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Abstract

General relativity (GR) has proven to be a highly successful theory of gravity since its in-
ception. The theory has thrivingly passed numerous experimental tests, predominantly
in weak gravity, low relative speeds, and linear regimes, but also in the strong-field
and very low-speed regimes with binary pulsars. Observable gravitational waves (GWs)
originate from regions of spacetime where gravity is extremely strong, making them a
unique tool for testing GR, in previously inaccessible regions of large curvature, rela-
tivistic speeds, and strong gravity. Since their first detection, GWs have been extensively
used to test GR, but no deviations have been found so far. Given GR’s tremendous success
in explaining current astronomical observations and laboratory experiments, accepting
any deviation from it requires a very high level of statistical confidence and consistency
of the deviation across GW sources. In this paper, we compile a comprehensive list of
potential causes that can lead to a false identification of a GR violation in standard tests
of GR on data from current and future ground-based GW detectors. These causes include
detector noise, signal overlaps, gaps in the data, detector calibration, source model inac-
curacy, missing physics in the source and in the underlying environment model, source
misidentification, and mismodeling of the astrophysical population. We also provide a
rough estimate of when each of these causes will become important for tests of GR for
different detector sensitivities. We argue that each of these causes should be thoroughly
investigated, quantified, and ruled out before claiming a GR violation in GW observa-
tions.
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1 Introduction34

Einstein’s general theory of relativity (GR) stands as the most successful theory of gravity to35

date. Rigorously tested in weak-field, low-speed, and linear gravity regimes, GR has consis-36

tently withstood all scrutiny. Gravitational waves (GWs) are predictions of GR and offer a37

unique avenue for exploring spacetime dynamics in extreme gravitational conditions. Despite38

the widespread use of GWs from compact binary coalescences (CBCs) for testing GR, no devi-39

ations from the theory have been found so far (e.g., [1–12]).40

The sensitivity of GW detectors has been continuously improving and LIGO and Virgo de-41

tectors are currently witnessing their fourth observing run (O4) with Advanced LIGO and Virgo42

sensitivity [13] which later will be joined by KAGRA [14]. These detectors will be further up-43

graded for the fifth observing run (O5) during 2027-2029 [15] with A+ sensitivity [16], and44

they will eventually be joined by LIGO-India [17,18]. Looking further into the future beyond45
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O5, there is a possibility for detectors with A# sensitivity [19] that are expected to be twice46

as sensitive as A+. Moreover, there are concrete plans to build next generation (XG) detec-47

tors, such as Cosmic Explorer [20] and Einstein Telescope [21], that are expected to be at48

least 10 times more sensitive than the current detectors in O4. The first space-borne mission,49

LISA [22], is scheduled to be launched in the mid-2030s, and it might be followed by other50

missions such as TianQin [23,24], Taiji [25], DECIGO [26,27] and LGWA [28].51

With these improvements in sensitivity, thousands of CBCs are expected to be observed with52

high signal-to-noise ratios (SNRs) [16]. A subset of these mergers will cover extreme regions53

of the parameter space, including highly spinning and/or strongly precessing binaries, binaries54

with eccentricity, binaries involving dense matter, etc. Such binaries will have the capability55

to test GR stringently and constrain beyond-GR effects, if present in the data. For example,56

higher black hole spins lead to higher curvature outside the horizon [29], which allows one57

to place constraints on a variety of higher-derivative or curvature-corrected theories [30,31].58

More so, the near-horizon region of black holes could potentially access energies as large as59

the Planck scale that could alter the black hole ringdown spectrum if GR is modified near60

the event horizon [32, 33]. There is also the possibility that GR may be violated not in the61

ultraviolet (UV), but rather in the infrared (IR) regime of the theory, aimed at offering an62

alternative explanation of the dark sector. In this “IR” scenario, extending the reach of GW63

detectors to lower frequencies may help observe possible deviations from GR in the inspiral64

phase of CBCs [34–37].65

The majority of tests of GR currently performed rely on waveform models that are com-66

pared with the GW data. Often these tests are formulated as null tests where one looks for pos-67

sible departures from GR by introducing deviation parameters on a given waveform model. No68

statistically significant deviation from GR has been observed at the level of individual events69

or for the whole population [5]. However, there were a couple of events in GWTC-3 [38] that70

suggested GR deviations, though further investigations are needed since these deviations could71

be due to the use of imperfect waveform models or inadequately understood noise artifacts in72

the data [39].73

Due to the complexity of the physics of compact binary mergers as well as the detector74

noise modeling, it is extremely important that there is a consensus in the community about75

the necessary conditions that will warrant a much more comprehensive list of tests to be carried76

out to vet (or rule out) a potential GR violation claim. There are two aspects to this issue. The77

first is to identify all possible causes which might lead to a false GR violation. The second78

is a checklist to be executed upon encountering a strong candidate for GR violation. The79

objective of this paper is to tackle the first aspect and enumerate an extensive list of scenarios80

that may appear as violations of GR, when in fact they are not. The second aspect requires81

us to construct a checklist of items that address other issues such as the statistical significance82

of the violation, the status of the detector, or if the violation is in contradiction with other83

experiments or astrophysical observations. A companion paper will address these issues and84

a possible formulation of a GR violation detection checklist. It is worth noting that a similar85

effort has been made in Section 7 of [40], albeit in the context of tests of GR using LISA. Our86

goal here is to broadly classify different effects that can mimic a GR violation in the context of87

present- and next-generation ground-based interferometric observational facilities.88

There are at least three distinct scenarios that can mimic a GR violation (see Fig. 1): noise89

artifacts in data, waveform systematics, and astrophysical aspects, each of which is discussed90

at length below. Much work has already been done to understand aspects of these scenarios91

on tests of GR. Broadly speaking, these three scenarios also have the possibility to impact92

other scientific conclusions based on GW data, such as constraints on astrophysical sources or93

cosmological models. In many cases, efforts to understand the impact of these scenarios on94

astrophysics or cosmology can also illuminate potential impacts on tests of GR.95
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Figure 1: The diagram illustrates the principal false causes of GR violation in GW
data. They are classified into three main classes: (a) noise artifacts, (b) waveform
systematics, and (c) astrophysical effects.

To keep the discussion coherent, we group the causes only into these three scenarios even96

if this classification, or the distinction between any two causes, may seem somewhat arbitrary.97

For example, we keep the overlapping signals under noise artifacts even if this is not, strictly98

speaking, an instrumental noise source. Similarly, we divide issues related to waveform sys-99

tematics into two main themes (missing physics and inaccurate modeling), even if the distinction100

between the two is not always obvious. By “missing physics” we mean cases when a particular101

effect is not included at all, or only partially included in the waveform models (e.g., tides and102

higher-order ringdown modes), while “inaccurate modeling” refers to intrinsic limitations of103

the waveform models in fully describing the known features of GR (e.g., waveform truncation104

errors).105

While most of the scenarios discussed below could lead to confusion with a GR violation106

in a given event or subset of events, any GR deviation should be consistent across the dataset,107

e.g., a given theory should explain why there is evidence for deviations in certain events and108

not in others in a similar region of the parameter space. The ever-increasing number of events109

expected in the future will help sort out these situations.110

2 Noise Systematics111

Current interferometric GW detectors are limited by fundamental noise sources [13] which112

causes the noise to appear as stationary and Gaussian only over short time scales and ranges of113

frequency [41]. In reality, however, noise from the detectors is neither Gaussian nor stationary114

(see, e.g., [41–43]). It can be relatively easy to spot times of extremely bad data quality in GW115

data, but the challenge lies with times of subtle data quality issues. The origin of noise sources116
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is notoriously difficult to pinpoint, even for obvious cases of poor data quality. However, it is117

essential that we understand our noise, remove any bias that noise introduces, and accurately118

infer the parameters of the observed sources.119

In this Section, we discuss the three main sources of noise (namely, non-stationary, non-120

Gaussian, and overlapping signals) observed in ground-based detectors that can affect our121

inference of transient GW signals. We also discuss the systematic error due to the gaps in122

data and calibration of the GW instruments that may also introduce some bias in the inference123

results.124

2.1 Non-stationarity125

Non-stationarity is a broadband form of noise which causes the statistical properties of the126

background to change with time. Non-stationarity occurs on the order of tens of seconds127

in the current LIGO detectors and can be caused by both instrumental and environmental128

sources [42,44]. This form of noise has been shown to affect the estimation of source param-129

eters [45,46]. Modelled searches typically estimate a detector’s power spectrum over several130

minutes [47–49], which can cause the matched filter to miss the variable nature of the noise,131

affecting the search sensitivity. One method to account for this is to construct a statistic which132

tracks the variation of the power spectrum and to normalize the ranking statistic used by the133

detection pipeline [49–51]. The method presented in [50] is also used to assess the station-134

arity of the data around candidate GW events [43]. This is because non-stationary noise can135

impact binary neutron star signal parameters [52,53] since noise estimates, usually calculated136

over minutes, fail to capture variations on shorter time scales. As signals from (sufficiently137

massive) binary black holes are usually shorter than the typical time scale of non-stationary138

noise, these sources are not thought to be affected.139

To date, this form of noise has not seriously affected the conclusions drawn from any of the140

LIGO-Virgo-KAGRA collaboration’s GW events. However, it could be an issue in the future, and141

certainly for XG detectors which will be more sensitive to noise variability and observe hours-142

long signals, breaking the assumption of stationarity. As such, future methods for detecting143

and interpreting GW signals should account for the variable nature of the detector noise.144

2.2 Noise Transients or Glitches145

Transient noise artifacts, also known as glitches, are also a common problem in interferometric146

GW detectors. Glitches can mask or mimic a signal and add to the noise background of tran-147

sient GW searches (see, e.g., [42,43,54]). Glitches occur frequently in all detectors; in the third148

observing run, the rate of glitches was between 0.29 to 0.32 per minute for LIGO-Hanford,149

1.10 to 1.17 per minute for LIGO-Livingston and 0.47 to 1.11 per minute for Virgo [38]. The150

inferred population properties of glitches have been shown to typically exhibit characteristics151

similar to CBC signals with extreme mass ratios and large spins, compared to the observed152

astrophysical properties, which tend to have near equal masses and moderate spins [55].153

The morphology of glitches, in particular their time duration and the frequency space154

they affect, can be highly variable between different glitch classes. For example, blip glitches155

(e.g., [56]) are fractions of a second in duration, covering a large bandwidth (e.g., tens to156

hundreds of Hz) and can mimic a GW signal of high mass compact binaries. We still do not157

know the origin of these types of glitches as they do not have a known environmental or158

instrumental coupling, but they appear to have different subcategories that may be caused by159

different physical mechanisms. In the third observing run, these types of glitches occurred160

