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Abstract

We study the dynamics of hard-core bosons on ladders, in the presence of strong ki-
netic constrains akin to those of the Bariev model. We use a combination of analytical
methods and numerical simulations to establish the phase diagram of the model. The
model displays a paired Tomonaga-Luttinger liquid phase featuring an emergent dipole
symmetry, which encodes the local pairing constraint into a global, non-local quantity.
We scrutinize the effect of such emergent low-energy symmetry during quench dynam-
ics including single particle defects. We observe that, despite being approximate, the
dipole symmetry still leads to very slow relaxation dynamics, which we model via an ef-
fective field theory. The model we discuss is amenable to realization in both cold atoms
in optical lattices and Rydberg atom arrays with dynamics taking place solely in the Ryd-
berg manifold. We present a blueprint protocol to observe the effect of emergent dipole
symmetry in such experimental platforms, combining adiabatic state preparation with
quench dynamics.
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1 Introduction

Sparked by a series of remarkable atomic physics experiments [1–4], constrained dynamics in
quantum many-body systems have attracted a great deal of attention in recent years [5–16].
From a fundamental viewpoint, these systems offer a rich playground for studying complex
non-equilibrium properties, where the interplay of correlations and dynamical frustration can
result in a variety of elusive phenomena, such as Hilbert space fragmentation [17–21], slow
relaxation dynamics [22–24], as well as intriguing links to lattice gauge theories [25–28] and
fracton models [29–31]. Such phenomena are inherently related to strong correlations and
lack a counterpart in the context of non-interacting particles.

The imposition of higher, multipole conservation laws in the many-body theory [6, 27]
represents a new opportunity to generate nontrivial dynamics. This has been recently demon-
strated in experiments with ultracold atom gases [2–4], where a tilted optical lattice is used
to enforce a dipole (center-of-mass) preserving dynamics. In view of that, a number of works
have not only established the ground state phase diagram of dipole-conserving lattice models
of fermions or bosons [12], but have also considered the nonequilibrium dynamics of such
models [14, 15]. The core idea about this research line is to enforce as well as possible the
dipole symmetry as a Hamiltonian property (regardless of energy scale).

In this work we pursue a different approach, where the symmetry constraint emerges as
a low-energy property of the ground state. We draw inspiration from a Bariev-like model
[32–36], whose phase diagram features a Tomonaga-Luttinger liquid (TLL) state formed by
bound pairs. We use field theory arguments and exact diagonalization (ED) to link this ground
state to an emergent dipole-type symmetry, which constrains the local dynamics of single-
particle excitations that need to find partners in order to move. Having in mind atomic physics
realizations (Fig. 1), we propose a quasi-adiabatic protocol [37] to prepare the dipole TLL
state from biased optical ladders, as well as Rydberg atom arrays. We benchmark the state
preparation by using a time-dependent variational principle (TDVP) algorithm to dynamically
evolve an initial product state. Finally we consider the quench dynamics of isolated defects
placed on top of the dipole TLL state. We use a combination of density matrix renormalization
group (DMRG) and time-evolving block-decimation (TEBD) algorithms to prepare and evolve
the single-defect states, contrasting our numerical results to field theory predictions. Figure
1 gives a general perspective onto a protocol that prepares and observes the time evolution of
defects.

The rest of the paper is organized as follows. We set our notation and introduce the model
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Figure 1: Schematic of the protocol to observe fragmentation dynamics in the pres-
ence of an emergent dipole symmetry. (A) Initially, a product state is prepared in the
first time interval. (B) This is followed by a quasi-adiabatic state preparation over a
time frame T = τprep − τ0. (C) Once the target state is prepared, a single-particle
defect is created by the action of the local operator σ±j , and the resulting state is left
to undergo unitary evolution during the time interval. At the final time the density
n j is measured.

Hamiltonian as a hardcore boson ladder in Sec. 2. We inspect analytically specific parame-
ter regimes, and then focus on the regime where the model exhibits strictly confined excita-
tions. We utilize a duality map to reveal a connection to a PXP-type model featuring Hilbert
space fragmentation, providing an alternative viewpoint on dipole symmetry at one of the
exactly solvable points the model features. We discuss experimental implementations of the
microscopic dynamics in Sec. 3: we derive the effective Hamiltonian from physically sensible
Rydberg- and cold-atom models, discussing pertinent perturbations to each platform. A low-
energy field theory description for the lattice model is presented in Sec. 4, which we use to
assess the stability of the dipole TLL state and devise the mobile impurity model. This analysis
is complemented by numerical simulations in Sec. 5. We give particular focus to benchmark
the state preparation protocol and test the nontrivial dynamics of isolated defects. We offer a
summary and point out open perspectives in Sec. 6.

2 Effective hard-core boson model

We consider hard-core bosons on a two-leg zigzag ladder (shown in Fig. 2), where the number
of particles is preserved separately in each sub-lattice. The system dynamics is described by a
Bariev-like [32,36] Hamiltonian:

H = −J
∑

i

(σ+i σ
−
i+2 +H.c.)−W

∑

i

(σ+i σ
z
i+1σ

−
i+2 +H.c.) + V
∑

i

σz
iσ

z
i+1, (1)

where i = 1, 2, . . . , L are sites in the zigzag geometry, and σ+i is the hard-core boson creation
operator. The hard-core boson occupation number ni = σ+i σ

−
i is related to the Pauli matrix

σz
i by ni = (1+σz

i )/2. The lattice model depends on three coupling parameters. The intra-leg
hopping amplitude J , the correlated hopping term W , and the Ising-like interaction V . Note
that single-particle tunneling among different legs is not allowed as it violates the number
conservations.

The two global U(1) symmetries of the model can be expressed as the conservation of the
total number of excitations and the so called inter-leg magnetization:

N =
∑

i

ni , M =
1
2

∑

i

(−1)ini . (2)

We call N and M the charge and spin quantum numbers, given the similarity to electronic sys-
tems. We use these two conserved charges to fix a subspace of interest. Hereafter, we concen-
trate on the scenario where both legs are half-filled, meaning we shall consider chains whose
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Figure 2: Illustration of the hard-core boson model. The two-leg ladder has the ge-
ometry of a zigzag chain where odd and even sub-lattices enjoy their own number
conservation. Correlated hopping W modulates tunneling amplitudes according to
the presence or absence of bosons in the other leg. Additional nearest-neighbor in-
teractions V favor attraction or repulsion among neighboring bosons.

thermodynamic limit is defined by N/L → 1/2, with vanishing magnetization M/L → 0. We
use J = 1 to set the energy scale, and study the model as a function of W and V . We only
consider positive values of W , given that we can flip its sign via a global particle-hole trans-
formation, σz

i →−σ
z
i .

2.1 Phase diagram overview

Bariev-like models and their corresponding phase diagrams have been discussed in the liter-
ature [32–36]. Below, we exploit some of these earlier results to clarify the phase diagram
of the hard-core boson ladder, referring the reader to Refs. [35, 36] for more details. We will
complement those with a field theory approach we describe below.

The phase diagram is schematically depicted in Fig. 3. At V = W = 0, we find the 2TLL
phase, a critical state with power-law decaying correlation functions described by two inde-
pendent TLL theories (as for decoupled chains). The TLLs govern the low-energy spectrum
of collective excitations of charge and spin that are generated from the hybridization of the
original excitations in the legs. This phase arises from the competition among the correlated
hopping W and the antiferromagnetic V interaction that prevents excitations from pairing up.

If we keep V small and move towards dominant W coupling, spin excitations are gapped
out and we enter the dipole TLL phase. The dipole TLL phase can be viewed as a quantum
liquid of molecular dimers [32], where each dimer is formed by binding two single-particle
excitations that live in distinct legs together. The associated pairing strength depends mostly
on the correlated hopping W [33], which drives a BKT type transition at V = 0 into the dipole
TLL phase. The underlying liquid ground state can be identified by a den Nijs-Rommelse type
string order parameter as showed by Chhajlany et al. [36].

Alternatively, we identify here an emergent dipole-like symmetry that constrains the dy-
namics of single-particle excitations in the dipole TLL state. At W = J the binding strength
reaches its maximum [33]. At this special point, excitations are strictly confined (see Fig. 4)
and the dipole symmetry becomes exact as the lattice model Eq. (1) commutes with

D =
∑

i

iñi , ñi = ni exp
�

iπ
∑

j<i

n j

�

, (3)

which encodes the local constraint in a nonlocal global operator. We point out that, although
clearly grounded in the fixed points provided by the Bariev chain obtained for V = 0 [32], the
dipole TLL phase is quite robust to a great sort of perturbations, cf. Sec. 3, surviving up to
finite values of V [36].

