69)

we can compute the ratio λ410

λ = u

�

1− 2
u

(4π)
D
2

�

−
3

4
Iβ
�

µ(m2)
�

+ 2Iγ
�

µ(m2)
�

�

�

. (70)

Note that λ depends on the microscopic parameter of the model only through the single pa-411

rameter u = O(1/M). Now we can compute the integrals Iβ and Iγ in the limit m2 → 0,412

which are convergent near D = 6:413

lim
m2→0

Iβ
�

µ(m2)
�

=
1

6
Γ

�

3−
D

2

�

, (71)

414

lim
m2→0

Iγ
�

µ(m2)
�

=
1

2
Γ

�

3−
D

2

�

. (72)

Thus in the limit m2→ 0415

λ = u −
7

4

u2

(4π)
D
2

Γ

�

3−
D

2

�

, (73)

from which416

u ≃ λ+
7

4

λ2

(4π)
D
2

Γ

�

3−
D

2

�

. (74)

Now, following the standard procedure (see Ref. [20], Chap. 8), we define the function b(λ)417

as:418

b(λ) ≡ m2 ∂

∂ m2

�

�

�

�

g fixed

λ =
1

2
(D − 6)u

∂

∂ u

�

�

�

�

m2 fixed

λ =
1

2
(D − 6)

�

u −
7

2

u2

(4π)
D
2

Γ

�

3−
D

2

�

�

.

(75)
From Eq. (74) we obtain:419

b(λ) =
1

2
(D − 6)

�

λ−
7

4

λ2

(4π)
D
2

Γ

�

3−
D

2

�

�

. (76)

We constructed λ to be an adimensional quantity that does not diverge at the critical point.420

For this reason, we can identify the critical value of λ as the point at which the function b(λ)421

is zero, as we discussed in Sec. 2. While a trivial zero is always present at λ = 0, for D < 6422

we see that there also exists a non-trivial zero:423

λc =
4

7

(4π)
D
2

Γ
�

3− D
2

�
. (77)

Remembering that m2 ∼ (µ−µc)2ν, following standard computations [20], we define:424

z(λ) ≡
∂ µ

∂ m2
∼ m2D1 , (78)
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where D1 =
1

2ν − 1. We can thus compute it as:425

D1(λ) ≡ m2 ∂

∂ m2

�

�

�

�

g fixed

ln(z(λ)) . (79)

In the same way, for the computation of η we need to define:426

D2(λ) ≡
∂ lnχ2(0)

∂ ln m2

�

�

�

�

g fixed

, χ2(0) ∼ m2
η−2

2 , D2(λc) = −1+
η

2
. (80)

We start from the computation of z:427

z(λ) = a2
l
bC−

2
D

�

1−
1

2

u

(4π)
D
2

D − 4

2
Iβ
�

µ(m2)
�

−
1

2

g

(4π)
D
2

∂

∂ m2

�

mD−4Iα
�

µ(m2)
�

�

�

(81)

where428

∂

∂ m2

�

mD−4Iα
�

µ(m2)
�

�

= −mD−6

∫ ∞

µ(m2)/Λ2

dbLadbLb
e−bLa−bLb

(bLa +bLb)
D
2 −1
≡ −mD−6I ′α

�

µ(m2)
�

.

(82)
We can compute I ′α:429

lim
m2→0

I ′α
�

µ(m2)
�

= Γ
�

3−
D

2

�

, (83)

obtaining430

z(λ)∝ 1−
u

2

1

(4π)
D
2

Γ

�

3−
D

2

�

D − 16

12
, (84)

and, from the definition of D1(λ), we arrive at the critical exponent ν in D dimensions:431

νD =
42

84+ (6− D)(D − 16)
. (85)

The next exponent, η, requires the computation of D2(λ)432

D2(λ) ≡
∂ lnχ2

∂ ln m2

�

�

�

�

g fixed

=
m2

χ2

∂ χ2

∂ m2

�

�

�

�

g fixed

= −1+
λ

2

1

(4π)
D
2

Iβ
�

µ(m2)
�

�

D

2
− 3

�

, (86)

which can be obtained using433

∂ χ2

∂ m2

�

�

�

�

g fixed

∝−m−4 +
1

2

u

(4π)
D
2

m−4Iβ
�

µ(m2)
� D − 8

2

= −m−4

�

1−
1

2

u

(4π
D
2 )