4 times per hour at LIGO-Livingston and twice per hour at LIGO Hanford [43]. However,161

scattering glitches (e.g., [57]) caused by microseism noise, can be a few seconds long, and162

present as arches in the time-frequency plane, affecting frequencies below 100 Hz. These163
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glitches manifest due to a small fraction of laser light scattering off a test mass, hitting a moving164

surface, and recombining with the main beam. These types of glitches are most prevalent when165

the ground motion is high. As such they can seriously contaminate hours of data, but not be166

a concern for weeks at a time.167

Tracking the occurrence and emergence of new glitch types can be a challenge. Both LIGO168

and Virgo take advantage of machine learning frameworks, combined with citizen scientists,169

to classify glitches based on their morphology in the time-frequency plane. GravitySpy [58]170

has been in operation since the second observing run, and citizens have helped to classify171

LIGO glitches into 23 distinct classes [43]. GWitchHunters [59] helps to classify glitches from172

the Virgo detector, and has been open to the public since November 2021. Both projects will173

prove extremely valuable in identifying and understanding glitches in the fourth and future174

observing runs.175

Glitches overlapping or being in the vicinity of a real GW signal can be a huge problem.176

In fact, in the third observing run 24% of GW events had a glitch within the analysis window177

for one or more detectors [38]. These glitches did not impact the detection of these events,178

but they had to be mitigated before the source parameters could be accurately estimated. A179

prime example of this issue first arose in the interpretation of GW170817 where a short glitch180

occurred 1.1 seconds before the coalescence of the event, lasting only 5 ms [60]. Nonetheless,181

this noise had to be removed before the parameters of the event could be accurately deter-182

mined. Macas et al. [61], for example, shows that certain types of glitches can cause the sky183

localization to be incorrectly determined for certain types of signals, which can even affect184

follow-up with large field of view telescopes (i.e., 20 deg2).185

There are a number of ways in which noise can be removed or subtracted from the data.186

Should the noise be broadband in origin then noise subtraction over the course of hours or187

days is needed. This can be achieved using auxiliary channels which monitor noise sources188

at different points around an interferometer. A coupling function can then be determined189

to understand how much a certain type of noise affects the GW channel, and the noise sub-190

tracted [62,63]. This method is optimal when the data are Gaussian and stationary. More re-191

cent work has focused on machine learning techniques to cope with data with non-stationary192

noise couplings [64].193

For short instances of transient noise that may be in the vicinity of an event, there are194

a few methods which are currently used. A window function can be applied to zero out the195

glitch; this method is known as gating [47,65]. Gating has the benefit of being quick, however196

uncontaminated data will also be removed using this method, as the window function needs197

to be smoothly applied to avoid adding filtering artifacts to the data. Hence, this method is198

not appropriate if the glitch is not well localized in time and is close to an event’s coalescence199

time. A more robust method is to model a glitch with a time-frequency wavelet reconstruc-200

tion and use this to subtract it from the data; this method is applied using the BayesWave201

algorithm [66]. This method has been used to great effect in the third observing run [38]. An-202

other method, called gwsubtract, uses data from an auxiliary witness to the noise to subtract203

the noise from the GW channel [62, 67]. This was done for the first time around the event204

GW200129 [38], which seems to exhibit characteristics consistent with spin induced orbital205

precession [68]. However, Payne et al. [69] find that residual data quality issues leftover from206

this cleaning process may be the origin of the precession observed in GW200129. Moreover,207

in a ringdown analysis of GW200129 [39] found a deviation from GR in the peak of the GW208

amplitude while employing a nonprecessing SEOBNRv4HM_PA model [70–72] but they ascribe209

it to waveform systematics (modeling of spin precession) or data-quality issues (glitch miti-210

gation procedures). Regardless, this example of GW200129 highlights the complexities and211

care that need to be taken when removing glitches from GW data and interpreting results from212

inference analyses.213
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Glitches will always remain a feature of GW data because as the detector sensitivity im-214

proves noise artifacts that were sub-dominant will become more relevant. It is unfeasible to215

remove them all. New methods are being developed to effectively deduce both source and pop-216

ulation parameters by integrating realistic but imperfect data. For example, Ashton et al. [73]217

uses Gaussian processes to replace the traditional GW likelihood. This method, in principle,218

can model arbitrarily colored noise, non-stationarity, and glitches, to augment the approach219

to estimate the parameters of sources. In addition, Heinzel et al. [74] presents a method for220

inferring the population of GW sources contaminated by blip glitches. They are able to infer221

the shape parameters of a GW population, whilst simultaneously inferring the population of222

the glitch background events.223

In order to be confident that a signal is indeed a violation of GR, characteristics that may224

arise due to the noise identified here need to be understood. Work has started in this regard,225

for example with [75]. They investigated how an overlapping binary black hole signal with226

three different glitches can affect tests of GR before and after the glitches were mitigated.227

Moreover, they only considered a glitch in a single detector out of three and still found a GR228

deviation when the glitch was not mitigated. The authors also point out that their study is not229

sufficient to give quantitative statements about the effects of certain glitch classes or mitigation230

methods on tests of GR. Therefore, their work needs to be extended to assess the amount of231

GR deviation in different realizations of Gaussian noise, the effect of non-stationarities in the232

noise background, and the effect of data cleaning methods on mimicking GR deviations.233

2.3 Contamination from Overlapping Signals234

As the sensitivity of ground-based GW detectors improves, the chances of observing time-235

overlapping signals will also increase [76]. This may demand a shift in our detection and236

parameter estimation strategies since current pipelines, designed for single GW signals, may237

yield biased results when applied to overlapping signals. However, several studies have shown238

that the detection [77, 78] and parameter estimation [76, 79–81] of overlapping signals are239

not a significant concern. Additionally, methods have been proposed to correct biases in cases240

where overlaps do pose challenges [82–84].241

For example, [77] and [78] concluded that the detection of longer signals will not be242

affected in the presence of multiple signals in data around the same time. More recently,243

Relton et al. [85] conducted a more thorough search study with both modeled and unmodelled244

analyses and put constraints on regimes where the unmodelled searches would perform better245

when merger times of individual signals are very close to each other. Wu & Nitz [86] proposed246

an updated search campaign on overlapping signals where they consider the effects of using247

the traditional matched filtering and its consequences on estimating the noise properties, as248

well as the detection rates of overlapping signals. As pointed out in [87], the presence of249

overlapping signals may require us to revisit the definition of the likelihood as well as the250

assumption that source confusion can be treated as stationary Gaussian noise.251

The inference of source parameters is only biased if signals merge very close to each other252

in the data and differ in SNRs. Possible remedies to this problem have been suggested, ei-253

ther from a Fisher Matrix study [82] or adapting the signal model accordingly in the Bayesian254

likelihood [83]. Langendorff et al. [84] used normalizing flows as an avenue to deal with the255

computational burden coming from multiple-signal analyses in case of overlaps. Moreover, Hu256

& Veitch [88] studied the effects of waveform inaccuracy and overlapping signals on tests of257

GR and concluded that combining signals can lead to false GR deviations in case of multiple258

signal overlaps. More recently, Dang et al. [89] extended this study to higher post-Newtonian259

(PN) deformation parameters. They concluded that although a non-negligible number of over-260

lapping signals can lead to false GR violations at the individual event level, when the results261

are combined, the biases tend to smoothen out, leading to a preference for GR at the popula-262

8



SciPost Physics Community Reports Submission

tion level inference (We discuss the effects of population-level analyses on tests of GR in more263

detail in Section 4.4.)264

All these studies focussed on overlaps arising in the data of XG detectors, since the prob-265

ability of observing overlapping signals in the era of A+ sensitivity [16] or Voyager [90] is266

very small [76]. However, it is likely that a quiet GW signal below the detection threshold is267

present along with the dominant GW signal in the data [91]. This will not pose a problem268

for estimating individual source parameters, but issues may arise when combining multiple269

signals, where sub-threshold events collectively act as background or confusion noise [92,93].270

Although [92,93] considered signals in the XG era only, we might need to consider the effect of271

a confusion-noise-like background in O5 or A# era in the context of testing GR. Moreover, qui-272

eter signals may result in imperfect subtraction of the GW model from data when following the273

definition of likelihood to infer source properties under the assumption of stationary, Gaussian274

noise. Consequently, combining results across multiple signals to infer population proper-275

ties could gradually accumulate biases from each single-signal analysis, potentially mimicking276

noise properties [87] and introducing deviations from GR.277

2.4 Gaps in the Data278

The data we expect to collect from XG detectors is likely to contain gaps, due to loss of lock279

at the inferometers that could be caused by a plethora of instrumental or anthropomorphic280

reasons. The sensitivity band of current detectors is such that GW signals are in the band for281

about 30 minutes at most. The likelihood of a data gap in such a short window is small, and if282

it occurs, it is likely to decrease the SNR significantly, since the recovery time (for the instru-283

ment to reacquire lock and start data taking again) is comparable to the signal duration. This284

scenario changes drastically with XG detectors because the low-frequency sensitivity is greatly285

increased, allowing for the observation of signals for many hours to days. The likelihood of a286

data gap in this window is larger, and if it occurs, it is likely to both decrease the SNR of the287

event and deteriorate the analysis of the GW source.288

Not much work has gone yet to study the effect of data gaps in XG detectors, but some289

work already exists for data gaps in space-based detectors, from which we can extrapolate290

some conclusions. Previous work has shown that data gaps can deteriorate and bias param-291

eter estimation for certain sources [94, 95], in particular when the data gap coincides with292

the merger phase. In general, we would expect that a data gap during the merger would293

inhibit our ability to constrain deviations from GR at high PN order, while gaps in the early294

inspiral will be the same for low (or negative) PN order modifications to GR. In particular, if295

the data has a gap, but our analysis does not account for it, parameter correlations between296

non-GR and GR parameters are likely to introduce biases that may lead to a false GR violation.297

Certain methods, such as Bayesian data augmentation [96], however, can be used to include298

missing data periods as auxiliary variables when sampling the posterior distribution of model299

parameters that have shown promise at eliminating biases.300

2.5 Detector Calibration Error301

The GW strain data d is not directly recorded by the interferometer. Instead, it is reconstructed302

from the voltage v( f ) measured by photodetectors and a response function R( f ) that relates303

the digital readout and GW strain, i.e., d( f ) = R( f )v( f ) [97]. The calibration process includes304

a series of measurements to construct a reference model for the response function [97–99].305

