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Abstract

We present a protocol based on the interplay between superradiance and superabsorption to

achieve the coherent deflection of an atomic sample due to the momentum transfer from the atoms

to a cavity field. The coherent character of this momentum transfer, causing the atomic sample

to deflect as a whole, follows from the collective nature of the atomic superradiant pulse and its

superabsorption by the cavity field. The protocol is then used for the construction of positional

mesoscopic atomic superpositions.
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The optical Stern-Gerlach effect —the splitting of the trajectory of an on- or off-resonant6

two-level atom by a quantized electromagnetic field—, dates to the late 1970s [1, 2] and early7

1980s [3], and its experimental demonstration occurred in the early 1990s [4]. Knowing that8

the photon statistics of a cavity field can manifest itself in the momentum distribution9

of the scattered atoms [5], the optical Stern-Gerlach was used for quantum nondemolition10

measurement of photon statistics [6] and for the state tomography of a cavity field [7].11

Later, [8], the splitting of the atomic trajectory was considered for the proposition of a12

fully quantum protocol for two-dimensional atomic lithography, and also for entanglement13

detection from atomic deflection [9].14

In the present work we propose a protocol for the coherent deflection of an atomic sample15

from which we can then construct, for example, a positional mesoscopic superposition. The16

generation of mesoscopic superpositions has been a much pursued challenge for their interface17

between the micro and macrophysics, allowing both the testing of fundamental quantum18

principles and applications in quantum technology [10, 11].19

To achieve such a coherent deflection of the sample, we take advantage of three previ-20

ous developments: i) First, the optical Stern-Gerlach effect [1–4]. ii) Second, the recently21

proposed interplay between superradiance [12] and superabsorption [13] of a moderately22

dense atomic sample trapped inside a cavity [14]: When preparing the N -atoms sample23

in a superradiant state, with the cavity field in the vacuum, the coherent pulse emitted24

by the sample is superabsorbed by the resonant cavity mode due to an atom-field Rabi25

coupling g enhanced by the factor
√
N . (This enhanced coupling was previously derived26

through a semiclassical approach [15, 16] and experimentally confirmed in what is called the27

ringing regime of superradiance [17].) The field excitation is then superradiated and super-28

absorbed back to the atomic sample in a cyclic decaying process. We demonstrate here that29

this superradiance-superabsorption interplay accounts for the momentum transfer between30

atoms and field, allowing the coherent deflection of the sample. iii) To know the states of31

the atomic sample and the cavity mode, which are necessary for computing the momentum32

transfer and for the construction of positional mesoscopic superpositions, we also resort to33

the Lewis & Riesenfeld dynamical invariants [18], as advanced in Ref. [19] for the atomic34

sample state, and in Ref. [20] for the field state.35

As antecipated above, in Ref. [14] the authors consider a moderately dense atomic sample36

trapped inside a high-Q cavity, resonantly interacting with a cavity mode. The Hamiltonian37
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of the system, H = H0 +HI , is given by (ℏ = 1)38

H0 = ωa†a+ ωSz +
∑
k

ωkb
†
kbk, (1a)

HI = g
(
S+a+ S−a

†)+∑
k

λk

(
S+bk + S−b

†
k

)
, (1b)

with H0 accounting for the cavity mode (described by the field creation and annihilation39

operators, a† and a), and the atomic sample (described by the collective pseudospin operator40

Sz = n
∑N

n=1σz). H0 also accounts for the reservoir (described by the multimode creation and41

annihilation operators, b†k and bk). HI describes the interaction of the atomic sample, where42

S± =
∑N

n=1σ±, with the cavity mode (g) and the environment (λk). Considering the field43

quadratures X1 =
(
a+ a†

)
/2 and X2 =

(
a− a†

)
/2i, a mean-field treatment of the system44

reduces the Hamiltonian (1) to the nonlinear time-dependent form H(t) = Ha(t) + Hf (t),45

with46

Ha = ωsz + 2ΛR (⟨sx⟩sx + ⟨sy⟩sy)− 2ΛI (⟨sx⟩sy − ⟨sy⟩sx) , (2a)