Iβ
�

µ(m2)
� D − 8

2

�

, (87)

434

χ2∝ m−2

�

1+
1

2

u

(4π
D
2 )

Iβ
�

µ(m2)
�

�

, (88)

from which we have435

ηD =
D − 6

21
. (89)
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ε-expansion Given the results of Eqs. (85) and (89) in fixed dimension we can perform the436

computation in D = 6− ε:437

ν =
1

2
+

5

84
ε+O(ε2) , (90)

438

η = −
1

21
ε+O(ε2) . (91)

These results are, to first order in ε, equal to the expansion of the standard field theory asso-439

ciated with the percolation problem [3,6,8–11].440

6 The case of bond percolation441

An interesting application of the M-layer construction to percolation theory is to show that442

there is no difference between the critical behavior of the site and the bond percolation prob-443

lems. Standard field theoretical approaches are used to compute the critical exponents, resort-444

ing to the mapping between the (n+1)-state Potts model and the bond percolation in the limit445

n → 0 [25]. Here we show how to apply the same procedure described in the previous Sec-446

tion to the bond percolation. The bond percolation is defined as the site percolation, with the447

only difference that now p is the probability that each bond independently is present. Thus,448

the only differences are the computations of C2, lc(G; {L⃗}) and C3, lc(G; {L⃗}) on the different449

diagrams mentioned in Sec. 5, that for bond percolation take the form:450

Cbond
2, lc (G1; L) = pL ; (92)

451

Cbond
2, lc (G2; L⃗) = −pL1+L2+LA+LB ; (93)

452

Cbond
3, lc (G3; L⃗′) = pL1+L2+L3 ; (94)

453

Cbond
3, lc (G4; L⃗′′) = −2pL1+L2+L3+LA+LB+LC ; (95)

454

Cbond
3, lc (G5; L⃗′′′) = −pL1+L2A+L2B+LA+LB+L3 . (96)

As one can see, the expressions of the observables in the Bethe lattice, for the case of bond455

percolation, Eqs. (92) to (96), are the same as the ones for the site percolation, Eqs. (33),456

(34) and (36) to (38), except for the factors p for the bare cases of the two and three-point457

functions. This simple fact implies the change of the non-universal constant bA. All the diverg-458

ing integrals, together with their numerical prefactors are kept unchanged, thus the critical459

exponents are the same. All the details of the computation of the non-universal constants can460

be found in App. A.461

7 Conclusion462

In this article we have shown how to recover, at one-loop level of approximation, the results463

of the ε−expansion for the critical exponents of the percolation problem on a D-dimensional464

regular lattice, by means of a new method, the M-layer construction. To do so, we computed465

the observables of interest for the case of site percolation in the non-percolating phase — the466

two- and three-point correlation functions, i.e. the probability that two or three sites belong467

to the same cluster — in properly chosen graphs at the leading orders. We then computed468

the ε−expansion for the critical exponents, recovering, at first order, the same values already469

obtained for bond percolation using the n→ 0 continuation of the field theory applied to the470
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Potts model with n+1 states. Moreover, we have shown that within the M-layer construction471

the bond percolation problem differs from site percolation only for non-universal constants,472

which directly implies the universality between site and bond percolation in any dimension D.473

