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Abstract

General relativity (GR) has proven to be a highly successful theory of gravity since its in-
ception. The theory has thrivingly passed numerous experimental tests, predominantly
in weak gravity, low relative speeds, and linear regimes, but also in the strong-field
and very low-speed regimes with binary pulsars. Observable gravitational waves (GWs)
originate from regions of spacetime where gravity is extremely strong, making them a
unique tool for testing GR, in previously inaccessible regions of large curvature, rela-
tivistic speeds, and strong gravity. Since their first detection, GWs have been extensively
used to test GR, but no deviations have been found so far. Given GR’s tremendous success
in explaining current astronomical observations and laboratory experiments, accepting
any deviation from it requires a very high level of statistical confidence and consistency
of the deviation across GW sources. In this paper, we compile a comprehensive list of
potential causes that can lead to a false identification of a GR violation in standard tests
of GR on data from current and future ground-based GW detectors. These causes include
detector noise, signal overlaps, gaps in the data, detector calibration, source model inac-
curacy, missing physics in the source and in the underlying environment model, source
misidentification, and mismodeling of the astrophysical population. We also provide a
rough estimate of when each of these causes will become important for tests of GR for
different detector sensitivities. We argue that each of these causes should be thoroughly
investigated, quantified, and ruled out before claiming a GR violation in GW observa-
tions.
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1 Introduction34

Einstein’s general theory of relativity (GR) stands as the most successful theory of gravity to35

date. Rigorously tested in weak-field, low-speed, and linear gravity regimes, GR has consis-36

tently withstood all scrutiny. Gravitational waves (GWs) are predictions of GR and offer a37

unique avenue for exploring spacetime dynamics in extreme gravitational conditions. Despite38

the widespread use of GWs from compact binary coalescences (CBCs) for testing GR, no devi-39

ations from the theory have been found so far (e.g., [1–12]).40

The sensitivity of GW detectors has been continuously improving and LIGO and Virgo de-41

tectors are currently witnessing their fourth observing run (O4) with Advanced LIGO and Virgo42

sensitivity [13] which later will be joined by KAGRA [14]. These detectors will be further up-43

graded for the fifth observing run (O5) during 2027-2029 [15] with A+ sensitivity [16], and44

they will eventually be joined by LIGO-India [17,18]. Looking further into the future beyond45
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O5, there is a possibility for detectors with A# sensitivity [19] that are expected to be twice46

as sensitive as A+. Moreover, there are concrete plans to build next generation (XG) detec-47

tors, such as Cosmic Explorer [20] and Einstein Telescope [21], that are expected to be at48

least 10 times more sensitive than the current detectors in O4. The first space-borne mission,49

LISA [22], is scheduled to be launched in the mid-2030s, and it might be followed by other50

missions such as TianQin [23,24], Taiji [25], DECIGO [26,27] and LGWA [28].51

With these improvements in sensitivity, thousands of CBCs are expected to be observed with52

high signal-to-noise ratios (SNRs) [16]. A subset of these mergers will cover extreme regions53

of the parameter space, including highly spinning and/or strongly precessing binaries, binaries54

with eccentricity, binaries involving dense matter, etc. Such binaries will have the capability55

to test GR stringently and constrain beyond-GR effects, if present in the data. For example,56

higher black hole spins lead to higher curvature outside the horizon [29], which allows one57

to place constraints on a variety of higher-derivative or curvature-corrected theories [30,31].58

More so, the near-horizon region of black holes could potentially access energies as large as59

the Planck scale that could alter the black hole ringdown spectrum if GR is modified near60

the event horizon [32, 33]. There is also the possibility that GR may be violated not in the61

ultraviolet (UV), but rather in the infrared (IR) regime of the theory, aimed at offering an62

alternative explanation of the dark sector. In this “IR” scenario, extending the reach of GW63

detectors to lower frequencies may help observe possible deviations from GR in the inspiral64

phase of CBCs [34–37].65

The majority of tests of GR currently performed rely on waveform models that are com-66

pared with the GW data. Often these tests are formulated as null tests where one looks for pos-67

sible departures from GR by introducing deviation parameters on a given waveform model. No68

statistically significant deviation from GR has been observed at the level of individual events69

or for the whole population [5]. However, there were a couple of events in GWTC-3 [38] that70

suggested GR deviations, though further investigations are needed since these deviations could71

be due to the use of imperfect waveform models or inadequately understood noise artifacts in72

the data [39].73

Due to the complexity of the physics of compact binary mergers as well as the detector74

noise modeling, it is extremely important that there is a consensus in the community about75

the necessary conditions that will warrant a much more comprehensive list of tests to be carried76

out to vet (or rule out) a potential GR violation claim. There are two aspects to this issue. The77

first is to identify all possible causes which might lead to a false GR violation. The second78

is a checklist to be executed upon encountering a strong candidate for GR violation. The79

objective of this paper is to tackle the first aspect and enumerate an extensive list of scenarios80

that may appear as violations of GR, when in fact they are not. The second aspect requires81

us to construct a checklist of items that address other issues such as the statistical significance82

of the violation, the status of the detector, or if the violation is in contradiction with other83

experiments or astrophysical observations. A companion paper will address these issues and84

a possible formulation of a GR violation detection checklist. It is worth noting that a similar85

effort has been made in Section 7 of [40], albeit in the context of tests of GR using LISA. Our86

goal here is to broadly classify different effects that can mimic a GR violation in the context of87

present- and next-generation ground-based interferometric observational facilities.88