Hf = ωa†a+ 2
√
Ng (⟨sx⟩X1 − ⟨sy⟩X2) . (2b)

The atomic sample is thus replaced by a representative atom, described by Ha through47

the operators sµ = σµ/2, with µ = x, y, z and σ± = (σx ± iσy) /2. This atom is under a48

nonlinear amplification with strength Λ = ΛR + iΛI , where49

ΛR =
√
Ng

⟨sx⟩⟨X1⟩ − ⟨sy⟩⟨X2⟩
⟨sx⟩2 + ⟨sy⟩2

, (3a)

ΛI =
√
Ng

⟨sx⟩⟨X2⟩+ ⟨sy⟩⟨X1⟩
⟨sx⟩2 + ⟨sy⟩2

− Nγ

2
, (3b)

γ being the atomic decay factor. Moreover, an enhanced effective coupling
√
Ng emerges50

between the representative atom and the cavity field as described by Hf .51

Starting with the atomic sample in an inverted populated state and the cavity mode in the52

vacuum, the environment then triggers the superradiant pulse which is superabsorbed by the53

mode due to the enhanced coupling. Another important feature of the nonlinear mean-field54

HamiltoniansHa andHf , is that although they commute with each other, leading to separate55

Schrödinger equations, i∂t |ψξ⟩ = Hξ |ψξ⟩ (ξ = a or f), for initial product states |ψa⟩ ⊗ |ψf⟩,56

there is an indirect coupling between atom and field coming from the time-dependent mean57

values.58

3



To solve the Schrödinger equation for the time-dependent Hamiltonians Ha and Hf , we59

use the Lewis & Riesenfeld dynamic invariants [18], for the atom Ia(t) and the field If (t),60

defined as ∂tIξ − i [Iξ, Hξ] = 0. Following Refs. [19, 20], we propose the operators61

Ia = ⟨sx⟩sx + ⟨sy⟩sy + ⟨sz⟩sz, (4a)

If = a†a− 2⟨X1⟩X1 − 2⟨X2⟩X2 + χ, (4b)

to obtain the system62

⟨ṡx⟩ = −ω⟨sy⟩+ 2⟨sz⟩ (ΛR⟨sy⟩ − ΛI⟨sx⟩) , (5a)

⟨ṡy⟩ = ω⟨sx⟩ − 2⟨sz⟩ (ΛR⟨sx⟩+ ΛI⟨sy⟩) , (5b)

⟨ṡz⟩ = ΛI

(
⟨sx⟩2 + ⟨sy⟩2

)
, (5c)

⟨Ẋ1⟩ = ω⟨X2⟩ −
√
Ng⟨sy⟩, (5d)

⟨Ẋ2⟩ = −ω⟨X1⟩ −
√
Ng⟨sx⟩, (5e)

together with the equation χ̇ = −
√
Ng (⟨sx⟩⟨X2⟩+ ⟨sy⟩⟨X1⟩) that avoids unnecessary con-63

straints on the mean values defining If .64

From the fact that ⟨İa⟩ = 0, such that ⟨Ia⟩ = ⟨sx⟩2+⟨sy⟩2+⟨sz⟩2 = R2, we consider a Bloch65

sphere of radius R to define the mean values ⟨sx⟩ = R sin θ cosϕ, ⟨sy⟩ = R sin θ sinϕ, ⟨sz⟩ =66

R cos θ. We then derive the eigenvectors of Ia, given by |+, t⟩ = cos (θ/2) |e⟩+eiϕ sin (θ/2) |g⟩67

and |−, t⟩ = sin (θ/2) |e⟩ − eiϕ cos (θ/2) |g⟩, where the vector |g⟩ (|e⟩) of the representative68

atom corresponds to the entire sample in the ground (excited) state. Starting from the69

general superposition |ψa(t)⟩ = c+|+, t⟩ + c−|−, t⟩, we verify that the eigenstate |−, t⟩ is70

rulled out of the solution of the atomic Schrödinger equation by the self-consistency condition71