The analysis presented here clearly illustrates that the M-layer construction effectively allows474

one to extract quantitative information on the critical behavior even for problems which are475

not defined by a Hamiltonian, such as percolation.476

We explained for the first time how this method can be applied to a known problem in477

order to obtain the ε−expansion of the critical exponents. Recent studies have used the M-478

layer construction to derive non-trivial insights into models whose critical behavior is not yet479

completely understood [14–18], or to show that for well-known problems the one-loop results480

align with those from standard field theory [13, 23]. In this paper, we push this approach a481

step forward by showing how, applying the standard theoretical recipes of the renormalization482

group, one can extract the series of the critical exponents. We believe that this investigation483

could be highly beneficial in guiding the computation of critical exponents for problems where484

the standard RG approach is inapplicable [18].485

Regarding the specific problem of percolation, it would be interesting to extend the calcu-486

lations made in this work for the percolating phase p > pc . In this sense, the preliminary cal-487

culation of the Ginzburg criterion at the bare order (i.e. without loops) has already been done488

using the M-layer construction, obtaining the known upper critical dimension, DU = 6 [26].489

To proceed further and obtain the values of the critical exponents in the non-percolating phase,490

it is necessary to calculate the same observables as Ref. [26] with the corrections due to the491

one-loop structures. We leave this analysis to future work.492

A Identification of the constants in the M-layer expansion493

In this Section we generalize the computation of the main text for the two and three-point494

function, with the goal of identifying the least number of constants that describe the loop495

expansion in the M-layer framework. To start with we write all the contributions, in Fourier496

space, of a generic Ve-point correlation, computed on a generic topology, G, with I lines, Ve497

external points, Vi internal vertices, Nloop number of loops:498

bCVe
({k j})

�

�

�

�

G
=

(2D)Ve

S(G)M Nloop+Ve−1

� (2D)!
(2D − 3)!

�Vi
� I
∏

i=1

∫

dLi

�

(2π)D δD

 

Ve
∑

j=1

k j

!

×

a−DVi

l

 

∫ Nloop
∏

l=1

dDql

(2π)D

!
� I
∏

i=1

ÒNLi

�

{ql}, {k j}
�

�

p I−2Vi f (CVe , lc) p
∑I

i=1 Li , (A.1)

with the same convention for the Fourier transform used in the main text, Eq. (40). Notice that499

ÒNL are functions of linear combinations gi({ql}, {k j}) of internal ({ql} for l = 1, . . . , Nloop)500

and external momenta ({k j} for j = 1, . . . , Ve), that ensure momentum conservation at each501

vertex. The factor p I−2Vi and the function f (CVe , lc) come from Eqs. (33), (34), (36), (37)502

and (38). The first is the eventual extra factor p, which is present only for C2,lc(G1; L) and503

C3,lc(G3; L⃗′), as can be checked by substituting the corresponding values for I and Vi (notice504

that the specific expression, p I−2Vi , is valid only for three-degree vertices, for Vi d-degree505

vertices it is p I−(d−1)Vi and can be generalized if vertices of different degree are present). The506

same goes for the factor (2D − 3)! , whose generalization for a d-degree vertex is (2D − d)! .507

The function f (CVe , lc) assumes the following values:508

f (C2,lc(G1; L)) = 1 , (A.2)
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509

f (C2,lc(G2; L⃗)) = −1 , (A.3)
510

f (C3,lc(G3; L⃗′)) = 1 , (A.4)
511

f (C3,lc(G4; L⃗′′)) = −2 , (A.5)
512

f (C3,lc(G5; L⃗′′′)) = −1 . (A.6)

Notice that the diagrams we computed in this work are of the form of Eq. (A.1). We believe513

that higher order diagrams (with three-degree vertices only) for a generic Ve-point function514

obey it as well, but this hypothesis is not necessary for the results described in this paper.515

Next, using the asymptotic expression of the NBP in Fourier space, Eq. (43), together with516

the rescaling of momenta and lengths, in Eq. (50), we arrive at517

bCVe
({k j})

�

�

�

�

G
=

(2D)Ve

S(G)M Nloop−1+Ve

� (2D)!
(2D − 3)!

