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The study of open system dynamics is of paramount importance both from its fundamental
aspects as well as from its potential applications in quantum technologies. In the simpler and
most commonly studied case, the dynamics of the system can be described by a Lindblad master
equation. However, identifying the Lindbladian that leads to general non-equilibrium steady states
(NESS) is usually a non-trivial and challenging task. Here we introduce a method for reconstructing
the corresponding Lindbaldian master equation given any target NESS, i.e., a Lindbladian Reverse
Engineering (LRE) approach. The method maps the reconstruction task to a simple linear problem.
Specifically, to the diagonalization of a correlation matrix whose elements are NESS observables
and whose size scales linearly (at most quadratically) with the number of terms in the Hamiltonian
(Lindblad jump operator) ansatz. The kernel (null-space) of the correlation matrix corresponds to
Lindbladian solutions. Moreover, the map defines an iff condition for LRE, which works as both
a necessary and a sufficient condition; thus, it not only defines, if possible, Lindbaldian evolutions
leading to the target NESS, but also determines the feasibility of such evolutions in a proposed setup.
We illustrate the method in different systems, ranging from bosonic Gaussian to dissipative-driven
collective spins. We also discuss non-Markovian effects and possible forms to recover Markovianity
in the reconstructed Lindbaldian.

I. INTRODUCTION

The quest of estimating maps characterizing the dy-
namics of quantum systems has significantly increased in
the recent years, with both theoretical and experimen-
tal advances. The general goal is to infer the underly-
ing dynamical equations that drive a system, given only
(full or partial) information about the system properties.
Several approaches have been proposed, both for closed
[1–20] and open system [22–39] dynamics.

In the simplest scenario, that of closed systems (an ide-
alization of a system perfectly isolated from its environ-
ment), the dynamics is fully characterized by its Hamil-
tonian according to Schrödinger’s equation. While in a
conventional approach one assumes complete knowledge
of the Hamiltonian Ĥ(t), and the goal is to determine the
evolution of the system |ψ(t)⟩, the challenge now is the
opposite. That is, given a quantum state |ψ(t)⟩, the goal
is to reconstruct the Hamiltonian Ĥ(t) for which the state
is the solution of the Schrödinger’s equation, which we
denote as Hamiltonian reverse engineering (HRE). The
most studied case concerns time-independent systems,
aiming at the engineering of Hamiltonians for specific
ground or excited states [1–10]. The extension to quan-
tum quench protocols and time-dependent Hamiltonians
has also been discussed [11–20]. It is worth mentioning
some relevant implications of such studies, e.g. under-
standing the classes of Hamiltonians that could generate
tailored many-body correlations on their eigenstates, or
generating possible shortcuts to adiabaticity.

Reverse engineering in open systems has also been ex-
plored. In this case, however, the dynamics are usually
more intricate and harder to solve. A common simplifica-
tion is to consider a specific class of open dynamics whose
system is weakly interacting with the environment and

constrained by a Born-Markovian approximation. The
effective dynamics of the system can thus be expressed by
a Lindbladian master equation (L) [21]. Various strate-
gies have been proposed for a Lindbladian Reverse En-
gineering (LRE), based on both exact methods [22–28]
and variational principles [29–39].

On the one hand, LRE based on exact methods allow a
precise (exact) reconstruction of the map. However, they
are either restricted to a small subset of the possible Lind-
baldian evolutions, such as those whose steady states nec-
essarily satisfy a detailed balance condition [22], support
pure dark states [23, 24] or are constrained to be Gaus-
sian [25]; or have an impractical computational cost for
their implementation, such as in full process tomography
[26–28]. In this latter case, given a system with Hilbert
space dimension d, one must perform d2 measurements
in order to reconstruct the corresponding (Krauss opera-
tors) map. The cost of the method thus scales exponen-
tially with the dimensionality of the system, and becomes
infeasible in most practical cases. Therefore variational
methods [29–39] have been proposed in order to fill these
gaps, as they are able to reconstruct general maps with
reduced computational complexity.

The essential procedure in variational LRE methods
is to collect the information about the Lindbladian in-
directly by the evolution of a finite number of different
initial states, observables and/or evolution times. These
data do not need to fill all possible measurement out-
comes, thus reducing the computational cost but still al-
lowing to reconstruct the Lindbaldian within a controlled
accuracy threshold. The reconstruction process follows
by searching in the space of possible Lindbladians (the
Lindbladian ansatz ) for the one that best fits the mea-
surement results. The search is usually performed by
minimizing a predefined “cost function”, such as max-
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imun likelihood estimators for the measurement proba-
bility distributions [29, 31, 32, 34], neural network loss
functions [38, 39], semidefinite programming [33], among
others [30, 35, 36]. It is important to recall that the cost
functions are generally either non-linear or non-convex
estimators, making the minimization a non-trivial and
demanding task.