⟨sz⟩ =
[
(|c+|2 − |c−|2) cos θ + 2Re

(
c+c

∗
−e

i(Φ+−Φ−)
)
sin θ

]
/2 = R cos θ. For a positive defined72

radius R = 1/2, this condition leads to |c+| = 1 and |c−| = 0, in agreement with the self-73

consistency conditions for ⟨sx⟩ and ⟨sy⟩. We then derive the solution of the Schrödinger74

equation for the atom as75

|ψa(t)⟩ = eiΦ
a
+(t)|+, t⟩, (6)

where the Lewis & Riesenfeld phase factor is given by76

Φa
+(t) = −ωt

2
−

∫ t

0

ΛR sin2 (θ/2) dt′. (7)

The solution for the field is reached by defining α = ⟨a⟩ [20], with α̇ = −i
[
ωα +

(√
Ng/2

)
sin θe−iϕ

]
,77

in agreement with Eqs. (5d) and (5e). Starting with the field in the coherent state α0, we78
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then obtain79

|ψf (t)⟩ = eiΦ
f (t)|α(t)⟩, (8)

with the Lewis & Riesenfeld phase80

Φf (t) =

∫ t

0

[
ω |α|2 −

√
Ng

4

(
αeiϕ + α∗e−iϕ

)
sin θ

]
dt′. (9)

After computing the system state vector81

|ψ(t)⟩ = ei[Φ
a
+(t)+Φf (t)]|+, t⟩ ⊗ |α(t)⟩, (10)

we are now able to approach the coherent deflection of the atomic sample, starting with some82

considerations on the experimental implementation of the process. We must assume that83

the trapped sample, with the atoms initially in their ground states, is placed near a node84

of the standing-wave field as in [7], for a greater atomic momentum transfer, proportional85

to the gradient of the cavity field [21]. Then, by manipulating the convexity of the trap86

potential, a moderately dense atomic sample is built. The initial state of the sample is87

then immediately prepared in the superposition |ψa(0)⟩ = cos [θ0/2] |e⟩ + eiϕ sin [θ0/2] |g⟩88

[22]. Right after the preparation of the state |ψa(0)⟩, the trap potential is turned off and89

the sample starts to interact with the cavity while leaving it under gravity. Alternatively we90

can consider a sample of ions accelerated by an electric field which is turned on immediately91

after the radiation-matter interaction. Starting from the cavity mode in the vacuum, we92

thus have the initial state |ψ(0)⟩ = |+, 0⟩ ⊗ |0⟩, which evolves exactly to |ψ(t)⟩ in Eq. (10).93

For computing θ(t), ϕ(t) and α(t) = |α(t)| eiϕα(t) from Eqs. (5), we consider the condition94

ω0 ≫ Nγ,
√
Ng. We then derive the solution ϕ(t) ≈ π/2− ϕα(t) ≈ ϕ0 + ωt, where tanϕα =95

⟨X2⟩/⟨X1⟩ ≈ tan (π/2− ϕ), and the Lienard system96

dθ

dt
=
Nγ

2
sin θ − 2

√
Ng |α| , (11a)

d |α|
dt

= −
√
Ng

2
sin θ, (11b)

leading to the Lienard equation97

θ̈ =
Nγ

2
cos (θ) θ̇ + (

√
Ng)2 sin θ, (12)

which helps us to define, regarding the parameter ϵ = 4
√
Ng/Nγ, three regimes for solu-98

tions of our superradiance-superabsorption interplay: the overdamped (ϵ≪ 1), the damped99
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(ϵ ≈ 1), and the underdamped (ϵ≫ 1) regimes. We first consider the overdamped regime100

where an approximated analytic solution can be obtained from Eqs. (11), which also ap-101

plies, with much less accuracy, for the damped regime. In this regime the superradiant-102

superabsorption cycle begin to emerge, indicating that the excitation superradiated by the103

sample is superabsorbed by the cavity field, ensuring the momentum transfer between radia-104

tion and matter. We then consider the underdamped regime where the momentum transfer105

is fully accomplished.106

i) The overdamped regime. For the overdamped regime, the perturbative parameter ϵ107

allows us to consider the first order expansions θ(t) ≈ θh(t)+ϵϑ(t) and |α(t)| ≈ αh(t)+ϵα̃(t).108