�Vi

µ−I

� I
∏

i=1

∫

dbLi

�

×

(2π)D δD

 

Ve
∑

j=1

k j

!

a−DVi

l

 

∫ Nloop
∏

l=1

dD
bql

(2π)D

!

p I−2Vi f (CVe , lc)×

�

µ(2D − 2)

a2
l

�

D
2 (Nloop−1) �

µ(2D − 2)

a2
l

�

D
2 � 2D

2D − 1

�I I
∏

i=1

e−gi({bql},{bk j })2bLi−bLi aI D
l , (A.7)

where bk is a function of k according to (50). Note that, as done in the main text, we did not518

rescale the external momenta inside the delta function.519

Given the known relations for Vi , Ve , I and Nloop in a generic diagram with internal520

vertices of degree three:521

Vi = Ve + 2(Nloop − 1) and I = 2Ve + 3(Nloop − 1) , (A.8)

in Eq. (A.7) we can identify the following topology-dependent term:522

1

S(G)

� I
∏

i=1

∫

dbLi

�
 

∫ Nloop
∏

l=1

dD
bql

(2π)D

!

f (CVe , lc)
I
∏

i=1

e−gi({bql},{bk j })2bLi−bLi (A.9)

and the following three factors:523

• a constant to the power (Nloop − 1):524

1

M

� (2D)!
(2D − 3)!

�2

p−1 (2D − 2)
D
2

�

2D

2D − 1

�3

µ
D
2 −3 ≡ bAµ

D
2 −3 , (A.10)

• a constant to the power Ve:525

1

M
2D

� (2D)!
(2D − 3)!

� �

2D

2D − 1

�2

aD
l µ
−2 ≡ bB aD

l µ
−2 , (A.11)

• an overall factor:526

(2π)D δD

 

Ve
∑

j=1

k j

!
�

µ(2D − 2)

a2
l

�

D
2

≡ (2π)D δD

 

Ve
∑

j=1

k j

!

µD/2
bC a−D

l , (A.12)

as defined in Eqs. (47), (48) and (49). With the expression given in Eq. (A.7) it is possible527

to easily identify the relevant constants to perform the expansion in inverse powers of M .528

Notice that these are all non-universal constants, as directly shown for the case of the bond529

percolation problem in the main text.530
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B Connection with field theoretical expressions531

In this Section we show how to write the expressions for bC2, lc(k, k′) and bC3, lc(k1, k2, k3),532

Eqs. (45) and (46), in terms of scalar propagators, as in the corresponding field theory. To do533

so, starting from the mentioned equations, we first perform the integrals over the lengths with534

lower and upper limits of integration respectively µ/Λ2 and∞. Notice that we are interested535

in the critical behavior, that is for µ→ 0, thus we can set the lower limit to 0, which amounts536

to neglecting higher orders in µ. The results are537

bC2(k, k′) =
bC bB2aD

l

bAµ

1
bk2 + 1

(2π)DδD(k + k′)×
 

1−
bAµ

D
2 −3

2(bk2 + 1)

∫

dD
bq

(2π)D
1

1+ (bk − bq)2
1

1+ bq2

!

+O
�

1

M3

�

, (B.1)

bC3(k1, k2, k3) =
bC bB3a2D

l

bAµ3

(2π)DδD(k1 + k2 + k3)

(bk2
1 + 1)(bk2

2 + 1)(bk2
3 + 1)

×

�

1− 2bAµ
D
2 −3

∫

dD
bq

(2π)D
1

1+ (bk2 + bk3 + bq)2
1

1+ (bk2 + bq)2
1

1+ bq2
+

−
1

2

bAµ
D
2 −3

(bk2 + bk3)2 + 1

∫

dD
bq

(2π)D
1

1+ (bk2 + bq)2
1

1+ bq2
+ per m.

�

+O
�

1

M4

�

. (B.2)

Next we rescale the momenta and we define the bare mass and coupling, respectively mb and538

gb, according to:539

ek ≡ µ
1
2 a

2D
D+2

l
bA

1
D+2 bB−

2
D+2 bk (B.3)

540

m2
b ≡ µa

− 4D
D+2

l
bA

2
D+2 bB−

4
D+2 (B.4)

541

gb ≡ a
D

D−6
D+2

l
bA

4
D+2 bB

D−6
D+2 bC−2+

3
D+

D
4 (B.5)

and we obtain542

bC2(ek,ek′) = (2π)DδD(k + k′)×
 

1
ek2 +m2

b

−
1

2
g 2

b

1

(ek2 +m2
b
)2

∫

dD
eq

(2π)D
1

(ek − eq)2 +m2
b

1

eq2 +m2
b

!