In this work we propose a variational LRE method
for target non-equilibrium steady states (NESS). The
method has a significantly reduced complexity on both
the required data and the associated Lindbladian esti-
mation cost function. Specifically, given a target NESS,
the method requires a number of NESS observables that
scales linearly (at most quadratically) with the number
of terms in the Lindbladian Hamiltonian (jump opera-
tor) ansatz. In addition, the Lindbladian estimator is a
linear function of the measurement observables, and the
cost function minimization task is mapped to a simple
eigenvalue and eigenvector problem. The reconstructed
Lindbladian is obtained by simply diagonalizing a cor-
relation matrix, where the null eigenvalues correspond to
Lindbladian solutions. It is important to note that this
is an iff relation, as we discuss, unlike other approaches
where the analogous relation is only a necessary one (i.e.,
the reconstructed Lindbladian is the one that necessarily
matches to the sampled input data, with no guaranteed
extrapolation from it). In this way our method works
both as a sufficient condition for the reconstruction of a
Lindbladian, as well as a “no-go theorem” whose absence
of null eigenvalues in the correlation matrix determines
the impossibility of the Lindbladian ansatz to generate
the corresponding NESS. In other words, the method has
the ability not only to define with certainty, if possible,
Lindbaldian evolutions that lead to a desired NESS but
also to determine the feasibility of such evolutions in a
proposed setup. We note that our proposed method fo-
cus only in steady state engineering, i.e., reconstructing
a Lindbladian that specifically achieves NESS on its as-
symptotic long-time dynamics, without discrimination on
its finite time properties.

We apply the method in different models, from Gaus-
sian bosonic models to collective spin systems. By sys-
tematically exploring the Lindbladian ansatz, we can
identify different types of interactions that give rise to
the same desired NESS. This knowledge can open inter-
esting perspectives for the field, providing valuable in-
sights into out-of-equilibrium phases and phase transi-
tions, where different phases of matter can emerge from
the competition between coherent and dissipative terms
of the Lindbladian. Thus, the technique can be used to
envision a range of different physical settings capable of
generating specific phases of matter, each with great po-
tential for practical applications.

The manuscript is organized as follows. In Sec.II we
formulate our method for LRE towards a target nonequi-
librium steady state. In Sec.III we illustrate the method
for different systems, bosonic gaussian NESS (IIIA) and
collective spin-1/2 ones (III B). We present our conclu-

sions in Sec.IV.

II. LINDBLADIAN RECONSTRUCTION
ALGORITHM

In this paper we consider open quantum system whose
dynamics description is given by a Markovian master
equation. More specifically, the time evolution for the
density matrix ρ̂ is described by the the generalized GKS-
Lindblad master equation,

d

dt
ρ̂ = L[ρ̂] =

J∑
j

cjLH
j [ρ̂] +

K∑
j,k

γj,kLD
j,k[ρ̂], (1)

where L is the Lindbladian superoperator, with coherent
driving terms

LH
j = −i[ĥj , ρ̂], (2)

and dissipative ones

LD
j,k =

(
ℓ̂j ρ̂ℓ̂

†
k − 1

2
{ℓ̂†k ℓ̂j , ρ̂}

)
. (3)

The coherent driving terms are spanned by a set of J

Hermitian operators {ĥj}Jj=1 with corresponding real co-
efficients cj ∈ R. The dissipative terms are spanned by

a set of K jump operators {ℓ̂j}Kj=1, with corresponding
rates γj,k ∈ C, elements of the dissipative matrix γ which
is a positive semidefinite matrix, ensuring the complete
positivity of the dynamical map. A crucial aspect of LRE
is the selection of such a set of Hamiltonian and jump op-
erators. This prior selection is fundamental to the recon-
struction process and is inherently related to the phys-
ical operations capable of generating the steady state.
Thus, the choice of the basis not only reflects the under-
lying physics of the system but is also consistent with the
identification of the physical operations that lead to the
non-equilibrium steady states (NESS). In the subsequent
sections, we will illustrate how this choice of basis can
affect the method.
The reverse engineering approach assumes that the

steady state ρ̂ss (i.e., the state reached in the infinite
time limit by the dynamics) of the system is known, and
asks the question of what are the coefficients {cj} and
rates {γj,k} of the corresponding Lindbladian necessary
to generate such a steady state. In other words, we are
interested in solving the steady state equality L[ρ̂ss] = 0
but not from the density matrix perspective, rather from
its Lindbladian superoperator. Precisely, we aim at solv-
ing the following task:

solve L[ρ̂ss] = 0 (4)

with variables

{
cj ∈ R, j = 1, ..., J,
γj,k ∈ C, j, k = 1, ...,K.

(5)

We first notice that given a system with a Hilbert space
dimension d, the steady state condition of Eq.(4) corre-
sponds to solving a set of d (possibly nonlinear) equal-
ities among the variables of Eq(5). The complexity of
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this direct approach grows with the Hilbert space dimen-
sion, making the solution challenging for general systems
(e.g. in many-body 1/2-spin systems whose Hilbert space
dimension can grow exponentially with the number N
of constituents, d = 2N ). Different approaches can be
used to avoid dealing with such a highly complex task,
as e.g. focusing on specific classes of NESS [22–28] or
within variational LRE approaches [29–39]. However,
even in variational approaches, the reconstruction task
can be reduced to either nonlinear or non-convex esti-
mation problems, which are still nontrival depending on
the specific system under study. An approach closer to
this work worth remarking, also specifically focused on
target NESS, is the one based on solving the Heisenberg
equations of motion for specific observables [15, 35, 36].
Although the reconstruction task is a linear minimization
problem (kernel diagonalization) scaling linearly with the
size of the Lindbladian ansatz (similar to ours - as we
discuss below), it is not an iff relation and strongly de-
pends on the set of observables chosen to solve within its
Heisenberg equations.