The solutions sin θh(t) = sech [(t− τD) /τ ] [19] and αh(t) = α0, arise from the homogeneous109

equations resulting when we turn off the atom-field coupling, such that ϵ = 0. To be110

computed below, τD is the delay time for the initial atomic state |ψa(0)⟩ to evolve to the111

well-known superradiant superposition
(
|e⟩+ eiϕ|g⟩

)
/
√
2 [17], whereas τ = 2/Nγ is the112

characteristic emission time of the free-sample Dicke’s superradiance. These approximations113

reduce the Lienard system to the decoupled equations ϑ̇ = (Nγ/2) (ϑ cos θh − 4αh) and114

α̇ = − (Nγ/2) sin θh, leading to the solutions115

θ(t) ≈ θh(t) + α0ϵ cos θh(t), (13a)

|α(t)| ≈ α0 + (ϵ/4) [θh(t)− θ0] , (13b)

where we have assumed θ(τD) = θh(τD) = π/2 and α(0) = αh(0) = α0, such that ϑ(τD) = 0116

and α̃(0) = 0. We have also assumed ϕ0 = π/2 leading to ϕα(0) = 0 and α(0) = |α(0)| = α0.117

From Eq. (13a) we derive the expression118

e
τD
τ tan

θ0
2
+ α0ϵ

(
tan

θ0
2
− sinh

τD
τ

)
tanh

τD
τ

≈ 1, (14)

which enables us to compute the delay time τD. Starting from the superradiant state with119

θ0 = π/2, we verify, as expected, that τD = 0. For θ0 ≪ 1 we may assume that τD/τ ≫ 1,120

leading us from Eq. (14) to121

τD ≈ τ ln

∣∣∣∣ cot (θ0/2)− α0ϵ

1− α0 (ϵ/2) cot (θ0/2)

∣∣∣∣ , (15)

showing that for ϵ = 0 we retrieve the well-known result for the Dicke’s superradiance:122

τD ≈ τ ln cot (θ0/2).123
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ii) The underdamped regime. Back to the Lienard equation (12), we now linearize the124

senoidal functions around θ = π, to retrieve the standard solution for an underdamped125

oscillator, given by126

θ(t) ≈ π −
[
(π − θ0) cos

(√
Ngt

)
+ 2α0 sin

(√
Ngt

)]
e−Nγt/4, (16)

with |α(t)| following by substituting Eq. (16) into Eq. (11b). We note that the solutions in127

Eq. (13) could also have been derived from the linearization proceedure around θ = π and128

α = 0, but under the restriction that the initial condition is far from the metastable point129

θ0 = 0.130

With the above solutions in Eqs. (13) and (16), we analyze the evolution of the system131

state vector in Eq. (10), where we now consider the position dependence of the atom-field132

coupling g(x) = µE sin (kx), with µ, E and k standing respectively for the atomic dipole133

moment, the effective electric field per photon, and the wave-vector of the cavity mode. As134

already anticipated, we assume that the trapped sample is placed on a node of the cavity135

field, such that g(x) ≈ µEkx, remembering that the superradiant sample must be small136

compared to the wavelength of the superabsorptive mode.137

Starting from the initial state vector of the system138

|ψ(x, t = 0)⟩ =
∫ +∞

−∞
Θ(x)|+, 0⟩ ⊗ |α0⟩ ⊗ |x⟩dx, (17)

with Θ(x) standing for the spatial distribution of the atomic sample, we obtain after the139

interaction time t,140

|ψ(x, t)⟩ =
∫ +∞

−∞
e+i[Φa

+(x,t)+Φf (x,t)]Θ(x)|+, t⟩ ⊗ |α(x, t)⟩ ⊗ |x⟩dx, (18)

now considering that the field coherent state also depends upon the Rabi frequency g(x).141

