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Abstract

One way to perform field theory computations for the bond percolation problem is
through the Kasteleyn and Fortuin mapping to the n + 1 states Potts model in the limit
of n→ 0. In this paper, we show that it is possible to recover the ε-expansion for critical
exponents in finite dimension directly using the M-layer expansion, without the need
to perform any analytical continuation. Moreover, we also show explicitly that the criti-
cal exponents for site and bond percolation are the same. This computation provides a
reference for applications of the M-layer method to systems where the underlying field
theory is unknown or disputed.
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1 Introduction17

The percolation problem provides one of the simplest examples of a second-order phase tran-18

sition, in both the versions of site or bond percolation. Despite the simplicity of the model, it is19

at the basis of different problems in many different fields, from condensed matter to telecom-20

munication engineering, from graph theory to epidemic spreading [1,2]. In the standard site21

(bond) percolation problem, each site (bond) is present independently of the neighbors with22

probability p. Above a certain threshold pc , a giant cluster of nearest-neighbor sites is present23

in the thermodynamic limit while below this threshold neighboring sites are grouped into many24

small clusters of non-extensive size. The value pc corresponds to the transition point and one25

can associate standard critical exponents that describe how critical observables behave near26

pc . Despite the deep similarities with respect to critical behavior, the main difference between27

percolation and other phase transition models is the absence of an associated Hamiltonian and28

a corresponding partition function.29

The renormalization group (RG) is the main tool to study second order phase transitions.30

It can be applied in two ways: the first one is by performing explicitly an RG transformation31

on a given two- or three-dimensional lattice while the second relies on field theory. The first32

method typically requires uncontrolled approximations (needed to close the RG equations and33

find a fixed point) while the second is more powerful as it allows one to systematically obtain34

the critical exponents in dimension D in powers of ε = DU − D where DU is the upper critical35

dimension. The first method can be applied to percolation as it is [3, 4] but one could think36

that the lack of a Hamiltonian would make the application of the second impossible. However,37

in a seminal paper, Kasteleyn and Fortuin showed that the bond percolation problem is exactly38

related to the n → 0 limit of an n-component (n + 1 states) Potts model [5]. It was then39

recognized [6] that this mapping allows the application of field-theoretical techniques and40

today the exponents are known up to the 5th order in an ε-expansion around the upper critical41

dimension [7–11] .42

In this paper, we reproduce the same expansion up to one-loop order by means of the M-43

layer construction. This construction has been introduced in Ref. [12], and then applied to a44

variety of models [13–18]. The useful property of the M-layer construction is that one can45

also study the critical behavior, in finite dimensions, of problems which are not defined by a46

Hamiltonian, such as the percolation. One has to introduce M − 1 independent lattices, in47

addition to the original one; the M layers will then be coupled together through a random48

rewiring of the bonds. The M →∞ limit gives the Bethe lattice solution [19] of the model,49

while if M = 1 one obtains the original model. An expansion in 1/M can be properly set50

up, that is in practice an expansion in the number of the topological loops considered. The51

M-layer construction can be applied to any model that can be defined on a locally tree-like52

graph, including percolation. This is interesting, because, with this approach, there is no need53

to invoke the n→ 0 analytic continuation discovered by Kasteleyn and Fortuin. Furthermore,54

with this method, we can also analytically verify that the critical exponents of site percolation55

are equal to those of bond percolation.56
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The additional value of this paper is methodological: we show for the first time that from57

the 1/M expansion on the M-layer lattice one can obtain the ε-expansion, through the suitable58

introduction of a dimensionless beta function in analogy with what is usually done in standard59

field theory [20, 21]. This is a fundamental step that will help in applying in the future the60

same techniques to more complicated systems, for which a finite-dimensional solution is still61

not known, such as the Edward-Anderson spin-glass model [17] or Anderson localization [18].62

The paper is organized as follows: In Section 2 we present the model and the main results,63

in particular we sketch the derivation of the ε-expansion for the critical exponents from the64

1/M expansion of two- and three-point correlation functions. In Section 3 we introduce the65

problem on the Bethe lattice with a novel derivation of the cluster distribution function. In66

Section 4 we recall the general properties of the 1/M expansion and the operative rules to67

compute it. In Section 5 we present the computation of the observables in the M-layer frame-68

work for both site and bond percolation. In Section 6 we apply one of the standard methods69

to compute critical exponents in ε-expansion. Finally, in Section 7, we give our conclusions.70

2 Models and main results71

In this Section we list the results of the application of the M-layer construction to both the bond72

and site percolation problems on a hyper-cubic lattice in D dimensions. We briefly describe73

the steps needed to reach the final results which will be summarized next.74

In the standard site (respectively bond) percolation problem, each site (respectively bond)75

is present, or “active”, independently of the neighbors with probability p. In the site percola-76

tion problem one then defines a cluster as a subset of nearest-neighbor active sites, while in77

bond percolation a cluster is defined as a subset of sites connected by nearest-neighbor active78

bonds. At pc a giant cluster appears, that contains a finite fraction of all the sites N. Our79

analysis will mainly apply to the non-percolating phase p < pc and from now on we refer to80

this case. The critical behavior in the non-percolating phase is characterized by considering81

the average number n(s , p) of clusters of size s in a system of size N. This distribution is cut82

off at a typical size s∗ that diverges at the critical point. We also consider the q -point function83

Cq(x1, . . . , xq) that gives the probability that the sites at x1, . . . , xq belong to the same clus-84

ter. According to scaling arguments [1, 22], we expect that the two-point function obeys the85

following scaling form for large |x1 − x2| and for p close to pc:86

C2(x1, x2) =
1

|x1 − x2|D−2+η
fC2

�

|x1 − x2|
ξ

�

, (1)

where fC2
is a proper scaling function, η is the anomalous dimension and ξ is the correlation87

length that diverges at the critical point as:88

ξ ∼
1

|p − pc|ν
. (2)

The typical size s∗ scales with the correlation length as89

s∗ ∼ ξDf , (3)

where Df stands for the fractal dimension of the clusters. The distribution of the cluster sizes90

also obeys a scaling law [1,22]:91

n(s , p) = s−τ fn(|p − pc|sσ) , (4)
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where fn(x ) is another scaling function. We also consider the space integrals of the Cq(x1, . . . , xq),92

called susceptibilities,93

χq ≡
∑

x2,...,xq

Cq(x1, . . . , xq) (5)

that are independent of x1 in a homogeneous system (they only depend on the differences94

between the points). They are related to the moments of the n(s , p) through:95

χq =
∞
∑

s=0

sq n(s , p) . (6)

The scalings of the typical size s∗ and the correlation length ξ give96

σ =
1

νDf
, (7)

while, given the relation97

τ = 1+
D

Df
, (8)

comparing Eqs. (5) and (6) and using the scaling of n(s , p) one can easily find that the98

susceptibilities diverge as99

χq ∼ ξ−D+Df q , (9)

from which it follows that the following quantity goes to a constant at the critical point:100

λ∝ ξ−D
χ2

3

χ3
2

. (10)

On the M-layer lattice χ2 and χ3 are given by the Bethe lattice solution in the limit M →∞101

and we computed the first 1/M correction, for both site and bond percolation. Once the two-102

point observable is computed, with the M-layer construction, the upper critical dimension, DU ,103

can be deduced from the Ginzburg criterion and for the percolation problem it turns out to be104

DU = 6. At this point of the computation a standard procedure to compute critical exponents105

is applied [20]. In particular we write λ as:106

λ = u −
7

4

u2

(4π)
D
2

Γ

�

3−
D

2

�

+O(u3) , (11)

where the constant u is defined as u ≡ g mD−6, where m ≡ ξ−1 and g is a O(1/M) constant107

that depends on the microscopic details of the model including whether we consider bond or108

site percolation. Note that the dimensionless constant u diverges at the critical point for D < 6109

because m vanishes, while λ remains finite at the critical point according to Eq. (9). Notice110

that, in order to understand this last statement from Eq. (11), one should consider the relation111

between λ and u to all orders in u, but in this perturbative framework we only compute the112

first correction, to O(u2). We expect that:113

λ ≈ λc + c1 ξ
ω = λc + c1 m−ω , for ξ→∞, m→ 0 (12)

where c1 is a model-dependent constant, while ω is a universal exponent that controls the114

corrections to scaling [20]. Now, following a standard field-theoretical procedure (see Ref.115

[20], Chap. 8), we define the function b(λ), using the above relationships:116

b(λ) ≡ m2 ∂

∂ m2
λ ≈ −

ω

2
c1 m−ω ≈ −

ω

2
(λ−λc) , (13)
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meaning that at the critical point117

b(λc) = 0 , ω = −2 b′(λc) . (14)

From (11), we obtain an expression of b(λ) to second order in λ from which the following118

scenario emerges: for D ≥ DU = 6 only the solution λ = 0 exists, meaning that λ tends to zero119

at the critical point with ω = 6− D, while for ε ≡ 6− D > 0 a new solution λc ̸= 0 appears:120

λc =
2 (4π)3

7
ε+ O(ε2) (15)

and λ tends to λc at the critical point, with ω = −ε+O(ε2). Here the universality is realized:121

the non-trivial fixed point λc doesn’t depend anymore on the specific value of g and thus it122

doesn’t depend on the microscopic details of the system (including if we are dealing with bond123

or site percolation). Moreover we confirm that, due to universality, the values of the critical124

exponents do not depend on the value of M .125

Following similar standard computations (see Ref. [20], Chap. 8), from the value of λc126

and the scaling laws, we obtained the ε-expansion for the critical exponents:127

ν =
1

2
+

5

84
ε+O(ε2) , (16)

128

η = −
1

21
ε+O(ε2) . (17)

Comparing Eq. (9) with the scaling law χ2 ∼ ξ2−η we obtain129

Df =
D + 2−η

2
, (18)

all the other critical exponents can be obtained from η and ν through the scaling laws given130

above.131

We stress that the result is independent of the actual values of any non-universal constant,132

ensuring that the critical exponents are the same for bond and site percolation, as explained133

more extensively in Sec. 5. As it should, the results coincide with those obtained from the134