Bias in any step of this process can lead to errors in the measured strain data, and systematic306

errors in parameter estimation could arise if the calibration error is not accounted for. Vitale307

et al. [100] investigate the consequences of calibration error in Bayesian inference of source308

parameters. They find that parameters that suffer the largest biases are those mostly related309
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to the amplitude of GW signals. This implies that calibration errors could have a minor effect310

in parameterized tests of GR that modify the phase of waveform. They also conclude that311

< 20% of amplitude calibration error or < 10 − 20◦ of phase calibration error should not312

lead to significant biases for all but the strongest signals in the advanced LIGO era, consistent313

with [101] and [102]. However, such level of calibration systematics may not be tolerable in314

the XG era where SNR values could shoot up to hundreds or to even thousands [103], since the315

statistical error scales as 1/SNR while systematics like calibration errors do not. Therefore, it is316

crucial to improve the calibration techniques along with the sensitivity in the XG era [44,104].317

It is possible to quantify and mitigate calibration errors in detection and data analysis. The318

uncertainty of the response function can be indicated by the photon calibrators which apply a319

known radiation pressure directly on the test masses within the detector [97,105–107]. Abbott320

et al. [108] reported < 10% calibration uncertainty in the strain amplitude and < 5◦ in phase321

during the first observing run of LIGO-Virgo, and in the third observing run these uncertainties322

were reduced to < 7% and < 4◦, respectively [109]. Note that these are overall uncertainties,323

and systematic errors alone are even smaller. These estimates on calibration uncertainties are324

used as priors to marginalize uncertainties in the GW strains during parameter estimation,325

which effectively mitigates the calibration error [110, 111]. However, this technique might326

conceal tiny deviations from GR, since it marginalizes over some level of uncertainties on327

amplitude and phase. Hence the effect of calibration errors on tests of GR needs to be studied328

for current and future GW detectors, so that it can be ruled out (or included) as one of the329

possible causes for false GR violations.330

3 Waveform Systematics331

3.1 Missing Physics in Waveform Models332

The current state-of-the-art waveform models used in tests of GR still lack certain physical333

effects, such as eccentricity of the binary’s orbit, overtones and non-linearities in the ringdown334

phase of the binary merger, etc. Including each of these known physical effects individually is335

crucial for precision GR tests, but their collective inclusion is essential for unbiased assessments336

of GR. Here we discuss missing physical effects that could lead to a false GR violation.337

3.1.1 Eccentricity338

The eccentricity of a binary’s orbit depends on the formation history of the binary. Binaries339

formed through isolated formation channels in the galactic field are expected to have negli-340

gible eccentricity when observed in the frequency band of ground-based detectors, whereas341

binaries inside dense stellar environments such as globular clusters and nuclear star clusters342

might have moderate to high eccentricities when observed by these detectors. In an isolated343

formation channel [112], the binary goes through various mass transfer episodes between its344

components, and as the components evolve and undergo supernova explosions, the binary345

orbit could gain some eccentricity due to supernova kicks. However, due to the emission of346

gravitational radiation [113,114] the binary’s orbit shrinks, and the binary sheds away all its347

eccentricity over the long inspiral, leaving it with negligible eccentricity close to merger [113].348

For example, if a binary with an initial orbital eccentricity of 0.2 emits GWs whose dominant349

mode has a frequency of 0.1 Hz, the eccentricity reduces to∼ 10−3 when it reaches a dominant350

mode GW frequency of 10 Hz. That is why binaries detected by LIGO/Virgo are expected to351

be quasi-circular. On the other hand, a fraction of dynamically formed binaries can still have352

some eccentricity (and as high as ∼ 1 at 10 Hz) when observed in the frequency band of the353

LIGO/Virgo detectors [115–123].354
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The problem of misinterpreting eccentricity as a potential GR violation is currently a two-355

fold problem. First, of missing physics; namely, the inclusion of both eccentricity, argument356

of periapsis (although see [124]), and precession in an inspiral-merger-ringdown waveform357

model. Distinguishing eccentricity from precession without waveforms that include both [125]358

introduces systematic biases in the estimated binary parameters [126–130] that could be mis-359

construed as false violations of GR [131–135]. Second, the current analysis methods are pro-360

ducing inconsistent results [124,126,127,136–138] for the same events such as GW190521 [139].361

Once the above two problems are solved, the problem of eccentricity reverts back to being362

one of waveform systematics discussed in more detail in Section 3.2.2 below. We anticipate363

larger waveform systematics in systems with higher eccentricities. However, these are not364

the ones for which eccentricity will manifest as a violation of GR, due to the large-amplitude365

modulations that are inconsistent with a quasi-circular inspiral.366

3.1.2 Tidal Effects367

Neutron stars and their mergers are characterized not only by strong gravity but also by ex-368

treme matter conditions. To explore how matter affects the space-time deformations around369

these stars, we need to understand the relation between the dynamical properties of matter370

and the behavior of strong gravity. Analytic methods are used to model the early inspiral phase371

of a neutron star binary merger, where neutron stars are approximated as massive point par-372

ticles with small corrections due to finite-size effects [140–142]. However, close to merger373

finite size effects become significant and numerical relativity (NR) simulations are required to374

capture them accurately [143–146]. Effective one body models achieve a nonperturbative re-375

summation of the PN information on tidal effects into a complete framework [143,147–152];376

some reduced-order-model versions incorporate NR-calibrated tidal models [146,153,154] as377

also used in Phenomenological models.378

The tidal deformation of bodies is directly proportional to the Riemann tensor and its379

derivatives, produced primarily by the energy-momentum distribution of the companion [155],380

which becomes the second derivatives of the Newtonian potential for the electric-type quadrupole381

effect in the Newtonian limit. However, such effects are observable in the GWs only if they382

produce significant mass and current type multipole deformations of the neutron stars in a383

binary system. The dominant deformations come from the electric-type, l = 2 tidal defor-384

mation, which imprints primarily in the GW phase evolution. However, it is important to385

note that these tidal effects are relatively small and become more pronounced as the binary386

approaches merger. While these effects are subtle, their detection has already provided in-387

valuable insights [60], and with the advent of more advanced detectors (such as XG), we can388

look forward to even more precise measurements in the near and far future [156–159].389

The effects of the tidal field on neutron star matter are studied using observed GWs [2],390

however, such results are susceptible to waveform systematics and incomplete modeling of391

neutron star physics. Refs. [103, 160, 161] show that the inference of tidal parameters with392

XG detectors can be significantly affected due to waveform systematics. Not including subdom-393

inant tidal effects, such as dynamical tides, which become important in the inspiral regime, can394

also lead to substantial biases in the estimation of tidal parameters [151,152,162,163]. Like-395

wise, XG detectors will be sensitive to the octupolar electric and quadrupolar magnetic tidal396

deformabilities, and not including them in the waveform might bias the measurements [164].397

Resonant mode excitations may contribute distinct features in the waveform from the tidal398

effect considered in [155]. As the inspiraling orbit passes through the frequency of a cer-399

tain characteristic mode, the resonant excitation of the mode must be compensated by the400

loss of the same amount of orbital energy, speeding up the following orbital evolution. The401

excitation of gravity modes [165–167], the interface mode [168–170] and gravitomagnetic402

mode [171–174] have been studied, where for the latter two cases the phase modulation403

11



SciPost Physics Community Reports Submission

may reach the level of O(10−2) − O(10−1) radians in the frequency band of ground-based404

detectors. Additionally, effects of spins on dynamical tides [175–178], other spin-tidal cou-405

plings [146, 179], spin-induced multipole effects [180–183], nonlinear tides [184], higher-406

order relativistic corrections, and the GW features of tidal disruption in cases with precessing407

spins [185] are examples of areas requiring further investigations.408

Inaccurate or missing physics in analytical and NR modeling due to thermodynamical409

transformation of nuclear matter during inspiral and post-merger leads to waveform system-410

atics. Such effects include, but not limited to, viscosity [186–189], thermal effects [190–194],411

phase transition to hyperon condensates or quark matter and other such transformations (see,412

e.g., [195–200] and also see Section 4.3.2 for discussion of proposed exotic matter that has not413

been observed but, may have compactness close to black holes). As shown in [201–203], the414

viscous effect introduces a new dissipative channel that modifies the GW phase at 4PN order415

and higher. If not included in the modeling, a signal that contains such a 4PN effect could be416

misidentified with a GR deviation at that PN order (and at neighboring PN orders).417

Similar effects during the post-merger evolution are subject to systematic bias which re-418

quires emphasis on accurate post-merger waveform model development. Currently, only a419

few post-merger models exist and can detect such effects only in the XG detectors [204–208].420

There are also sources of bias in parameter estimation that are exclusive to data analysis chal-421

lenges arising from noise systematics. For a minority of events, multiple overlapping signals422

and confusion background created by CBC mergers could potentially lead to a bias in tidal423

deformability as described in Section 2.3.424

Additionally, GR predicts relations between the spin-induced quadrupole moment and the425

(quadrupolar, electric) tidal deformability [8, 209–211] and between tidal deformabilities of426

different multipolar order and parity [212] or between different tidal parameters in gravita-427

tional waveforms for binary neutron star mergers [213, 214] which are only mildly sensitive428

to the neutron star equation of state. These relations have been used in GW data analyses to429

reduce the number of search parameters [215, 216] but small equation-of-state variation in430

the relations can induce systematic biases. One could, however, use constraints on nuclear431

physics from neutron star observations available at the time to keep updating and reducing432

the amount of variation in the relations. For example, such variation has been reduced by433

50% after GW170817 and current systematic errors on the tidal deformabilities are subdom-434

inant than statistical errors until the A# era [217]. Another way to reduce systematic biases435

due to the variation in quasi-universal relations is discussed by [157]. Since alternative theo-436

ries predict different relations, an independent measurement of the quantities in the universal437

relations can therefore be used as null tests of GR, circumventing potential degeneracy with438

unknown nuclear physics [209–211, 218–220]. While the spin-induced quadrupole moment439

is expected to be small for neutron stars, the magnetic tidal deformability could be measured440

by XG detectors [164].441

Besides testing GR, these relations can be used to disentangle source misidentification442

(discussed in detail in Section 4.3.2), since each model of exotic compact objects other than443

neutron stars would display their own quasi-universal relation [219, 220]. Notably, the tidal444

deformability parameter may carry information about the nuclear equation of state and hence445

offer a unique tool to distinguish conventional neutron stars from the ones with exotic sig-446

natures. Analyzing binary neutron star mergers with exotic matter while using waveforms of447

conventional neutron star binaries could lead to false indications of GR violations. This needs448

to be investigated thoroughly, so that this effect could be ruled out or observed.449