In this work we propose a new approach to obtain
the corresponding Lindbladian superoperator for a given
non-equilibrium steady state. We map the task of
Eqs.(4)-(5) into the diagonalization of a (J +K2)× (J +

K2) positive semidefinite matrix, M̂(ρ̂ss), thus avoiding
the Hilbert space dimensional complexity. In order to do
so, we first recall a notion of rapidity for the Lindbladian
dynamics, R(ρ̂) = Tr(L[ρ̂]†L[ρ̂]). This function computes
roughly the norm of the operator L[ρ̂], i.e., the norm of
the time derivative for the state ρ̂. On the one hand, if

the state is the steady state the rapidity must vanish. On
the other hand, if the rapidity vanishes, since L[ρ̂]†L[ρ̂]
is a positive semidefinite operator, the state must be a
steady state, ρ̂ = ρ̂ss. Therefore, a null rapidity is a nec-
essary and sufficient condition for the Lindbladian steady
state,

R(ρ̂) = 0 ⇐⇒ ρ̂ = ρ̂ss. (6)

We can reformulate the above relation to simpler
terms. We first expand the rapidity using Eq.(1), ob-
taining that

R(ρ̂) =
∑
j,k

cjck Tr
(
LH
j [ρ̂]LH

k [ρ̂]
)

+
∑
j,k,m

cjγk,m Tr
(
LH
j [ρ̂]LD

k,m[ρ̂]
)

+
∑
j,k,m

γ∗j,kcm Tr
(
LD
j,k[ρ̂]

†LH
m[ρ̂]

)
(7)

+
∑

j,k,m,n

γ∗j,kγm,n Tr
(
LD
j,k[ρ̂]

†LD
m,n[ρ̂]

)
,

where we use the hermicity of the Lindbladian coherent
components, cj = c∗j and LH

j [·] = LH
j [·]†, ∀ j. The above

relation can be written in a matrix form,

R(ρ̂) = ⟨φL| M̂(ρ̂) |φL⟩ , (8)
where the (J + K2) × 1 Lindbladian vector |φL⟩ con-

catenates the parameters cj and γj,k and M̂(ρ̂) is a
(J + K2) × (J + K2) correlation matrix obtained from
the state properties. Specifically,

|φL⟩ =



c1
...
cJ
γ1,1
γ1,2
...

γK,K


, M̂(ρ̂) =



Tr
(
LH
1 [ρ̂]LH

1 [ρ̂]
)

· · · Tr
(
LH
1 [ρ̂]LH

J [ρ̂]
)

Tr
(
LH
1 [ρ̂]LD

11[ρ̂]
)

· · · Tr
(
LH
1 [ρ̂]LD

K,K [ρ̂]
)

. . .
...

...
. . .

...
Tr
(
LH
J [ρ̂]LH

J [ρ̂]
)

Tr
(
LH
J [ρ̂]LH

1,1[ρ̂]
)

· · · Tr
(
LH
J [ρ̂]LD

K,K [ρ̂]
)

Tr
(
LD
1,1[ρ̂]LD

1,1[ρ̂]
)
. . . Tr

(
LD
1,1[ρ̂]LD

K,K [ρ̂]
)

H.c.
. . .

...
Tr
(
LD
K,K [ρ̂]LD

K,K [ρ̂]
)


.

(9)

We then notice that, since M̂(ρ̂) is a positive semidefinite
operator, the rapidity is null iff the Lindbladian vector
|φL⟩ is an eigenstate of the correlation matrix with a null
eigenvalue. In summary,

M(ρ̂) |φL⟩ = 0 ⇐⇒ ρ̂ = ρ̂ss. (10)

Therefore, we mapped the reverse engineering task
Eqs.(4)-(5) to finding the eigenvector with null eigenvalue
of the correlation matrix M(ρ̂ss).
A few properties are important remarking:

� The method reduces the reverse engineering com-
plexity to a simpler diagonalization procedure, fur-

ther reducing the dimensional cost to a (J +K2)×
(J +K2) matrix;

� The method gives both a necessary and a suffi-
cient condition for generating the NESS. Thus it
not only identifies possible Lindbladians for a given
steady state, but could also verify the impossibility
to generate a steady state for a given class of Lind-
bladians, analogous to a “no-go theorem”. More
precisely, given a class of Lindbladians (i.e., us-

ing a specific set of Hermitian operators ĥj and
jump operators ℓj in Eq.(1)) if the correlation ma-

trix M̂(ρ̂ss) has no null eigenvalues, one could never
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reach the corresponding steady steady within this
class of dynamics.