There are at least three distinct scenarios that can mimic a GR violation (see Fig. 1): noise89

artifacts in data, waveform systematics, and astrophysical aspects, each of which is discussed90

at length below. Much work has already been done to understand aspects of these scenarios91

on tests of GR. Broadly speaking, these three scenarios also have the possibility to impact92

other scientific conclusions based on GW data, such as constraints on astrophysical sources or93

cosmological models. In many cases, efforts to understand the impact of these scenarios on94

astrophysics or cosmology can also illuminate potential impacts on tests of GR.95
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Figure 1: The diagram illustrates the principal false causes of GR violation in GW
data. They are classified into three main classes: (a) noise artifacts, (b) waveform
systematics, and (c) astrophysical effects.

To keep the discussion coherent, we group the causes only into these three scenarios even96

if this classification, or the distinction between any two causes, may seem somewhat arbitrary.97

For example, we keep the overlapping signals under noise artifacts even if this is not, strictly98

speaking, an instrumental noise source. Similarly, we divide issues related to waveform sys-99

tematics into two main themes (missing physics and inaccurate modeling), even if the distinction100

between the two is not always obvious. By “missing physics” we mean cases when a particular101

effect is not included at all, or only partially included in the waveform models (e.g., tides and102

higher-order ringdown modes), while “inaccurate modeling” refers to intrinsic limitations of103

the waveform models in fully describing the known features of GR (e.g., waveform truncation104

errors).105

While most of the scenarios discussed below could lead to confusion with a GR violation106

in a given event or subset of events, any GR deviation should be consistent across the dataset,107

e.g., a given theory should explain why there is evidence for deviations in certain events and108

not in others in a similar region of the parameter space. The ever-increasing number of events109

expected in the future will help sort out these situations.110

2 Noise Systematics111

Current interferometric GW detectors are limited by fundamental noise sources [13] which112

causes the noise to appear as stationary and Gaussian only over short time scales and ranges of113

frequency [41]. In reality, however, noise from the detectors is neither Gaussian nor stationary114

(see, e.g., [41–43]). It can be relatively easy to spot times of extremely bad data quality in GW115

data, but the challenge lies with times of subtle data quality issues. The origin of noise sources116
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is notoriously difficult to pinpoint, even for obvious cases of poor data quality. However, it is117

essential that we understand our noise, remove any bias that noise introduces, and accurately118

infer the parameters of the observed sources.119

In this Section, we discuss the three main sources of noise (namely, non-stationary, non-120

Gaussian, and overlapping signals) observed in ground-based detectors that can affect our121

inference of transient GW signals. We also discuss the systematic error due to the gaps in122

data and calibration of the GW instruments that may also introduce some bias in the inference123

results.124

2.1 Non-stationarity125

Non-stationarity is a broadband form of noise which causes the statistical properties of the126

background to change with time. Non-stationarity occurs on the order of tens of seconds127

in the current LIGO detectors and can be caused by both instrumental and environmental128

sources [42,44], such as detector’s lockloss [45], variable seismic motion, thunderstorms [43],129

magnetic effects from lightning strokes [46], and radio frequency interference [42, 43]. This130

form of noise has been shown to affect the estimation of source parameters [47,48]. Modelled131

searches typically estimate a detector’s power spectrum over several minutes [49–51], which132

can cause the matched filter to miss the variable nature of the noise, affecting the search sensi-133

tivity. One method to account for this is to construct a statistic which tracks the variation of the134

power spectrum and to normalize the ranking statistic used by the detection pipeline [51–53].135

The method presented in [52] is also used to assess the stationarity of the data around can-136

didate GW events [43]. This is because non-stationary noise can impact binary neutron star137

signal parameters [54, 55] since noise estimates, usually calculated over minutes, fail to cap-138

ture variations on shorter time scales. As signals from sufficiently massive binary black holes139

are usually shorter than the typical time scale of non-stationary noise, these sources are not140

thought to be affected. However, due to their long duration in the sensitivity band, sub-solar141

mass binary black hole searches will be affected, especially in the XG era where the signal142

duration could be up to several days.143

To date, this form of noise has not seriously affected the conclusions drawn from any of the144

LIGO-Virgo-KAGRA collaboration’s GW events. However, it could be an issue in the future, and145

certainly for XG detectors which will be more sensitive to noise variability and observe hours-146

long signals, breaking the assumption of stationarity. As such, future methods for detecting147

and interpreting GW signals should account for the variable nature of the detector noise.148