+O
�

1

M3

�

(B.6)

bC3(k1, k2, k3) =
1

(ek2
1 +m2

b
)(ek2

2 +m2
b
)(ek2

3 +m2
b
)
(2π)DδD(ek1 + ek2 + ek3)×

�

gb − 2g 3
b

∫

dD
eq

(2π)D
1

(ek2 + ek3 + q)2 +m2
b

1

(ek2 + eq)2 +m2
b

1

eq2 +m2
b

+

−
1

2
g 3

b

1

(ek2 + ek3)2 +m2
b

∫

dD
eq

(2π)D
1

(ek2 + eq)2 +m2
b

1

eq2 +m2
b

+ per m.

�

+O
�

1

M4

�

, (B.7)
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which are the results of the corresponding field theory associated with the percolation problem543

[7,9].544

As a last remark we notice that it is not always possible to write the results of the M-layer545

construction in terms of scalar propagators. For the percolation, problem the observables546

computed on a given topology, such as Eqs. (33) or (34), are powers of the probability p to547

some combination of the lengths of the lines, thus the integrals over the lengths give the scalar548

propagator factors. For a generic problem the expressions of the observables can be more549

complicated functions of the lengths (see Refs. [14,17] as an example) and the corresponding550

integrals do not give the simple structure of a scalar propagator. On the other hand, for simple551

problems, whose field theoretical analysis is clear, the propagator structure is recovered by552

means of the M-layer construction [23].553

It is also interesting to note that the integrals occurring in field theories are actually com-554

puted through the application of formulas like the following:555

1

k2 +m2
=

∫ ∞

0

e−l(k2+m2)dl (B.8)

see e.g. the appendix to chapter five in [20] and this amount to back from Eqs. (B.1) and556

(B.2) back to Eqs. (45) and (46). Thus the M-layer approach directly gives expressions in557

the above treatable form. Furthermore, the integration variable l, that seems artificial in field558

theory, has instead the natural meaning of the length of the internal lines of the diagrams in559

the M-layer approach.560

C Other diagrams561

In this appendix we take into account other possible diagrams of order O(1/M2) that may562

contribute to the two-point correlation. As discussed in Ref. [23], the computation of the line563

without loop should be corrected to O(1/M2) by diagram G′1 in Fig. 3, with the corresponding564

weight: W(G′1) = 1/M(1− 1/M). While the contribution of G′1 at order O(1/M) is already565

included in Eq. (35), its contribution at order O(1/M2) is not included there because G′1566

diverges with a lower power of µwith respect to G2, which also contributes at order O(1/M2).567

Figure 3: Less divergent diagrams that contribute to the two-point function. Notice
that the two couple of vertices in x0 and x ′0 belong to two different layers while on
the projection they are superimposed. The two lines of length L0 coil themselves in
the M-layer lattice, in such a way that the projection on the original lattice looks like
a loop.

The contribution of G′1 at order O(1/M2) is568

−
(2D)2

M2

(2D)!
(2D − 4)!

∑

L1,L0,L2

∑

x0

NL1
(x1, x0)NL0

(x0, x0)NL2
(x0, x2)C2, lc(G′1; L1, L0, L2) , (C.1)
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where569

C2, lc(G′1; L1, L0, L2) = C2, lc(G1; L1 + L0 + L2) = p pL1+L0+L2 . (C.2)

In Fourier space, using Eqs. (42) and (43), it becomes:570

− (2π)DδD(k1 + k2)
(2D)2

M2

(2D)!
(2D − 4)!

�

2D

2D − 1

�3

a2D
l p

1
a2

l
2D−2 k2

1 +µ

1
a2

l
2D−2 k2

2 +µ
×

∫

dDk0

(2π)D

∫ ∞

µ/Λ2

dbL0e
−
�

a2
l

µ(2D−2) k
2
0+1

�

bL0
, (C.3)

which can be rewritten by scaling all the momenta, bk ≡ k
alp

µ(2D−2)
, apart from the ones in571

the delta function, as:572

− (2π)DδD(k1 + k2)
(2D)2

M2

(2D)!
(2D − 4)!