Finally, for dominant V coupling we find the phase separated (PS) states PSc and PSs. The
phases PSc and PSs correspond to phase separation of charge and ladder spin [35, 38]. We
note these are particularly sensitive to boundary conditions (as well as form of interactions,
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Figure 3: Simplified sketch of the phase diagram as obtained from the weak-coupling
theory. Near the origin we find the 2TLL and dipole TLL phases. For large V these
give room to phase separation PSc and PSs.

e.g., replacing Ising-like to density-density interactions). For simplicity we only comment on
open chains with a double even number of sites, so each sub-lattice is at exact half-filling.

Ferromagnetic interactions favor clustering, giving rise to the PSc phase at large enough
V < 0. The two degenerate classical ground states of the Ising-like interaction take the domain-
wall form

|φ1〉= | • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ 〉 , |φ2〉= | ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • 〉 , (4)

breaking Z2 mirror reflection across the center link of the chain. The gapped spectrum is com-
posed from the creation of additional domain-walls, obtained by either the full displacement
of the cluster or its separation in smaller pieces. The addition of the couplings J and W do
not lift the twofold degeneracy of the PSc ground state, but give kinetic energy to domain-wall
excitations renormalizing energy gaps.

On the other hand, strong antiferromagnetic interactions lead to the so-called PSs phase,
which can be thought of as a Néel state with a domain-wall excitation stuck in the center of
the chain [35]. As in the ferromagnetic case, the antiferromagnetic Ising-like interaction has
two classical ground states:

|ψ1〉= | ◦ • ◦ • ◦ • • ◦ • ◦ • ◦ 〉 , |ψ2〉= | • ◦ • ◦ • ◦ ◦ • ◦ • ◦ • 〉 . (5)

However, while the addition of J is still innocuous, a nonzero W lifts the ground state degen-
eracy. The favored configuration can be deduced from the sign of W and the nature of the pair
excitation in the center of the state. For positive W the state containing a particle dimer |ψ1〉
is favored, while |ψ2〉 is selected for negative W .

2.2 Duality and exotic dipole constraint

The behavior of the dipole TLL state is reminiscent of the so-called fractonic liquids that have
been studied recently in literature [14, 30]. To clarify this link, we inspect more closely the
point W = J where the dipole-type operator D becomes an exact symmetry of the lattice
model.

The operator D has been discussed before in the context of constrained quantum dynamics
in one dimension [30, 39]. In particular, Ref. [30] introduced D as an ingredient to restrain
spinless fermions to move in pairs and produce fractonic dynamics in one-dimensional pola-
ronic systems. The hard-core boson ladder Eq. (1) has a similar behavior when W = J . As
illustrated in Fig. 4, bosons in one leg only move when assisted by a boson partner in the
neighboring chain, binding them into a two-site molecule.
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Figure 4: Cartoon of the strictly constrained point W = J . Dimers are depicted as
bound pairs of bosons, which move by playing a leapfrog game. Isolated particles are
unable to move by their own.

The nonlocal character of D makes it hard to recognize its meaning. We thus move to a
dual picture, by performing a Kramers-Wannier-like transformation, defined as

τx
i = (−1)i
∏

j≤i

σz
j , τz

i = (−1)iσx
i σ

x
i+1, (6)

where we introduce oscillatory factors for convenience. Then, by replacing ni =
1
2(1+σ

z
i ) into

the formula for ñi in Eq. (3), we learn ñi is given by the difference ñi =
1
2(τ

x
i−1 − τ

x
i ). This

implies that the dipole operator D becomes the dual magnetization along the x axis:

D =
1
2

∑

i

τx
i , (7)

where we assume an infinite system and drop boundary terms. Translating the hardcore boson
model in Eq. (1) as well, we arrive at

HKW =
∑

i

�

Wτy
i τ

y
i+1 + Jτz

iτ
z
i+1 +τ

x
i−1(Jτ

y
i τ

y
i+1 +Wτz

iτ
z
i+1)τ

x
i+2 + Vτx

i−1τ
x
i+1

�

. (8)

The model HKW has a quite intriguing form. First, we readily recognize it commutes with D
when W = J , as HKW becomes manifestly invariant under rotations along the x axis. The PXP-
type constraint is perfectly implemented at the point W = J , where it becomes the folded XXZ
model studied by Zadnik and Fagotti [23], who showed the existence of exponentially many
jammed states. The W = J model has also been considered by Yang et al. [20], who demon-
strated that the Hamiltonian features Hilbert-space fragmentation and unusal thermalization
properties even for nonzero V , away from the integrable point.

For W ̸= J the constraint is no longer perfectly implemented and the Hamiltonian HKW
loses its invariance under U(1) rotations along the x-axis. The model still features a pair
of U(1) conservation laws, inherited from the N and M numbers, given by the numbers of
ferromagnetic and antiferromagnetic domain walls

∑

i τ
x
i τ

x
i+1 and
∑

i(−1)iτx
i τ

x
i+1, which are

conserved for all W . We note that Eq. (8) highlights the existence of a strong-weak W coupling
duality around W = J , implementing the exchange of τy↔ τz terms in the Hamiltonian.

3 Microscopic realizations of constrained dynamics

In this section we discuss potential realizations of our target Bariev-like model in atomic arrays.
We use perturbation theory to examine two scenarios, one with Rydbergs in a linear chain and
other where cold atoms move through the sites of an optical lattice. In both cases the central
idea is the use of a strong potential bias to split the system into two sublattices, so that the
slow, non-equilibrium dynamics preserves the relative number of excitations in each sublattice.
Before continuing, let us note that some of the parameter regimes we are interested in can also
be achieved following earlier proposals, in particular, Refs. [34–36].
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3.1 Rydberg-atom chain

We first illustrate a proposal utilizing Rydberg atoms trapped into optical potentials in the
frozen regime, where atomic motion can be neglected [40]. We assume atoms, prepared in
two different Rydberg states, e.g., |◦〉= |nS〉 and |•〉= |nP〉, are placed in the sites of a linear
chain. Dipolar coupling between Rydbergs produce a flip-flop (dipolar) exchange interaction
t i j between pairs of atoms that decays approximately as t i j = t|i− j| = t/|i − j|3. We also
assume the two atomic states are coupled by an external (microwave) drive. The Rydberg
model Hamiltonian then reads

HRyd =
Ω

2

∑

i

σx
i +

δ

2

∑

i

(−1)iσz
i +
∑

i< j

t i j(σ
+
i σ
−
j +σ

−
i σ
+
j ), (9)

whereΩ is the Rabi frequency, and δ is the staggered detuning corresponding to the drive. The
staggering can be realized, e.g., by locally changing the Stark shift generated by the optical
potential. To engineer the model in Eq. (1), we work in the regime where Ω→ 0 and δ≫ t.
We take the zero Rabi frequency limit Ω→ 0 so the total number of excitations is preserved,
while the large δ limit allow us to freeze the magnetization M and study hopping processes
perturbatively.

Perturbative treatment.— We separate hopping terms in two groups. The first group does
not change the number M , and comprises the hopping processes within the same sublattice.
These tunneling amplitudes are hence not quenched by the detuning bias, popping out di-
rectly into the projected effective Hamiltonian. The second group on the other hand includes
tunneling processes where an excitation moves from one sublattice to the other. These pro-
cesses are associated with a change ∆M = ±1, and their leading contribution comes from
second-order perturbation theory. Finally, given the rapid decay of the tunneling amplitudes,
we truncate long-range hoppings beyond second-neighbors and make use of a Schrieffer-Wolff
transformation (see Appendix A) to find

HRyd,eff = J
∑

i

(σ+i σ
−
i+2 +H.c.)−W

∑

i

(−1)i(σ+i σ
z
i+1σ

−
i+2 +H.c.), (10)

where J = t/8, and W = t2/2δ. The effective model looks much like the Bariev chain [32], but
the correlated exchange term acquires a staggering factor. The oscillatory phase is innocuous
to our goal and favors pairing in the antisymmetric channel, giving rise to a dipole TLL made of
particle-hole molecules. In fact the staggering phase in W can be easily removed by performing
a particle-hole transformation in just one of the legs, say

C1 : σ+2l+1↔ σ−2l+1, σz
2l+1→−σ

z
2l+1. (11)

The resulting model, although with dominant antiferromagnetic correlations, is thus equiva-
lent to Eq. (1) exhibiting a dipole TLL phase.