� The positive semi-definiteness of the dissipative
matrix γ, a sufficient condition for Markovianity,
is not explicitly imposed in the correlation matrix
definition. Therefore, the method is not restricted
only to Markovian dynamics, rather it also offers
the possibility to explore non-Markovian maps [42–
45]. It is worth remarking, however, that solutions
failing to meet the positivity semi-definiteness cri-
terion may actually not represent physical maps.
Checking whether this is the case is usually a dif-
ficult task. One could circumvent these issues by
post-processing the solution given by the method
and explicitly imposing the Markovianity; e.g. once
the kernel space of the correlation matrix M̂(ρ̂ss)
is obtained (possibly degenerate), (i) either a post-
selection process is performed to select the solutions
satisfying γ ≥ 0, (ii) or given the solution γ ≯ 0 one
approximates it to a Markovian dissipative matrix.
A straightforward approach is to set any negative
eigenvalue of the dissipative matrix to zero, espe-
cially when these negative eigenvalues are orders
of magnitude smaller than the positive ones. We
discuss these ideas in more details in the examples
below.

III. EXAMPLES

In this section we apply our method to different sys-
tems, namely, with (i) bosonic Gaussian steady states,
and (ii) collective spin ones. These quantum states pos-
sess unique properties that can play a pivotal role in the
development of quantum technologies [46], therefore with
great interest for engineering methods. Moreover, these
are well-established and extensively studied systems with
analytical results that help to illustrate important as-
pects of the method.

A. Bosonic Gaussian States

We first consider the reverse engineering of Lindbla-
dians generating single-mode bosonic Gaussian steady
states, as coherent or squeezed vacuum states.

1. Coherent steady states

Coherent states hold significant importance within the
realm of quantum physics, especially in the domain of
quantum optics [47]. These are states of the quan-
tum harmonic oscillator with minimal uncertainty (min-
imum quantum noise in the canonical conjugate vari-
ables, specifically the quadratures) and exhibit the most

analogous evolution to the classical harmonic oscilla-
tor [48], i.e. ∆X∆Y = 1

4 , with ∆X = ∆P = 1
2 , where

∆A =

√
⟨Â2⟩ − ⟨Â⟩2, quadratures X̂ = 1√

2

(
â† + â

)
,

P̂ = i√
2

(
â† − â

)
, and â(â†) is the bosonic annihilation

(creation) operator. A single-mode coherent state is de-
scribed as [47, 48],

|α⟩ ≡ D̂(α) |0⟩ = exp
(
αâ† − α∗â

)
|0⟩ , (11)

where |0⟩ is the ground state of the harmonic oscillator,

i.e. â |0⟩ = 0, and D̂(α) is known as the displacement
operator, α ∈ C. The coherent state is an eigenstate of
the annihilation operator with eigenvalue α, i.e. â |α⟩ =
α |α⟩ and the displacement operator is an unitary that

shifts the annihilation operator by α, D̂(α)âD̂(α)† = â+
α.
We assume single particle bosonic operators for the co-

herent and dissipative operator basis in the Lindbladian
(Eq.(1)):

{hj} = {(â + â†)/
√
2, (â − â†)/i

√
2} and {ℓj} = {â,

â†}. This choice is reasonable since coherent states can
be generated with the displacement operator, a function
of linear operators, acting in the vacuum. The correlation
matrix can be written as,

M̂(|α⟩⟨α|) =


1 0 −

√
2
4 i(α− α∗) 0 0

√
2
4 i(α− α∗)

1 −
√
2
4 (α+ α∗) 0 0

√
2
4 (α+ α∗)

1
2 |α|

2 0 0 − 1
2 |α|

2

1
2 0 0

H.c. 1
2 0

2 + 1
2 |α|

2

 .

(12)

The kernel of M̂(|α⟩⟨α|) is one-dimensional. Thus, in this
scenario the method provides a unique eigenvector with
null eigenvalue,

|φL⟩α =


−

√
2

4i (α− α∗)√
2
4 (α+ α∗)

1
0
0
0

 , (13)

or in other words, a unique Lindbladian spanned in the
basis {hj} and {ℓj} leading to such coherent steady
states, characterized by the master equation,

d

dt
ρ̂ = −i[Ĥ, ρ̂] +

(
L̂ρ̂L̂† − 1

2
{L̂†L̂, ρ̂}

)
, (14)

with,

Ĥ = − i

2
α∗â+

i

2
αâ†, L̂ = â. (15)

The coherent state emerges from a non-trivial inter-
play between the unitary and dissipative parts of the
model, i.e. [Ĥ, L̂] ̸= 0. While attaining this specific
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solution might not pose significant challenges in this pre-
liminary illustration, its significance also lies in demon-
strating that the assumption of linear Hamiltonian and
operators jump operators leads to a unique possible so-
lution in Lindblad form, |φL⟩α up to a multiplicative
factor.