�

2D

2D − 1

�3

µ
D
2 −3

aD
l

p(2D − 2)
D
2

(bk2
1 + 1)(bk2

2 + 1)
×

∫

dD
bk0

(2π)D
1

bk2
0 + 1

∝
µ

D
2 −3

M2
, (C.4)

where, as usual, we neglected higher orders in µ setting the lower limit of the length integra-573

tion to 0. The other contribution to order O(1/M2) is from diagram G2, repeating the same574

steps we have575

− (2π)DδD(k1 + k2)
(2D)2

2M2

� (2D)!
(2D − 3)!

�2 � 2D

2D − 1

�4

µ
D
2 −4

aD
l
(2D − 2)

D
2

(bk2
1 + 1)(bk2

2 + 1)
×

∫

dD
bk

(2π)D
1

bk2 + 1

1

(bk1 − bk)2 + 1
∝
µ

D
2 −4

M2
, (C.5)

from which it is clear that near the critical point, µ ∼ 0, the contribution of G′1 can be neglected576

with respect to the one of G2. Analogously, diagram G′3, is negligible with respect to G4 and577

G5. Thus the computations for the three-point correlation function of the main text give the578

correct critical behavior.579

It is also possible to generalize this argument, at least in the case of the percolation prob-580

lem. Since for each line of the diagram a factor proportional to µ−1(bk2 + 1)−1 appears, we581

understand that, at a given order in O(1/M) the most divergent diagrams, in the limit µ→ 0582

are the ones with the largest number of lines. This argument is not valid generally for any583

problem or model. Indeed, the computation of the observables on a given diagram is the only584

model-dependent part of the M-layer procedure and in general the result can be a non-trivial585

function of the lengths, as we noticed at the end of appendix B.586

D Four-point correlation function587

We present, in this appendix, the computation for the most divergent contributions to the588

four-point correlation function. All the possible topologies, with only three and four-degree589

vertices, are shown in Fig. 4.590
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Figure 4: Diagrams contributing to the four-point correlation function up to one loop.

Along the lines of the reasoning given for neglecting G′1 with respect to G2 we identify591

the most divergent diagrams to each O(1/M) order for the four-point correlation function592

simply considering the diagrams with the largest number of lines. It turns out that the relevant593

diagrams, for the four-point function, are the ones shown in Fig. 5: G7 to order O(1/M3),594

G9, G12 and G13 to order O(1/M4). Notice that, in principle, we should have considered also595

diagrams with vertices of degree larger than four, but they all have, at one loop order, fewer596

lines than the ones we included in Fig. 5, thus they are less divergent near the critical point597

µ ∼ 0.598
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Figure 5: Most divergent diagrams contributing to the four-point correlation func-
tions up to one loop near the critical point.

Now we can write the contributions of the identified diagrams:599

C4(x1, x2, x3, x4) =
1

M3

∑

L⃗

∑

x0,x ′0

N (G7; L⃗; x1, x2, x3, x4, x0, x ′0)C4, lc(G7; L⃗)+

+
1

M4

∑

L⃗′

∑

{x ′
i
},i=1,...,4

N (G9; L⃗′; x1, x2, x3, x4, x ′1, x ′2, x ′3, x ′4)C4, lc(G9; L⃗′)+

+
1

M4

∑

L⃗′

∑

x ′1,x0,x ′0,x ′′0

N (G10; L⃗′; x1, x2, x3, x4, x ′1, x0, x ′0, x ′′0 )C4, lc(G10; L⃗′)+

+
1

2M4

∑

L⃗′

∑

{x ′
i
},i=1,...,4

N (G12; L⃗′; x1, x2, x3, x4, x ′1, x ′2, x ′3, x ′4)C4, lc(G12; L⃗′)+

+
1

2M4

∑

L⃗′′

∑

x ′1,x0,x ′0,x ′′0

N (G13; L⃗′′; x1, x2, x3, x4, x ′1, x0, x ′0, x ′′0 )C4, lc(G13; L⃗′′) +O
�

1

M5

�

,

(D.1)

where the lengths are defined as L⃗ = (L0, L1, L2, L3, L4), L⃗′ = (L1, L2, L3, L4, LA, LB, LC , LD),600