The Hamiltonian in Eq. (10) can only be taken as the dominant contribution in the more
general case once longer-range terms are included. We however anticipate that those pertur-
bations should not be harmful to the dipole TLL liquid. For instance, two perturbations that
could arise are

δHRyd,eff ≈ t4

∑

i

σ+i σ
−
i+4 +w4

∑

i

(−1)iσ+i (σ
z
i+1 +σ

z
i+3)σ

−
i+4 +H.c.+ · · · , (12)

where the estimated size of these couplings are t4 = t/64 and w4 ∼ t1 t3/δ = t2/27δ. These
two terms break the integrability of the Bariev model, but are not enough to drive us away
from the dipole TLL phase (as can be seen, at weak coupling, by analyzing their bosonized
form). We thus argue Rydbergs are a promising platform to observe and study the dipole TLL
state in quasi-adiabatic state preparations.

7



SciPost Physics Submission

Figure 5: Illustration of the cold-atom ladder with second-order perturbative pro-
cesses that arise in the quasi-adiabatic preparation. We assume t ′ is small enough
that we can neglect its corrections. The ladder has an artificial staggered flux config-
uration: triangles pointing up and down enclose zero and π flux respectively.

3.2 Cold atoms with laser driven hopping

We now consider an alternative implementation, based on ultracold atoms trapped in the
sites of an optical lattice [41]. We assume atoms are allowed to hop among first and second
neighbors sites of a zigzag chain, and repel whenever two or more of them occupy the same
site. The microscopic Hamiltonian then takes the form of a Bose-Hubbard (BH) model, with
an additional chemical potential bias µ between even and odd sublattices:

HBH = −t
∑

i

(a†
i ai+1 +H.c.)− t ′

∑

i

(a†
i ai+2 +H.c.) +

U
2

∑

i

na
i (n

a
i − 1) +

µ

2

∑

i

(−1)ina
i , (13)

where ai removes an atom sitting at i, t and t ′ are the hopping amplitudes, and U is the
onsite Coulomb repulsion. The number of atoms is denoted as na

i = a†
i ai to discern it from the

hard-core boson number introduced before.
We utilize here laser-assisted tunneling [42–44] to induce hopping of atoms with a site-

dependent phase. In particular, we consider a nearest-neighbor hopping t → teiϕi,i+1 with
staggered flux pattern, depicted in Fig. 5. We choose the phase so its sole effect is to flip the
sign of t every two sites:

Ht → Ht = −t
∑

l

(−1)l
�

a†
2l−1a2l + a†

2l a2l+1 +H.c.
�

, (14)

where the l sum is taken over half the system size. This phase dressing helps us to cancel out
the oscillatory factor that arises in the perturbation theory, as we argue below.

Perturbative treatment.— The perturbative treatment is reminiscent of that in the previous
subsection. We consider the large-µ limit to effectively enforce spin symmetry, and assume U
is strong enough so that every site contains at most one boson. It is worth noting that such
strong couplings are not detrimental to a treatment in the single-band Hubbard regime, as the
dynamics of single particles along the wires is not affected by those (in fact, similar regimes
have been investigated in Ref. [45]).

We then take into account hopping processes perturbatively. As a further simplification,
we consider the regime t ′≪ t, so the second-neighbor hopping only contributes at first-order
in perturbation theory (this assumption is not necessary, but makes computations easier to
interpret). Taking into account second-order virtual processes generated by the first neighbor
hopping, as seen in Fig. 5, we find the effective Hamiltonian governing the slow dynamics of
the system takes the form

HBH,eff = −
∑

lα

�

Jασ
+
2l−2+ασ

−
2l+α +Wασ

+
2l−2+ασ

z
2l−1+ασ

−
2l+α +H.c.
�

+ V
∑

i

σz
iσ

z
i+1, (15)
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where we use α= 1, 2 to denote odd and even sub-lattices. The effective Hamiltonian features
the desired U(1)c×U(1)s symmetry, but lacks leg permutation symmetry. From the Schrieffer-
Wolff transformation, we estimate the couplings to be

J1,2 = t ′ ±
t2

U ±µ
, W1,2 =

t2

µ
±

t2

U ±µ
, V = −

t2

2

� 1
U +µ

+
1

U −µ

�

, (16)

where we take the upper sign for α= 1 and the lower sign otherwise. There are two different
ways to restore Z2 leg symmetry.1 The first involves adjusting the relative filling in the legs,
changing the free Fermi velocity so that they match at some nonzero magnetization M ̸= 0.
Another, less fine-tuned possibility, amounts to considering an extra separation of energy scales
in the lattice parameters. Either considering U ≫ µ or U ≪ µ will do the job. In the first case,
for instance, by taking the limit U ≪ µ, with t ′ ∼ t2/µ, we can approximate the couplings to
J1,2→ J = t ′ + t2

µ and W1,2→W = 2t2

µ , while V goes to V → t2U/µ2, and is then assumed to
be much smaller than J and W . In this limit, we thus arrive at precisely the model Hamiltonian
in Eq. (1).

4 Effective field theory approach

In this section we present a long-distance, low-energy description for the hardcore boson lad-
der model. We use bosonization to analyze the effects of interactions starting from the limit
of weakly coupled XY chains. As usual for TLLs, we can explore the predictions of the effec-
tive theory beyond the perturbative regime by treating the velocities and Luttinger parameters
as phenomenological parameters. We shall see that this approach captures the transitions
to the dipole TLL phase as well as to the classically ordered phases, providing a field theory
framework for the entire phase diagram sketched in Fig. 3. In addition, we examine the repre-
sentation of the dipole moment operator in the low-energy theory. We argue that the violation
of the dipole symmetry is associated with the creation of gapped spin excitations that behave
as mobile defects interacting with the gapless charge modes.

4.1 Tomonaga-Luttinger liquid theory

Let us write the hardcore boson ladder model in the limit of decoupled legs, obtained by setting
W = V = 0 in Eq. (1). It is convenient to introduce a leg index α= 1, 2 corresponding to odd
and even sites, respectively, and denote the spin operators by σ±α(l)≡ σ

±
2l−2+α, with l ∈ Z. In

this notation, the Hamiltonian for decoupled legs reads

H0 = −J
∑

lα

[σ+α(l)σ
−
α (l + 1) +H.c.]. (17)

We can then bosonize the low-energy excitations of each XY chain separately [47]. The effec-
tive Hamiltonian is that of two independent free bosons:

H0 ≈
∑

α

v0

2

∫

dx
�

(∂xθα)
2 + (∂xφα)

2
�

, (18)

where v0 = 2J is the velocity of the bosonic modes in each leg and the bosonic fields obey the
commutation relation [θα′(x ′),∂xφα(x)] = iδαα′δ(x − x ′). The fields φα are associated with

1We note the lack of this Z2 symmetry is not necessarily incompatible with the dipole conservation. As a
simple check one may consider the dipole-preserving, but still leg-anisotropic case where W1 = J1 = J + η and
W2 = J2 = J − η, which realizes an alternating hopping pattern for dimers, in a similar fashion to the so called
Su-Schrieffer-Heeger model [46].
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fluctuations of the hard-core boson occupation number by

δnα(l) =
1
2
σz
α(l)≈ −

1
p
π
∂xφα(x) + (−1)xconst× sin[

p
4πφα(x)]. (19)

The staggered part has a nonuniversal prefactor and oscillates with momentumπ= π(1+〈σz
i 〉)

for a pair of half-filled chains, described by N/L→ 1/2 and M/L→ 0. Note that if we allow the
numbers N and M to change, the value of the momentum is not fixed and may be even different
in each sub-lattice. The continuum expansion of the spin raising and lowering operators reads

σ±α (x)∝ e±i
p
πθα(x)
�

1+ (−1)xconst× cos[
p

4πφα(x)]
	

. (20)

We note that the lattice model is invariant under discrete translations i→ i+2, corresponding
to a rigid displacement of one site on each leg. In the low-energy theory, this lattice translation
amounts to x 7→ x + 1 translations, under which the bosonic fields transform according to

L : φα 7→ φα +
p
π

2
, θα 7→ θα +

p
π. (21)

In addition, the zigzag chain is invariant under a reflection about a site, which acts as site
parity for the leg that contains that site but link parity for the other leg. For instance, the
reflection about an odd site acts in the low-energy theory as:

P : x 7→ −x , φ1 7→ −φ1, φ2 7→
p
π

2
−φ2, θ1 7→ θ1, θ2 7→ θ2 +

p
π. (22)

We can also define time reversal as the anti-unitary transformation that takes σ j 7→ −σ j . In
the low-energy theory:

T : i 7→ −i, φα 7→ −φα, θα 7→ θα. (23)

Next, we add interchain interactions perturbatively. We have H = H0 +HW +HV , where

HW =−W
∑

l

�

σ+1 (l)σ
z
2(l)σ

−
1 (l + 1) +σ+2 (l)σ

z
1(l + 1)σ−2 (l + 1) +H.c.