ε-expansion for the (n + 1)-state Potts models in the limit n → 0, which coincides with bond135

percolation according to the Fortuin-Kasteleyn mapping. In appendix D we have also computed136

the expansion of χ4 in powers of 1/M checking that it diverges at the critical point with an137

exponent equal to that predicted by Eq. (9).138

3 Percolation on the Bethe Lattice139

In this Section we show how to derive equations for the critical behavior of g (s , p), defined140

as the probability that a randomly chosen site belongs to a cluster of size s , including s = 0141

meaning that the site is not active. We discuss the case of site percolation on a Bethe lattice142

and how to derive the exact critical exponents in this case. Given the definition of n(s , p), in143

Sec. 2, we have144

g (0, p) = (1− p) ; g (s , p) = s n(s , p) for s > 0 . (19)

Here and in the following we call “Bethe lattice” a random regular graph with fixed connectivity145

c. Notice that g (s , p) as it should is normalized to 1 because the probability that a randomly146

chosen site belongs to a cluster is
∑

s s n(s , p) = p. We also define the associated “cavity”147

probability, gcav(s , p), as the probability that a randomly chosen site, for which one of its c148
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edges is removed, belongs to a cluster of size s . This definition is useful since on a Bethe149

lattice two sites are connected by a unique sequence of adjacent edges, so that, removing one150

edge, the two sites will be completely independent and the resulting probability to belong to151

a cluster factorizes [23]. Thus, given that each site is active with probability p, we can write152

a self-consistent equation for gcav(s , p) on the Bethe lattice with fixed connectivity c:153

gcav(s , p) = (1− p)δs ,0 + p
∞
∑

s1=0

· · ·
∞
∑

sc−1=0

gcav(s1, p) . . . gcav(sc−1, p)δs ,1+s1+···+sc−1
, (20)

where the first term comes from the case in which the given site is not present, and the resulting154

size of the cluster is s = 0, while the second is the probability that the site is present, p, times155

the product of the factorized probabilities that the c−1 neighboring sites (one edge is removed,156

see Fig. 1) belong to clusters of sizes s1, s2, . . . , sc−1. In this second case the resulting size157

must be the sum of the sizes plus one, the given site. The probability g (s , p) can then be158

expressed in terms of the cavity probability as:159

g (s , p) = (1− p)δs ,0 + p
∞
∑

s1=0

· · ·
∞
∑

sc=0

gcav(s1, p) . . . gcav(sc, p)δs ,1+s1+···+sc
, (21)

the only difference being that the product is over c terms gcav , since all the c edges of the160

given site are present.161

Figure 1: Graphic representation of Eqs. (20) and (21). Left: on a Bethe lattice
with connectivity c one of the edges of site i is removed, represented with a dashed
line. The c − 1 remaining neighboring sites are connected by site i only, thus the
probabilities gcav(s1, p), . . . , gcav(sc−1, p) are factorized. The total resulting size is
s = 1 + s1 + · · · + sc−1. Right: in this case none of the edges of site i is removed.
Again the cavity probabilities are factorized, but in this case the product includes
gcav(sc, p) too.

Next we define the generating function g̃ (t , p) ≡
∑∞

s=0 g (s , p)e−t s and its cavity coun-162

terpart, g̃cav(t , p). Eq. (20) becomes:163

g̃cav(t , p) = (1− p) + p (g̃cav(t , p))c−1e−t . (22)

Deriving the above equation with respect to t and setting t = 0 we obtain164

g̃ ′cav(0, p) =
p

p (c − 1)− 1
. (23)

The moments of g (s , p) are related to the derivatives of g̃ (t , p) in t = 0, in particular, recalling165

the definition (6) we have:166

χ2(p) = − g̃ ′(0, p) =
p(p + 1)

1− p(c − 1)
, (24)
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that diverges, as expected, at the critical point pc = 1/(c − 1). It is possible to obtain the167

previous divergent behavior considering the two-point correlation C2(x1, x2) defined in the168

previous Section. As we will see in Sec. 5, the correlation between two sites at distance L on169

the Bethe lattice is C2(|x1 − x2| = L) = p pL. The associated susceptibility, χ2, turns out to be170

χ2 =
∑

x2

C2(|x1 − x2|) = p + p
∞
∑

L=1

c (c − 1)L−1 pL =
p(p + 1)

1− p(c − 1)
, (25)

where the sum over x2 is over all the sites of the Bethe lattice and c (c − 1)L−1 is the number171

of neighboring sites at distance L ≥ 1. We notice that in the Bethe lattice the two-point172

correlation is always exponentially decaying, also at the critical point p = pc . The reason for173

the divergence is the number of neighboring sites which is exponential in the distance L. This174

means that the correlation length ξBL, implicitly defined by175

C2(L)∝ pL ≡ e−
L
ξBL (26)

is always finite and equal to (− log(p))−1. With this definition of ξBL the anomalous dimen-176

sion, η, associated to the power law behavior of C2(L), and the exponent ν associated to the177

power law behavior of the correlation length, are not defined on the Bethe lattice1. One of178

the interesting features of the M-layer construction is that it allows to compute η and ν also179

in the limit M →∞, as we will discuss later.180

Scaling of n(s , p) In order to compute the scaling of n(s , p), we are interested in the func-181

tions g (s , p) for p close to the critical point and s large, that corresponds to small values of t182

in g̃ (t , p). We now define183

δg̃ (t , p) ≡ g̃ (t , p)− 1 =
∞
∑

s=0

g (s , p)(e−s t − 1) (27)

and its cavity counterpart δg̃cav(t , p) ≡ g̃cav(t , p)− 1. Differentiating Eq. (22) with respect184

to t we obtain, for small values of t and p close to pc:185

δg̃ ′cav(t , p)(1− p/pc − (c − 2)δg̃cav(t , p)) = −pc , (28)

from which we have186

δg̃cav(t , p) = a (1− (1+ t/t ∗)1/2) , (29)

where187

δp ≡ p − pc a ≡ −δp
c − 1

c − 2
, t ∗ ≡ δp2 (c − 1)3

2 c − 4
. (30)

For small values of t and δp we also obtain188

δg̃ (t , p) =
c

c − 1
δg̃cav(t , p) . (31)

Replacing the sum with an integral (which is justified by the fact that small values of t corre-189

spond to large values of s) we obtain, computing the inverse Laplace transform of Eq. (29)190

and using Eq. (31)191

g (s , p) ∼
1

s3/2
e−s t ∗ → n(s , p) ∼

1

s5/2
e−s t ∗ , (32)

1Notice that one can consider an alternative definition of ξ as ξ2 ≡
∑

x2
|x1−x2 |2C2(x1 ,x2)
∑

x2
C2(x1 ,x2)

[1,2]. With this definition

ξ is divergent on the Bethe lattice. This discrepancy is a pathology associated to the topology of the Bethe lattice
in which the volume grows exponentially with the distance while it grows as a power law in finite dimension. In
finite dimension this discrepancy is not present and indeed we will choose the second definition.
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that obeys Eq. (4) with exponents192

σ =
1

2
and τ =

5

2
, (33)

that we identify with the mean-field values. In the next Sections we will consider percolation193

on the M-layer random lattice in finite dimension D. In the limit M → ∞ the function194

n(s , p) of the M-layer becomes identical to that of the Bethe lattice and therefore τ = 5/2195

and σ = 1/2. In addition, we will show that for M →∞ the two-point function obeys the196

scaling form (1) with exponents197

ν =
1

2
, η = 0 , (34)

in all dimensions D ≥ 2, see the comment after Eq. (64). Note that these relationships are198

consistent with (7) and (8) only for D = DU = 6. Indeed τ = D/Df + 1 is a hyperscaling199

relationship that is not generically valid [22] at variance with the more general σ−1 = νDf ,200

which implies Df = 4 for the M →∞ model in any dimension. Computing the 1/M correc-201

tions around the M →∞ limit, we will show that for M finite the critical exponents are the202

same of the M →∞ limit for D ≥ DU = 6 while they are different for D < DU = 6. On the203

other hand for D < 6 both relationships (7) and (8) hold. We note that the M →∞ model204

plays essentially the role of the Gaussian model in ferromagnetism, see [20], Chaps. 4 and 5.205

4 The M-layer expansion206

Conceptually the M-layer method is rather straightforward: 1) one introduces a D−dimensional207

random lattice depending on a parameter M , the limit M →∞ of the model is solvable as208

it coincides with the Bethe lattice solution; 2) then one computes the finite-M corrections in209

powers of 1/M around the Bethe lattice solution. The goal is to study the critical behaviour210

near a second order phase transition for a model on a given lattice and, as we anticipated in211

Section 2, from the 1/M expansion one can obtain the ε-expansion. The M-layer expansion212

has been introduced in Ref. [12]where diagrammatic rules were derived to compute 1/M cor-213

rections, in this Section we recall these rules, referring to the original paper for their derivation214

and all the details. Note that percolation itself is particularly useful to understand the origin215

of these rules and it is treated as an example in Section D of Ref. [12].216

One can build the so-called M-layer construction considering M different layers of the217

original model, and then rewiring the bonds between each nearest-neighboring node among218

the layers in such a way that each node on each layer still has the same number of neighbors,219

that now can be placed at different layers [24]. In the following we will focus on D-dimensional220

hyper-cubic lattices (for which the connectivity is 2D), even if the M-layer construction can be221

applied to any type of lattice. We call “topological loop” a sequence of adjacent edges on the222

lattice that starts and ends in the same site. While finite dimensional lattices are characterized223

by the presence of many short topological loops, in the end of the procedure, the number of224

topological loops in the M-layer lattice will typically be reduced and in the M →∞ limit there225

will be no loops of finite length: the M →∞ solution of the model will correspond to the Bethe226

solution [19], computed on a random regular tree-like graph with the same fixed connectivity227

as the original model. At this point we can expand around this Bethe solution, introducing the228

small parameter 1/M . The original model corresponds to M = 1, thus in principle one should229

need all orders in 1/M to obtain the correct solution for the original model. However, we are230

interested in the critical behaviour of the model, which should be independent of the actual231

value of M due to universality. This expectation will indeed be confirmed in the context of232

percolation by the present computation. Furthermore, this implies that at each order in the233