2.2 Noise Transients or Glitches149

Transient noise artifacts, also known as glitches, are also a common problem in interferometric150

GW detectors. Glitches can mask or mimic a signal and add to the noise background of tran-151

sient GW searches (see, e.g., [42,43,56]). Glitches occur frequently in all detectors; in the third152

observing run, the rate of glitches was between 0.29 to 0.32 per minute for LIGO-Hanford,153

1.10 to 1.17 per minute for LIGO-Livingston and 0.47 to 1.11 per minute for Virgo [38]. The154

inferred population properties of glitches have been shown to typically exhibit characteristics155

similar to CBC signals with large mass ratios and large spins, in contrast to the observed as-156

trophysical properties, which tend to have near equal masses and moderate spins [57]. This is157

because CBC signals with large mass ratios and large spins can have more ‘irregular’ waveform158

morphologies compared to equal-mass, non-spinning CBCs from the twisting-up effects due to159

precession. Therefore, this class of signals has a better chance of fitting well with the terrestrial160

disturbance produced by glitches that lack a CBC signal’s typical chirping-up characteristics.161

The morphology of glitches, in particular their time duration and the frequency space162

they affect, can be highly variable between different glitch classes. For example, blip glitches163
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(e.g., [58]) are fractions of a second in duration, covering a large bandwidth (e.g., tens to164

hundreds of Hz) and can mimic a GW signal of high mass compact binaries. We still do not165

know the origin of these types of glitches as they do not have a known environmental or166

instrumental coupling, but they appear to have different subcategories that may be caused by167

different physical mechanisms. In the third observing run, these types of glitches occurred168

4 times per hour at LIGO-Livingston and twice per hour at LIGO Hanford [43]. However,169

scattering glitches (e.g., [59]) caused by microseism noise, can be a few seconds long, and170

present as arches in the time-frequency plane, affecting frequencies below 100 Hz. These171

glitches manifest due to a small fraction of laser light scattering off a test mass, hitting a moving172

surface, and recombining with the main beam. These types of glitches are most prevalent when173

the ground motion is high. As such they can seriously contaminate hours of data, but not be174

a concern for weeks at a time.175

Tracking the occurrence and emergence of new glitch types can be a challenge. Both LIGO176

and Virgo take advantage of machine learning frameworks, combined with citizen scientists,177

to classify glitches based on their morphology in the time-frequency plane. GravitySpy [60]178

has been in operation since the second observing run, and citizens have helped to classify179

LIGO glitches into 23 distinct classes [43]. GWitchHunters [61] helps to classify glitches from180

the Virgo detector, and has been open to the public since November 2021. Both projects will181

prove extremely valuable in identifying and understanding glitches in the fourth and future182

observing runs.183

Glitches overlapping or being in the vicinity of a real GW signal can be a huge problem.184

In fact, in the third observing run 24% of GW events had a glitch within the analysis window185

for one or more detectors [38]. These glitches did not impact the detection of these events,186

but they had to be mitigated before the source parameters could be accurately estimated. A187

prime example of this issue first arose in the interpretation of GW170817 where a short glitch188

occurred 1.1 seconds before the coalescence of the event, lasting only 5 ms [62]. Nonetheless,189

this noise had to be removed before the parameters of the event could be accurately deter-190

mined. Macas et al. [63], for example, shows that certain types of glitches can cause the sky191

localization to be incorrectly determined for certain types of signals, which can even affect192

follow-up with large field of view telescopes (i.e., 20 deg2).193

There are a number of ways in which noise can be removed or subtracted from the data.194

Should the noise be broadband in origin then noise subtraction over the course of hours or195

days is needed. This can be achieved using auxiliary channels which monitor noise sources196

at different points around an interferometer. A coupling function can then be determined197

to understand how much a certain type of noise affects the GW channel, and the noise sub-198

tracted [64,65]. This method is optimal when the data are Gaussian and stationary. More re-199

cent work has focused on machine learning techniques to cope with data with non-stationary200

noise couplings [66].201

For short instances of transient noise that may be in the vicinity of an event, there are202

a few methods which are currently used. A window function can be applied to zero out the203

glitch; this method is known as gating [49,67]. Gating has the benefit of being quick, however204

uncontaminated data will also be removed using this method, as the window function needs205

to be smoothly applied to avoid adding filtering artifacts to the data. Hence, this method is206

not appropriate if the glitch is not well localized in time and is close to an event’s coalescence207

time. A more robust method is to model a glitch with a time-frequency wavelet reconstruc-208

tion and use this to subtract it from the data; this method is applied using the BayesWave209

algorithm [68]. This method has been used to great effect in the third observing run [38]. An-210

other method, called gwsubtract, uses data from an auxiliary witness to the noise to subtract211

the noise from the GW channel [64, 69]. This was done for the first time around the event212