�

, (24)

HV =V
∑

l

σz
2(l)[σ

z
1(l) +σ

z
1(l + 1)]. (25)

The three-spin interaction HW preserves L and P symmetries, but breaks T . Using the con-
tinuum expansion of the spin operators, we can combine oscillatory terms from both legs to
produce the operator δHW ≈ −

2W
π2

∫

dx sin[
p

4π(φ1−φ2)] as the most relevant contribution.
The Ising-like interchain interaction HV contributes with a marginal operator that couples the
uniform magnetization in the two legs: δHV ≈

8V
π

∫

dx ∂xφ1∂xφ2. We define the charge and
spin fields as the linear combinations

φc,s =
φ1 ±φ2p

2
, θc,s =

θ1 ± θ2p
2

. (26)

Adding the leading perturbations to Eq. (18), we obtain a spin-charge-separated Hamiltonian
in the form H = Hc +Hs, where

Hc =
vc

2

∫

dx
�

Kc(∂xθc)
2 +

1
Kc
(∂xφc)

2
�

,

Hs =
vs

2

∫

dx
�

Ks(∂xθs)
2 +

1
Ks
(∂xφs)

2
�

−
λ

2π2

∫

dx sin
�p

8πφs

�

. (27)
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At weak coupling, the spin and charge velocities are given by vc,s ≈ 2J(1 ± 4V/πJ). The
Luttinger parameters Kc and Ks encode the interactions in the charge and spin sectors, respec-
tively. To first order in the interleg interaction, we find Kc,s ≈ 1∓ 4V/π. The sine potential in
the spin sector, with coupling constant λ≈ 4W , has scaling dimension 2Ks. Note that this op-
erator is odd under time reversal, as expected for the three-spin operator in HW . Importantly,
the low-energy Hamiltonian in Eq. (27) remains valid beyond the regime of small W and V
because the sine potential is the leading perturbation compatible with L, P and U(1)c ×U(1)s
symmetry.

The 2TLL phase corresponds to the regime in which both charge and spin sectors in Eq.
(27) remain gapless. This can happen with the help of a repulsive interaction, V > 0, which
disfavors the formation of pairs by making Ks > 1 and rendering the sine potential irrelevant.
We can write the uniform part of the σ+i operator in terms of charge and spin fields as

σ+1,2(l)∝ ei
p
π/2[θc(x)±θs(x)]. (28)

In the 2TLL phase, single-particle correlators display a power-law decay, given by

〈0|σ+i σ
−
i+2r |0〉 ∝ r−(Kc+Ks)/4Kc Ks , (29)

where |0〉 stands for the ground state. Note that in Eq. (29) we must take two points that
belong to the same chain, otherwise the correlator vanishes identically. This is a consequence
of the U(1)c × U(1)s global symmetry of the ladder and remains true even if we move away
from the weak-coupling limit.

The transition to the dipole TLL phase is driven by the flow of the λ perturbation to strong
coupling. For V = 0, the coupling is marginally relevant, and, as a result, the spin sector un-
dergoes a BKT-type transition. In the strong-coupling limit, we minimize the potential energy
by pinning the scalar field φs to one of its minima:

p
8πφs→

π

2
+ 2πZ. (30)

The dipole TLL phase then corresponds to a gapless charge sector and a gapped spin sector.
Note that attractive V favors pairing, facilitating the transition to the dipole TLL state. Once
the spin sector is gapped out, the single-particle propagator develops an exponential decay as
follows:

〈0|σ+i σ
−
i+2r |0〉 ∝ e−r/ξ/r1/4Kc . (31)

The correlation length ξ is inversely proportional to the mass gap in the spin sector. In the
case of a BKT transition at V = 0, the gap is exponentially small at weak coupling, with
ξ−1

BKT ∼ exp(−const/λ) [47]. Power-law correlations in the dipole TLL phase are only found
by pairing bosons in different sublattices, e.g.,

〈0|σ+i σ
+
i+1σ

−
i+rσ

−
i+r+1|0〉 ∝ r−1/Kc . (32)

Note that the distance r is not restricted to even multiples of the lattice spacing, cf. Eq. (29),
since the two-particle operator σ+i σ

+
i+1 creates one excitation in each leg, and the correlator

always respects the U(1)c ×U(1)s symmetry.
Instability towards phase separation is deduced from the vanishing of either charge or spin

velocities in the large V limit. Assuming a monotonic behavior and estimating the interaction
dependence from the weak-coupling expressions for vc and vs, we predict V ⋆/J ≃ ±0.78,
with positive and negative values corresponding to the transitions towards PSs and PSc , re-
spectively. Given that W does not enter into the renormalization of Luttinger parameters at
weak-coupling, we expect the critical value V ⋆ to be roughly independent of W . We are thus
led to the phase diagram shown in Fig. 3.
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4.2 Emergent dipole symmetry

Let us now use our field theory formulation to examine the dipole operator in Eq. (3). Our
goal here is to find its long-distance representation in order to verify it commutes with the
low-energy Hamiltonian of the dipole TLL state, and thus represents an emergent symmetry
of this phase.

We start from the dual representation in Eq. (7), where the dipole operator is given by
the sum of Jordan-Wigner strings. We then expand each τx as the product of σz strings in
each leg. For an odd-site operator τx

1(l) = τ
x
2l−1, we get τx

1(l) = −S1(l)S2(l), where Sα(l) is
defined as

S1(l) =
∏

m<l

σz
2m, S2(l) =

∏

m<l

σz
2m+1. (33)

Likewise, the even-site operator τx
2(l) = τ

x
2l is given by τx

2(l) = S1(l)S2(l + 1). We can then
rewrite Eq. (7) as

D = −
1
2

∑

l

[S1(l)−S1(l + 1)]S2(l), (34)

where we sum over half the total number of sites.
We can now bosonize the dipole operator using the standard expression for the string op-

erators in terms of the bosonic fields in each sublattice. Naive bosonization yields the complex
form Sα(l) ≈ eiπ2 x+i

p
πφα(x). To obtain a manifestly Hermitian operator, we symmetrize the

string, leading to
Sα(l)→ Sα,reg(l)≈ cos[π2 x +

p
πφα(x)]. (35)

The product of strings at the same site gives S1(l)S2(l) ≈
1
2 cos[
p

2πφs(x)], where we drop
oscillatory terms and higher-order corrections. The second term in Eq. (34) is quite similar,
but involves a derivative because the fields are at different points:

S1(l + 1)S2(l)≈ −
1
2

sin[
p

2πφs(x)]−
p

2π
4

cos[
p

2πφs(x)]∂xφc(x) + · · · (36)

Taking both contributions into account, we arrive at the long-distance representation of the
dipole operator:

D∝
∫

dx
�

sin
�p

2πφs +
π
4

�

+
p
π

2
cos
�p

2πφs

�

∂xφc

�

+ · · · , (37)

where we omit the prefactor and the ellipsis contains higher-order corrections.
From the continuum version of D, we readily learn that the dipole operator can only be a

symmetry if φs condenses. This is clearly not the case in the 2TLL phase, where both φc and
φs fluctuate and D does not commute with the low-energy Hamiltonian in Eq. (27). In the
dipole TLL phase, however, this condition is met as the spin field is pinned to

p
8πφs → π/2

according to the strong-coupling flow of λ. Plugging this condition into Eq. (37) gives

D ≈
1
p

2π

∫

dx ∂xφc + · · · , (38)

where we drop an unimportant additive constant, and fix the proportionality constant. In this
form, the dipole operator is proportional to the total number of particles (half of it if we assume
all particles are bound in pairs), and certainly commutes with the low-energy Hamiltonian.

This analysis tell us that the dipole operator describes an emergent symmetry of the dipole
TLL phase. This symmetry is valid at low energies, below the spin gap, where all particles
are confined into pairs but gapless excitations are still possible in the form of collective modes

12
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in the charge sector. This finding supports the dimer picture of the dipole TLL phase. While
our bosonization approach started in the weak-coupling limit where the spin gap is small,
we expect this picture to become more accurate as we increase W towards the special point
W = J , where the dipole symmetry becomes exact and the pairs are strictly confined.