The Raman-Nath regime —by which the kinetic energy of the sample is neglected, by as-142

suming that its transverse displacement along the interaction time is small compared to the143

wavelength of the mode— is here perfectly observed since the sample is released from the144

trap with zero velocity. From the state vector in Eq. (18), we next analyse the momen-145

tum transfer for the overdamped and the underdamped regimes, considering the solutions146

Φa
+(t) = −ωt/2 and Φf (t) = 0 valid whatever the regime.147

i) The overdamped regime. By projecting the state |ψ(x, t)⟩ onto the position space, we148

obtain the solution149

|ψ(x, t)⟩ = e−iωt/2

√
2

Θ(x)
[
eiθh(t)/2eikxκ(t)|+, t) + e−iθh(t)/2e−ikxκ(t)|−, t)

]
⊗ |α(x, t)⟩, (19)
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where we have defined the effective interaction parameter150

κ(t) =
2µEα0√
Nγ

tanh

(
t− τD
τ

)
, (20)

and considered the expansion |+, t⟩ =
[
eiθ(x,t)/2|+, t) + e−iθ(x,t)/2|−, t)

]
/
√
2, with |±, t) =151 (

|e⟩ ± eiϕ(t)|g⟩
)
/
√
2. The sample-field momentum transfer kκ(t) may be alternatively com-152

puted from ∆ṗ =
√
Nµ⃗.∇E⃗, where E⃗ = Eα(t) sin (kx) µ̂ and

√
Nµ⃗ is an effective dipole153

moment. Then, it follows the rate κ = ∆p/k =
√
NµEα0∆t which, for time intervals154

around the characteristic emission time τ = 2/Nγ, leads to κ = ∆p/k = 2µEα0/
√
Nγ, in155

agreement with Eq. (20).156

It is well-known in Dicke’s superradiance that θ0 = 0 implies a metastable state of the157

atomic sample, of infinitely long duration. Here, as we conclude from the Lienard Eqs. (11),158

a metastable state of the radiation-matter system occurs for α0 = 0 and θ0 = 0. Regarding159

α0, we emphasize that our experiment does not require a high finesse cavity as far as the160

necessary superradiant-superabsorption cycle occurs in a short time interval of the order of161

τD + τ ≪ 1/γ. However, the cavity must be cooled so that the initial average excitation162

of the field, α0, is small enough to ensure α0ϵ ≪ 1. Regarding the atomic variable θ0, we163

may consider, as an approximation, the result τD ≈ τ ln [cot (θ0/2)] ≈ τ lnN from Dicke’s164

superradiance [12], to infer that θ0 ≈ 2/N .165

For a time interval around τD+τ , such that tanh [(t− τD) /τ ] ≈ 1 and κ(t) ≈ 2µEα0/
√
Nγ,166

it is reasonable to disregard the dependence on position of the field state α(x, t), once the167

cavity field superabsorption has already been established. After Fourier transforming the168

state vector |ψ(x, t)⟩ over the momentum representation, it follows that169

|ψ(p, t)⟩ = 1√
2

[
e−iϕ+(t)F [p− kκ(t)] |+, t) + e−iϕ−(t)F [p+ kκ(t)] |−, t)

]
⊗ |α(t)⟩, (21)

with ϕ± (t) = [ωt± θh(t)] /2 and the amplitude170

F(p) =
1√
2π

∫ +∞

−∞
e−ipxΘ(x) dx, (22)

is the Fourier transform of the atomic spatial distribution. Eq. (21) shows that the sample171

is coherently deflected with momentum ±kκ(t) in the states |±, t).172

ii) The underdamped regime. By inserting the solution 16 into Eq. 18 projected onto the173

position space, we obtain the Fourier transform174

|ψ(p, t)⟩ =
[
e−iωt/2F− (p) |e⟩+ ieiωt/2F+ (p) |g⟩

]
⊗ |α(t)⟩, (23)
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where, using R(t) ≈
√

(θ0 − π)2 /4 + α2
0e

−Nγt/4 and tanφ = 4α0/π, we obtain175

F± (p) =
i√
8π

∫ +∞

−∞
e−ipxΘ(x)