Assuming that our NR-assisted waveform models are accurate and free of systematic biases450

including those arising from the unknown equation of state, any deviation from the predic-451

tions will be indicative of either GR not being the complete theory of gravity or deviations452

in the coupling of matter to gravity, a subset of which is the test of the strong equivalence453
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principle [221–226]. Therefore, only after ruling out the systematic effects arising from these454

inaccuracies, robust conclusions can be drawn about deviations from GR.455

3.1.3 Kick-induced Effects456

The anisotropic emission of GWs during a CBC carries away linear momentum and results in457

a recoil or kick of the merger remnant [227, 228]. The kick leaves the following imprints in458

the GW signal: the Doppler effect [229] and the aberration effect [230] on the post-merger459

signal along with an additional contribution of a (linear) memory effect [229] to the whole460

GW signal [231]. Since the black hole kicks are non-relativistic, the kick-induced effects are461

small and might not be important for current GW detectors but could be crucial for XG de-462

tectors [231, 232]. For loud ringdown signals (SNR¦ 100, [232]) in the XG era, these kick-463

induced effects, if not accounted appropriately in the waveform model [233,234], might con-464

taminate those tests of GR that depend on the post-merger signal and kick [235] of the remnant465

(see, e.g., [39,231,236–239]).466

3.1.4 Beyond Fundamental Modes in Ringdown Signal467

The gravitational radiation from a perturbed black hole is in the form of quasi-normal modes468

[240, 241]. At sufficiently late times following a binary black hole merger, it is expected that469

the remnant can be very well approximated by a perturbed Kerr black hole. Moreover, it470

is well known that the radiation at this stage is dominated by just the fundamental quasi-471

normal mode, since it is the slowest damped quasi-normal-mode (QNM) [242–244]. The472

frequency and damping time of a mode are in one-to-one correspondence with the remnant473

mass and spin. In principle, assuming GR and using NR simulations, the latter quantities could474

be predicted from the properties of the progenitor binary, which can be extracted from the475

premerger signal. In practice, waveform systematics in the premerger phase could jeopardize476

this ringdown consistency test [245]. For example, large unmodelled eccentricity could lead477

to an inconsistency in the final mass and spin, and hence to a false GR deviation [133]. In the478

spirit of the original black-hole spectroscopy program [242–244,246], it is therefore better to479

test GR using ringdown signals only, and an “agnostic” selection of multiple modes to model480

the ringdown [247].481

Recently, there have been efforts to increase the range of validity of linear perturbation482

theory by modeling the early postmerger signal using overtones and mirror modes [247–259].483

These studies show that the inclusion of these additional QNMs improve the remnant mass and484

spin estimates using a ringdown model. They also show that there will be biases in the remnant485

parameters if a ringdown model is used to describe early postmerger without the inclusion of486

such QNMs. Such biases in parameter estimation can show a deviation from the predictions487

of GR. Isi and & Farr [260] investigated the impact of an incomplete ringdown model on488

parameter recovery by analyzing a synthetic signal mimicking a binary black hole ringdown489

(see also [247] for a discussion). Their findings reveal biased parameter measurements in490

instances of very high ringdown SNR. Dhani & Sathyaprakash [252] displayed the modulations491

in the odd-m modes in the waveform and how the inclusion of mirror modes in the ringdown492

waveform model can explain these modulations.493

There are claims in the literature that overtones have been detected [261–263] and used494

to test the “no-hair” theorem with GW150914 [238]. However, there is a disagreement in the495

literature regarding the significance of the measurement of the first overtone in GW150914496

[262, 264–267]. There are also theoretical arguments suggesting caution in the use of over-497

tones for no-hair theorem tests [247,256,268–271]. The above authors show, using toy mod-498

els, black hole perturbation theory and NR simulations, that even though the estimates of the499

final mass and spin of the black hole can be improved starting the ringdown analysis at earlier500
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times by the addition of overtones, a linear model including only overtones is not appropriate501

at early times (see also [272]). Therefore, they contend that overtones are unphysical and that502

their role in a waveform model is to “fit away” other features in the signal, namely, transients503

related to the initial data, power-law tails at late times, and nonlinearities.504

However, for less symmetric binaries than GW150914 (as commonly expected among cur-505

rent and future catalogs) the original black-hole spectroscopy program can be realized using506

higher-order modes in addition to the least damped QNM, i.e., (l, |m|) = (3,3), (2,1), (4,4),507

can be used to perform independent tests of the no-hair theorem [239,266,273–279]. Given508

current estimates of the merger rates, XG detectors are predicted to perform percent-accuracy509

tests for a few events per year [274,279–281].510

To conduct any of the above tests of GR using the perturbative ringdown model, one must511

make a choice on the start time of the ringdown to begin fitting exponentially damped sinu-512

soids. The analysis should begin as soon as the perturbative prescription is relevant. On one513

hand, waiting too long to begin the analysis will make testing GR impossible because the strain514

amplitude has decayed exponentially (e.g., [282, 283]). However, beginning the analysis too515

early could result in overfitting to non-linear features in the signal (e.g., [247, 284]). To un-516

dertake robust tests of GR, some criterion for the analysis start time should be established517

through, e.g., searching for the earliest time at which one can measure self-consistent QNM518

parameters with time [256,285,286]. A further source of systematics is the decomposition of519

QNMs in spherical rather than spheroidal harmonics; if unmodelled, the spherical-spheroidal520

mode mixing introduces biases for highly spinning remnants [247].521

Another important effect of the nonlinearity in the ringdown stage is the presence of522

second-order QNMs [287–289], which are generated through mode-mode couplings. The523

frequency of a second-order QNM is twice as the associated “parent” linear QNM. Its ampli-524

tude and phase are also uniquely determined by the linear mode [290–292], as a nontrivial525

prediction of GR at the nonlinear level. The dominant nonlinear modes may be observable526

with XG detectors, although event rates are uncertain [293].527

An approach complementary to null tests using QNM frequencies and damping times is528

to test QNM amplitude-phase relations predicted by NR simulations within GR. This test was529

successfully applied to GW190521 in [294], finding that measurement errors for this event530

are still large, but would strongly improve for the louder detections routinely expected for XG531

detectors.532

Finally, because of its short duration, one should be careful with the statistical methods and533

their underlying assumptions while analyzing the ringdown signal. Seemingly innocuous data534

processing choices such as the uncertain starting time, duration of the signal, and noise esti-535

mation techniques can lead to materially different inferences [238,264,265,295–297]. While536

the ringdown signal is typically analyzed in the time domain, frequency domain methods have537

also been proposed [254, 265, 298, 299] with the approach of [298] shown to be formally538

equivalent to the time-domain approach [260]. Even then, [298] comes to a different con-539

clusion regarding the ringdown of GW190521 compared to [4] or [300]. This highlights the540

need to better understand systematics and data analysis techniques in the analysis of ringdown541

signals.542

3.2 Inaccurate Modeling of Known Physics in Quasi-Circular Waveform Models543

3.2.1 Higher-order Modes, Precession, and Memory544

Gravitational waveforms can be decomposed in the basis of spin weighted spherical harmonics545

with spin weight s = −2, Y lm
−2 (ι), where ι is the inclination angle. In this basis, for nonprecess-546

ing systems, the dominant contribution to the GW amplitude comes from the (l, |m|) = (2, 2)547

harmonics. The (2,1) and (3, 3) harmonics are subdominant and suppressed by a prefactor548
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that goes to 0 for symmetric (equal mass) binaries [301–305]. These modes only contribute549

for systems that are not face-on/off (ι 6= 0,2π), and become particularly important for unequal550

mass binaries. The presence of these higher-order modes causes characteristic modulations in551

the amplitude and phase of the waveform.552

The effect of higher-order modes becomes even more important in the presence of spin-553

induced precession. Spin-induced precession occurs when the spin angular momentum vectors554

of the binary components are not aligned with the orbital angular momentum vector, leading555

to the precession of the orbital angular momentum (or, equivalently, the orbital plane of the556

binary) as well as the spin vectors about the total angular momentum of the binary. The557

effect of precession is best understood by considering two frames of reference [306–308]—558

the inertial frame in which the binary appears to be precessing, and the co-precessing frame that559

follows the instantaneous motion of the orbital plane where the effects of precession disappear.560

The inertial modes can then be approximately described as the sum of nonprecessing modes561

with the same l value and all possible m values, each rotated using Wigner D-matrices which562

depend on the instantaneous position of the orbital plane [309]. Thus, due to spin-induced563

precession, subdominant precessing modes will have contributions from both dominant and564

subdominant nonprecessing modes, increasing the precession effect due to the presence of565

higher-order modes in the waveform [310].566

A consequence of using nonprecessing modes to approximate the co-precessing-frame sig-567

nal is that these obey the reflection symmetry h`m = (−1)`h∗
`−m, which no longer holds for568

precessing binaries [311, 312]. Most state-of-the-art waveform models, with the exception569

of NRSur7dq4 [234] and IMRPhenomXO4a [313, 314], currently rely on this approximation.570

While the impact of anti-symmetric contributions to the waveform modes is typically small,571

neglecting these effects could result in biased measurements of the spin magnitude and orien-572

tation at high SNR [315,316].573

Currently, state-of-the-art nonprecessing waveforms like IMRPhenomXHM [317] include the574

harmonics (l, |m|) = (2, 1), (3, 3), (3, 2), (4, 4), and SEOBNRv5HM [318], in addition to these,575

also includes (l, |m|) = (4, 3) and (5,5). Their precessing counterparts are IMRPhenomXPHM576

[319] and SEOBNRv5PHM [320], respectively. The widely used NR surrogate waveform model,577

NRSur7dq4, has been trained with simulations with mass ratio less than 4, and contains all578

spherical-harmonic modes with l ≤ 4.579

Many studies have explored the improvement in the inference of source parameters due580

to the inclusion of spin-induced orbital precession and higher-order modes [321–324]. Partic-581

ularly, for edge-on systems, including higher-order modes improves parameter estimation by582

breaking the luminosity distance-inclination angle degeneracy, whereas modulations due to583

spin-induced precession break the degeneracy between the spin and mass parameters. Addi-584

tionally, the amplitude of the higher-order modes also brings information about the mass ratio585

of the source.586

We should note that none of these models discussed above contain the memory modes587

that depend on the binary’s past history. The most well-known of these is the displacement588

memory effect which is dominant in the l = 2, m = 0 mode, and the next leading memory589

effect, known as the spin memory, is dominant in l = 3, m = 0 mode for the non-precessing590

binaries (see e.g., [325], and [326]). There are other higher-order memory effects, but these591

can be extremely sub-dominant. Most of these are discussed in [327] and references therein.592