Single-particle excitations violate the pinning condition on φs because they carry both
charge and spin quantum numbers. In the low-energy theory, the operator σ+i in Eq. (28)
creates a kink in the spin field at the position x , shifting φs as

p
8πφs(y)→

p
8πφs(y) + 2πΘH(y − x), (39)

where ΘH(x) is the Heaviside step function. This means that the kink interpolates between
two ground states of the sine potential in Eq. (27). On the other hand, the kink changes the
sign of the dipole operator in Eq. (37) across the position where the single particle is created.
This effect is consistent with the original definition of the dipole operator in Eq. (3), since
inserting a single particle changes the sign of the string in ñi . Thus, we can view a local single-
particle excitation as a defect in the spin field configuration. Far from this defect, we could still
pin φs to a local minimum, but the dipole symmetry is spoiled if the defect is allowed to move
through the lattice. In the following we will construct an effective mobile impurity model to
describe the dynamics of this defect in the dipole TLL phase.

4.3 Mobile impurity model

According to Eq. (27), at low energies the spin sector of the dipole TLL is described by a
sine-Gordon-type model. At weak coupling, i.e., for small spin gap ∆s ≪ J , the elementary
excitations are kinks or anti-kinks with relativistic dispersion Es(k) =

Æ

v2
s k2 +∆2

s [48]. As we
increase the Bariev interaction strength W , the spin gap increases and the dispersion relation
deviates from the relativistic dispersion. We are now interested in exploring the vicinity of
the special point W = J , where the dipole symmetry imposes that single-particle excitations,
which are charged under the U(1)s symmetry, cannot move by themselves. To describe this
regime, we restrict the excitation spectrum to allow at most one spin excitation. This type
of problem can be tackled using effective mobile impurity models, in which the finite-energy
excitation is treated as a distinguishable particle that interacts with the gapless modes of the
TLL [49].

We start by approximating the spin dispersion near its minimum by

Es(k)≈∆s +
k2

2m
, (40)

where m is the effective mass. For W = J , we expect m→∞, corresponding to localized spin
excitations due to the exact dipole symmetry. We then treat the single spin excitation as an
impurity mode, writing

σ+i ∝ ei
p
π/2θc(x)d†

s (x), (41)

where d†
s (x) is charge neutral but carries spin quantum number ∆M = +1/2 (−1/2) if i is

an odd (even) site. In this representation, the ground state |0〉 = |0〉c ⊗ |0〉s is a vacuum of
the bosonic charge modes and of the ds particle. The effective mobile impurity model that
includes the spin excitation has the form

H = Hc +

∫

dx

�

d†
s

�

∆s −
1

2m
∂ 2

x

�

ds − g

√

√ 2
π
∂xφcd

†
s ds

�

+ . . . , (42)

where Hc is the bosonic Hamiltonian in Eq. (27) and we omit irrelevant interaction terms.
Phenomenologically, the coupling g between the impurity and the charge density can be inter-
preted as follows. Suppose we perturb the hardcore boson ladder in the dipole TLL phase by

13
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adding a uniform field δHZ = −
h
2

∑

i σ
z
i . In the low-energy theory, this perturbation becomes

δHZ ≈ h
q

2
π

∫

dx ∂xφc . In a grand canonical ensemble formulation, the change in the particle

density can be absorbed by shifting the charge boson by φc(x) → φc(x) −
hKc
vc

q

2
π x . Imple-

menting this shift generates a renormalization of the spin gap in the mobile impurity model in
Eq. (42). As a result, we obtain the relation

g =
∂∆s

∂ ρ̄c
, (43)

where ρ̄c =
1
2〈σ

z
i + σ

z
i+i〉 is the average charge density in the ground state and we use

κ = ∂ ρ̄c/∂ h = 2Kc/πvc for the charge compressibility of the TLL. Thus, the coupling con-
stant g depends on how the spin gap changes when we vary the total number of particles.
This coupling is allowed when we have a finite-energy excitation in either spin or charge sec-
tors [49–51].

We can eliminate the interaction between the impurity and the gapless modes using a
unitary transformation. We define

U = exp

�

−i

√

√ 2
π

gKc

vc

∫

dx θcd
†
s ds

�

(44)

and the transformed fields

d̃s = U†dsU = dse
−i
q

2
π

gKc
vc
θc , (45)

∂x φ̃c = U†∂xφcU = ∂xφc −

√

√ 2
π

gKc

vc
d†

s ds . (46)

In terms of the new fields, the Hamiltonian becomes

H =

∫

dx
�

vcKc

2
(∂x θ̃c)

2 +
vc

2Kc
(∂x φ̃c)

2 + d̃†
s

�

∆s −
1

2m
∂ 2

x

�

d̃s

�

+ . . . , (47)

where again we drop irrelevant interactions. Importantly, the dressed impurity mode d̃s carries
a charge proportional to the coupling g because the charge density operator is given by

ρc = −

√

√ 2
π
∂xφc = −

√

√ 2
π
∂x φ̃c −

√

√ 2
π

gKc

vc
d̃†

s d̃s . (48)

Since this impurity mode is non-interacting, we obtain the free propagator

Gd(x ,τ) = 〈0|d̃s (x ,τ)d̃†
s (0,0)|0〉=
∫ ∞

−∞

dk
2π

eikx−i∆sτ−ik2τ/2m−a2k2/2

=
1
p

2π

�

a2 +
iτ
m

�−1/2

exp

�

−
x2

2a2 + 2iτ/m

�

, (49)

where a−1 is a momentum cutoff, with a of the order of the lattice spacing. Note that the
propagator is a scaling function of τ/m.

To probe the time evolution of the defect, let us consider the time-dependent variation in
the local density:

C( j,τ) = 〈Ω|σ−0 n j(τ)σ
+
0 |Ω〉 − 〈Ω|n j |Ω〉 , (50)

where |Ω〉 denotes the ground state of the hardcore boson ladder. In the mobile impurity
model, this quantity becomes

C(x ,τ)≈ Cc(x ,τ) + Cs(x ,τ). (51)
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The first term involves the charge density. Defining the vertex operator Vc = e−i
p
π/2(1−gκ)θ̃c ,

we obtain Cc(x ,τ) ∝ 〈0|Vc(0)∂xφc(x ,τ)V †
c (0)|0〉c . This contribution spreads ballistically

with the charge velocity vc and decays algebraically at long times. The second contribution
involves the impurity propagator:

Cs(x ,τ)∝ 〈0|d̃s(0)d̃
†
s (x ,τ)d̃s(x ,τ)d̃†

s (0)|0〉s = Gd(x ,τ)Gd(−x ,−τ). (52)

Using Eq. (49) and setting x = 0, we find that the density measured at the same position
where the defect is created decays with time as C(0,τ) ∝ m/τ for any finite mass. In the
limit of an immobile defect, m → ∞, C(0,τ) converges to a finite non-universal value for
τ → ∞, implying that some charge remains at x = 0 while the other fraction propagates
away with velocity vc .

We can also use the mobile impurity model to study the dynamics of the dipole moment
within the low-energy theory. To reproduce the properties of the dipole operator in Eqs. (3)
and (38), we propose the following expression in the continuum:

D ≈
∫ ∞

−∞
dx xd†

s (x)ds(x) +
1
p

2π

∫ ∞

−∞
dx Ŝ(x)∂xφc(x), (53)

where we define Ŝ(x) = 1 − 2
∫ x
−∞ dx ′ d†

s (x
′)ds (x

′). The first term simply accounts for the
dipole moment of the single defect. The second term represents the contribution from bound
pairs, where Ŝ(x) implements the sign change of the string when we cross the position of
the defect. In the defect-free sector, the impurity density vanishes identically, and the dipole
operator reduces to the total number of pairs, a conserved quantity within the low-energy
theory. By contrast, if we consider the initial state |Ψ(τ= 0)〉= σ+j |Ω〉, we expect the variance
of the dipole operator to increase with time as the defect moves through the system. We can
capture this effect by calculating the variance due to the first term in Eq. (53). We obtain

〈∆D2(τ)〉= 〈Ψ(τ)|D2 |Ψ(τ)〉 − 〈Ψ(τ)|D |Ψ(τ)〉2 ≈
∫

dx x2|Gd(x ,τ)|2, (54)

which can be interpreted as the mean squared displacement of the defect. We find

〈∆D2(τ)〉 ≈ a2 +
� τ

ma

�2
. (55)

The variance is finite at τ = 0 because the initial state is not an eigenstate of the dipole
operator. For any finite mass, the variance is a function of τ/m and increases quadratically
with time. For m→∞, the variance remains approximately constant, in agreement with the
picture of a localized defect enforced by the exact dipole moment conservation law.