2. Squeezed vacuum steady states

Squeezed vacuum are states of minimum uncertainty
but the noise in one of the quadratures is below of cor-
responding noise in the vacuum state, consequently the
noise of the other quadrature is amplified [47, 48], i.e.
∆X∆Y = 1

4 , with ∆X = 1
2e

−r and ∆P = 1
2e

r, where
r is called the squeezed parameter. Such states play an
important role in quantum metrology, as e.g. improving
laser interferometers [49, 50]. Moreover, they hold great
potential for applications in the field of quantum cryptog-
raphy, fortifying secure optical communication [51, 52].
A single-mode squeezed vacuum state can be defined as,

|ξ⟩ ≡ Ŝ(ξ) |0⟩ = exp
(
ξ∗â2 − ξ(â†)2

)
|0⟩ , (16)

where Ŝ(ξ) is the squeezed operator and ξ = reiθ, with
r, θ ∈ C. The squeezed vacuum state is an eigenstate of

the operator b̂ = â cosh(r)+ â†eiθ sinh(r) with eigenvalue

zero, i.e. b̂ |ξ⟩ = 0. The squeezed operator is an unitary
acting on the annihilation operator â as a Bogoliubov
transformation, Ŝ(ξ)âŜ(ξ)† = â cos r − â†eiθ sin(r).
Squeezed states could be generated through non-linear

processes resulting from the interaction between bosons,
involving quadratic Hamitonians [53, 54]. We therefore
apply our method expanding the Hamiltonian basis with
bosonic quadratic operators, {hj} = {(â2 + (â†)2)/

√
2,

(â2 − (â†)2)/i
√
2}. To demonstrate the applicability of

the method in identifying different dynamics that pro-
duces the target states, we will select two jump operators
basis.
Single particle jump operators.- As a first attempt, we

propose jump operators spanned by single particle opera-

tors: {ℓj} = {â, â†}. Note that from the relation b̂ |ξ⟩ = 0
we can already infer one possible solution, a purely dissi-
pative dynamics, Ĥ = 0, with a single lindblad jump op-

erator by ℓ̂ ≡ b̂. In fact, the correlation matrix M̂(|ξ⟩⟨ξ|)
(see Appendix (A)) has a three-dimensional kernel and
can be expanded by the orthogonal vectors,

|φL1
⟩ξ =


−

√
2
2 sin(θ)√
2
2 cos(θ)

− tanh(2r)
e−iθ sech(2r)
eiθ sech(2r)
tanh(2r)

 , |φL2
⟩ξ =



√
2
2 cos(θ)√
2
2 sin(θ)

0
ie−iθ cosh(2r)
−ieiθ cosh(2r)

0

 and |φL3
⟩ξ =

1

2


0
0

cosh(2r) + 1
e−iθ sinh(2r)
eiθ sinh(2r)
cosh(2r)− 1

 . (17)

The first two solutions have non-positive dissipa-
tive matrix, {λj (γ1)} = {−1, 1} and {λj (γ2)} =
{− cosh(2r), cosh(2r)}, where λj(A) is the j-th eigen-
value of A and γk is the dissipative matrix of the k-
th solution. Therefore, we cannot guarantee that they
represent physical dynamics. The third solution is the
previously commented purely dissipative dynamics, char-

acterized by H = 0 and ℓ̂ = b̂.

We can explore alternative Markovian solutions by
examining the superposition of the three eigenstates of
M̂(|ξ⟩⟨ξ|). Assuming |φL⟩ξ =

∑3
j=1 aj |φLj

⟩
ξ
, with aj ∈

R ∀j, the dissipative matrix is positive semi-definite, i.e.
γ ≥ 0 iff a1 = a2 = 0. Therefore, for the basis choice, lin-
ear jump operators, the only Markovian dynamics will be
governed by the purely dissipative solution |φL3

⟩ξ. The
possibility of obtaining a Markovian solution, where the
squeezed vacuum steady state emerges through the inter-
action between the unitary and dissipative components,
is explored in the subsequent discussion by considering
an alternative basis for the dissipative term.

Two-particle jump operators.- Now, considering an in-
teraction among the bosons arising from their coupling

with the environment, we expand the jump operators by

two-particle operators: {ℓ̂j} = {â2, (â†)2}. We com-

pute the correlation matrix M̂(|ξ⟩⟨ξ|) (see Appendix (A))
which has an one-dimensional kernel,

|φL⟩ξ =



√
2 sin(θ) sinh(4r)

−
√
2 cos(θ) sinh(4r)

3 + 4 cosh(2r) + cosh(4r)
e−2iθ (1− cosh(4r))
e2iθ (1− cosh(4r))

3− 4 cosh(2r) + cosh(4r)

 . (18)

Therefore, in this scenario the dynamics can be described
by the master equation,

Ĥ = i
(
e−iθâ2 − eiθ

(
â†
)2)

sinh(4r),

ℓ̂ = −e−2iθ
√
2(cosh(2r) + 1)â2 +

√
2(cosh(2r)− 1)

(
â†
)2
.

(19)

Interestingly, we observe in this way that by postulating
interactions between bosons resulting from their coupling
with the environment, the competition between Hamilto-
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nian and dissipative dynamics can manifest as a squeezed
state in long time regime.