GW200129 [38], which seems to exhibit characteristics consistent with spin induced orbital213
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precession [70]. However, Payne et al. [71] find that residual data quality issues leftover from214

this cleaning process may be the origin of the precession observed in GW200129. Moreover,215

in a ringdown analysis of GW200129 [39] found a deviation from GR in the peak of the GW216

amplitude while employing a nonprecessing SEOBNRv4HM_PA model [72–74] but they ascribe217

it to waveform systematics (modeling of spin precession) or data-quality issues (glitch miti-218

gation procedures). Regardless, this example of GW200129 highlights the complexities and219

care that need to be taken when removing glitches from GW data and interpreting results from220

inference analyses.221

Glitches will always remain a feature of GW data because as the detector sensitivity im-222

proves noise artifacts that were sub-dominant will become more relevant. It is unfeasible to223

remove them all. New methods are being developed to effectively deduce both source and pop-224

ulation parameters by integrating realistic but imperfect data. For example, Ashton et al. [75]225

uses Gaussian processes to replace the traditional GW likelihood. This method, in principle,226

can model arbitrarily colored noise, non-stationarity, and glitches, to augment the approach227

to estimate the parameters of sources. In addition, Heinzel et al. [76] presents a method for228

inferring the population of GW sources contaminated by blip glitches. They are able to infer229

the shape parameters of a GW population, whilst simultaneously inferring the population of230

the glitch background events.231

In order to be confident that a signal is indeed a violation of GR, characteristics that may232

arise due to the noise identified here need to be understood. Work has started in this regard,233

for example with [77]. They investigated how an overlapping binary black hole signal with234

three different glitches can affect tests of GR before and after the glitches were mitigated.235

Moreover, they only considered a glitch in a single detector out of three and still found a GR236

deviation when the glitch was not mitigated. The authors also point out that their study is not237

sufficient to give quantitative statements about the effects of certain glitch classes or mitigation238

methods on tests of GR. Therefore, their work needs to be extended to assess the amount of239

GR deviation in different realizations of Gaussian noise, the effect of non-stationarities in the240

noise background, and the effect of data cleaning methods on mimicking GR deviations.241

2.3 Contamination from Overlapping Signals242

As the sensitivity of ground-based GW detectors improves, the chances of observing time-overlapping243

signals will also increase [78]. This may demand a shift in our detection and parameter es-244

timation strategies since current pipelines, designed for single GW signals, may yield biased245

results when applied to overlapping signals. However, several studies have shown that the246

detection [79,80] and parameter estimation [78,81–83] of overlapping signals are not a sig-247

nificant concern. For example, [79] and [80] showed that it is possible to detect and discern248

overlapping signals from binary neutron stars using a matched filtering algorithm. Relton et249

al. [84] conducted a more thorough study with both modeled and unmodelled search analy-250

ses and found that both analyses can detect overlapping signals from binary black holes when251

merging > 1 s apart. However, unmodelled analysis can identify overlapping signals merg-252

ing within < 1 s while modeled analysis can only identify only one of the two overlapping253

signals. Himemoto et al. [83] thoroughly explored the parameter space and concluded that254

overlapping signals do not lead to large biases in parameter estimation provided the coales-255

cence times and redshifted chirp masses of the two overlapping signals differ by at least 10−2
256

s and 10−4M� for binary neutron star mergers and 10−1 s and 10−1M� for binary black hole257

mergers, respectively.258

Nonetheless, overlapping signals do pose biases in both detection and parameter estima-259

tion of sources and methods have been proposed to correct those biases [85–88]. For example,260

Wu & Nitz [85] pointed out that overlapping signals reduce the search sensitivity by changing261

the noise’s amplitude spectral density and proposed an updated search campaign on overlap-262
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ping signals using the single-detector signal subtraction method. Johnson et al. [89] pointed263

out that the presence of overlapping signals may require us to revisit the definition of the like-264

lihood as well as the assumption that source confusion can be treated as stationary Gaussian265

noise. Possible remedies to the bias in source parameter inference have been suggested, ei-266

ther from a Fisher Matrix study [86] or adapting the signal model accordingly in the Bayesian267

likelihood [87]. Langendorff et al. [88] used normalizing flows as an avenue to deal with the268

computational burden coming from multiple-signal analyses in case of overlaps.269

Moreover, Hu & Veitch [90] studied the effects of waveform inaccuracy and overlapping270

signals on tests of GR and demonstrated that when combining results from multiple signals271

with overlaps, the deviation from GR decreases when waveform models are perfect (no wave-272

form inaccuracy), but inaccurate waveform modeling can lead to a false deviation of GR for273

overlapping signals. Dang et al. [91] extended this study to higher post-Newtonian (PN) de-274

formation parameters. They concluded that although a non-negligible number of overlapping275

signals can lead to false GR violations at the individual event level, when the results are com-276

bined, the biases tend to smoothen out, leading to a preference for GR at the population level277

inference. (We discuss the effects of population-level analyses on tests of GR in more detail in278