5 Numerical simulations

In this section we present our numerical findings, obtained from a combination of ED and
matrix product states (MPS) based methods, such as TDVP and TEBD. We begin with an ex-
amination of the phase diagram from the viewpoint of the emergent dipole conservation. We
use ED results to provide insight into the conservation of the dipole moment in both ground
state and low-energy excited states. We then move to the benchmark of the quasi-adiabatic
state preparation. We focus on the more challenging preparation with cold atoms, simulating
the dynamical preparation with TDVP. We close our numerical survey by studying the isolated
defect dynamics close to the dipole TLL ground state.
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Figure 6: Ground state characterization with ED. (a) Phase diagram showing the
variance of the dipole operator 〈δD2〉/L as a function of W and V for an open chain
with L = 28 sites. (b) Fidelity susceptibility at V = 0 for various system sizes with
periodic boundary conditions.

5.1 Phase diagram and emergent dipole symmetry

We start with a phase diagram characterization of the dipole symmetry. Our goal here is not to
precisely determine transition points, but rather to uncover the emergent status of the dipole
symmetry in the dipole TLL state.

We first check how the ground state variance of the dipole operator, 〈∆D2〉= 〈D2〉− 〈D〉2,
behaves as we navigate across different portions of the phase diagram. In Fig. 6(a) we plot
the results obtained for a chain with L = 28 sites and open boundary conditions. We observe a
great similarity with the phase diagram sketched in Fig. 3. Near the origin, where we find the
2TLL state, we see the ground state is far from being dipole symmetric as flagged by the higher
variance. Moving either up or down we eventually cross to vanishing dipole variance regions,
which we associate to the classically ordered states. Coincidentally, we find the transitions take
place around the values V/J ≈ ±0.75, quite close to the ones predicted from the weak-coupling
bosonization. Finally, when we leave the 2TLL state moving in the direction of increasing W ,
we appear to cross a smoother region after which the dipole variance also approaches zero.
This would correspond to the BKT-type transition into the dipole TLL state, supporting the
picture of an emergent dipole-conserving liquid groundstate.

The BKT nature of the transition to the dipole TLL phase makes it difficult to use finite-size
scaling techniques effectively. This limitation leads to an overestimation of the 2TLL phase
in finite-size numerics, as can be seen in Fig. 6(a). This becomes clear when we compute
the fidelity susceptibility χF , conventionally used to detect critical points via finite-size scaling
techniques [52] and defined as

χF (η) = lim
δη→0

2
L

1− F(η,δη)
(δη)2

, (56)

where F(η,δη) = | 〈ψ(η)|ψ(η+δη)〉 | is the fidelity and η is a parameter of the Hamiltonian.
We show in Fig. 6(b) the ground state fidelity susceptibility as a function of W/J for a few dif-
ferent sizes L. We find that the transition slowly moves towards weak coupling as we increase
the size L, indicating that the 2TLL may actually be much smaller in the thermodynamic limit.

Next, we address the behavior of the dipole operator for excited states. Figure 7 shows the
matrix elements |Dαβ |= |〈α|D|β〉| of the dipole operator, computed in the basis of eigenstates
for W/J = 0, 0.60 and 0.90. Note that we plot absolute values, so we can focus on the strength
of nonzero terms. We observe off-diagonal terms are gradually supressed as we move from
W/J = 0 to W/J = 0.90, in support to the emergent status of the symmetry. In particular, for
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Figure 7: Matrix elements of the dipole operator for three values of W . We plot the
absolute values |Dαβ |= |〈α|D|β〉|, obtained from the 20 lowest-energy excited states.
Data obtained from the ED of an open chain with L = 28 sites and V = 0.

W/J = 0.90, we can see a low-energy block, whose nonzero elements are concentrated on the
diagonal.

5.2 State preparation

Let us now consider the state preparation protocol. We start from the simple initial state
|Néel×Néel〉= |01100110 . . .〉, and evolve it according to the following time-dependent Hamil-
tonian:

Hexp(τ) = HBH(τ) + h(τ)
∑

l

(−1)l(na
2l + na

2l+1), (57)

where HBH(τ) is a time-dependent variant of the Bose-Hubbard model shown in Eq. (13). At
the initial time, τ= 0, coupling parameters are chosen so the initial state is the actual ground
state of the full Hamiltonian Hexp(0) in the symmetry sector where both sublattices are half-
filled. This means, initially, the Bose-Hubbard model only includes the potential terms U = U0
and µ= µ0, while the hopping elements are set to zero, t0 = t ′0 = 0. Note that we also add an
extra time-dependent staggering field h(τ), whose initial value h= h0 favors the |Néel×Néel〉
configuration.

The preparation then proceeds by slowly tuning the coupling parameters in Hexp(τ). We
vary three parameters t, t ′, and h, while keeping the potentials U and µ static along the
evolution. The hopping parameters t and t ′ are increased up to the terminal values t f = 1
and t ′f = 0.1, while h is decreased all the way down to h f = 0. The parameter sweep is shown
in Fig. 8(a) as a function of τ/T , where T denotes the duration of the sweep. We use ED to
verify how the many-body spectrum evolves along our parameter flow. In Fig. 8(b) we plot
the spectrum evolution of the Hamiltonian (57) for a modest chain with L = 16 sites. We
observe the low-energy manifold remains separated, below the rest of the spectrum, during
the whole evolution. Note that we choose the parameters to be as close as possible to the
strictly confined point of the Bariev-like model, so we perform the ED in the limit of hard-core
bosons (U → ∞) with potential bias set to µ = 10. In this parameter regime, we should
ideally end up in the effective model of Eq. (15), with parameters Jα = t ′, Wα = t2/µ, and
V = 0, as estimated from Eq. (16).

We now consider a quasi-adiabatic protocol with a finite preparation time T [37]. To
perform the dynamical evolution of the initial state we then resort to TDVP, using a MPS repre-
sentation of the boson states with maximum occupation number equal to four. We study this
preparation as a function of the duration time T and the potential bias µ, fixing the on-site
potential to U = 50.
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Figure 8: Quasiadiabatic preparation protocol. (a) Parameter sweep profile em-
ployed. (b) Energy spectrum evolution along the parameter sweep. Obtained from
the ED of Hexp(τ) in the limit of hardcore bosons, with µ = 10 and a chain with
L = 16 sites. (c) Overlap between the dynamically prepared state in the TDVP evolu-
tion and the ground state of the target model as a function of µ. (d) Time evolution
of the inter-leg magnetization for the initial |Néel×Néel〉 state. (e) Single-particle
and (f) two-particle correlators of the dynamically prepared state, compared with
the correlators obtained from the ED of the target model. Insets in (e) and (f) are
respectively the log-linear and log-log behavior of the corresponding correlators. For
the inset in (e) we only plot even values of r.

Figure 8(c) shows the behavior of the overlap between the dynamically prepared and the
(DMRG obtained) target state of the Bariev model, F = |〈Ψprep(T )|Ψtarget〉|. As expected, we
see that the fidelity improves with increasing T (or, equivalently, with decreasing sweep rate).
We also observe that the maximal overlap is reached at intermediate µ, while small and large
values of µ lead to significantly smaller overlaps with the target state. For small µ, higher-
order terms in the perturbation theory become sizeable and cannot be neglected. On the
other hand, for large µ, the energy gaps, which scale as t2/µ, become small, such that a higher
density of excitations are created in the quasi-adiabatic protocol. We then verify that, while
the experimentally prepared state does not conserve the magnetization number M exactly, its
expectation value approaches zero with increasing µ as shown in Fig. 8(d).

To conclude, we compare the behavior of the single- and two-particle correlators obtained
at the end of the protocol with the ones computed from the ED of the target, hardcore boson
model Eq. (1), with W = J and V = 0. As shown in panels (e) and (f) of Fig. 8, these are in
good agreement with the ideal results obtained from the target model. We point out, however,
that the single-particle correlator exhibits greater deviations at larger distances, aligning with
predictions from the Kibble-Zurek mechanism [53,54]. We have also tried the state preparation
protocol in the limit U ≪ µ. However, we observe that the state does not appear to enter the
dipole TLL phase, using experimentally realizable parameter regimes.
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Figure 9: Defect dynamics on top the dipole TLL state. Time evolution of the lo-
cal density variation 〈δni(τ)〉 for three different values of W . From left to right,
W/J = 1, 0.96, and 0.92. The Ising-like interaction is set to V/J = 0.1 in all cases.
Results obtained with TEBD on a chain with L = 201 sites.