B. Driven-dissipative Collective Spin Model

We study in this section the method for a collective
spin system. The model describes a set of N 1/2-spin
systems collectively coupled to a Markovian environment,
leading to a GKS-Lindbladian master equation evolution

d

dt
ρ̂ = LDD[ρ̂] ≡ −iωo[Ŝ

x, ρ̂]+
κ

S

(
Ŝ−ρ̂Ŝ+ − 1

2
{Ŝ+Ŝ−, ρ̂}

)
,

(20)

where S = N/2 is the total spin of the system, Ŝα =∑
j σ̂

α
j /2 with α = x, y, z are collective spin operators,

Ŝ± = Ŝx ± iSy are the excitation and decay opera-
tors, and σ̂α

j is the Pauli spin operator for the j’th spin.
Inheriting the SU(2) algebra of their constituents, the
collective operators satisfy the commutation relations
[Ŝα, Ŝβ ] = iϵαβγS

γ

Ŝγ . Due to the collective nature of
their interactions, the model conserves the total spin
S2 = (Ŝx)2 + (Ŝy)2 + (Ŝz)2. The model encompasses an
interplay between coherent driving and incoherent decay,
with coherent rate ωo and an effective decay rate κ. It is
commonly used to describe cooperative emission in cav-
ities [55–58] and was recently shown to support a time
crystal phase with the spontaneously breaking of contin-
uous time-translational symmetry [59, 60]. In the strong
dissipative regime, κ/ω0 > 1, the spins in the steady state
predominantly align in the spin-down direction along z-
axis. Conversely, in the weak dissipative case, κ/ω0 < 1,
the dynamics is characterized by persistent temporal os-
cillations of macroscopic observables [59] and a continu-
ous growth of correlations [61, 62].

The steady states of the Lindbladian are obtained an-
alytically [57, 58], with the form

ρ̂ss =
1

N
η̂†η̂ with η̂ =

N+1∑
j=0

(
Ŝ−

−iωoN/2κ

)j

, (21)

where N is the normalization constant. Due to the col-
lective nature of the steady state we chose the basis for
the Lindbladian also composed of collective operators

{ĥj} = {Ŝx, Ŝy, Ŝz} and {ℓ̂j} = {Ŝx, Ŝy, Ŝz}. Employ-
ing the method numerically for the above steady states in
systems with finite size N we recover the exact Lindbla-
dian dynamics of Eq.(20). Precisely, we obtain a unique
eigenvector |φL⟩ in the kernel of the correlation matrix

M̂(ρ̂ss), with elements given by,

c1 = ω0, c2 = c3 = 0,

γ1,1 = γ2,2 =
√
κ, γ2,1 = γ∗1,2 = i

√
κ, (22)

γ3,1 = γ∗1,3 = γ3,2 = γ∗2,3 = γ3,3 = 0.

We illustrate the behavior in the weak dissipative case,
ω0/κ = 2 . In Fig.(1a) we show the absolute value of

the obtained Lindbladian parameters, for different sys-
tem sizes. We observe the nullity (i.e., below the numer-
ical accuracy of the order ≈ O(10−10)) of parameters c2,
c3 and γ3,j with j = (1, 2, 3), in addition to the informa-
tion that |γ1,k| = |γ2,k| for k = (1, 2).
The two smallest eigenvalues of the correlation matrix

are displayed in Fig.(1b). For finite sizes we observe a
unique kernel solution (i.e., with eigenvalue below the
numerical accuracy of the order ≈ O(10−10)), while ob-
serving a decrease in the second eigenvalue for larger N .
It is well-known that the model is gapless in the weak
dissipative regime [59, 63]. The vanishing of the second
eigenvalue with the increasing system size N (inset panel
of Fig.(1b)) appears to capture this characteristic of the
model. The eigenvalues of the dissipative matrix γ for
the solution (kernel) of M̂(ρ̂ss) are showed in Fig.(1c).
Observe that the dissipative matrix for the kernel solu-
tion has just one nonnull eigenvalue, confirming that we
can associate it with only one jump operator (collective
decay).

1. Robustness of the method

In this section, we investigate the robustness of the
method against random fluctuations in the target steady
state. Specifically, we consider a target steady state rep-
resented in the following form

ρ̂ϵ =
1

Nϵ

[
ϵÎ+ (1− ϵ) ρ̂s

]
, (23)

with ϵ the strength of the random fluctutations mix-
ing the unperturbed steady state (ρ̂s - analytic solution
Eq.(21)) with white noise represented by the identity ma-

trix Î. Due to the symmetry of the model Î is defined
along the fixed maximun angular momentum subspace,
and Nϵ is the overall normalization constant.
We apply our method to the steady state ρ̂ϵ, expanding

the Hamiltonian and jump operators by collective oper-

ators along the x and y directions, {ĥj} = {Ŝx, Ŝy} and

{ℓ̂j} = {Ŝx, Ŝy}.
Strong dissipative case. We first observe that for any

ϵ ̸= 0 perturbation, the correlation matrix M̂(ρ̂ϵ) has no
null eigenvalues - see Fig.(2a). Specifically, we find that
the smallest eigenvalue has a quadratic dependence with
the perturbation strength and decays with system size,