While these are small effects, they will need to be included to prevent biases, and have now593

been included in a surrogate model for nonprecessing (quasicircular) binary black holes con-594

structed using the waveforms obtained from Cauchy-characteristic evolution [328]. The effect595

of non-linear memory on the binary black hole parameter estimation is studied in [329] where596

the dominant displacement memory in the l = 2, m = 0 mode starts to affect the parameter597

inference at SNR> 60 for the current generation ground-based detectors (such as LIGO A#).598
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Moreover, the effect of memory has been studied in the case of neutron star-black hole and bi-599

nary neutron star mergers [330,331], where it is argued that the memory can affect parameter600

estimation for the XG detectors.601

Therefore, analyzing a GW signal that has a significant magnitude of spin-induced pre-602

cession, higher order mode content, and memory effect with an inaccurate or incomplete603

waveform model may not only deteriorate parameter estimation, but also show biases in the604

inference of other source parameters (see, e.g., [310]). A recent study has investigated sys-605

tematics due to waveform mismodeling by comparing SEOBNRv5PHM and IMRPhenomXPHM. It606

was found that systematic biases can impact the current and future GW-detector networks, af-607

fecting the inference of realistic binary black hole population properties, as well as, the science608

cases of individual loud signals [245], and more in general binaries with large mass ratios and609

high precession. Such systematic biases may eventually find their way into the measurement610

of a beyond-GR parameter depending on the nature of its correlation with the other source611

parameters, inducing a false violation of GR. Hence, it is essential to use accurate waveform612

models with spin-precession effects, sufficient number of higher-order modes, and memory613

effects while testing a GW signal for a violation of GR.614

3.2.2 Sub-optimal Calibration and Agreement With NR Waveforms615

State-of-the-art waveform models are built by combining and resumming information from616

different analytical methods, such as PN approximation and gravitational self-force theory,617

and then calibrating/validating against NR simulations and merger-ringdown waveforms in618

the test-particle limit, which are obtained by solving the Teukolsky equation. The assessment619

of the accuracy of the waveform models from the two main waveform families (notably EOB620

and IMRPhenom models) can be found in [245,313,318,320,332–334]. Due to the number of621

calibration parameters and the large number of NR simulations at disposal, it is especially im-622

portant to devise a computationally efficient and flexible calibration procedure. For instance, in623

calibrating the SEOBNRv5HMmodel [318], the authors quantified the agreement with NR wave-624

forms in a Bayesian fashion and employed nested sampling to obtain posterior distributions625

for the calibration parameters. State-of-the-art waveform models use best-fit estimates across626

the physical parameter space for their calibration parameters. Providing instead a probability627

distribution, modeled for example through a multidimensional Gaussian mixture, would allow628

accounting for uncertainty estimates due to sub-optimal fits, and could mitigate waveform sys-629

tematics at high SNR. Other proposed methods to marginalise over waveform modeling uncer-630

tainties include Gaussian process regression [335–338], or introducing frequency-dependent631

amplitude and phase corrections, as in the case of detector calibration uncertainty [103].632

Calibration parameters typically enter in waveform models as higher-order PN coefficients,633

which are currently unknown. Including higher-order analytical information, while push-634

ing the calibration parameters at even higher orders, could improve the accuracy of current635

waveform models, but requires careful studies on how to incorporate and resum this infor-636

mation [318,332,339] Nonetheless, neglecting higher-order PN terms carries an error which637

might become relevant with updates to current detectors and XG detectors, but could be miti-638

gated by marginalizing over higher-order PN coefficients as new model parameters [340]. In-639

corporating results from the post-Minkowskian (PM) approximation [341–344], a weak fields640

expansion in G at all orders in the velocity, is also promising, particularly for highly eccen-641

tric binaries for which relativistic velocities can be reached at each periastron passage even642

in the weak field regime. While PM results have not yet been incorporated in state-of-the-643

art waveform models for bound orbits, remarkable agreement has been obtained comparing644

PM-improved EOB models to NR for scattering orbits [345–348].645

The calibration procedure imposes that the waveform model agrees, as much as possible646

and for the entire coalescence, with the NR waveform. This is often quantified by computing647
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the unfaithfulness (or mismatch) M between the model and NR waveform. As detectors be-648

come more sensitive and the SNR increases, the accuracy requirements become more stringent,649

thus demanding smaller unfaithfulness values. Accuracy requirements are usually formulated650

in terms of an indistinguishability criterion [349–353], which states that if two waveforms651

fulfill the condition652

M<
D

2 SNR2 , (1)

for a given power spectral density (PSD) and SNR, then these waveforms are considered in-653

distinguishable, and differences in the recovered parameters are expected to be smaller than654

statistical errors. Here D is an unknown coefficient, usually set to the number of intrinsic pa-655

rameters of the source [352] or tuned with synthetic injections at increasing SNR [353]. Being656

sufficient, but not necessary, this criterion is generally too conservative, and, if it is violated,657

differences are not necessarily measurable, or may appear in a subset of parameters in which658

one is not typically interested [353, 354]. Toubiana & Gair [355] recently proposed a correc-659

tion to the standard indistinguishability criterion by revisiting some of the hypotheses under660

which it is derived, and employed it to quantify apparent deviations from GR due to waveform661

inaccuracies [356].662

The state-of-the-art multipolar, aligned-spin SEOBNRv5HM model, which has median un-663

faithfulness of 1.01× 10−3 against 442 NR waveforms (when using the O5 PSD [357], maxi-664

mizing over the total binary mass in the range [20−300]M�), would lead to a false deviation665

from GR in measuring the QNM (complex) frequencies of a heavy massive mass ratio 2 binary666

black hole when observed in LISA with an SNR O(100) [356]. This issue occurs because for667

such massive binary black holes, the majority of the SNR lies in the merger-ringdown stage.668

By contrast, a stellar-mass binary black hole with mass ratio 6, observable in O5, would not669

incorrectly lead to a violation of GR at SNR 75 [278], because in this case a large portion of670

the SNR is accumulated during the inspiral stage. Normally, the accuracy of waveform models671

gets worse toward merger, where the presence of higher-order modes becomes more and more672

important, while their modeling is quite challenging. The recent study of [358] investigated673

the impact of inference biases from sub-optimal waveform calibration on a realistic popula-674

tion of binary black holes in XG detectors. They considered two quasi-circular, nonprecessing675

waveform models of the same family (namely, IMRPhenomD [359] and IMRPhenomXAS [360])676

and estimated a mismatch requirement of ∼ 10−5 for 99% of the events with SNR> 100 not677

to be biased.678

Inaccuracies in NR waveforms, due to, e.g., numerical truncation errors and issues with679

GW extraction and extrapolation, are typically at least one order of magnitude smaller than680

errors between semi-analytic models and NR [353]. Nonetheless, they are expected to be-681

come relevant with updates to current detectors and XG detectors, especially for binaries with682

asymmetric masses and orbits inclined with respect to the line of sight [353,361,362].683

4 Astrophysical Aspects684

There are several astrophysical aspects of the source, its surroundings, and the emitted GW685

signal that have not been accounted for in the state-of-the-art waveform models. These aspects,686

if present in the real GW signal, might affect the tests of GR and can lead to false GR violations.687

Here we discuss those astrophysical aspects that we can think of.688

4.1 Gravitational Lensing689

As GW detectors get upgraded and new ones join the network, more and more distant mergers690

can be observed. This increases the chance of having a matter density crossing the GW travel691
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path, possibly leading to gravitational lensing. Depending on the lens properties and the lens-692

source geometry, different effects can be observed. For the best-aligned and most massive693

cases, we are in the geometric optics limit and lensing leads to several copies or “images” of694

the initial signal. These images have the same frequency evolution but are delayed in time,695

(de)magnified, and can undergo an overall phase shift. When the time delay is large enough,696

these images are distinct, and we face strong lensing [363, 364]. For ground-based detectors,697

typical lenses are galaxies and galaxy clusters [365]. For smaller time delays, corresponding to698

less aligned systems and lighter lenses, one has millilensing, where the various images overlap699

and sum to a non-trivial signal in-band [366]. This is expected to be due to heavy black holes,700

or dark matter over-densities, for example. Finally, when the GW wavelength is comparable to701

or greater than the size of the lens, we need to perform the full wave-optics treatment [363],702

and lensing leads to frequency-dependent beating patterns known as microlensing. For ground-703

based detectors, typical lens sources are individual stars, black holes, or dark-matter overden-704

sities [367]. It is also important to note there can be interplay between these different types705

of lensing. When strong lensing happens, one or more of the images may undergo micro or706

millilensing because of individual objects present in the strong lens [368–370].707

False GR deviations could be expected when GR signals are distorted. For strong lens-708

ing, one can have such an effect for specific values of the overall phase shift. In particular,709

it can take only three distinct values: 0, π/2, or π, corresponding to a minimum, saddle710

point, or maximum of the Fermat potential, and referred to as Type I, II, and III images, re-711

spectively [364, 371]. Under all circumstances, Type I and III images are indistinguishable712

for the GR case because they correspond to no shift or a sign flip in the polarization, which713

cannot be detected [371]. For Type II images, on the other hand, detectability is possible714

when the GW displays higher-order modes. In this case, the phase has different pre-factors715

for different frequency modes and is not degenerate with the (frequency independent) lens-716

ing phase shift anymore [371]. This can be used to detect strong lensing based on a single717

image, although it requires rather large SNRs and very asymmetric, precessing or eccentric718

systems [371–374]. When analyzing Type II images under the unlensed assumptions, one can719

face losses in SNR, possibly missing the event with template searches [372], or biases in pa-720

rameter estimation [373, 374]. Therefore, one can expect this non-trivial feature to also be721

picked up when searching for GR deviations. For example, this is the case with modified disper-722

sion relations that change the frequency evolution of the GW phase in a way possibly similar to723

lensing [375]. The link between Type II images and GR deviations is also highlighted in [376],724

where the authors show that some GR deviations are flagged by Type II search pipelines.725

The cases of millilensing and microlensing are even more favorable in leading to spurious726

GR deviations being detected since they both lead to a non-trivial signal in the detection band,727

although the nature of the resulting image is different between the two cases [363,366,367].728