8
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1/M expansion we only need to consider the contributions that diverge the most approaching234

the critical point. One can show that the 1/M expansion for a generic q -point observable235

corresponds to an expansion in the number of topological loops considered when computing236

that observable. In the limit of large M , in a given realization of these random rewirings the237

q sites considered for the observable will be connected with highest probability (proportional238

to 1/M) by a sequence of adjacent edges (a “path”) without topological loops, with lower239

probability by a path containing one topological loop and so on. In order to average over the240

rewirings the sum over all the possible realizations is needed, but we can retain the larger241

(in powers of 1/M) contributions. We will call the path connecting the q sites on a given242

realization a “topological diagram”, that can contain an arbitrary number of topological loops,243

zero in the limit M → ∞. In particular, if one wants to compute the 1/M expansion for a244

generic observable O, the following steps are required:245

• Step 1: Identify the possible topological diagrams246

Depending on the order at which one wants to perform the expansion, one should iden-247

tify the possible topological diagrams over which one needs to compute the chosen ob-248

servable. If one is interested in the leading order, one should only look at diagrams249

without loops, that correspond to the Bethe locally tree-like topology. If one wants to250

compute the next-to-leading order, one has to identify all the possible topological dia-251

grams that correspond to a Bethe lattice in which it has been manually injected a single252

topological loop, while any additional topological loop inserted will bring a new factor253

1/M in the expansion.254

• Step 2: Weights, number of projections and symmetry factors255

For any diagram G identified in Step 1, one needs to associate to it:256

– a weight W(G), that will be a power of 1/M and will indicate the probability that257

a topological diagram of that kind is obtained in the rewiring procedure;258

– a symmetry factor S(G), completely equivalent to that introduced in field theory259

for Feynman diagrams [21], that takes into account the number of ways in which260

vertices and lines can be switched leaving the topological structure of the diagram261

unaltered, see appendix C of Ref. [12] for a more detailed explanation of the equiv-262

alence between S(G) and Feynman diagrams symmetry factors;263

– the number of realizations of the chosen topological diagram on the original lattice,264

N (G): just as an example, if the chosen diagram is a line of length L between two265

points x1 and x2, the number of such diagrams in the M-layered lattice having266

a different projection on the original lattice corresponds to the number of non-267

backtracking paths (NBP) of length L between the two points and its analytical268

expression is known in the literature [12, 25]. One can define NL(x1, x2, µ̂, ν̂) as269

the number of NBP of length L where the directions µ̂ and ν̂ of the lines entering270

respectively in the external points x1 and x2 is fixed to one among the 2D possible271

ones. In the large L limit, the actual value of the number of NBP will be independent272

on those directions, and we will simply define this number as NL(x1, x2). The273

total number of the simple line diagrams of length L between two points x1 and x2274

will thus be N (G) = (2D)2NL(x1, x2), where the factor (2D)2 counts the possible275

entering directions of the line in the two external points. If one has a more complex276

diagram, to identify N (G) it is sufficient to multiply a factor NL(xi , x j) for each277

internal line of length L, a factor 2D for each external vertex and a factor
(2D)!
(2D−k)!278

for any internal vertex of degree k, to count the different possible directions of the279

lines entering the vertex.280
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• Step 3: Computation of the line-connected observable on the chosen diagram281

For any diagram G identified in Step 1, one then needs to compute the value O(G) of the282

chosen observable computed on a Bethe lattice in which the topological structure of that283

diagram has been manually injected. This observable will depend on the topology of the284

diagram and on the length of the lines. In order to compute, for a given observable, the285

expansion in the number of loops, or equivalently in powers of 1/M , one should isolate286

different contributions coming from a given topological diagram. Generically, the contri-287

bution of a diagram without loops is contained in the one coming from the same diagram288

with some additional lines composing a loop. For this purpose we want to subtract the289

first contribution from the one coming from the loop diagram, this amounts to compute290

the so-called “line-connected observable”, Olc(G). For the diagrams considered in this291

paper the following operative definition is sufficient: in order to compute Olc(G) one292

has to compute the observable on the given diagram G and then subtract all the contri-293

butions from the observable computed on diagrams where a line composing the loop (if294

any) is removed. For a more detailed treatment the reader is referred to Ref. [12].295

• Step 4: Sum of the contributions296

At the end, we need to sum the contributions to the chosen observable coming from the297

different chosen diagrams. Because the values of the chosen observable only depend on298

the projection of the considered diagrams, for each diagram G, we multiply the value299

of the line-connected observable Olc(G) by N (G), S(G), W(G), and we sum over the300

positions of internal vertices and over the lengths of the internal lines.301

5 M-layer for percolation in D dimensions302

In this Section we apply the procedure described in the previous Section to the percolation303

problem. We consider both the problems of site and bond percolation on a hypercubic lattice304

in D dimensions, which we denote alZ
D , considering al the lattice spacing. Following the305

notation of Sec. 2 we define p (where 0 < p ≤ 1) as the probability that a site or an edge is306

present, for the case of site or bond percolation respectively. Since the M-layer approach is a307

way to construct an expansion for observables around the Bethe solution, we define the “bare308

mass”309

µ ≡ − ln

�

p

pc

�

for p ∼ pc , (35)

where pc = 1/(2D − 1) is the critical value for both site and bond percolation on a Bethe310

lattice with branching ratio 2D − 1, above which the so-called “giant cluster” is present.311

Following the prescriptions of the M-layer construction [12,24] we report here the results312

of the application to both percolation problems in the non-percolating phase, p < pc . We313

are interested in two observables: the two and three-point correlation functions C2(x1, x2)314

and C3(x1, x2, x3), where · denotes the average over the rewirings of the M-layer procedure.315

According to the M-layer rules these correlation functions will be written as sums, over dif-316

ferent diagrams, of Cn, lc(G; {L}), the n-point line-connected correlation, averaged over the317

realizations of the percolation problem and computed on the diagram G, embedded on a tree318

graph, where {L} indicates the lengths of the different lines of the diagram. For both site319

and bond percolation, the two-point (three-point) correlation is defined as the probability320

that two (three) sites, at positions x1 and x2 (x1, x2 and x3) are occupied and belong to the321

same cluster. In the end, at one loop level, we must subtract pieces already considered in322

loop-free diagrams, to compute the “line-connected” observable [12,24]. We analyse the two323

observables separately, following for each of them the steps listed in the previous Section.324
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Observable: C2(x1, x2)325

• Step 1: Identify the possible topological diagrams326

The simplest diagram connecting two points is the bare line, which we will call G1. Includ-327

ing the possibility of a loop to be present we consider the diagram composed of four lines with328

two vertices of degree three, where the two internal lines compose a loop. We will call this329

diagram G2.330

Figure 2: Diagrams that contribute to the two-point correlation functions up to one
loop.

Other possibilities are the tadpole-type diagrams, connecting two points with a loop gen-331

erated by one four-degree vertex or connecting two points by two three-degree vertices, re-332

spectively the diagrams G′ and G′′ in Fig. 2. Nevertheless, these last two diagrams give no333

contributions to the line-connected two-point observable for percolation, as we will see in Step334

3 below. We won’t consider them in the following steps.335

• Step 2: Weights, number of projections and symmetry factors336

Diagram G1:337

◆ W(G1) =
1
M ;338

◆ N (G1; L; x1, x2) = (2D)2NL(x1, x2);339

◆ S(G1) = 1.340

Diagram G2:341

◆ W(G2) =
1

M2 ;342

◆ N (G2; L⃗; x1, x2) = (2D)2
� (2D)!
(2D−3)!

�2∑

x0,x ′0
NL1
(x1, x0)NL2

(x ′0, x2)
∏

i=A,B
NLi
(x0, x ′0);343

◆ S(G2) = 2.344

where L⃗ = (L1, LA, LB, L2).345

• Step 3: Computation of C2, lc(G1; L) and C2, lc(G2; L⃗)346

Given the definition of the line-connected two-point correlation for both percolation prob-347

lems, we firstly compute the contributions of diagrams G1 and G2 for the problem of site per-348

colation:349

C2, lc(G1; L) = p pL ; (36)
350

C2, lc(G2; L⃗) = −pL1+L2+LA+LB . (37)

The first result is immediate since, in the non-percolating phase, all the L+ 1 sites, connected351

by a line of length L, must be active, in order to connect the two sites at the extremities.352

The second result appears because, for the sites at the extremities to be connected, one or353
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both lines of the loop must consist on active sites, in addition to the external lines, which354

also need to be composed of active sites. The associated probability for this to happen is355

pL1+1(pLA−1 + pLB−1 − pLA+LB−2)pL2+1. The aforementioned result is obtained subtracting356

the straight line contributions, already taken into account with G1: pL1+1pLA−1pL2+1 and357

pL1+1pLB−1pL2+1. This last operation is the application of the “line-connected” definition [12].358

Performing the same computation for diagrams G′ and G′′ we obtain zero, as anticipated.359

The reason is that the two tadpoles, that enter the site x0, do not change the probability that360

sites x1 and x2 belong to the same cluster with respect to the case where the loop is not present.361

Indeed, independently of the lines of the tadpole, site x0 must be active in order to connect the362

two sites, then, subtracting the contributions needed to define the line-connected observable,363

that are the simple lines without tadpoles, the net contribution is zero. These diagrams are364

instead relevant in the percolating phase that we aim to study in a subsequent work.365

A similar computation can be performed for the bond percolation. In this case, consider-366

ing the contribution of G1, in order for the two sites to be in the same cluster, all the edges367

connecting the two must be active:368

Cbond
2, lc (G1; L) = pL ; (38)

Similarly, the line-connected contribution for G2, is369

Cbond
2, lc (G2; L⃗) = −pL1+L2+LA+LB . (39)

The same argument, used for the site percolation problem, can be applied to the topological370

diagrams G′ and G′′ in the bond percolation case, for which they give zero contribution too.371

• Step 4: Sum of the contributions372

The expression for C2(x1, x2), that is for the site percolation, is373

C2(x1, x2) =
1

M

∑

L

N (G1; L; x1, x2)C2, lc(G1; L)+

+
1

2M2

∑

L⃗

N (G2; L⃗; x1, x2)C2, lc(G2; L⃗) +O
�

1

M3

�

, (40)

while, for the bond percolation problem, we have374

C bond
2 (x1, x2) =

1

M

∑

L

N (G1; L; x1, x2)Cbond
2, lc (G1; L)+

+
1

2M2

∑

L⃗

N (G2; L⃗; x1, x2)Cbond
2, lc (G2; L⃗) +O

�

1

M3

�

. (41)

We can notice that the only difference is for the observable computed on a given diagram, here375

G1 and G2, which is the only model dependent part of the M-layer computations.376

Observable: C3(x1, x2, x3)377

• Step 1: Identify the possible topological diagrams378

The simplest diagram connecting three points is the bare three-degree vertex, which we will379

call G3. Including the possibility for a loop to be present, we consider the diagram, composed380

of six lines, with three vertices of degree three, we will call this diagram G4. At one-loop381

level there are three more diagrams connecting three points with a single loop, which are the382

same as G3, but where one of the external legs is dressed with G2. We call such a diagram G5,383

including all the permutations. All these diagrams are reported in Fig. 3.384
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Figure 3: Diagrams that contribute to the three-point correlation functions up to one
loop.