L⃗′′ = (L1, L3, L4, L2A
, L2B

, LA, LB, LC , LD), and the NBPs:601

N (G7; L⃗; x1, x2, x3, x4, x0, x ′0) =

(2D)4
� (2D)!
(2D − 3)!

�2
∏

i=1,3

NLi
(xi , x0)

∏

i=2,4

NLi
(xi , x0)NL0

(x0, x ′0) , (D.2)
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N (G9; L⃗′; x1, x2, x3, x4, x ′1, x ′2, x ′3, x ′4) =

(2D)4
� (2D)!
(2D − 3)!

�4 4
∏

i=1

NLi
(xi , x ′i )NLA

(x ′1, x ′2)NLB
(x ′2, x ′4)NLC

(x ′3, x ′4)NLD
(x ′3, x ′1) , (D.3)

603

N (G10; L⃗′; x1, x2, x3, x4, x ′1, x0, x ′0, x ′′0 ) =

(2D)4
� (2D)!
(2D − 3)!

�4 4
∏

i=1

NLi
(xi , x ′i )NLA

(x ′1, x0)NLB
(x0, x ′0)NLC

(x ′0, x ′′0 )NLD
(x0, x ′′0 ) , (D.4)

604

N (G12; L⃗′; x1, x2, x3, x4, x ′1, x ′2, x ′3, x ′4) = (2D)4
� (2D)!
(2D − 3)!

�4

NL1
(x1, x ′1)×

NL2
(x2, x ′4)NL3

(x3, x ′1)NL4
(x4, x ′4)NLA

(x ′1, x ′2)NLB
(x ′2, x ′3)NLC

(x ′2, x ′3)NLD
(x ′4, x ′3) , (D.5)

605

N (G13; L⃗′′; x1, x2, x3, x4, x ′1, x0, x ′0, x ′′0 ) = (2D)4
� (2D)!
(2D − 3)!

�4

NL1
(x1, x ′1)×

NL3
(x3, x ′1)NL4

(x4, x0)NL0
(x ′1, x0)NL2B

(x2, x ′′0 )NL2A
(x0, x ′0)NLA

(x ′0, x ′′0 )NLB
(x ′0, x ′′0 ) ,

(D.6)

and finally the observables606

C4, lc(G7; L⃗) = p pL1+L2+L3+L4+L0 ; (D.7)
607

C4, lc(G9; L⃗′) = −3pL1+L2+L3+L4+LA+LB+LC+LD ; (D.8)
608

C4, lc(G10; L⃗′) = −2pL1+L2+L3+L4+LA+LB+LC+LD ; (D.9)
609

C4, lc(G12; L⃗′) = −pL1+L2+L3+L4+LA+LB+LC+LD ; (D.10)
610

C4, lc(G13; L⃗′′) = −pL1+L3+L4+L0+L2A+L2B+LA+LB . (D.11)

Since the identified diagrams, G7, G9, G10, G12 and G13, contain only three-degree vertices, we611

can use the generic equation derived in App. A for this kind of vertices, Eq. (A.7), where612

f (C4,lc(G7; L⃗′, L4, L0)) = 1 , (D.12)
613

f (C4,lc(G9; L⃗)) = −3 , (D.13)
614

f (C4,lc(G10; L⃗)) = −2 , (D.14)
615

f (C4,lc(G12; L⃗′′)) = −1 = f (C4,lc(G13; L⃗′′′)) (D.15)

and S(G7) = S(G9) = S(G10) = 1, S(G12) = 2 = S(G13):616
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bC4, lc({ki}i=1,...,4) = (2π)
DδD