(
e−iR(t) cos(

√
NµEkxt+φ) ± eiR(t) cos(

√
NµEkxt+φ)

)
dx, (24)

From the Bessel identity [23]176

e±iR cos ζ =
∞∑

n=−∞
(±i)n Jn (R) e∓inζ , (25)

and considering R(t) ≪ 1, in accordance with the linearization procedure, we finally obtain177

178

F+ (p) ≈ iJ0 (R)F (p) , (26a)

F− (p) ≈ J+1 (R)
[
eiφF

(
p−

√
NµEkt

)
+ e−iφF

(
p+

√
NµEkt

)]
, (26b)

with J0(R) = 1− (R/2)2, J+1 (R) = −J−1(R) ≈ R/2. From Eqs. (26) we verify the splitting179

of the whole incident sample into three different paths. The undeflected path is associated180

with the representative state |g⟩ whereas the deflected ones, with momenta ±
√
NµEkt, are181

associated with |e⟩:182

|ψ(p, t)⟩ ≈
{
iF (p) |g⟩+ (R/2)

[
eiφF

(
p−

√
NµEkt

)
+ e−iφF

(
p+

√
NµEkt

)]
|e⟩

}
⊗|α(t)⟩.

(27)

We observe that the momentum transfer is that of a single atom [7] multiplied by the factor183

√
N , which is larger the longer the sample-field interaction time, i.e., the larger the number of184

superradiance-superabsorptive cycles. If on the one hand the momentum transfer increases185

with time, on the other the measurement probability of the deflected sample decreases as a186

function of the damping function R(t).187

Next, for both the overdamped and the underdamped regimes, we must characterize188

the superradiant-superabsorption cycles and estimate the magnitude of the sample-field189

momentum transfer. Considering the energies of the representative atom and the cavity190

field, given by εa = ω0 ⟨σz⟩ /2 and εf = ω0

〈
a†a

〉
, we compute the complementary intensities191

Ia and If [14]:192

Ia = −N dεA
dt

= Nω0| ⟨σ−⟩ |
[
Nγ| ⟨σ−⟩ |+ 2

√
Ng sin(ϕσ − ϕa)| ⟨a⟩ |

]
, (28a)

If = −N dεF
dt

= N2γω0| ⟨σ−⟩ |2 − IA. (28b)
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Thus, starting with the overdamped regime with γ = 4 × 10−2g, such that ϵ = 0.1, in Fig.193

1(a, b, and c) we present the curves for the numerical and analytical solutions for θ(t), |α(t)|,194

Ia and If , respectively. Wheres the circles and squares represent the numerical solutions, the195

full and dotted lines represent the analytical ones. We have assumed a mesoscopic sample196

with N = 106, and in accordance with the consideration made above: ω = 105g, α0 = 0.1,197

θ0 = 2/N and ϕ0 = π/2. As we observe, the analytical solutions match very well for the198

overdamped regime where we basically observe, in Fig. 1(c), an atomic superradiant pulse199

with intensity of about 1015g2 and delay time τD ≈ 2.65 × 10−4g−1, in perfect agreement200

with the analytical value coming from Eq. 15. The field superabsorption, presenting neg-201

ative intensities [14], is inhibited by the large atomic decay factor. In Fig. 2(a, b, and c),202

we consider the same functions as in Fig. 1 for the damped regime with γ = 4× 10−3g and203

ϵ = 1, with all other parameters equal to those in Fig. 1. As antecipated above, our over-204

damped solutions apply with much less accuracy to the damped regime. We now observe205

a superradiant-superabsorption cycle, although the superabsorption occurs slightly less in-206

tensely than the superradiance (1014g2). Moreover, the delay time for superabsorption is207

slightly greater than that for the superradiance, the latter being around τD ≈ 1.45×10−3g−1.208

In Fig. 3(a, b, and c), we consider the underdamped regime with γ = 4 × 10−4g and209