When analyzing such signals with traditional GR templates, one expects imperfect modeling of729

the signal, leading to coherent power left in the data [377]. This is also confirmed in [378] for730

some tests of GR. In this study, the authors show that milli and microlensed signals can lead to731

spurious deviations from GR, sometimes with a high significance. However, it is also important732

to note that adapted lensing pipelines also clearly see these events as being lensed. Therefore,733

the GR deviation would probably not be confirmed as it would be explained via lensing, under-734

lying the importance of accounting for possible astrophysical effects on the GW signals when735

looking for GR deviations. The link between GR deviations and micro and millilensing is also736

further confirmed in [376], where the authors show that some deviations of GR lead to false737

positives in micro and millilensing searches. In the case of a multi-messenger lensing event in738

which the GW lensed signal is in the wave optics regime but the electromagnetic signal is in739

geometric optics (which is to be expected given their higher frequency), the speed of propaga-740

tion of GWs could appear to be superluminal due to the waveform distortions [379], although741

18



SciPost Physics Community Reports Submission

no information actually arrives faster than light [380].742

A crucial approximation in these studies is the exclusion of the effect of parallel-transporting743

the polarization tensor across the lensing geometry and the treatment of GWs as scalar waves744

which become increasingly violated as one moves from the weak gravity limit. Recent stud-745

ies [381,382] have pointed out the consequences of such an approximation and started treat-746

ing GWs as a tensor field. It is pointed out that there is no notion of a unique “propagation747

direction” as can be defined in the geometric optics limit as well as the wave optics treatment748

for a scalar wave. Similarly, strong gravity effects could add extra phenomenology [383].749

Therefore, all types of lensing—micro, milli, and strong—can potentially lead to spurious750

GR deviations being detected if neglected. Hence, should such deviations be seen, it would751

be crucial to verify possible astrophysical origins of the modification in the GW signal, and in752

particular if the GW event is not lensed.753

4.2 Environmental Effects754

The current waveform models can be referred to as vacuum templates as they only describe755

GWs from isolated binary systems in a vacuum environment, neglecting realistic astrophysical756

surroundings of the source. However, in reality, the binary is always in an astrophysical en-757

vironment that impacts the binary’s orbital evolution and hence results in a GW signal from758

the binary different than the vacuum template. There are many scenarios in which the GW759

signal from an environment-embedded binary system could be different from its correspond-760

ing vacuum signal. These are, but not limited to, (i) the source resides in a dense environ-761

ment [384–387] such as dense cores of massive stars [388–390], accretion disks of active762

galactic nuclei [32, 391–396], and star clusters (see, e.g., [397]), (ii) the source resides in763

a dark matter halo [32, 398–403], and (iii) the source is immersed in a strong electromag-764

netic field [404, 405]. Moreover, the peculiar acceleration of the source with respect to the765

observer, i.e., time-varying Doppler shift [406–409] and the acceleration of the universe, i.e.,766

time-varying redshift itself [406,410,411] could lead to GW signals being different from vac-767

uum templates.768

The detailed modeling of different environmental effects on the binary’s GW signal is chal-769

lenging and requires computationally expensive NR simulations [389]. However, in the litera-770

ture, these effects have been approximated as a correction to the vacuum GW signal’s PN phase771

evolution. For example, at the leading order, dynamical friction due to gas accretion can be772

modeled as a−5.5PN correction whereas collisionless (collisional) accretion can be modeled as773

a −4.5PN (−5.5PN) correction [387,412–414]. The accretion and dynamical friction due to a774

scalar dark matter cloud give rise to a −4PN and −5.5PN correction, respectively, to the phase775

at the leading order [415]. Electromagnetic effects have been computed at next-to-leading776

order (at 3PN) by taking into account the whole electromagnetic structure of a star. The lead-777

ing magnetic corrections at 2PN order (assuming a constant and aligned magnetic dipole) to778

the GW phase are found to be comparable to a 1.5PN point-particle effect [416, 417]. Phase779

correction due to the line-of-sight peculiar acceleration of the source has been computed up780

to 3.5PN order [407,418] while the acceleration of the universe leads to a −4PN correction to781

the phase at leading order [410,411].782

It has been argued that the magnitude of the environmental [32, 419] and cosmologi-783

cal [406] effects are expected to be quite small and hence could be neglected for ground-784

based detectors. However, there could be scenarios where these effects are non-negligible,785

e.g., stellar-mass compact binaries would merge around a supermassive black hole and one can786

still get a significant deviation from the vacuum template in the bands of LIGO/Virgo/KAGRA787

detectors [418]. Moreover, near supermassive black holes, in galactic nuclei, triple systems788

of stars are common and they mostly are hierarchical in nature [420–422], i.e., a tight inner789

binary is orbiting a tertiary on a wider orbit which forms the outer binary. In these hierarchical790
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triples, the tertiary brings interesting features to the GW signal emitted by the inner binary,791

e.g., the oscillation of eccentricity and inclination of the inner binary’s orbit due to the Kozai-792

Lidov mechanism [423, 424]. Such oscillations could modify the frequency evolution of the793

inner binary and this needs to be taken into account in waveform modeling [425,426].794

A recent study by Santoro et al. [427] showed that particularly large environmental effects795

can significantly bias the parameter estimation if vacuum templates are used for the analysis,796

even when not directly detectable by LIGO-like instruments. Although this bias requires ex-797

tremely dense environments that are not predicted by standard astrophysical models, it would798

be important to find out if such biases in parameters could lead to false GR violations for more799

sensitive XG detectors.800

Likewise, ringdown templates are simple and based on predictions from vacuum GR. Modi-801

fications of GR usually lead to extra polarizations or include degrees of freedom with different802

modes, introducing a simple handle to test for beyond-GR physics. However, environmen-803

tal effects, such as accretion disks, dark matter halos or any form of matter outside of black804

holes introduces low-frequency modes or drastic changes to higher overtones, de-stabilizing805

the spectrum [32, 428, 429]. Concrete examples suggest that spectral instability of the domi-806

nant mode introduces changes in the waveform only well after coalescence, but the relevance807

of overtone instability for time-domain waveforms still needs to be well understood [430].808

However, it is worth mentioning that environmental effects will be possibly important only809

for certain events, while likely negligible for the majority. Thus, any competing beyond-GR810

interpretation of environmental effects should coherently explain this non-trivial dependence811

on the source.812

4.3 Mistaken Source Class813

4.3.1 Beyond Compact Object Mergers on Bound Orbits814

Parabolic or hyperbolic scattering [431] as well as head-on collision of compact objects [432–815

434]may give rise to GW signals which may resemble that of a quasi-circular CBC close to the816

peak of the signal. Therefore, for relatively short-duration signals, there is a risk of confusing817

a compact binary merger with one of the above classes of sources, leading to biases on the818

source parameters and thereby affecting tests of GR. In the case of GW190521, studies have819

discussed the degeneracy between a precessing compact binary in quasi-circular orbit with a820

binary that undergoes head-on collision [435] and a merger of two nonspinning black holes on821

hyperbolic orbits [436]. It is argued that the lack of premerger features in certain precessing822

configurations in quasi-circular CBC may mimic a head-on collision leading to underestima-823

tion of mass parameters and overestimation of luminosity distance when a quasi-circular CBC824

waveform is employed for parameter estimation. Obviously, such biases will directly affect825

most tests of GR.826

However, precise estimates of final spin can help in distinguishing head-on collision from827

a quasi-circular CBC. For example, if the inferred remnant black hole spin is high (e.g., ∼ 0.7828

as was the case for GW190521), this could make the head-on collision unlikely as very special829

configurations may need to be invoked to explain this. As the head-on collisions are them-830

selves very special configurations, additional requirements such as this (large remnant spin)831

may weigh down their possibility in a model selection problem. Further, due to the special832

symmetries of the head-on collision, the spherical harmonic modes excited in a head-on col-833

lision may differ from those in a quasi-circular CBC. For instance, unlike quasi-circular CBCs,834

in head-on collisions ` = 2, m = 0 mode may be as strong as ` = 2, m = 2. Such features may835

also help in a model selection problem. A dedicated study that looks into the effect of degener-836

acy between quasi-circular CBC and head-on collision or parabolic/hyperbolic encounters and837

how that impacts tests of GR will be very useful. To do this we require more accurate analytical838
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or numerical waveform modeling of head-on collision and parabolic/hyperbolic encounters.839

4.3.2 Black Hole Mimickers840

There are various exotic compact objects that are massive and compact enough that gravita-841

tional waveforms from binaries of such objects could be close to those from a binary black hole842

(see, e.g., [437, 438]). The simplest such objects can be described by GR minimally coupled843

to a non-Standard Model field (e.g., an ultralight scalar field describing dark matter [439]).844

More complicated models for such objects involve nonminimally coupled fields, where it may845

make more sense to treat the additional scalar field as part of the gravity sector. However,846

even in the case where gravity is still GR, the specifics of the waveform would still differ from847

that of a binary black hole in GR, and one would thus obtain a false deviation from GR when848

applying a test of GR based on a binary black hole waveform model. The most theoretically849

well-modelled such objects are boson stars (see, e.g., [440]), which are formed from a mas-850

sive complex scalar or vector field, that may be self-interacting, as is necessary to obtain more851

compact stars (that are thus more similar to black holes)—see, e.g., [441]. However, there are852

many other models, including quite exotic objects, like gravastars [442], which have an inte-853

rior made of de Sitter space. A concrete framework for these exotic objects might require GR854

deviations [443], but they can be described also using exotic matter within GR (e.g., [444]).855

For all of these cases, there will be the same matter effects on the inspiral that one finds in856

the PN approximation for binary neutron stars (some of which are discussed in Section 3.1.2),857

albeit with different values. In particular, there will be effects of nonzero tidal deformabil-858

ities (see, e.g., [441, 444–446]), and the excitation of resonant modes in the objects (see,859

e.g., [447]), as well as effects from multipoles that are different from those in black holes (see,860

e.g., [181,448]) and a lack of the relatively large GW absorption (a.k.a. tidal heating) one ob-861

tains with black holes (see, e.g., [449]). There will also be differences in the merger-ringdown862

part of the signal (see, e.g., for simulations of orbiting binary boson stars [450–452]). If the863

merger of a binary of exotic compact objects forms an ultracompact object (i.e., an object864

that has a light ring outside its surface), then the ringdown is nearly indistinguishable from865

that of a black hole and a train of modulated pulses—known as GW echoes—is emitted in866

the late postmerger stage [32,453]. From the analysis of current GW events, no evidence for867

postmerger echoes has been found with unmodelled and modelled searches [4, 5, 454–459],868

despite claims of echo detections in [460–463]. Moreover, for perfectly reflecting objects the869

presence of echoes is disfavored by the current upper bounds on the stochastic background in870

the advanced LIGO frequency band [464].871

If one has a single population of exotic stars that are formed from a single fundamental872

field, then the non-GR effects in the inspiral will be solely determined by the masses of the873

objects, and there will be a maximum mass of stable stars, just as in the neutron star case. Thus,874

if one can measure these effects (and the masses of the stars) accurately (using, e.g., a more875

refined version of the analysis given in [465]), then one can check if the signals are indeed876

consistent with coming from a population of binaries of such stars. While alternate theories877

of gravity with an intrinsic scale will have a roughly similar behavior, where the GR deviation878

decreases with increasing mass of the black holes, it seems unlikely that an alternative theory879

of gravity would be able to mimic the situation of exotic stars to a high degree of accuracy.880