� 4
∑

i=1

ki

�

bB4 a3D
l
bC

bAµ5

4
∏

i=1

1
bk2

i
+ 1

�∫

dbL0 e−bL0−(bk1+bk3)2bL0+

− 3 bAµ
D
2 −3

∏

i=A,B,C ,D

∫

dbLi e−bLi

∫

dD
bq

(2π)D
e−bq

2
bLA−(bq+bk2)2bLB−(bq+bk2+bk3)2bLC−(bk1−bq)2bLD

− 2 bAµ
D
2 −3

∏

i=A,B,C ,D

∫

dbLi e−bLi e−(
bk1+bk3)2bLA

∫

dD
bq

(2π)D
e−bq

2
bLB−(bq+bk2)2bLC−(bq+bk2+bk4)2bLD

− 2 bAµ
D
2 −3

∏

i=A,B,C ,D

∫

dbLi e−bLi e−(
bk2+bk4)2bLA

∫

dD
bq

(2π)D
e−bq

2
bLB−(bq−bk1)2bLC−(bq−bk1−bk3)2bLD

−
bAµ

D
2 −3

2

∏

i=A,B,C ,D

∫

dbLi e−bLi e−(
bk1+bk3)2(bLA+bLD)

∫

dD
bq

(2π)D
e−bq

2
bLB−(bq−bk1−bk3)2bLC

−
bAµ

D
2 −3

2

4
∑

j=1

∏

i=0,A,B, jA, jB

∫

dbLi e−bLi e−(
bk1+bk3)2bL0−bk2

2(bL jA+L jB)
∫

dD
bq

(2π)D
e−bq

2
bLA−(bq+bk j )2bLB

�

+O
�

1

M5

�

. (D.16)

As for the two and three-point correlation functions, we define χ4(µ) as the four-point correla-617

tion function at zero external momenta, divided by a3D
l

and without the factor (2π)DδD
�
∑4

i=1 ki

�

:618

χ4(µ) =
bB4
bC

bAµ5

�

1−
5

2

bAµ
D
2 −3

(4π)
D
2

Iα(µ)− 4
bAµ

D
2 −3

(4π)
D
2

Iγ(µ)− 3
bAµ

D
2 −3

(4π)
D
2

Iδ(µ)

�

(D.17)

where Iα and Iγ are defined in Eqs. (60) and (66) respectively, while619

Iδ(µ) ≡
∫ ∞

µ

Λ2

dbLAdbLBdbLC dbLD
e−bLA−bLB−bLC−bLD

�

bLA +bLB +bLC +bLD
�

D
2

, (D.18)

and consequently620

lim
µ→0

Iδ(µ) =
6− D

12
Γ

�

3−
D

2

�

. (D.19)

Using the relation between µ and m2, Eq. (63), we can write χ4 as a function of m2621

χ4
�

µ(m2)
�

=
bB4
bC

10
D +1

bAa10
l

m−10

�

1+
5

2

u

(4π)
D
2

Iβ
�

µ(m2)
�

+

− 4
u

(4π)
D
2

Iγ
�

µ(m2)
�

− 3
u

(4π)
D
2

Iδ
�

µ(m2)
�

�

, (D.20)

where u is the bare coupling constant, defined in Eq. (69). Now we can look at the scaling,622

near the critical point m2→ 0, of the four-point function623

D4(λ) ≡
∂ lnχ4

�

µ(m2 ≃ 0)
�

∂ ln m2

�

�

�

�

g fixed

, χ4
�

µ(m2 ≃ 0)
�

∼ m2 D4(λc) . (D.21)

Using the expression of χ4(m2) we have624

D4(λc) =
1

42

�

D(3D − 55) + 12
�

. (D.22)
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We can now compare with the scaling of the four-point function625

χq
�

µ(m2 ≃ 0)
�

∼ m2Dq (λc) , Dq(λc) =
q

4
η−

q

2
+

D

2

�

1−
q

2

�

, (D.23)

with q = 4, which gives the expected result of Eq. (89)626

ηD =
D − 6

21
. (D.24)
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