Section 4.4.)279

All these studies focussed on overlaps arising in the data of XG detectors, since the prob-280

ability of observing overlapping signals in the era of A+ sensitivity [16] or Voyager [92] is281

very small [78]. However, it is likely that a quiet GW signal below the detection threshold is282

present along with the dominant GW signal in the data [93]. This will not pose a problem283

for estimating individual source parameters, but issues may arise when combining multiple284

signals, where sub-threshold events collectively act as background or confusion noise [94,95].285

Although [94,95] considered signals in the XG era only, we might need to consider the effect of286

a confusion-noise-like background in O5 or A# era in the context of testing GR. Moreover, qui-287

eter signals may result in imperfect subtraction of the GW model from data when following the288

definition of likelihood to infer source properties under the assumption of stationary, Gaussian289

noise. Consequently, combining results across multiple signals to infer population proper-290

ties could gradually accumulate biases from each single-signal analysis, potentially mimicking291

noise properties [89] and introducing deviations from GR.292

2.4 Gaps in the Data293

The data we expect to collect from XG detectors is likely to contain gaps, due to loss of lock294

at the inferometers that could be caused by a plethora of instrumental or anthropomorphic295

reasons. The sensitivity band of current detectors is such that GW signals are in the band for296

about 30 minutes at most. The likelihood of a data gap in such a short window is small, and if297

it occurs, it is likely to decrease the SNR significantly, since the recovery time (for the instru-298

ment to reacquire lock and start data taking again) is comparable to the signal duration. This299

scenario changes drastically with XG detectors because the low-frequency sensitivity is greatly300

increased, allowing for the observation of signals for many hours to days. The likelihood of a301

data gap in this window is larger, and if it occurs, it is likely to both decrease the SNR of the302

event and deteriorate the analysis of the GW source.303

Not much work has gone yet to study the effect of data gaps in XG detectors, but some304

work already exists for data gaps in space-based detectors, from which we can extrapolate305

some conclusions. Previous work has shown that data gaps can deteriorate and bias param-306

eter estimation for certain sources [96, 97], in particular when the data gap coincides with307

the merger phase. In general, we would expect that a data gap during the merger would308

inhibit our ability to constrain deviations from GR at high PN order, while gaps in the early309

inspiral will be the same for low (or negative) PN order modifications to GR. In particular, if310

the data has a gap, but our analysis does not account for it, parameter correlations between311
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non-GR and GR parameters are likely to introduce biases that may lead to a false GR violation.312

Certain methods, such as Bayesian data augmentation [98], however, can be used to include313

missing data periods as auxiliary variables when sampling the posterior distribution of model314

parameters that have shown promise at eliminating biases.315

2.5 Detector Calibration Error316

The GW strain data d are not directly recorded by the interferometer. Instead, it is recon-317

structed from the voltage v( f )measured by photodetectors and a response function R( f ) that318

relates the digital readout and GW strain, i.e., d( f ) = R( f )v( f ) [99]. The calibration pro-319

cess includes a series of measurements to construct a reference model for the response func-320

tion [99–101]. Bias in any step of this process can lead to errors in the measured strain data,321

and systematic errors in parameter estimation could arise if the calibration error is not taken322

into account. Vitale et al. [102] investigate the consequences of calibration error in Bayesian323

inference of source parameters. By comparing the ratio between the calibration systematic324

errors and the statistical uncertainties, their results show that the parameters that suffer the325

largest biases are those mostly related to the amplitude of GW signals: on average, calibration326

systematic errors are of O(1/100) of the statistical uncertainty for sky location parameters327

and O(1/1000) for masses. This is potentially because phase errors are localized in frequency328

and do not accumulate over the inspiral. It implies that calibration errors could have a minor329

effect in parameterized tests of GR that modify the phase of waveform. Vitale et al. [102] also330

conclude that < 20% of amplitude calibration error or < 10− 20◦ of phase calibration error331

should not lead to significant biases for all but the strongest signals in the advanced LIGO332

era, consistent with [103] and [104]. Furthermore, they report that the calibration system-333

atic error is not strongly correlated with SNR as the calibration affects both noise and signal.334

However, whether such a level of calibration systematics is tolerable in the XG era where SNR335

can reach O(1000) is worth investigating. It is still of great importance to improve calibration336

techniques along with the high sensitivity in the XG era [44,105].337

It is possible to quantify and mitigate calibration errors in detection and data analysis. The338

uncertainty of the response function can be indicated by the photon calibrators which apply a339

known radiation pressure directly on the test masses within the detector [99,106–108]. Abbott340

et al. [109] reported < 10% calibration uncertainty in the strain amplitude and < 5◦ in phase341

during the first LIGO-Virgo observing run , and in the third observing run these uncertainties342

were reduced to < 7% and < 4◦, respectively [110]. Note that these are overall uncertainties343