5.3 Dynamics of defects

Finally, we investigate the out-of-equilibrium dynamics of single-particle excitations. The phi-
losophy here is that, after approaching a target ground state in the quasi-adiabatic preparation,
one acts locally with an operator that creates an excitation in the center of the chain letting
it evolve coherently for some time. With this in mind, we however leave microscopic models
behind and concentrate on the ground state and dynamics produced by the effective hardcore
boson ladder.

Numerically our quench protocol goes as follows. First, we use DMRG to prepare the
ground state |Ω〉 of the Bariev-like Hamiltonian, Eq. (1). We then act with σ+0 , where j = 0
represents the center site of a chain with an odd number of sites. Finally, we use a three-site
gate TEBD to approximate the time evolution |Ψ(τ)〉 = e−iHτ |Ψ0〉, with |Ψ0〉 = σ+0 |Ω〉 the
prepared initial state.

We apply this recipe to examine how the defect behaves above the dipole TLL ground state.
In order to get cleaner results, we choose lattice parameters so we are deep in the dipole TLL
phase, close to the strictly confined point W = J . We consider values of W in the range from
W/J = 1 to W/J = 0.92, always with a small V/J = 0.1 interaction for generality. We run
the DMRG for a chain with L = 201 sites and quantum numbers fixed to N = (L−1)/2= 100
and M = 0. For the TEBD part, we use moderately small time steps Jδτ = 0.01, and stop
the evolution at Jτ = 18.0, roughly when the light cone reaches the edges of the chain. The
maximum truncation error is set to 10−8 during the whole numerical experiment. Attained
with a maximum bond dimension of χ = 1000, the results appear well-converged for the
times considered.

In Fig. 9 we plot the time evolution of the variation in the local density for three different
values of W . In agreement with the field theory prediction, we observe the defect exhibits
two different spreading patterns as it carries both quantum numbers of charge and spin. Af-
ter emitting the gapless part, which spreads ballistically, leaving a clear light cone signal, the
remaining part of the defect features a substantial slowdown in the relaxation towards equi-
librium. For W/J = 1 the effect is most dramatic, since the spin part of the defect lies still at
the central site where it was created. However, as we move away from the strictly confined
point, we are able to observe a slow spreading of the contribution associated with defect.

The time evolution of the density at the central site for various values of W is shown in
Fig. 10(a). There we can spot two time regimes. At short times we observe a rapid decay due
to the formation of the wave front that spreads ballistically. After this initial decay, the density
leak slows down. In particular, for W = J the density does not seem to decay significantly
for the time scales observed, staying close to 〈n0〉 ≈ 0.8. This is compatible with the limit
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Figure 10: Time correlators for the defect in the dipole TLL state. (a) Time evolution
of the charge density in the central site of the chain for different values of W ranging
from W/J = 1 (darker) to W/J = 0.92 (lighter). The inset shows the rescaling
of the time axis by the factor J −W . (b) Time evolution of variance of the lattice
dipole operator. Inset shows the rescaling of the time axis by the factor J −W . The
purple dashed line represents a quadratic behavior of the form a + bτ2, with a and
b constants. Results obtained via TEBD on a chain with L = 201 sites.

m→∞ of the mobile impurity model, where a finite amount of the density excess remains
localized at infinitely long times. For W < J we start to observe a slow decay in the density.
The inset of Fig. 10(a) we show that these curves collapse onto a single curve upon scaling
time has been rescaled by (J−W )τ. The data collapse gives the estimate m∼ |W−J |−1 for the
behavior of the effective mass parameter in the mobile impurity model. Note however in the
available time windows we could not directly verify the long-time behavior of 1/τ predicted
by the impurity model, controlled by the limit τ≫ ma2, with a a short-distance cutoff.

We show the time evolution of the variance of the dipole operator in Fig. 10(b). As ex-
pected, we observe that the dipole variance vanishes for W = J and increases with the dif-
ference |W − J |. We use this correlator to cross compare time scales as extracted from the
time evolution of the central site density. As showed in the inset of Fig. 10(b), the time
scales here are also compatible with an effective mass for the mobile impurity model given by
m∼ 1/|W − J |, displaying a quadratic form as predicted in Eq. (55).

To complete the picture, we consider the same quench protocol but with a defect added on
top of the 2TLL state. However, due to the large entanglement pattern of the c = 2 state, we
observe a greater difficulty to prepare well-converged ground states with DMRG. In view of
that we reduce the system size and consider a modest chain of L = 49 sites. We set the lattice
parameters to W = 0 and V/J = 0.1, setting the truncation error to 10−12, with maximum
bond dimension to χ = 600 during the ground state search. The rest of the numerical protocol
goes the same as before and we arrive at the results shown in Fig. 11.

Given that the 2TLL phase is adiabatically connected to the fixed point of decoupled chains,
the numerical results confirm the natural expectation, and demonstrate the defect thermalizes
quickly, spreading ballistically throughout the system. In Fig. 11(a) we plot the spacetime de-
pendence of the charge variation 〈δn j(τ)〉 during the quench with respect to the unperturbed
ground state. Note that for the system size considered, and small difference in velocities, it is
difficult to tell apart the lightcones associated with the fractionalization of the single-particle
excitation into gapless modes of charge and spin. Another contrast is provided in Fig. 11(b),
where we plot the time evolution for the number occupation at the central site. When com-
pared to the behavior in the dipole TLL phase, we can see the charge leak does not exhibit
any sort of slowdown, relaxing at time scales of the order Jτ ∼ 1. In appendix B we include
further results obtained for the pair dynamics on top the dipole TLL state.
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Figure 11: Ballistic dynamics for defect in the 2TLL phase. (a) Spacetime dependence
of the charge excess. (b) Time evolution of the charge density at the central site. Here
the parameters of the lattice model are W = 0, and V/J = 0.1. Results obtained by
TEBD on a chain with L = 49 sites.

6 Outlook

We investigated a Bariev-type model for hardcore bosons and its non-equilibrium implemen-
tation in biased atomic ladders. We considered how deviations from a strictly confined point,
still leaves significant imprints in the low-energy physics. In particular we uncovered the emer-
gence of a global non-local symmetry in the dipole TLL state, which constrains the dynamics
in the ground state, binding excitations into pairs. Through the use of extensive numerical
methods, we simulated and verified the effectiveness of the quasi-adiabatic preparation in the
context of a Bose-Hubbard model. We further considered the out-of-equilibrium dynamics
of single-particle defects created above the dipole TLL state. We showed that they exhibit
a substantial slowdown in the spreading dynamics and compared their slow motion to that
of a heavy particle whose mass diverges as we approach the special point where the dipole
symmetry is exact.

We leave some open directions for future works. The continuum-limit description of single-
particle defects may be improved by treating the sine-Gordon model in its entirety, which may
open the possibility of better understanding the role of the emergent constraint as well as
extending the theory to finite densities of such defects. Another promising direction is the
exploration of a potential link to the theory of Z2 lattice gauge theories coupled to spinless
fermions [26, 28], which exhibits a Bariev-type dynamics in the strong string-tension limit.
Driving inspiration from works on the folded XXZ model [23, 24], it may also be of interest
to explore the role of the emergent dipole symmetry (if there is any) in the realm of finite
temperature transport [7].

Our predictions are of particular relevance to atomic physics experiments, where the pro-
tocol we describe could be implemented in a controllable way. We note the use of staggering
fields has also been proposed to implement gauge symmetries [55] in quantum analog simula-
tors, as an alternative to tilting potentials [2–4]which need to scale with system size. The core
idea of splitting a bipartite lattice with a bias potential is quite generic, and one may envision
extensions to 2D systems, where the number of excitations is separately conserved in each
sublattice. These ideas might also be of relevance to trapped ion chains, where the implemen-
tation of three-body terms similar to those discussed here has recently been proposed [56], or
via effective dynamics similar to the Rydberg case, but at the price of introducing longer-range
interactions [57,58].
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A Details on the Schrieffer-Wolff transformation

Here we offer further details on the Schrieffer-Wolff transformation [61, 62] we employ to
derive the effective Hamiltonians for the Rydberg and cold atom platforms.