λ1(M̂(ρ̂ϵ)) ∼ ϵ2/N, (24)

with ϵ ≪ 1. The nonull eigenvalues for the correlation
matrix do not guarantee the direct application of our
method, i.e., that ρ̂ϵ is indeed a steady state of the reverse
engineered Lindbladian. On the other hand, due to the
vaninshing of the smallest eigenvalue with system size it
suggests that the method should still be feasible for large
system sizes. We therefore investigate the reversed en-
gineered Lindbladian Lϵ corresponding to this minimum
eigenvalue. We also remark here that the eigenvalues
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Figure 1. Lindbladian reverse engineering for the collective steady states of Eq.(21), in the weak dissipative regime ω/κ = 2.
In all panels values below ≈ O(10−10) are beyond our numerical accuracy, and are interpreted as effectively null. We show

in (a) the elements of the kernel eigenvector |φL⟩ for the correlation matrix M̂(ρ̂ss). The elements correspond to the set of

parameters in the constructed Lindbladian. In panel (b) we show the two lowest eigenvalues of the correlation matrix M̂(ρ̂ss),
displaying in the (inset-panel) only the second eigenvalue in a log-log scale, in order to highlight its gapless behavior. In panel
(c) we show the eigenvalues of the dissipative matrix γ for the lowest eigenstate (kernel) of the correlation matrix.

for the dissipative matrix λ(γ) of Lϵ are all nonnegative,
therefore assuring the complete positivity for the map.

In Fig.(2b) we show how the steady state of Lϵ, de-
noted by ρ̂ϵs, compares to the unperturbed one ρ̂s through
their norm difference. We obtain that,

∥ρ̂ϵs − ρ̂s∥ ∼ ϵ/N
3
2 . (25)

Hence we see that the Lindbaldian Lϵ can still be used
to generate a steady state similar to the exact (unper-
turbed) one, with the level of precision increasing as one
increases the system size.

Weak dissipative case. This case has subtle proper-
ties which require a more careful analysis. Similar to the
strong dissipative case the correlations matrix M̂(ρ̂ϵ) has
no null eigenvalues given an ϵ ̸= 0 perturbation, with the
smallest eigenvalue following a scaling relation similar to
Eq.(24) - see Fig.(2c). Therefore we could once again
consider the reversed engineered Lindbladian Lϵ related
to this minimun eigenvalue. However, the dissipative ma-
trix γ̂ of such Lindbaldian is not positive; specifically, it
has one negative eigenvalue. As we discuss, despite being
orders of magnitude smaller than the positive eigenval-
ues, the presence of this negative eigenvalue precludes
the assurance of complete positivity for the map. One
approach to addres this issue is to disregard the negative
eigenvalue of the dissipative matrix by making it null,
i.e., with the transformation

λj(γ̂) = max (λj(γ̂), 0) , ∀j. (26)

In this way the corresponding Lindbaldian, which we de-
note by L+

ϵ , is now a complete positivity map by defini-
tion.

In Fig.(2d) we show how the steady state of Lϵ and
Lϵ, denoted as ρ̂ϵ and ρ̂ϵ,+s , respectively, compare to the
unpertubed one ρ̂s. The results in both cases show sim-
ilar behaviors. The curves exhibit a highly non-linear
behavior for perturbations greater than an ϵsaturation
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Figure 2. (a) The smallest eigenvalue λ1(M̂ϵ) of the cor-

relation matrix M̂(ρ̂ϵ) as a function of the perturbation ϵ,
for different sizes N and in the strong dissipative regime,
ω0/κ = 1/2. (b) We show the norm difference between ρ̂ϵs
and ρ̂s in the strong dissipative regime. (c) The first eigen-
value of the correlation matrix at the weak dissipative regime,
ω0/κ = 2. (d) The norm difference between ρ̂ϵs and ρ̂s and
(inset panel) between ρ̂ϵ,+s and ρ̂s, for ω0/κ = 2.

(note the logarithmic scale), which gradually transition
to a smoother, linear behavior with a scaling similar to
Eq.(25) for smaller perturbations. The value of ϵsaturation
correlates with the size N , specifically, ϵsaturation de-
creases as N increases. It is well-established that the
decay time τ for the collective spin model exhibits an ex-
ponential increase with size [59, 63]; particularly, in the
thermodynamic limit the decay rate vanishes and the life-
time of oscillations diverge. The numerical simulations
indicate that τ ∼ 1/ϵsat, thus, for long lifetime dynamics,
the perturbative term exerts a greater influence.
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IV. CONCLUSIONS