and systematic errors alone are even smaller. These estimates of calibration uncertainties are344

used as priors to marginalize uncertainties in GW strains during parameter estimation, which345

effectively mitigates the calibration error [111, 112]. However, this technique might conceal346

tiny deviations from GR, since it marginalizes over some level of uncertainties on amplitude347

and phase. Hence, the effect of calibration errors on tests of GR needs to be studied for current348

and future GW detectors, so that it can be ruled out (or included) as one of the possible causes349

for false GR violations.350

3 Waveform Systematics351

3.1 Missing Physics in Waveform Models352

The current state-of-the-art waveform models used in tests of GR still lack certain physical353

effects, such as eccentricity of the binary’s orbit, overtones, and non-linearities in the ringdown354

phase of the binary merger, etc. Including each of these known physical effects individually is355

crucial for precision GR tests, but their collective inclusion is essential for unbiased assessments356
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of GR. Here we discuss missing physical effects that could lead to a false GR violation.357

3.1.1 Eccentricity358

The eccentricity of a binary’s orbit depends on the formation history of the binary. Binaries359

formed through isolated formation channels in the galactic field are expected to have negli-360

gible eccentricity when observed in the frequency band of ground-based detectors, whereas361

binaries inside dense stellar environments such as globular clusters and nuclear star clusters362

might have moderate to high eccentricities when observed by these detectors. In an isolated363

formation channel [113], the binary goes through various mass transfer episodes between its364

components, and as the components evolve and undergo supernova explosions, the binary365

orbit could gain some eccentricity due to supernova kicks. However, due to the emission of366

gravitational radiation [114,115] the binary’s orbit shrinks, and the binary sheds away all its367

eccentricity over the long inspiral, leaving it with negligible eccentricity close to merger [114].368

For example, if a binary with an initial orbital eccentricity of 0.2 emits GWs whose dominant369

mode has a frequency of 0.1 Hz, the eccentricity reduces to ∼ 10−3 when it reaches a domi-370

nant mode GW frequency of 10 Hz. That is why binaries detected by LIGO/Virgo are expected371

to be quasi-circular. On the other hand, a fraction of dynamically formed binaries can still372

have some eccentricity (and as high as ∼ 1 at 10 Hz) when observed in the frequency band373

of the LIGO/Virgo detectors [116–124]. Further, environmental effects such as accretion and374

dynamical friction can also increase the eccentricity of binaries [125].375

The problem of misinterpreting eccentricity as a potential GR violation is currently a two-376

fold problem. First, of missing physics; namely, the inclusion of both eccentricity, argument377

of periapsis (although see [126]), and precession in an inspiral-merger-ringdown waveform378

model. Distinguishing eccentricity from precession without waveforms that include both [127]379

introduces systematic biases in the estimated binary parameters [128–132] that could be mis-380

construed as false violations of GR [133–137]. Second, the current analysis methods are pro-381

ducing inconsistent results [126,128,129,138–140] for the same events such as GW190521 [141].382

Once the above two problems are solved, the problem of eccentricity reverts back to being383

one of waveform systematics discussed in more detail in Section 3.2.2 below. We anticipate384

larger waveform systematics in systems with higher eccentricities. However, these are not385

the ones for which eccentricity will manifest as a violation of GR, due to the large-amplitude386

modulations that are inconsistent with a quasi-circular inspiral.387

3.1.2 Tidal Effects388

Neutron stars and their mergers are characterized not only by strong gravity but also by ex-389

treme matter conditions. To explore how matter affects the space-time deformations around390

these stars, we need to understand the relation between the dynamical properties of matter391

and the behavior of strong gravity. Analytic methods are used to model the early inspiral phase392

of a neutron star binary merger, where neutron stars are approximated as massive point parti-393

cles with small corrections due to finite-size effects [142–144]. However, close to the merger394

finite size effects become significant and numerical relativity (NR) simulations are required to395

capture them accurately [145–148]. Effective one body models achieve a nonperturbative re-396

summation of the PN information on tidal effects into a complete framework [145,149–154];397

some reduced-order-model versions incorporate NR-calibrated tidal models [148,155,156] as398

also used in Phenomenological models.399

The tidal deformation of bodies is directly proportional to the Riemann tensor and its400

derivatives, produced primarily by the energy-momentum distribution of the companion [157],401

which becomes the second derivatives of the Newtonian potential for the electric-type quadrupole402

effect in the Newtonian limit. However, such effects are observable in the GWs only if they403
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produce significant mass and current type multipole deformations of the neutron stars in a404

binary system. The dominant deformations come from the electric-type, l = 2 tidal defor-405

mation, which imprints primarily in the GW phase evolution. However, it is important to406

note that these tidal effects are relatively small and become more pronounced as the binary407

approaches merger. While these effects are subtle, their detection has already provided in-408

valuable insights [62], and with the advent of more advanced detectors (such as XG), we can409

look forward to even more precise measurements in the near and far future [158–161].410