ϵ = 10, and again all other parameters equal to those in Fig. 1, except for θ0 = π/2 due210

to the linearization procedure. Now, we observe around 8 superradiant-superabsorption211

cycles, with intensities starting at around 1014g2, as the weak dissipative rate leads to a slow212

damping of the initial atomic excitation. The number of superradiance-superabsorption213

cycles can be controlled by Stark shifting the sample out of ressonance with the field. From214

Ref. [14] it follows that the time interval for a superradiant-superabsorption cycle is around215

2/
√
Ng, which is in agreement with Fig. 3(c).216

We finally address the magnitude of the sample-field momentum transfer, assuming that217

the atomic spatial distribution is a narrow Gaussian centered around the node, Θ(x) =218

exp [−x2/2σ2] /
√
2πσ, of small enough width σ, such that kσ ≪ 1. Considering, for the219

damped regime, the spatial distribution of the atomic sample of width σ ≈ 0.2/k and the220

parameters used in Fig. 2, we obtain a momentum transfer for the deflected atoms in221

states |±, t) around that of a cavity-field photon: ∆p ≈ ±k. This magnitude is considerably222

smaller than the momentum uncertainty around 1/σ ≈ 5k. However the momentum transfer223

is significantly increased in the underdamped regime where a numerical account for the224
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momentum distributions in Eq. (26) is shown in Fig. 4 against the scaled interaction time225

√
Ngt. The distributions |F+|2 and |F−|2 are represented by the green and red curves,226

respectively. We have considered the same parameter as in Fig. 3, with σ ≈ 0.2/k, to227

observe that the momentum for t = 6/
√
Ng is around 50k, far greater than the momentum228

uncertainty. As stated above, this momentum transfer is evidently greater the longer the229

sample-field interaction time.230

Therefore, the use of the interplay between superradiance and superabsorption, advanced231

in Ref. [14], proves to be a suitable tool to achieve a coherent deflection of an atomic sample232

and consequently to achieve a long-sought goal: the preparation of momentum (or positional)233

mesoscopic superpositions. We stress that superradiant Rayleigh scattering from a Bose-234

Einstein condensate has been used to produce superpositions of (stationary) momentum235

states of recoiled atoms [24]. Such superpositions, created by the density modulation of the236

condensate and consequently the Bragg scattering regime, are different in nature from that237

in Eq. 27, where the momentum increases with time as observed in Fig. 4.238

The present proposal poses a challenge to the experimental physics of radiation-matter239

interaction, seeking to extend the remarkable advances achieved in the last 4 decades [11] to240

the domain of many-body physics. This has, in fact, already begun with the coupling of a241

Bose-Einstein condensates with a cavity field to achieve the Dicke quantum phase transition242

[25] and to enhanced superradiant Rayleigh scattering [26]. In particular, we observe that243

the present development, together with Ref. [14], can be used for the proposition of a more244

efficient quantum lithography protocol based on the deflection of atomic samples instead245

of individual atoms as in Ref. [8]. It can also be used for the construction of positional246

mesoscopic atomic entanglements, and for the implementation of quantum processing with247

mesoscopic ensembles, a goal that has been pursued since the early 2000s [27].248
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Fig. 1: Plot of the numerical and analytical solutions for (a) θ(t), (b) |α(t)|, (c) Ia and If ,

against
√
Ngt, for the overdamped regime: γ = 4 × 10−2g and ϵ = 0.1. We have assumed

N = 106, ω = 105g, α0 = 0.1, θ0 = 2/N and ϕ0 = π/2. The circles and squares represent

the numerical solutions whereas the full and dotted lines represent the analytical ones.

Fig. 2: The same as in Fig. 1 for the damped regime: γ = 4× 10−3g and ϵ = 1.
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Fig. 3: The same as in Fig. 1 for the underdamped regime: γ = 4× 10−4g and ϵ = 10.

Fig. 4: Plot of the momentum distribution functions |F+|2 and |F−|2, against
√
Ngt, con-

sidering the same parameter as in Fig. 3, with σ ≈ 0.2/k. |F+|2 and |F−|2 are represented

by the green and red curves, respectively.
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