• Step 2: Weights, number of projections and symmetry factors385

Diagram G3:386

◆ W(G3) =
1

M2 ;387

◆ N (G3; L⃗′; x1, x2, x3) = (2D)3
(2D)!
(2D−3)!

∑

x0

∏3
i=i NLi

(xi , x0);388

◆ S(G3) = 1.389

Diagram G4:390

◆ W(G4) =
1

M3 ;391

◆ N (G4; L⃗′′; x1, x2, x3) = (2D)3
� (2D)!
(2D−3)!

�3
×

392
∑

x0,x ′0,x ′′0
NL1
(x1, x0)NL2

(x2, x ′0)NL3
(x3, x ′′0 )NLA

(x0, x ′0)NLB
(x0, x ′′0 )NLC

(x ′0, x ′′0 );393

◆ S(G4) = 1.394

Diagram G5:395

◆ W(G5) =
1

M3 ;396

◆ N (G5; L⃗′′′; x1, x2, x3) = (2D)3
� (2D)!
(2D−3)!

�3
×

397
∑

x0,x ′0,x ′′0
NL1
(x1, x0)NL2A

(x0, x ′0)NL2B
(x2, x ′′0 )NL3

(x3, x0)
∏

i=A,B
NLi
(x ′0, x ′′0 );398

◆ S(G5) = 2 ,399

where L⃗′ = (L1, L2, L3), L⃗′′ = (L⃗′, LA, LB, LC ) and L⃗′′′ = (L1, L2A
, LA, LB, L2B

, L3).400

• Step 3: Computation of C3, lc(G3; L⃗′), C3, lc(G4; L⃗′′) and C3, lc(G5; L⃗′′′)401

As for the two-point function we compute the contributions, starting from the site perco-402

lation problem:403

C3, lc(G3; L⃗′) = p pL1+L2+L3 ; (42)
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404

C3, lc(G4; L⃗′′) = −2pL1+L2+L3+LA+LB+LC ; (43)
405

C3, lc(G5; L⃗′′′) = −pL1+L2A+L2B+LA+LB+L3 . (44)

The result for G3 is easily derived, considering that all the sites of the topology must be active406

for the extremities to be connected. The result for G5 is obtained by multiplying the contri-407

bution for the bare vertex by the loop correction of the two-point function, diagram G2, with408

the corresponding lengths. The contribution of G4 is a generalization of the computation for409

G2; to connect the three extremities two of the three (or all the three) lines of the loop must410

consist on all active sites. Moreover, in this case we have to subtract three contributions, cor-411

responding to cutting LA, LB, and LC respectively, already included in the bare contribution412

G3.413

Analogously to the two-point function, we use the same arguments to compute the contri-414

butions for the bond percolation three-point function:415

Cbond
3, lc (G3; L⃗′) = pL1+L2+L3 ; (45)

416

Cbond
3, lc (G4; L⃗′′) = −2pL1+L2+L3+LA+LB+LC ; (46)

417

Cbond
3, lc (G5; L⃗′′′) = −pL1+L2A+L2B+LA+LB+L3 . (47)

• Step 4: Sum of the contributions418

The expression for C3(x1, x2, x3), that is for the site percolation, is419

C3(x1, x2, x3) =
1

M2

∑

L⃗′

N (G3; L⃗′; x1, x2, x3)C3, lc(G3; L⃗′)+

+
1

M3

∑

L⃗′′

N (G4; L⃗′′; x1, x2, x3)C3, lc(G4; L⃗′′)+

+
1

2M3

∑

L⃗′′′

N (G5; L⃗′′′; x1, x2, x3)C3, lc(G5; L⃗′′′) +O
�

1

M4

�

. (48)

As noticed for the two-point function, the expression is of C bond
3 (x1, x2, x3), that is for the bond420

percolation, is the same as C3(x1, x2, x3) with the corresponding observables: Cbond
3, lc

(G3; L⃗′),421

Cbond
3, lc

(G4; L⃗′′) and Cbond
3, lc

(G5; L⃗′′′). We do not write it for brevity.422

In appendix C we discuss why we didn’t include other possible but irrelevant diagrams to423

study the critical behavior of the percolation problem and in appendix D we present the explicit424

computation of the leading order critical behaviour of the four-point correlation function.425

Computation of the moments of n(s , p) In order to compute χ2 and χ3 we Fourier trans-426

form C2(x1, x2) and C3(x1, x2, x3), given in Eqs. (40) and (48), using the following conven-427

tion:428

bh(k) = aD
l

∑

x∈alZD

h(x )eikx , h(x ) =

∫

�

− πal
,
π
al

�

dDk

(2π)D
bh(k)e−ikx ; (49)

that implies429
�

2π

al

�D

δD(k) =
∑

x∈alZD

eikx . (50)
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We also use the fact that NL(x1, x2) is a function of the difference between the starting and430

arrival point only, so that, in Fourier space, we have431

ÒNL(k1, k2) = (2π)
Dδ(k1 + k2)ÒNL(k1) (51)

where, for small k [12,15],432

ÒNL(k) ≈ 2D(2D − 1)L−1aD
l e−k2 a2

l
L/(2D−2) . (52)

In view of the fact that in the critical region the sums will be dominated by large L contribu-433

tions, we may write the sums over the lengths as integrals:434

∞
∑

L=1

→
∫ ∞

1/Λ2

dL , (53)

where we introduced the UV cutoff Λ = 1 to make contact with field theory. Note that while in435

field-theory the UV cutoff is inserted manually, in the M-layer construction it arises naturally436

due to the lattice spacing (see more details in appendix B). The resulting expressions, for the437

site percolation case, of the two and three-point functions are respectively438

bC2(k, k′) =
bC bB2aD

l

bAµ

1
bk2 + 1

(2π)DδD(k + k′)×
 

1−
bAµ

D
2 −3

2(bk2 + 1)

∫

dD
bq

(2π)D

∫

dbLAdbLBe−(1+(
bk−bq)2)bLAe−(1+bq

2)bLB

!

+O
�

1

M3

�

(54)

and439

bC3(k1, k2, k3) =
bC bB3a2D

l

bAµ3

(2π)DδD(k1 + k2 + k3)

(bk2
1 + 1)(bk2

2 + 1)(bk2
3 + 1)

×

�

1− 2bAµ
D
2 −3

∫

dD
bq

(2π)D

∫

dbLAdbLBdbLC e−(1+(
bk2+bk3+bq)2)bLAe−(1+(

bk2+bq))2)bLBe−(1+bq
2)bLC+

−
1

2

bAµ
D
2 −3

(bk2 + bk3)2 + 1

∫

dD
bq

(2π)D

∫

dbLAdbLB e−(1+(
bk2+bq)2)bLAe−(1+bq

2)bLB + per m.

�

+O
�

1

M4

�

, (55)

where µ is the one defined in Eq. (35). We also defined the following non-universal constants:440

bA ≡
1

M

� (2D)!
(2D − 3)!

�2

p−1 (2D − 2)
D
2

�

2D

2D − 1

�3

, (56)

bB ≡
1

M
2D

� (2D)!
(2D − 3)!

� �

2D

2D − 1

�2

, (57)

bC ≡ (2D − 2)
D
2 , (58)

and we rescaled the momenta and lengths according to:441

bk ≡ k
al

p

µ(2D − 2)
, and bLi ≡ Liµ . (59)

Note that in Eqs. (54), (55) we have omitted the the extremes of integration (µ/Λ2,∞) of442

the integrals over bL. In appendix A we show how to generalize this kind of computation for a443
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Ve-point function, with Ve ≥ 2, moreover we explain the reasoning behind the identification444

of the constants bA, bB and bC . The same steps can be done for the bond percolation problem,445

the only difference being the definition of the non-universal constant bA:446

bAbond ≡
1

M

� (2D)!
(2D − 3)!

�2

(2D − 2)
D
2

�

2D

2D − 1

�3

, (60)

in which no factor p−1 appears, at variance with Eq. (56). In the following we will perform447

explicit computations for the site problem only, the reader can reproduce them for the bond448

percolation simply using Eq. (60) instead of Eq. (56).449

In appendix B we show that the above expression, for bC2(k, k′) and bC3(k1, k2, k3), are450

precisely the same that appear from the Feynman diagrams of the corresponding scalar cubic451

field-theory obtained from the Fortuin-Kasteleyn mapping to the n+1-state Potts model in the452

limit n→ 0, corresponding to percolation [6–9].453

From the above expressions we compute the functions χq introduced in Section 2. Notice454

that we did not rescale the momenta inside the momentum conservation delta functions, thus,455

to compute χq , according to Eq. (5), we have simply to divide by a(q−1)D
l

, remove (2π)D times456

the conservation delta function and set the external momenta to zero. This leads to457

χ2(µ) =
bC bB2

bAµ

 

1−
bAµ

D
2 −3

2(4π)
D
2

∫

dbLAdbLB

(bLA +bLB)
D
2

e−bLA−bLB

!