We have introduced a method for determining Lindbla-
dian superoperators from a non-equilibrium steady state.
The method is based on the identification of the kernel
of a correlation matrix obtained from the NESS and the
definition of a basis for the Lindbladian. The existence
of a null element in the domain kernel together with the
positive semidefiniteness of the dissipative matrix gives
an iff condition for reconstruction of the Lidbladian that
generates the NESS. By exploring the method in differ-
ent systems, we also observed how different Lindbladian
bases can associate different types of dynamics with the
same NESS. In a future work, it would be interesting to
use this property to study dissipative phases and phase
transitions. Furthermore, it would be interesting to in-
vestigate the elements of the correlation matrix kernel
that, despite exhibiting negative decoherence rates, could
describe the underlying non-Markovian dynamics of the
physical systems.
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Appendix A: Correlation Matrices for Squeezed
Vacuum NESS

In this Appendix we show correlation matrices M̂ξ

obtained from choosing the squeezed vacuum as steady
state, ρ̂s = |ξ⟩⟨ξ|, and quadratic operators for the Hamil-

tonian basis, {hj} = {(â2+(â†)2)/
√
2, (â2−(â†)2)/i

√
2}.

1. Single particle jump operators

For one body jump operators {ℓ̂j} = {â, â†}, the cor-
relation matrix is given by

Mξ
11 = 1

2 (3− cos(2θ) + (1 + cos(2θ)) cosh(4r)) , Mξ
12 = 1

2 sin(2θ)(cosh(4r)− 1),

Mξ
13 = −

√
2
2 sin(θ) sinh(2r), Mξ

14 =Mξ∗
15 = i

√
2

2 cosh(2r), Mξ
16 = −

√
2
2 sin(θ) sinh(2r),

Mξ
22 = 1

2 (3 + cos(2θ) + (1− cos(2θ) cosh(4r)) , Mξ
23 =

√
2
2 cos(θ) sinh(2r),

Mξ
24 =Mξ∗

25 = −
√
2
2 cosh(2r), Mξ

26 =
√
2
2 cos(θ) sinh(2r), (A1)

Mξ
33 = 5

8 − cosh(2r) + 3
8 cosh(4r), Mξ

34 =Mξ∗
35 = 1

2e
iθ(sinh(2r)− 3

4 sinh(4r)),

Mξ
36 = 3

8 (cosh(4r)− 1), Mξ
44 =Mξ

55 = 1
8 (1 + 3 cosh(4r)), Mξ

45 = 3
8e

−2iθ(cosh(4r)− 1),

Mξ
46 =Mξ∗

56 = − 1
2e

−iθ(sinh(2r) + 3
4 sinh(4r)), Mξ

66 = 5
8 + cosh(2r) + 3

8 cosh(4r).

2. Two-particle jump operators

For two-body jump operators {ℓ̂′j} = {â2, (â†)2}, we
can write the correlation matrix entries as

M ′ξ
11 = 1

2 (3− cos(2θ) + (1 + cos(2θ)) cosh(4r)) , M ′ξ
12 = 1

2 sin(2θ)(cosh(4r)− 1),

M ′ξ
13 = −

√
2
2 sin(θ) (sinh(4r)− sinh(2r)) , M ′ξ

14 =M ′ξ∗
15 = − i

√
2

2 eiθ sinh(4r),

M ′ξ
16 = −

√
2
2 sin(θ) (sinh(4r) + sinh(2r)) ,

M ′ξ
22 = 1

2 (3 + cos(2θ) + (1− cos(2θ) cosh(4r)) , M ′ξ
23 =

√
2
2 cos(θ)(sinh(4r)− sinh(2r)),

M ′ξ
24 =M ′ξ∗

25 =
√
2
2 e

iθ sinh(4r), M ′ξ
26 =

√
2
2 cos(θ) (sinh(4r) + sinh(2r)) ,
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M ′ξ
33 = 71

32 − 13
4 cosh(2r) + 3

2 cosh(4r)−
3
4 cosh(6r) +

9
32 cosh(8r),

M ′ξ
34 =M ′ξ∗

35 = 1
8e

2iθ(− 29
4 + 3 cosh(2r) + 5 cosh(4r)− 3 cosh(6r) + 9

4 cosh(8r)), (A2)

M ′ξ
36 = 1

4 (
15
8 − 3 cosh(4r) + 9

8 cosh(8r)),

M ′ξ
44 =M ′ξ

55 = 1
8 (

91
4 + 23 cosh(4r) + 9

4 cosh(8r)), Mξ
45 = 9

32e
−4iθ(3− 4 cosh(4r) + cosh(8r)),

M ′ξ
46 =M ′ξ∗

56 = 1
8e

−2iθ(− 29
4 − 3 cosh(2r) + 5 cosh(4r) + 3 cosh(6r) + 9

4 cosh(8r)),

M ′ξ
66 = 71

32 + 13
4 cosh(2r) + 3

2 cosh(4r) +
3
4 cosh(6r) +

9
32 cosh(8r).
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monte, R. Fazio, Boundary Time Crystals, Phys. Rev.
Lett. 121, 035301 (2018). https://doi.org/10.1103/

PhysRevLett.121.035301.
[60] Luis Fernando dos Prazeres, Leonardo da Silva Souza,

Fernando Iemini, Boundary time crystals in collective d-
level systems, Phys. Rev. B 103, 184308 (2021). https:
//doi.org/10.1103/PhysRevB.103.184308.
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