The effects of the tidal field on neutron star matter are studied using observed GWs [2],411

however, such results are susceptible to waveform systematics and incomplete modeling of412

neutron star physics. For example, Refs. [162–164] show that the inference of tidal pa-413

rameters with XG detectors can be significantly affected due to waveform systematics. Not414

including subdominant tidal effects, such as dynamical tides, which become important in415

the inspiral regime, can also lead to substantial biases in the estimation of tidal parameters416

[153,154,165,166]. Likewise, the effects of spins on dynamical tides [167–170], other spin-417

tidal couplings [148, 171], spin-induced multipole effects [172–175], nonlinear tides [176],418

higher-order relativistic corrections, and the GW features of tidal disruption in cases with pre-419

cessing spins [177] are examples of areas requiring further investigations. Further, XG detec-420

tors will be sensitive to the octupolar electric and quadrupolar magnetic tidal deformabilities,421

and not including them in the waveform might bias the measurements [178].422

Resonant mode excitations may contribute distinct features in the waveform from the tidal423

effect considered in [157]. As the inspiraling orbit passes through the frequency of a certain424

characteristic mode, the resonant excitation of the mode must be compensated by the loss of425

the same amount of orbital energy, speeding up the following orbital evolution. The excitation426

of gravity modes [179–181], the interface mode [182–184] and gravitomagnetic mode [185–427

188] have been studied, where for the latter two cases the phase modulation may reach the428

level of O(10−2)−O(10−1) radians in the frequency band of ground-based detectors.429

Inaccurate or missing physics in analytical and NR modeling due to thermodynamical430

transformation of nuclear matter during inspiral and post-merger leads to waveform system-431

atics. Such effects include, but not limited to, viscosity [189–192], thermal effects [193–197],432

phase transition to hyperon condensates or quark matter and other such transformations (see,433

e.g., [198–203] and also see Section 4.3.2 for discussion of proposed exotic matter that has434

not been observed but, may have compactness close to black holes). As shown in [204–206],435

the viscous effect introduces a new dissipative channel that modifies the GW phase at 4PN436

order and higher. If not included in the modeling, a signal containing such a 4PN effect could437

be misinterpreted as a GR deviation at that PN order and at neighboring PN orders.438

Similar effects during the post-merger evolution are subject to systematic bias which re-439

quires emphasis on accurate post-merger waveform model development. Currently, only a440

few post-merger models exist and can detect such effects only in the XG detectors [207–211].441

There are also sources of bias in parameter estimation that are exclusive to data analysis chal-442

lenges arising from noise systematics. For a minority of events, multiple overlapping signals443

and confusion background created by CBC mergers could potentially lead to a bias in tidal444

deformability as described in Section 2.3.445

Additionally, GR predicts relations between the spin-induced quadrupole moment and the446

(quadrupolar, electric) tidal deformability [8, 212–214] and between tidal deformabilities of447

different multipolar order and parity [215] or between different tidal parameters in gravita-448

tional waveforms for binary neutron star mergers [216, 217] which are only mildly sensitive449

to the neutron star equation of state. These relations have been used in GW data analyses to450

reduce the number of search parameters [218, 219] but small equation-of-state variation in451

these relations can induce systematic biases. One could, however, use constraints on nuclear452

physics from neutron star observations available at the time to keep updating and reducing453
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the amount of variation in the relations. For example, such variation has been reduced by 50%454

after GW170817 and current systematic errors on the tidal deformabilities are subdominant455

than statistical errors until the A# era [220]. Another way to reduce systematic biases due456

to the variation in quasi-universal relations is discussed by [159]. It should be noted that the457

subpercent accuracy in the universal relations will become important in deducing the correct458

equation of state and hence in the tests of GR for the sensitivities corresponding to XG de-459

tectors. Since alternative theories predict different relations, an independent measurement460

of the quantities in the universal relations can therefore be used as null tests of GR, circum-461

venting potential degeneracy with unknown nuclear physics [212–214, 221–223]. While the462

spin-induced quadrupole moment is expected to be small for neutron stars, the magnetic tidal463

deformability could be measured by XG detectors [178] and might need to be included in the464

waveform models.465

Besides testing GR, these relations can be used to disentangle source misidentification466

(discussed in detail in Section 4.3.2), since each model of exotic compact objects other than467

neutron stars would display their own quasi-universal relation [222, 223]. Notably, the tidal468

deformability parameter may carry information about the nuclear equation of state and hence469

offer a unique tool to distinguish conventional neutron stars from the ones with exotic sig-470

natures. Analyzing binary neutron star mergers with exotic matter while using waveforms of471

conventional neutron star binaries could lead to false indications of GR violations. This needs472

to be investigated thoroughly, so that this effect could be ruled out or observed.473