+O
�

1

M3

�

, (61)

458

χ3(µ) =
bC bB3

bAµ3

�

1−
2bAµ

D
2 −3

(4π)
D
2

∫

dbLAdbLBdbLC

(bLA +bLB +bLC )
D
2

e−bLA−bLB−bLC+

−
3

2
bAµ

D
2 −3

∫

dbLAdbLB

(bLA +bLB)
D
2

e−bLA−bLB

�

+O
�

1

M4

�

. (62)

Ginzburg criterion for DU Once the two-point function is computed, in this paper using the459

M-layer construction, it is possible to deduce the upper critical dimension of the problem, DU ,460

applying the Ginzburg criterion in the non-critical phase [26]. We first introduce the function461

bG(k), corresponding to the propagator in the field-theoretical language, as462

bC2(k, k′) ≡ (2π)DδD(k + k′)bG(k) . (63)

Using this defintion, together with Eq. (54), we have463

bG(k)∝
1

M

1

ρk2 +µ
×

 

1−
1

M

c

ρk2 +µ

∫

dDq

(2π)D

∞
∑

LA, LB=1

e−(ρ(k−q)2+µ)LAe−(ρq2+µ)LB

!

+O
�

1

M3

�

, (64)

where we rescaled momenta and lengths according to Eq. (59), with ρ ≡ a2
l
/(2D − 2) and464

c ≡ M bA/2 defined in order to make the 1/M factors explicit. Notice that we also made465

use of the relation in Eq. (53) to write sums instead of integrals. Here we understand that466

for M →∞ the correction can be neglected and the two-point function assumes the mean-467

field expression, i.e. the Gaussian propagator, which leads to the mean-field values for the468

anomalous dimension, η = 0, and the exponent associated to the correlation length, ν = 1/2.469
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Moreover, in high dimensions we expect for the two-point function the following Gaussian470

form near the critical point and for k2→ 0471

�

M bG(k)
�−1∝A (µ−µc) +Bρ k2 +O

�

k4� , (65)

from which we have the correction, at order 1/M , to the control parameter472

µc = −
c

M

1

(4πρ)
D
2

∞
∑

LA, LB=1

1

(LA + LB)
D
2

(66)

and the two prefactors473

A = 1−
c

M

1

(4πρ)
D
2

∞
∑

LA, LB=1

1

(LA + LB)
D
2 −1

, (67)

474

B = 1−
c

M

1

(4πρ)
D
2

∞
∑

LA, LB=1

LA LB

(LA + LB)
D
2 +1

. (68)

We notice that these three corrections, µc , A and B, diverge respectively for D ≤ 4, D ≤ 6475

and D ≤ 6, revealing that the upper critical dimension for the site percolation problem, where476

the mean-field behavior breaks down, is DU = 6. Again we notice that the analysis doesn’t477

change considering bond percolation, since the only difference is in the definition of the factor478

c, not relevant for these divergences. In order to go below the upper critical dimension we can479

rewrite the propagator, including the cutoff in the integrals as prescribed by Eq. (53):480

�

M bG2(k)
�−1∝ µ(bk2 + 1)×

 

1+
c

M

µ
D
2 −3

(bk2 + 1)

1

(4π)D/2

∫ ∞

µ/Λ2

dbLA dbLB
1

(LA + LB)
D
2

e−
bLA−bLB−bk2 LA LB

LA+LB

!

+O
�

1

M3

�

. (69)

We understand that the correction is not negligible for D < 6 in the limit µ → 0, due to the481

presence of the term µ
D
2 −3. Moreover the integrals over LA and LB diverge in the ultraviolet482

(UV) regime, that is for µ/Λ2 → 0 if D ≥ 4 and in particular for D ≃ 6 from below. In483

order for the integrals to be finite in the limit µ/Λ2 → 0 we should perform the standard484

mass renormalization, changing variable from µ to m2 ≡ ξ−2, to be explicitly done in the next485

Section.486

6 Computation of critical exponents487

In this Section we start from the results of the M-layer construction for the two and three-point488

observables and we perform standard procedures in order to compute the ε-expansion for the489

critical exponents. From the definition of bG(k), Eq. (63) we can define the correlation length490

ξ:491

ξ2 ≡ bG(0)
∂ bG−1(k)
∂ k2

�

�

�

�

k2=0

, (70)

where, with a little abuse of notation, we identify with k the modulus of the corresponding492

vector. Since493

∂

∂ k2
=
∂ bk2

∂ k2

∂

∂ bk2
=

a2
l

µbC
2
D

∂

∂ bk2
(71)

17



SciPost Physics Submission

we have:494

bG(0) =
bC bB2aD

l

bAµ

 

1−
bAµ

D
2 −3

2(4π)
D
2

∫

dbLAdbLB

(bLA +bLB)
D
2

e−bLA−bLB

!

, (72)

and for small bA (that is for large M):495

bG−1(k) ≃
bAµ

bC bB2aD
l

 

bk2 + 1+
bAµ

D
2 −3

2(4π)
D
2

∫

dbLadbLb

(bLa +bLb)
D
2

e
−

bLabLb
bLa+bLb

bk2−bLa−bLb

!

, (73)

where in the r.h.s. we have replaced k with k̂ according to the definition given in (59). We496

then obtain:497

∂ bG−1(k)

∂ bk2

�

�

�

�

bk2=0

=
bAµ

bC bB2aD
l

 

1+
bAµ

D
2 −3

2(4π)
D
2

∫

dbLadbLb

(bLa +bLb)
D
2

e−bLa−bLb
∂

∂ bk2

�

e
−

bLabLb
bLa+bLb

bk2
��

�

�

�

bk2=0

!

,

(74)
where498

∫

dbLadbLb

(bLa +bLb)
D
2

e−bLa−bLb
∂

∂ bk2

�

e
−

bLabLb
bLa+bLb

bk2
��

�

�

�

bk2=0

= −
∫

dbLadbLb

(bLa +bLb)
D
2 +1

bLAbLBe−bLa−bLb . (75)

We want to notice that in Eqs. (72), (73) and (74) we neglected higher orders, with respect499

to the one-loop corrections, in powers of 1/M . From now on we will neglect these terms if500

not explicitly specified. Defining501

Iα(µ) ≡
∫ ∞

µ/Λ2

dbLadbLb
e−bLa−bLb

(bLa +bLb)
D
2

(76)

and502

Iβ(µ) ≡
∫ ∞

µ/Λ2

dbLadbLb

bLabLb

(bLa +bLb)
D
2 +1

e−bLa−bLb , (77)

we have503

ξ2(µ) =
1

m2(µ)
=

a2
l

bC
2
Dµ

 

1−
1

2

bAµ
D
2 −3

(4π)
D
2

�

Iα(µ) + Iβ(µ)
�

!

. (78)

In the integrals in Eqs. (76), (77), we have written explicitly the extremes of integration that504

we have omitted previously. Notice that the integral Iα(µ) is UV divergent in D = 6 for µ→ 0505

(i.e., p → pc). Now we can simply invert the relation, to express µ as a function of m2:506

µ(m2) = a2
l
bC−

2
D m2



1−
1

2

bAmD−6
bC

6
D−1aD−6

l

(4π)
D
2

�

Iα
�

µ(m2)
�

+ Iβ
�

µ(m2)
�

�



 . (79)

Notice that the previous equations for χ2 and χ3 are written as functions of µ, which is not507

the “physical mass”, thus they can be divergent, for µ→ 0, near the upper critical dimension,508

DU = 6. To avoid the divergences we need the expression of µ as a function of m2, to correctly509

write λ, as defined in Eq. (83). To this aim we compute ξ2(µ) (and so m2(µ)) from its510

definition.511

At this point we have all the ingredients to write χ2 and χ3 as functions of the physical512

parameter m2. Plugging Eq. (79) into Eqs. (61) and (62) we obtain:513
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χ2
�

m2� =
bC bB2

bC
2
D

bAa2
l

m−2



1+
1

2

bAmD−6
bC

6
D−1aD−6

l

(4π)
D
2

�

Iα
�

µ(m2)
�

+ Iβ
�

µ(m2)
�

�



×

×



1−
1

2

bAmD−6
bC

6
D−1aD−6

l

(4π)
D
2

Iα
�

µ(m2)
�





=
bC bB2

bC
2
D

bAa2
l

m−2



1+
1

2

bAmD−6
bC

6
D−1aD−6

l

(4π)
D
2

Iβ
�

µ(m2)
�



 , (80)

χ3
�

m2� =
bC bB3

bC
6
D

bAa6
l

m−6



1+
3

2

bAmD−6
bC

6
D−1aD−6

l

(4π)
D
2

�

Iα
�

µ(m2)
�

+ Iβ
�

µ(m2)
�

�



×

×



1− 2
bAmD−6

bC
6
D−1aD−6

l

(4π)
D
2

Iγ
�

µ(m2)
�

−
3

2

bAmD−6
bC

6
D−1aD−6

l

(4π)
D
2

Iα
�

µ(m2)
�





=
bC bB3

bC
6
D

bAa6
l

m−6



1+
bAmD−6

bC
6
D−1aD−6

l

(4π)
D
2

�

3

2
Iβ
�

µ(m2)
�

− 2Iγ
�

µ(m2)
�

�



 , (81)

where514

Iγ(µ) ≡
∫ ∞

µ/Λ2

dbLAdbLBdbLC
e−bLA−bLB−bLC

(bLA +bLB +bLC )
D
2

. (82)

Notice that χ2(µ) and χ3(µ) have UV divergences near 6 dimensions due the presence of515

Iα(µ), which disappears when they are written as functions of m, i.e. χ2
�

m2
�

and χ3
�

m2
�

516

are free of UV divergences near 6 dimensions.517

Critical exponents in fixed dimension In this Section we perform the fixed-dimension com-518

putation of the critical exponents [20]. Led by the scaling laws discussed in Sec. 2, we compute519

the following dimensionless ratio:520

λ ≡
�

al

ξ

�D χ2
3 (m

2)

χ3
2 (m

2)
. (83)

On the other hand m2 is connected to the bare distance from the critical point by521

m2 ∼ |µ−µc|2ν and ξ ∼ |µ−µc|−ν , (84)

where ν is the critical exponent for the divergence of the correlation length. In the end,522

defining523

u ≡ bAbC
6
D−1aD−6

l mD−6 ≡ g mD−6 , (85)

we can compute the ratio λ524

λ = u

�

1− 2
u

(4π)
D
2

�

−
3

4
Iβ
�

µ(m2)
�

+ 2Iγ
�

µ(m2)
�

�

�

. (86)
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Note that λ depends on the microscopic parameters of the model only through the single525

parameter u = O(1/M). Now we can compute the integrals Iβ and Iγ in the limit m2 → 0,526

which are convergent near D = 6:527

lim
m2→0

Iβ
�

µ(m2)
�

=
1

6
Γ

�

3−
D

2

�

, (87)

528

lim
m2→0

Iγ
�

µ(m2)
�

=
1

2
Γ

�

3−
D

2

�

. (88)

Thus in the limit m2→ 0529

λ = u −
7

4

u2

(4π)
D
2

Γ

�

3−
D

2

�

, (89)

from which530

u ≃ λ+
7

4

λ2

(4π)
D
2

Γ

�

3−
D

2

�

. (90)

Now, following the standard procedure (see Ref. [20], Chap. 8), we define the function b(λ)531

as:532

b(λ) ≡ m2 ∂

∂ m2

�

�

�

�

g fixed

λ =
1

2
(D − 6)u

∂

∂ u

�

�

�

�

m2 fixed

λ =
1

2
(D − 6)

�

u −
7

2

u2

(4π)
D
2

Γ

�

3−
D

2

�

�

.