A.1 Rydbergs

The Rydberg Hamiltonian has the form HRyd = 2δM + Ht , where M = 1
4

∑

i(−1)iσz
i , and

Ht =
∑

i j t i jσ
+
i σ
−
j describes long-range tunneling. Given the amplitudes decay quite fast

t i j = t|i− j| = t/|i − j|3, we truncate the hopping up to second neighbors. The projection of
HRyd into a fixed sector of M , say M = 0, then gives

HRyd,eff = P0Ht P0 = t2

∑

i

(σ+i σ
−
i+2 +σ

−
i σ
+
i+2), (A.1)

where t2 = t/8, and P0 is the projector onto the M = 0 subspace. Second order corrections
are obtained from the Schrieffer-Wolff transformation H → H ′ = eSHe−S . Treating only the
first-neighbor hopping t1 = t, we choose the generator so that [S, M] = −V/2δ, where V
is the off-diagonal element that connects the M = 0 manifold to the subspaces labeled with
M = ±1. With the help of projectors onto the relevant manifolds, P± ≡ P±1, we write V as

V = P0Ht P+ + P+Ht P0 + P0Ht P− + P−Ht P0. (A.2)

From it we find the suitable choice for S reads

S =
1

2δ
(−P0Ht P+ + P+Ht P0 + P0Ht P− − P−Ht P0). (A.3)

The second-order term comes from the commutator [S, V ], namely δH = 1
2 P0[S, V ]P0. From

the projection operator properties, we can simplify this commutator to

δHRyd,eff = −
1

2δ
(P0Ht P+Ht P0 − P0Ht P−Ht P0). (A.4)

We observe the two signs are different, because excitations increase energy when go from
odd to even sublattices, but lower energy when move in the opposite direction. Writing out
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the explicit formula for the hopping, we fix initial and final sites with the use of projection
operators, and the expression becomes

δHRyd,eff = −
t2

2δ

∑

i j

�

(σ+2i−1 +σ
+
2i+1)σ

−
2i ,σ

+
2 j(σ

−
2 j−1 +σ

−
2 j+1)
�

. (A.5)

Applying the commutator identity [AB, C D] = A[B, C]D+AC[B, D]+[A, C]DB+C[A, D]B, we
then arrive at

δHRyd,eff = −
t2

2δ

∑

i

(−1)i(σ+i σ
z
i+1σ

−
i+2 +H.c.). (A.6)

We draw attention to the fact that Ising terms cancel out due to the staggering behavior of
second-order processes. Together with Eq. (A.1) this leads us to the formula presented in the
main text.

A.2 Cold atoms

We write the Bose-Hubbard model, Eq. (13), as HBH = UC + µMa + Ht + Ht ′ . The first
two terms are dominant. They represent the on-site Coulomb repulsion, C = 1

2

∑

i na
i (n

a
i − 1),

and the staggered potential, Ma =
1
2

∑

i(−1)ina
i . We factor the couplings out to ease the power

counting. The other two terms describe first- and second-neighbor site hopping with tunneling
amplitudes t and t ′. Projection onto the subspace manifold where all sites are either empty
or singly-occupied, and there is an equal number of atoms in the two sublattices gives

HBH,eff = Ps0HBHPs0 = −t ′
∑

i

(σ+i σ
−
i+2 +σ

−
i σ
+
i+2), (A.7)

where σ−i = Ps0ai Ps0, with Ps0 the projector onto the C = Ma = 0 subspace. We now as-
sume t ′≪ t, so at second-order we only consider the effect of Ht . The off-diagonal elements
generated by the Ht in Eq. (14) can be organized as

V = Ps0Ht Ps+ + Ps+Ht Ps0 + Ps0Ht Ps− + Ps−Ht Ps0

+ Ps0Ht Pd+ + Pd+Ht Ps0 + Ps0Ht Pd− + Pd−Ht Ps0. (A.8)

The first line describes hopping processes where the atom hops from one sublattice to the
other landing on an empty site. This matrix element involves a change ∆Ma = ±1 but not on
∆C = 0, as indicated by the projectors Ps±. In contrast the second line represents tunneling
processes where the atom arrives at a site that is already occupied. Hence both quantum
numbers change: ∆C = 1 and ∆Ma = ±1, so we use Pd± to indicate we are within the
manifold with one doubly-occupied site. To perform the Schrieffer-Wolff transformation, we
pick the generator

S =
1
µ
(−Ps0Ht Ps+ + Ps+Ht Ps0 + Ps0Ht Ps− − Ps−Ht Ps0)

+
1

U +µ
(−Ps0Ht Pd+ + Pd+Ht Ps0) +

1
U −µ

(−Ps0Ht Pd− + Pd−Ht Ps0). (A.9)

It satisfies [S, UC +µMa] = −V , so we turn to second-order corrections computed from the
power-series expansion of the Schrieffer-Wolff transformation: δH = 1

2 Ps0[S, V ]Ps0. In partic-
ular, we find

δHBH,eff = −
1
µ
(−Ps0Ht Ps+Ht Ps0 + Ps0Ht Ps−Ht Ps0)

−
1

U +µ
Ps0Ht Pd+Ht Ps0 −

1
U −µ

Ps0Ht Pd−Ht Ps0. (A.10)
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Let us now go term a term. We note the first term describes a hard-core process, as the one
considered in the Rydberg case. Apart from a normalizing factor of two, the key distinction
comes from the phase dressing in Eq. (14). When we expand the formula for the hopping, we
obtain

δH(µ)BH,eff =
t2

µ

∑

i j

′
(−1)i+ j
�

(σ+2i−1 +σ
+
2i+1)σ

−
2i ,σ

+
2 j(σ

−
2 j−1 +σ

−
2 j+1)
�

, (A.11)

where we use the Ps0 projection to replace boson for spin-1/2 operators. From the commutator,
we then find

δH(µ)BH,eff = −
t2

µ

∑

i

(σ+i σ
z
i+1σ

−
i+2 +H.c.), (A.12)

where we drop additive constants. The other two terms in the second line of Eq. (A.10),
come from virtual processes containing a doubly-occupied site. When the doubly-occupied
site happen to be in the even sublattice, we get

δH(U+µ)BH,eff = −
t2

U +µ

∑

i

′�
σ+2i−1(1+σ

z
2i)σ

−
2i+1 +σ

−
2i−1(1+σ

z
2i)σ

+
2i+1

�

−
t2

2(U +µ)

∑

i

′
(σz

2i−1 +σ
z
2i+1)σ

z
2i . (A.13)

Likewise, when the virtual doubly-occupied site belongs to the odd sublattice,

δH(U−µ)BH,eff = +
t2

U −µ

∑

i

′�
σ+2i(1+σ

z
2i+1)σ

−
2i+2 +σ

−
2i(1+σ

z
2i+1)σ

+
2i+2

�

−
t2

2(U −µ)

∑

i

′
(σz

2i +σ
z
2i+2)σ

z
2i+1. (A.14)

Collecting results from Eqs. (A.12), (A.13) and (A.14), we arrive at the effective Hamiltonian
(15). Note that the doubly-occupied processes have different couplings for elements in the
odd and even sublattices.

B Dynamics of an excitation pair

In this appendix we report results obtained for the quench dynamics of a pair of defects. The
two excitations are created upon the action of σ+i σ

+
j onto the half-filled ground state. The

numerical details follow the prescription of Sec. 5.
We remain close to the strictly confined point, i.e., |W−J | small, and consider two different

scenarios. In the first case we create a pair in adjacent sites σ+i σ
+
i+1, while in the second case

we take them far apart σ+i−rσ
+
i+1+r , with r = 20. Figure 12 shows the results obtained for a

chain with L = 200 sites. In Fig. 12(a) we observe a clear light-cone signal formed upon the
time evolution of a creation of the local pair. Note that the ballistic spreading of the local pair
is in agreement with the continuum limit field theory, featuring a motion compatible with the
emergent dipole symmetry. This is further showcased in Fig. 12(c), where we observe that
the variance of the dipole does not evolve significantly in time; cf. the variance for a single
defect in Fig. 8(d). Finally, in Fig. 12(b) a separated pair exhibits the approximate behavior
of independent single-particle defects. This is further reinforced in Fig. 12(c) where we see
the dipole variance changes with time whenever |W − J | ≠ 0.
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Figure 12: Two-particle dynamics in the dipole TLL state. (a) Time evolution of
the density variation when two defects are created in consecutive sites. (b) Time
evolution of the density variation when defects are created far apart. (c) Variance of
dipole as a function of time for a local pair (r = 0) and a separated pair (r = 20).
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