Moreover, if there is a population of exotic binaries as well as binary black holes, then one881

may observe binary black holes with very similar masses, spins, and distances as the exotic882

binaries, where a modified theory would predict that one would also observe deviations for883

the black hole binaries. Thus, while it is likely that the two situations could be confused884

with initial observations, it should be straightforward to distinguish them with high-accuracy885

observations. However, the ability of a given set of observations to distinguish specific exotic886

star models and specific alternative theories would need to be tested with explicit calculations.887
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For instance, black holes can have nonzero tidal deformabilities in certain alternative the-888

ories, such as those that introduce higher-order-in-curvature corrections in the action [445,889

466]. However, in such models the dimensionless tidal deformabilities are proportional to in-890

verse powers of the black hole mass, 1/M n, where n is a positive integer that depends on the891

theory (n= 4 or 6 in the calculations cited). This is not a good match for the mass dependence892

of any of the boson star models considered in [445], and while it might be possible to find an893

exotic star model that gives a better match, the stars would still have a maximum mass, while894

the black holes in the alternative theory have nonzero tidal deformabilities for all masses. The895

black holes also have differences in the spin-induced multipoles (see, e.g., [467]) that would896

also have to be reproduced by the exotic stars, which is unlikely to be possible to more than897

moderate accuracy. For instance, for some families of boson stars, the spin-induced moments898

have minimum values larger than their Kerr values (similar to the minimum values of tidal899

deformability), and show a different spin dependence than one obtains for alternative theo-900

ries (see, e.g., [468]). Additionally, there will be differences in the GW absorption comparing901

black holes in this theory and black hole mimickers with no horizon (which will generally have902

a much smaller GW absorption cross section than black holes). However, one also expects that903

the GW absorption in such theories will differ from that in GR due to the differences in the904

static tidal response, given the relation between this and GW absorption/tidal heating (see,905

e.g., [469]). Moreover, there are also changes to the binary’s dynamics that do not come from906

finite size effects in such theories (see, e.g., [470]), albeit only occurring at high PN orders.907

Thus, individual signals from binaries of exotic compact objects could be confused with a908

GR deviation in many tests (which do not include the expected non-black hole modifications909

to the waveform). However, binaries of black hole mimickers will in general be able to be910

distinguished from a modification to GR, even one that predicts nonzero tidal deformabilities911

for black holes, at sufficiently high SNRs and when analyzing the population of signals, or912

possibly when performing multiple independent tests of a single signal.913

In the scenario where one or both of the black holes have boson clouds around them,914

superradiance (see, e.g., [471]) will give deviations from a vacuum binary black hole signal915

that are similar to those that one obtains in the case of exotic compact objects. However,916

the same general arguments hold for distinguishing such a binary from a binary black hole917

in an alternative theory of gravity. Of course, in the case of boson clouds, there will not918

be a maximum mass of the binary’s components, and the absorption of GWs will be very919

similar to that of vacuum black holes. However, there will also be time dependence of the tidal920

deformability and non-black hole multipole moments due to perturbations or even disruption921

of the clouds due to the effects of the other black hole (see, e.g., [472–474]). Additionally, since922

the superradiant growth of the clouds is only possible for certain pairs of black hole masses923

and spins (see, e.g., [475]), this case should be easy to distinguish from the case of exotic924

compact objects when considering the population. Additionally, one can obtain constraints925

on the boson mass from the contributions from the superradiant instability to the stochastic926

background of GWs [476,477].927

Additionally, boson clouds are expected to emit a nearly periodic and long-duration GW928

signal [476, 477]. No evidence of such signals is found in current GW data, which provides929

constraints on the ultra-light scalar boson field mass (see, e.g., [478–481]).930

4.4 Statistical Assumptions of Astrophysical Population931

Combining information from multiple signals is a powerful method to perform stronger tests932

of GR. However, assumptions on the underlying astrophysical population and the statistical933

methods adopted to perform the joint analysis can affect the results.934

Biases due to waveform modelling systematics can pile up when stacking multiple events935

in a catalog. Several studies [88,134,482,483] show that even if systematics are under control936
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at the level of the individual events, the accumulation of biases in a population analysis can937

produce false deviations from GR if the catalog is large enough. Depending on the actual938

population of resolved signals and on the way the events are combined, false deviations can939

appear with as little as ∼ 30 events with SNR> 20 in the most pessimistic scenarios [483].940

Moreover, restricting the study to golden events with high SNR is even more vulnerable to false941

deviations once these events become routine in XG detectors [88, 134], although techniques942

to mitigate the biases have been proposed [482].943

Furthermore, combining events requires concrete assumptions about the impact of the944

astrophysical population and the detectability of GW sources that violate GR. Many param-945

eterized tests of GR infer the presence of expected correlations between individual source946

parameters (such as the total mass of a binary black hole system) and the deviation parame-947

ter [484]. These correlated features within the inferred posterior distributions for individual948

events imply that specific choices regarding the astrophysical population distribution can skew949

these results to different regions of the parameter space.950

In a recent study, Payne et al. [485] demonstrate that neglecting the astrophysical popula-951

tion leads to inferences which are ∼ 0.4σ less consistent with GR within GWTC-3 for parame-952

terized tests of GR. However, they show that such biases can be mitigated by jointly inferring953

the astrophysical population properties while combining the distributions of GR violation pa-954

rameters. Furthermore, Magee et al. [486] illustrate that neglecting the loss in detectability of955

signals with GR violations places constraints on PN deviations that are up to 10% too narrow956

when ignoring the selection bias in the population. These studies highlight the need to care-957

fully consider the underlying statistical methodologies used when attempting to test GR. In the958

same vein, astrophysical inaccuracies or biases in the properties of a source population (e.g.,959

imperfect mass distributions) could also lead to false GR deviations. For example, this can960

happen if events are detected in regions of the parameter space disfavored by astrophysical961

population models.962

Combining events to test GR also requires assumptions on the GR deviations that are being963

tested. If the GR modification is common among all the events (as in the case of, e.g., a964

nonzero graviton mass or a nonzero time variation Ġ of Newton’s constant), one can multiply965

the individual, marginalized likelihoods on the deviation parameter to obtain the combined966

likelihood for the catalog [88, 483, 487, 488]. On the other hand, if the GR deviations are967

independent for each event (as may be the case if black holes have “hair”), one can multiply968

the individual Bayes factors in favor of GR to obtain the total evidence from the catalog [88,969

483, 487]. In a more general framework where the distribution of GR deviations across the970

catalog is a known function of the event parameters (such as masses, spins, and compactness),971

one would need to perform a full Bayesian hierarchical inference on the population [487,489].972

Studies have shown that testing GR at the population level under one of the three assump-973

tions listed above (that all events share the same beyond-GR parameter; that modified theories974

introduce a new unrelated parameter for each detection; or that GR deviations across the cat-975

alog are a known function of the event parameters) can lead to the wrong conclusions if the976

underlying GR deviation does not satisfy the assumption [487,489]. Moreover, the accumula-977

tion of biases across the catalog due to waveform systematics can change significantly depend-978

ing on which method is chosen to combine multiple events [88, 483]. Recent work by [490]979

suggests that performing a full Bayesian analysis should be the most robust approach, but it980

still requires assumptions that can make the inference inherently model-dependent [487].981

As shown by [491], the finite size of the observed catalog will produce cosmic-variance982

effects that can cause to incorrectly infer deviations from GR, but a bootstrapping technique983

can be used to mitigate this effect.984
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5 When Does a Cause Become Important?985

Not all effects discussed in this paper are created equal, with some being always important986

for understanding false GR violations, such as non-stationary noise artifacts and glitches (see987

Sections 2.1 and 2.2) while some will not be important until XG detectors or beyond, such988

as unaccounted effects of the physics of gas and dust in the environment of binary black hole989

mergers (see Section 4.2). In this Section, we gauge when each of these causes will become990

important in terms of the generation of GW observatory.991

It is worth stressing that some level of systematics is unavoidable. For example, waveform992

models are intrinsically imperfect: even without missing any physics and removing current993

waveform systematics, there will always be intrinsic limitations due to truncation errors in per-994

turbative schemes, calibration inaccuracy with NR waveforms, phenomenological modelling995

of the merger, unavoidable numerical errors in NR simulations. Thus, we will have to always996

face some degree of waveform systematics, noise artifact, or astrophysical uncertainty, whose997

potential impact will grow for high SNR events. The point here is to control such systematics as998

much as possible, to a level that make them negligible with respect to a putative GR deviation.999

We summarize the discussion in Table 1. We note that this is intended as a rough guide as1000

exact predictions for the size of relative effects can depend on a number of factors, and one1001

expects improvements in the coming years (e.g., one expects waveform systematics to improve1002

in the coming years, however, we do not consider this here). Below we give our reasoning for1003

why we think these causes will be important (or not) for a given detector sensitivity.1004

Cause O4 A+ A# XG
Non-Stationary Noise 3 3 3 3

Non-Gaussian Noise/Glitches 3 3 3 3

Overlapping Signals 7 7 7 3

Data Gaps 7 7 7 3

Detector Calibration 7 7 7 3

Eccentricity 3 3 3 3

Tidal Effects 7 3 3 3

Kick-induced Effects 7 7 7 3

Ringdown Modes 3 3 3 3

Precession and Higher-order Modes 3 3 3 3

Memory 7 7 3 3

Sub-optimal Waveform Calibration 7 7 3 3

Lensing 7 7 7 3

Environmental Effects 7 7 7 3

Source Misclassification 3 3 3 3

Astrophysical Population Assumptions 3 3 3 3

Table 1: Summary of the causes discussed in this paper that can potentially mimic
a GR deviation while performing tests of GR. The tick means the effect should be
accounted for in the waveform models and/or analysis methods when analyzing data
of a GW detector of a given sensitivity. The cross means the effect is sub-dominant
to show up as a false GR violation with that detector sensitivity.