(91)
From Eq. (90) we obtain:533

b(λ) =
1

2
(D − 6)

�

λ−
7

4

λ2

(4π)
D
2

Γ

�

3−
D

2

�

�

. (92)

We constructed λ to be a dimensionless quantity that does not diverge at the critical point. For534

this reason, we can identify the critical value of λ as the point at which the function b(λ) is535

zero, as we discussed in Sec. 2. While a trivial zero is always present at λ = 0, for D < 6 we536

see that there also exists a non-trivial zero:537

λc =
4

7

(4π)
D
2

Γ
�

3− D
2

�
. (93)

As already remarked in Sec. 2, the value of λc is universal, in the sense that it is no more538

dependent on the specific value of g , and thus on the specific problem we are considering,539

bond or site percolation. From this point the computation is really the same for the two cases,540

realizing universality between these two versions of the percolation problem.541

Remembering that m2 ∼ (µ−µc)2ν, following standard computations [20], we define:542

z(λ) ≡
∂ µ

∂ m2
∼ m2D1 , (94)

where D1 =
1

2ν − 1. We can thus compute it as:543

D1(λ) ≡ m2 ∂

∂ m2

�

�

�

�

g fixed

ln(z(λ)) . (95)

In the same way, for the computation of η we need to define:544

D2(λ) ≡
∂ lnχ2

∂ ln m2

�

�

�

�

g fixed

, χ2 ∼ m2
η−2

2 , D2(λc) = −1+
η

2
. (96)
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We start from the computation of z:545

z(λ) = a2
l
bC−

2
D

�

1−
1

2

u

(4π)
D
2

D − 4

2
Iβ
�

µ(m2)
�

−
1

2

g

(4π)
D
2

∂

∂ m2

�

mD−4Iα
�

µ(m2)
�

�

�

(97)

where546

∂

∂ m2

�

mD−4Iα
�

µ(m2)
�

�

= −mD−6

∫ ∞

µ(m2)/Λ2

dbLadbLb
e−bLa−bLb

(bLa +bLb)
D
2 −1
≡ −mD−6I ′α

�

µ(m2)
�

.

(98)
We can compute I ′α:547

lim
m2→0

I ′α
�

µ(m2)
�

= Γ
�

3−
D

2

�

, (99)

obtaining548

z(λ)∝ 1−
u

2

1

(4π)
D
2

Γ

�

3−
D

2

�

D − 16

12
, (100)

and, from the definition of D1(λ), we arrive at the critical exponent ν in D dimensions:549

νD =
42

84+ (6− D)(D − 16)
. (101)

The next exponent, η, requires the computation of D2(λ)550

D2(λ) ≡
∂ lnχ2

∂ ln m2

�

�

�

�

g fixed

=
m2

χ2

∂ χ2

∂ m2

�

�

�

�

g fixed

= −1+
λ

2

1

(4π)
D
2

Iβ
�

µ(m2)
�

�

D

2
− 3

�

, (102)

which can be obtained using551

∂ χ2

∂ m2

�

�

�

�

g fixed

∝−m−4 +
1

2

u

(4π)
D
2

m−4Iβ
�

µ(m2)
� D − 8

2

= −m−4

�

1−
1

2

u

(4π
D
2 )

Iβ
�

µ(m2)
� D − 8

2

�

, (103)

552

χ2∝ m−2

�

1+
1

2

u

(4π
D
2 )

Iβ
�

µ(m2)
�

�

, (104)

from which we have553

ηD =
D − 6

21
. (105)

ε-expansion Given the results of Eqs. (101) and (105) in fixed dimension we can perform554

the computation in D = 6− ε:555

ν =
1

2
+

5

84
ε+O(ε2) , (106)

556

η = −
1

21
ε+O(ε2) . (107)

These results are, to first order in ε, equal to the expansion of the standard field theory asso-557

ciated with the percolation problem [3,6,8–11].558
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7 Conclusion559

In this article we have shown how to recover, at one-loop level of approximation, the results560

of the ε−expansion for the critical exponents of the percolation problem on a D-dimensional561

regular lattice, by means of a new method, the M-layer construction. To do so, we computed562

the observables of interest for the case of site percolation in the non-percolating phase — the563

two- and three-point correlation functions, i.e. the probability that two or three sites belong564

to the same cluster — in properly chosen graphs at the leading orders. We then computed565

the ε−expansion for the critical exponents, recovering, at first order, the same values already566

obtained for bond percolation using the n→ 0 continuation of the field theory applied to the567

Potts model with n+1 states. Moreover, we have shown that within the M-layer construction568

the bond percolation problem differs from site percolation only for non-universal constants,569

which directly implies the universality between site and bond percolation in any dimension D.570

The analysis presented here clearly illustrates that the M-layer construction effectively allows571

one to extract quantitative information on the critical behavior even for problems which are572

not defined by a Hamiltonian, such as percolation.573

We explained for the first time how this method can be applied to a known problem in574

order to obtain the ε−expansion of the critical exponents. Recent studies have used the M-575

layer construction to derive non-trivial insights into models whose critical behavior is not yet576

completely understood [14–18], or to show that for well-known problems the one-loop results577

align with those from standard field theory [13, 24]. In this paper, we push this approach a578

step forward by showing how, applying the standard theoretical recipes of the renormalization579

group, one can extract the series for the critical exponents. We believe that this investigation580

could be highly beneficial in guiding the computation of critical exponents for problems where581

the standard RG approach is inapplicable [18].582

Regarding the specific problem of percolation, it would be interesting to extend the calcu-583

lations made in this work to the percolating phase p > pc . In this sense, the preliminary cal-584

culation of the Ginzburg criterion at the bare order (i.e. without loops) has already been done585

using the M-layer construction, obtaining the known upper critical dimension, DU = 6 [27].586

To proceed further and obtain the values of the critical exponents in the percolating phase,587

it is necessary to calculate the same observables as Ref. [27] with the corrections due to the588

one-loop structures. We leave this analysis to future work.589

A Identification of the constants in the M-layer expansion590

In this Section we generalize the computation of the main text for the two and three-point591

function, with the goal of identifying the least number of constants that describe the loop592

expansion in the M-layer framework. In particular we will perform the computations for both593

site and bond percolation problems, highlighting the differences between the two. Starting594

with the site percolation, we write all the contributions, in Fourier space, of a generic Ve-point595

correlation, computed on a generic topology, G, with I lines, Ve external points, Vi internal596

vertices, Nloop number of loops:597

bCVe
({k j})

�

�

�

�

G
=

(2D)Ve

S(G)M Nloop+Ve−1

� (2D)!
(2D − 3)!

�Vi
� I
∏

i=1

∫

dLi

�

(2π)D δD

 

Ve
∑

j=1

k j

!

×

a−DVi

l

 

∫ Nloop
∏

l=1

dDql

(2π)D

!
� I
∏

i=1

ÒNLi

�

{ql}, {k j}
�

�

p I−2Vi f (CVe , lc) p
∑I

i=1 Li , (A.1)
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with the same convention for the Fourier transform used in the main text, Eq. (49). Notice that598

ÒNL are functions of linear combinations gi({ql}, {k j}) of internal ({ql} for l = 1, . . . , Nloop)599

and external momenta ({k j} for j = 1, . . . , Ve), that ensure momentum conservation at each600

vertex. The factor p I−2Vi and the function f (CVe , lc) come from Eqs. (36), (37), (42), (43)601

and (44). The first is the eventual extra factor p, which is present only for C2,lc(G1; L) and602

C3,lc(G3; L⃗′), as can be checked by substituting the corresponding values for I and Vi (notice603

that the specific expression, p I−2Vi , is valid only for three-degree vertices, for Vi d-degree604

vertices it is p I−(d−1)Vi and can be generalized if vertices of different degree are present). The605

same goes for the factor (2D − 3)! , whose generalization for a d-degree vertex is (2D − d)! .606

The function f (CVe , lc) assumes the following values:607

f (C2,lc(G1; L)) = 1 , (A.2)
608

f (C2,lc(G2; L⃗)) = −1 , (A.3)
609

f (C3,lc(G3; L⃗′)) = 1 , (A.4)
610

f (C3,lc(G4; L⃗′′)) = −2 , (A.5)
611

f (C3,lc(G5; L⃗′′′)) = −1 . (A.6)

Notice that the diagrams we computed in this work are of the form of Eq. (A.1). We believe612

that higher order diagrams (with three-degree vertices only) for a generic Ve-point function613

obey it as well, but this hypothesis is not necessary for the results described in this paper.614

In principle we should repeat all the steps done from Eq. (A.1) to Eq. (A.6) for the bond615

percolation problem. Generalizing the arguments given in Sec. 5, we notice that the only616

difference with respect to the site percolation problem is the factor p I−Vi in Eq. (A.1), which617

is not present for bond percolation.618

Let us continue with site percolation. Using the asymptotic expression of the NBP in Fourier619

space, Eq. (52), together with the rescaling of momenta and lengths, in Eq. (59), we arrive at620

bCVe
({k j})

�

�

�

�

G
=

(2D)Ve

S(G)M Nloop−1+Ve

� (2D)!
(2D − 3)!

�Vi

µ−I

� I
∏

i=1

∫

dbLi

�

×

(2π)D δD

 

Ve
∑

j=1

k j

!

a−DVi

l

 

∫ Nloop
∏

l=1

dD
bql

(2π)D

!

p I−2Vi f (CVe , lc)×

�

µ(2D − 2)

a2
l

�

D
2 (Nloop−1) �

µ(2D − 2)

a2
l

�

D
2 � 2D

2D − 1

�I I
∏

i=1

e−gi({bql},{bk j })2bLi−bLi aI D
l , (A.7)

where bk is a function of k according to (59). Note that, as done in the main text, we did not621

rescale the external momenta inside the delta function.622

Given the known relations for Vi , Ve , I and Nloop in a generic diagram with internal623

vertices of degree three:624

Vi = Ve + 2(Nloop − 1) and I = 2Ve + 3(Nloop − 1) , (A.8)

in Eq. (A.7) we can identify the following topology-dependent term:625

1

S(G)

� I
∏

i=1

∫

dbLi

�
 

∫ Nloop
∏

l=1

dD
bql

(2π)D

!

f (CVe , lc)
I
∏

i=1

e−gi({bql},{bk j })2bLi−bLi (A.9)

and the following three factors:626
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• a constant to the power (Nloop − 1):627

1

M

� (2D)!
(2D − 3)!

�2

p−1 (2D − 2)
D
2

�

2D

2D − 1

�3

µ
D
2 −3 ≡ bAµ

D
2 −3 , (A.10)

• a constant to the power Ve:628

1

M
2D

� (2D)!
(2D − 3)!

� �

2D

2D − 1

�2

aD
l µ
−2 ≡ bB aD

l µ
−2 , (A.11)

• an overall factor:629

(2π)D δD

 

Ve
∑

j=1

k j

!
�

µ(2D − 2)

a2
l

�

D
2

≡ (2π)D δD

 

Ve
∑

j=1

k j

!

µD/2
bC a−D

l , (A.12)

as defined in Eqs. (56), (57) and (58). Again we notice that the same expressions are obtained630

in the bond percolation case, the only different one is the definition of bA, given in this case by631

(60).632

With the expression given in Eq. (A.7) it is possible to easily identify the relevant constants633

to perform the expansion in inverse powers of M . Let us remark that these are all non-universal634

quantities, being the critical exponents independent from them.635

B Connection with field theoretical expressions636

In this Section we show how to write the expressions for bC2, lc(k, k′) and bC3, lc(k1, k2, k3),637

Eqs. (54) and (55), in terms of scalar propagators, as in the corresponding field theory. To do638

so, starting from the mentioned equations, we first perform the integrals over the lengths with639

lower and upper limits of integration respectively µ/Λ2 and∞. Notice that we are interested640

in the critical behavior, that is for µ→ 0, thus we can set the lower limit to 0, which amounts641

to neglecting higher orders in µ. The results are642

bC2(k, k′) =
bC bB2aD

l

bAµ

1
bk2 + 1

(2π)DδD(k + k′)×
 

1−
bAµ

D
2 −3

2(bk2 + 1)

∫

dD
bq

(2π)D
1

1+ (bk − bq)2
1

1+ bq2

!

+O
�

1

M3

�

, (B.1)

bC3(k1, k2, k3) =
bC bB3a2D

l

bAµ3

(2π)DδD(k1 + k2 + k3)

(bk2
1 + 1)(bk2

2 + 1)(bk2
3 + 1)

×

�

1− 2bAµ
D
2 −3

∫

dD
bq

(2π)D
1

1+ (bk2 + bk3 + bq)2
1

1+ (bk2 + bq)2
1

1+ bq2
+

−
1

2

bAµ
D
2 −3

(bk2 + bk3)2 + 1

∫

dD
bq

(2π)D
1

1+ (bk2 + bq)2
1

1+ bq2
+ per m.

�

+O
�

1

M4

�

. (B.2)

Next we rescale the momenta and we define the bare mass and coupling, respectively mb and643

gb, according to:644

ek ≡ µ
1
2 a

2D
D+2

l
bA

1
D+2 bB−

2
D+2 bk (B.3)
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645

m2
b ≡ µa

− 4D
D+2

l
bA

2
D+2 bB−

4
D+2 (B.4)

646

gb ≡ a
D

D−6
D+2

l
bA

4
D+2 bB

D−6
D+2 bC−2+

3
D+

D
4 (B.5)

and we obtain647

bC2(ek,ek′) = (2π)DδD(k + k′)×
 

1
ek2 +m2

b

−
1

2
g 2

b

1

(ek2 +m2
b
)2

∫

dD
eq

(2π)D
1

(ek − eq)2 +m2
b

1

eq2 +m2
b

!

+O
�

1

M3

�

(B.6)

bC3(k1, k2, k3) =
1

(ek2
1 +m2

b
)(ek2

2 +m2
b
)(ek2

3 +m2
b
)
(2π)DδD(ek1 + ek2 + ek3)×

�

gb − 2g 3
b

∫

dD
eq

(2π)D
1

(ek2 + ek3 + q)2 +m2
b

1

(ek2 + eq)2 +m2
b

1

eq2 +m2
b

+

−
1

2
g 3

b

1

(ek2 + ek3)2 +m2
b

∫

dD
eq

(2π)D
1

(ek2 + eq)2 +m2
b

1

eq2 +m2
b

+ per m.

�

+O
�

1

M4

�

, (B.7)

which are the results of the corresponding field theory associated with the percolation problem648

[7,9].649

As a last remark we notice that it is not always possible to write the results of the M-layer650

construction in terms of scalar propagators. For the percolation problem, the observables651

computed on a given topology, such as Eqs. (36) or (37), are powers of the probability p to652

some combination of the lengths of the lines, thus the integrals over the lengths give the scalar653

propagator factors. For a generic problem the expressions of the observables can be more654

complicated functions of the lengths (see Refs. [14,17] as an example) and the corresponding655

integrals do not give the simple structure of a scalar propagator. On the other hand, for simple656

problems, whose field theoretical analysis is clear, the propagator structure is recovered by657

means of the M-layer construction [24].658

It is also interesting to note that the integrals occurring in field theories are actually com-659

puted through the application of formulas like the following:660

1

k2 +m2
=

∫ ∞

0

e−l(k2+m2)dl (B.8)

see e.g. the appendix to Chap. 5 in [20]. This amounts to go from Eqs. (B.1) and (B.2)661

back to Eqs. (54) and (55). Thus the M-layer approach directly gives expressions in the above662

treatable form. Furthermore, the integration variable l, that seems artificial in field theory, has663

instead the natural meaning of the length of the internal lines of the diagrams in the M-layer664

approach.665

C Other diagrams666

In this appendix we take into account other possible diagrams of order O(1/M2) that may667

contribute to the two-point correlation. As discussed in Ref. [24], the computation of the line668

without loop should be corrected to O(1/M2) by diagram G′1 in Fig. 4, with the corresponding669
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weight: W(G′1) = 1/M(1− 1/M). While the contribution of G′1 at order O(1/M) is already670

included in Eq. (40), its contribution at order O(1/M2) is not included there because G′1671

diverges with a lower power of µwith respect to G2, which also contributes at order O(1/M2).672

Figure 4: Less divergent diagrams that contribute to the two-point function. Notice
that the two couple of vertices in x0 and x ′0 belong to two different layers while on
the projection they are superimposed. The two lines of length L0 coil themselves in
the M-layer lattice, in such a way that the projection on the original lattice looks like
a loop.

The contribution of G′1 at order O(1/M2) is673

−
(2D)2

M2

(2D)!
(2D − 4)!

∑

L1,L0,L2

∑

x0

NL1
(x1, x0)NL0

(x0, x0)NL2
(x0, x2)C2, lc(G′1; L1, L0, L2) , (C.1)

where674

C2, lc(G′1; L1, L0, L2) = C2, lc(G1; L1 + L0 + L2) = p pL1+L0+L2 . (C.2)

In Fourier space, using Eqs. (51) and (52), it becomes:675

− (2π)DδD(k1 + k2)
(2D)2

M2

(2D)!
(2D − 4)!

�

2D

2D − 1

�3

a2D
l p

1
a2

l
2D−2 k2

1 +µ

1
a2

l
2D−2 k2

2 +µ
×

∫

dDk0

(2π)D

∫ ∞

µ/Λ2

dbL0e
−
�

a2
l

µ(2D−2) k
2
0+1

�

bL0
, (C.3)

which can be rewritten by scaling all the momenta, bk ≡ k
alp

µ(2D−2)
, apart from the ones in676

the delta function, as:677

− (2π)DδD(k1 + k2)
(2D)2

M2

(2D)!
(2D − 4)!

�

2D

2D − 1

�3

µ
D
2 −3

aD
l

p(2D − 2)
D
2

(bk2
1 + 1)(bk2

2 + 1)
×

∫

dD
bk0

(2π)D
1

bk2
0 + 1

∝
µ

D
2 −3

M2
, (C.4)

where, as usual, we neglected higher orders in µ setting the lower limit of the length integra-678

tion to 0. The other contribution to order O(1/M2) is from diagram G2, repeating the same679

steps we have680

− (2π)DδD(k1 + k2)
(2D)2

2M2

� (2D)!
(2D − 3)!