5.1 Noise Systematics1005

Non-stationarities, non-Gaussianities, overlapping signals Non-stationary and non-Gaussian1006

noise artifacts are an ever-present analysis burden in the current generation of observatories1007
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as discussed in Sections 2.1 and 2.2. While the extent to which these artifacts will alter with1008

upgrades to current observatories or persist in future-generation observatories remains un-1009

certain, it is difficult to imagine that they will subside to any degree. It therefore behooves1010

analysts to understand and mitigate these noise sources as post-processing steps before any1011

claim of a GR violation. On the other hand, the effect of contamination from overlapping sig-1012

nals, whether they be super- or sub-threshold to detection, will only increase and get worse as1013

the sensitivity of instruments gets better.1014

Data Gaps For current-generation detectors, data gaps are not expected to be a problem for1015

tests of GR because of the expected length of signals in the band and the likelihood of data1016

gaps at precisely those times. For XG observatories, however, data gaps could become more1017

problematic, as the signal duration increases to many hours to days, and the likelihood of gaps1018

increases.1019

Detector calibration For the current generation of observatories, uncertainties due to de-1020

tector calibration do not introduce biases in parameter estimation when assuming general-1021

relativistic waveforms, and therefore are not expected to introduce problems in tests of GR1022

(e.g., [100] and see Section 2.5). For XG observatories, assuming an ≈ 1% relative error on1023

the amplitude, and ≈ 1◦ error in phase, detector calibration error leads to mismatch errors of1024

approximately 10−5, which may be problematic for tests of GR [492]. Of course, this is only a1025

dominant source of uncertainty if other sources (e.g., waveform systematics) can be mitigated1026

below this level.1027

5.2 Waveform Systematics1028

Eccentricity Employing non-precessing, eccentric waveforms, some papers have claimed the1029

evidence for eccentricity in observed GW signals [126, 127, 136–138]. Although this is con-1030

tentious (see discussion in Section 3.1.1), it points to the fact that effects of eccentricity are1031

already relevant in current observations, and therefore already pose a difficulty when per-1032

forming tests of GR. This will continue to be a problem, and may be further exacerbated, as1033

observatories become more sensitive.1034

Tidal Effects Tidal signatures may be present in several observed neutron star binary merg-1035

ers (e.g., [60, 493]), although a confident detection of tidal signature is yet to occur. While1036

misspecification of tidal effects is unlikely to appear as a GR violation in current detectors, a1037

clean tidal signature may be present in A+ observatories for dynamical tidal effects [494], and1038

XG detectors for linear tides (e.g., [495,496]).1039

Kick-induced Effects The kick-induced effects are too small to be detected with the current1040

GW detectors but could potentially be observed in XG era [231, 232]. The XG detectors are1041

expected to observe∼ 4−5 events per year for which these effects will be constrained to better1042

than ∼ 10% [231].1043

Ringdown Tests of GR and the no-hair theorem are already performed using the ringdown1044

of loud GW signals (e.g., [1]) where the challenges that arise with specifying the ringdown1045

start time and avoiding overfitting to nonlinearities are already present. These challenges will1046

only intensify as the ringdown signals become louder in future observatories (e.g., [282]).1047
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Precession and Higher-order Modes Several events in the existing GWTC have strong evi-1048

dence of higher-order modes due, e.g., to extreme mass ratios such as GW190412 [497] and1049

GW190814 [498]. There are several events that have evidence of spin precession, such as1050

GW190521 [499] and GW200129 ( [68], although see [69,500]). It is therefore important to1051

account for spin precession and higher-order modes in current analyses, and the inclusion of1052

higher modes will become even more important as the sensitivity of observatories continues1053

to improve.1054

Memory Displacement memory is too small to be detected in individual events with the sen-1055

sitivities of current detectors [501–504]. A memory signal is expected to influence parameter1056

estimation results in loud events with SNR greater than 60, expected during the A# era [329],1057

implying at this stage memory needs to be properly accounted for in waveforms models. Mem-1058

ory will have a significant influence in XG observatories; for example, Cosmic Explorer is pre-1059

dicted to have 3 to 4 events per year where memory is detectable for an individual event [504],1060

amplifying the need to properly account for memory effects.1061

Waveform Calibration If we consider NR simulations to be the ground truth, then current1062

waveform calibration errors refer to systematic biases introduced because the waveform ap-1063

proximants do not exactly match the NR simulations. But even NR waveforms carry uncer-1064

tainties associated with, e.g., resolution effects and finite radius extraction. Such waveform1065

calibration errors on the order of a few percent in amplitude, and a couple of degrees in phase,1066

are subdominant to stochastic noise processes for binary neutron star observations at approxi-1067

mately 100 Mpc in A+ observatories [103]. Waveform uncertaintes are currently smaller than1068

this, implying they are not a potential source of bias for tests of GR. This is not necessarily1069

true in the A# and XG era when even NR waveforms will not be sufficiently accurate for unbi-1070

ased parameter estimation recovery [334,492]. This latter point motivates the continual need1071

for more accurate NR simulations and waveform extraction methods, as well as waveform1072

approximations.1073

5.3 Astrophysical Aspects1074

Lensing In current and future detectors like advanced LIGO and A+, the estimated rate of1075

strong lensing events for binary neutron stars is approximately 0.1%, while for binary black1076

holes it is expected to be around 0.2%. These figures are consistent across various stud-1077

ies [505–507]. Following this, advanced LIGO is anticipated to detect approximately 0.1 lens-1078

ing events per year, whereas A+ is projected to observe 1 event annually. However, with XG1079

detectors, O(100) events could be detected per year. It is important to note that these rates1080

serve as a lower bound for millilensing and microlensing, since they could occur together with1081

strong lensing in events. Therefore, lensing effects will not be a significant issue only until XG1082

era.1083

Environmental Effects Astrophysical environments in which one may anticipate binary sys-1084

tems merging (and which may leave an imprint on the GW signal) include thick (ρ̄ ∼ 10−8 g/cm3)1085

and thin (ρ̄ ∼ 0.1 g/cm3) accretion disks around active galactic nuclei [32], cold dark matter1086

spikes (ρ̄ ∼ 10−6 g/cm3) [400], superradiant-boson clouds (ρ̄ ∼ 0.1 g/cm3) [471] and the1087

dynamical fragmentation of massive stars (ρ̄ ∼ 107 g/cm3) [389]. Santoro et al. [427] found1088

no support for environmental effects in GWTC-1, and found the environmental density would1089

need to be ∼ 20 g/cm3 to be observable. This likely does not correspond to any of the astro-1090

physical environments mentioned previously. For advanced LIGO design sensitivity, they find1091

that dynamical friction effects are detectable at ρ̄ ¦ 10 for a GW170817-like event, while the1092
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effect of collisionless accretion is only visible for densities 10-100 times greater. As there are1093

no proposed environments with such densities, it is unlikely for environmental effects to be1094

visible in advanced LIGO data. They find that XG observatories will be sensitive to environ-1095

mental densities of ∼ 10−3 g/cm3, which includes both thin accretion disks and superradiant1096

clouds. It is therefore likely that environmental signatures will only become relevant for GR1097

tests in XG and beyond.1098

Source Misclassification The problem of source misclassification is ever-present in tests of1099

GR and must be considered when mitigating against false GR violations. For example, while1100

current analyses find no evidence of GW echoes that would provide evidence of black-hole1101

mimickers (see Section 4.3.1), these non-detections only place limits on, e.g., the reflective1102

properties of the ultra-compact objects. As the sensitivity of the GW network improves, we1103

will continue to probe the parameter space of potential black-hole mimickers.1104

Astrophysical Population Assumptions The problem of fortifying hierarchical tests of GR1105

against population assumptions and modelling systematics will be ever-present. Statistical1106

assumptions on how to combine the information from individual events require care, as they1107

reflect implicit assumptions on the beyond-GR theory that is being tested [238,487]. Incorrect1108

prior assumptions on the astrophysical population can cause biases if the deviation parame-1109

ters are correlated with individual source parameters. These biases can be mitigated by jointly1110

inferring the astrophysical population when performing hierarchical tests of GR, or in the1111

high-SNR limit of XG detectors if the degeneracies between source parameters and deviation1112

parameters are not perfect [485]. Effects due to the finite size of the catalog [491] or selec-1113

tion effects against large deviations [486] can also lead to biases in population constraints if1114

not properly accounted for. Finally, waveform systematics (both due to missing physics and1115

sub-optimal calibration) can accumulate in a population analysis and lead to infer false GR1116

violations even if the biases are under control at the single-event level [134,483]. This effect1117

will be even more prominent when restricting the test to high-SNR events that can be routinely1118

observed with XG detectors [88].1119

6 Summary1120

Since the first detection in 2015, GW observations are now routinely used to test GR in highly1121

dynamical and non-linear gravity regimes. Several tests of GR exist at the moment and the1122

majority of them rely on comparing the GW data with well-motivated, state-of-the-art wave-1123

form models. The GW observations from the LIGO-Virgo-KAGRA collaboration have so far1124

not found any deviation from GR, but this may not be the case forever, especially with the1125

increased sensitivity of GW detectors. In the future, all these well-motivated, state-of-the-art1126

waveform models may fall short of explaining all the features in the high-quality data due to1127

the complexity of the physics of GW sources and the detector noise modeling.1128

In this paper, we listed the possible causes that can lead to an apparent GR deviation us-1129

ing observations from ground-based GW detectors given the current waveform models and1130

data analysis techniques that are available to the community. We grouped these causes into1131

three broad categories: noise systematics, waveform systematics, and astrophysical aspects.1132

Noise systematics include noise being non-stationary and/or non-Gaussian with or without1133

time-overlapping signals present in the data, gaps in data, and errors in instrument calibra-1134

tion. Waveform systematics include cases of missing physics such as eccentricity, tides, kicks,1135

overtones, mirror modes, and non-linear ringdown modes, and sub-optimal modeling and1136

calibration (with NR waveforms) of quasi-circular waveforms. Astrophysical aspects include1137
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gravitational lensing, non-vacuum environments, mistaken source classes, and assumptions of1138

astrophysical population.1139

Our list is admittedly not complete and we might have missed some other important causes1140

of false GR deviation. However, we hope that this paper will serve as a starting point for the1141

community to study, understand, and document the effects of these causes on tests of GR. In a1142

follow-up paper, we will discuss what actions could be taken when a significant GR deviation is1143

detected and propose a possible formulation of a GR violation detection checklist. We hope that1144

these efforts will prepare us for the time when there will be an actual statistically significant1145

GR deviation found in the GW data.1146
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