�2 � 2D

2D − 1

�4

µ
D
2 −4

aD
l
(2D − 2)

D
2

(bk2
1 + 1)(bk2

2 + 1)
×

∫

dD
bk

(2π)D
1

bk2 + 1

1

(bk1 − bk)2 + 1
∝
µ

D
2 −4

M2
, (C.5)
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from which it is clear that near the critical point, µ ∼ 0, the contribution of G′1 can be neglected681

with respect to the one of G2. Analogously, diagram G′3, is negligible with respect to G4 and682

G5. Thus the computations for the three-point correlation function of the main text give the683

correct critical behavior.684

It is also possible to generalize this argument, at least in the case of the percolation prob-685

lem. Since for each line of the diagram a factor proportional to µ−1(bk2 + 1)−1 appears, we686

understand that, at a given order in O(1/M) the most divergent diagrams, in the limit µ→ 0687

are the ones with the largest number of lines. This argument is not valid generally for any688

problem or model. Indeed, the computation of the observables on a given diagram is the only689

model-dependent part of the M-layer procedure and in general the result can be a non-trivial690

function of the lengths, as we noticed at the end of appendix B.691

D Four-point correlation function692

We present, in this appendix, the computation for the most divergent contributions to the four-693

point correlation function in the site percolation problem, the same result can be obtained for694

the bond percolation with the arguments given in Sec. 5. All the possible topologies, with695

only three and four-degree vertices, are shown in Fig. 5.696

Figure 5: Diagrams contributing to the four-point correlation function up to one loop.

Along the lines of the reasoning given for neglecting G′1 with respect to G2 we identify697

the most divergent diagrams to each O(1/M) order for the four-point correlation function698

simply considering the diagrams with the largest number of lines. It turns out that the relevant699

diagrams, for the four-point function, are the ones shown in Fig. 6: G7 to order O(1/M3),700

G9, G12 and G13 to order O(1/M4). Notice that, in principle, we should have considered also701
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diagrams with vertices of degree larger than four, but they all have, at one loop order, fewer702

lines than the ones we included in Fig. 6, thus they are less divergent near the critical point703

µ ∼ 0.704

Figure 6: Most divergent diagrams contributing to the four-point correlation func-
tions up to one loop near the critical point.

Now we can write the contributions of the identified diagrams:705

C4(x1, x2, x3, x4) =
1

M3

∑

L⃗

∑

x0,x ′0

N (G7; L⃗; x1, x2, x3, x4, x0, x ′0)C4, lc(G7; L⃗)+

+
1

M4

∑

L⃗′

∑

{x ′
i
},i=1,...,4

N (G9; L⃗′; x1, x2, x3, x4, x ′1, x ′2, x ′3, x ′4)C4, lc(G9; L⃗′)+

+
1

M4

∑

L⃗′

∑

x ′1,x0,x ′0,x ′′0

N (G10; L⃗′; x1, x2, x3, x4, x ′1, x0, x ′0, x ′′0 )C4, lc(G10; L⃗′)+

+
1

2M4

∑

L⃗′

∑

{x ′
i
},i=1,...,4

N (G12; L⃗′; x1, x2, x3, x4, x ′1, x ′2, x ′3, x ′4)C4, lc(G12; L⃗′)+

+
1

2M4

∑

L⃗′′

∑

x ′1,x0,x ′0,x ′′0

N (G13; L⃗′′; x1, x2, x3, x4, x ′1, x0, x ′0, x ′′0 )C4, lc(G13; L⃗′′) +O
�

1

M5

�

,

(D.1)

where the lengths are defined as L⃗ = (L0, L1, L2, L3, L4), L⃗′ = (L1, L2, L3, L4, LA, LB, LC , LD),706

L⃗′′ = (L1, L3, L4, L2A
, L2B

, LA, LB, LC , LD), and the NBPs:707
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N (G7; L⃗; x1, x2, x3, x4, x0, x ′0) =

(2D)4
� (2D)!
(2D − 3)!

�2
∏

i=1,3

NLi
(xi , x0)

∏

i=2,4

NLi
(xi , x0)NL0

(x0, x ′0) , (D.2)

708

N (G9; L⃗′; x1, x2, x3, x4, x ′1, x ′2, x ′3, x ′4) =

(2D)4
� (2D)!
(2D − 3)!

�4 4
∏

i=1

NLi
(xi , x ′i )NLA

(x ′1, x ′2)NLB
(x ′2, x ′4)NLC

(x ′3, x ′4)NLD
(x ′3, x ′1) , (D.3)

709

N (G10; L⃗′; x1, x2, x3, x4, x ′1, x0, x ′0, x ′′0 ) =

(2D)4
� (2D)!
(2D − 3)!

�4 4
∏

i=1

NLi
(xi , x ′i )NLA

(x ′1, x0)NLB
(x0, x ′0)NLC

(x ′0, x ′′0 )NLD
(x0, x ′′0 ) , (D.4)

710

N (G12; L⃗′; x1, x2, x3, x4, x ′1, x ′2, x ′3, x ′4) = (2D)4
� (2D)!
(2D − 3)!

�4

NL1
(x1, x ′1)×

NL2
(x2, x ′4)NL3

(x3, x ′1)NL4
(x4, x ′4)NLA

(x ′1, x ′2)NLB
(x ′2, x ′3)NLC

(x ′2, x ′3)NLD
(x ′4, x ′3) , (D.5)

711

N (G13; L⃗′′; x1, x2, x3, x4, x ′1, x0, x ′0, x ′′0 ) = (2D)4
� (2D)!
(2D − 3)!

�4

NL1
(x1, x ′1)×

NL3
(x3, x ′1)NL4

(x4, x0)NL0
(x ′1, x0)NL2B

(x2, x ′′0 )NL2A
(x0, x ′0)NLA

(x ′0, x ′′0 )NLB
(x ′0, x ′′0 ) ,

(D.6)

and finally the observables712

C4, lc(G7; L⃗) = p pL1+L2+L3+L4+L0 ; (D.7)
713

C4, lc(G9; L⃗′) = −3pL1+L2+L3+L4+LA+LB+LC+LD ; (D.8)
714

C4, lc(G10; L⃗′) = −2pL1+L2+L3+L4+LA+LB+LC+LD ; (D.9)
715

C4, lc(G12; L⃗′) = −pL1+L2+L3+L4+LA+LB+LC+LD ; (D.10)
716

C4, lc(G13; L⃗′′) = −pL1+L3+L4+L0+L2A+L2B+LA+LB . (D.11)

Since the identified diagrams, G7, G9, G10, G12 and G13, contain only three-degree vertices, we717

can use the generic equation derived in App. A for this kind of vertices, Eq. (A.7), where718

f (C4,lc(G7; L⃗′, L4, L0)) = 1 , (D.12)
719

f (C4,lc(G9; L⃗)) = −3 , (D.13)
720

f (C4,lc(G10; L⃗)) = −2 , (D.14)
721

f (C4,lc(G12; L⃗′′)) = −1 = f (C4,lc(G13; L⃗′′′)) (D.15)

and S(G7) = S(G9) = S(G10) = 1, S(G12) = 2 = S(G13):722
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bC4, lc({ki}i=1,...,4) = (2π)
DδD

� 4
∑

i=1

ki

�

bB4 a3D
l
bC

bAµ5

4
∏

i=1

1
bk2

i
+ 1

�∫
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dD
bq

(2π)D
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2
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− 2 bAµ
D
2 −3

∏

i=A,B,C ,D
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dbLi e−bLi e−(
bk1+bk3)2bLA

∫

dD
bq

(2π)D
e−bq

2
bLB−(bq+bk2)2bLC−(bq+bk2+bk4)2bLD
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D
2 −3

∏

i=A,B,C ,D

∫

dbLi e−bLi e−(
bk2+bk4)2bLA

∫

dD
bq

(2π)D
e−bq

2
bLB−(bq−bk1)2bLC−(bq−bk1−bk3)2bLD

−
bAµ

D
2 −3

2

∏

i=A,B,C ,D

∫

dbLi e−bLi e−(
bk1+bk3)2(bLA+bLD)

∫

dD
bq

(2π)D
e−bq

2
bLB−(bq−bk1−bk3)2bLC

−
bAµ

D
2 −3

2

4
∑

j=1

∏

i=0,A,B, jA, jB

∫

dbLi e−bLi e−(
bk1+bk3)2bL0−bk2

2(bL jA+L jB)
∫

dD
bq

(2π)D
e−bq

2
bLA−(bq+bk j )2bLB

�

+O
�

1

M5

�

. (D.16)

As for the two and three-point correlation functions, we define χ4(µ) as the four-point correla-723

tion function at zero external momenta, divided by a3D
l

and without the factor (2π)DδD
�
∑4

i=1 ki

�

:724

χ4(µ) =
bB4
bC

bAµ5

�

1−
5

2

bAµ
D
2 −3

(4π)
D
2

Iα(µ)− 4
bAµ

D
2 −3

(4π)
D
2

Iγ(µ)− 3
bAµ

D
2 −3

(4π)
D
2

Iδ(µ)

�

(D.17)

where Iα and Iγ are defined in Eqs. (76) and (82) respectively, while725

Iδ(µ) ≡
∫ ∞

µ

Λ2

dbLAdbLBdbLC dbLD
e−bLA−bLB−bLC−bLD

�

bLA +bLB +bLC +bLD
�

D
2

, (D.18)

and consequently726

lim
µ→0

Iδ(µ) =
6− D

12
Γ

�

3−
D

2

�

. (D.19)

Using the relation between µ and m2, Eq. (79), we can write χ4 as a function of m2727

χ4
�

µ(m2)
�

=
bB4
bC

10
D +1

bAa10
l

m−10

�

1+
5

2

u

(4π)
D
2

Iβ
�

µ(m2)
�

+

− 4
u

(4π)
D
2

Iγ
�

µ(m2)
�

− 3
u

(4π)
D
2

Iδ
�

µ(m2)
�

�

, (D.20)

where u is the bare coupling constant, defined in Eq. (85). Now we can look at the scaling,728

near the critical point m2→ 0, of the four-point function729

D4(λ) ≡
∂ lnχ4

�

µ(m2 ≃ 0)
�

∂ ln m2

�

�

�

�

g fixed

, χ4
�

µ(m2 ≃ 0)
�

∼ m2 D4(λc) . (D.21)

Using the expression of χ4(m2) we have730

D4(λc) =
1

42

�

D(3D − 55) + 12
�

. (D.22)
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We can now compare with the scaling of the four-point function731

χq
�

µ(m2 ≃ 0)
�

∼ m2Dq (λc) , Dq(λc) =
q

4
η−

q

2
+

D

2

�

1−
q

2

�

, (D.23)

with q = 4, which gives the expected result of Eq. (105)732

ηD =
D − 6

21
. (D.24)
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