Assuming that our NR-assisted waveform models are accurate and free of systematic biases474

including those arising from the unknown equation of state, any deviation from the predic-475

tions will be indicative of either GR not being the complete theory of gravity or deviations476

in the coupling of matter to gravity, a subset of which is the test of the strong equivalence477

principle [224–229]. Therefore, only after ruling out the systematic effects arising from these478

inaccuracies, robust conclusions can be drawn about deviations from GR.479

3.1.3 Kick-induced Effects480

The anisotropic emission of GWs during a CBC carries away linear momentum and results in481

a recoil or kick of the merger remnant [230, 231]. The kick leaves the following imprints in482

the GW signal: the Doppler effect [232] and the aberration effect [233] on the post-merger483

signal along with an additional contribution of a (linear) memory effect [232] to the whole484

GW signal [234]. Since the black hole kicks are non-relativistic, the kick-induced effects are485

small and might not be important for current GW detectors but could be crucial for XG de-486

tectors [234, 235]. For loud ringdown signals (SNR¦ 100, [235]) in the XG era, these kick-487

induced effects, if not accounted appropriately in the waveform model [236,237], might con-488

taminate those tests of GR that depend on the post-merger signal and kick [238] of the remnant489

(see, e.g., [39,234,239–242]).490

3.1.4 Beyond Fundamental Modes in Ringdown Signal491

The gravitational radiation from a perturbed black hole is in the form of quasi-normal modes492

[243, 244]. At sufficiently late times following a binary black hole merger, it is expected that493

the remnant can be very well approximated by a perturbed Kerr black hole. Moreover, it494

is well known that the radiation at this stage is dominated by just the fundamental quasi-495

normal mode, since it is the slowest damped quasi-normal-mode (QNM) [245–247]. The496

frequency and damping time of a mode are in one-to-one correspondence with the remnant497

mass and spin. In principle, assuming GR and using NR simulations, the latter quantities could498

be predicted from the properties of the progenitor binary, which can be extracted from the499

premerger signal. In practice, waveform systematics in the premerger phase could jeopardize500
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this ringdown consistency test [248]. For example, large unmodelled eccentricity could lead501

to an inconsistency in the final mass and spin, and hence to a false GR deviation [135]. In the502

spirit of the original black-hole spectroscopy program [245–247,249], it is therefore better to503

test GR using ringdown signals only, and an “agnostic” selection of multiple modes to model504

the ringdown [250].505

Recently, there have been efforts to increase the range of validity of linear perturbation506

theory by modeling the early postmerger signal using overtones and mirror modes [250–262].507

These studies show that the inclusion of these additional QNMs improve the remnant mass and508

spin estimates using a ringdown model. They also show that there will be biases in the remnant509

parameters if a ringdown model is used to describe early postmerger without the inclusion of510

such QNMs. Such biases in parameter estimation can show a deviation from the predictions511

of GR. Isi and & Farr [263] investigated the impact of an incomplete ringdown model on512

parameter recovery by analyzing a synthetic signal mimicking a binary black hole ringdown513

(see also [250] for a discussion). Their findings reveal biased parameter measurements in514

instances of very high ringdown SNR. Dhani & Sathyaprakash [255] displayed the modulations515

in the odd-m modes in the waveform and how the inclusion of mirror modes in the ringdown516

waveform model can explain these modulations.517

The BH spectroscopy program in GW literature aims to test the Kerr nature from the ob-518

served QNM spectrum. These tests are typically referred to as “no-hair” theorem tests too.519

However, since the tests are based on QNMs as the only observables, they are not sensitive520

to the type of BH hair — namely, primary hair1 or secondary hair [264]. Therefore, any521

modification to the Kerr QNM spectra would fall under these tests. There are claims in the522

literature that overtones have been detected [265–267] and used to test the “no-hair” theo-523

rem with GW150914 [241]. However, there is a disagreement in the literature regarding the524

significance of the measurement of the first overtone in GW150914 [266, 268–271]. There525

are also theoretical arguments suggesting caution in the use of overtones for no-hair theorem526

tests [250,259,272–275]. The above authors show, using toy models, black hole perturbation527

theory and NR simulations, that even though the estimates of the final mass and spin of the528

black hole can be improved starting the ringdown analysis at earlier times by the addition529

of overtones, a linear model including only overtones is not appropriate at early times (see530

also [276]). Therefore, they contend that overtones are unphysical and that their role in a531

waveform model is to “fit away” other features in the signal, namely, transients related to the532

initial data, power-law tails at late times, and nonlinearities.533

However, for less symmetric binaries than GW150914 (as commonly expected among cur-534

rent and future catalogs) the original black-hole spectroscopy program can be realized using535

higher-order modes in addition to the least damped QNM, i.e., (l, |m|) = (3,3), (2,1), (4,4),536

can be used to perform independent tests of the no-hair theorem [242,270,277–283]. Given537

current estimates of the merger rates, XG detectors are predicted to perform percent-accuracy538

tests for a few events per year [278,283–285].539

To conduct any of the above tests of GR using the perturbative ringdown model, one must540

make a choice on the start time of the ringdown to begin fitting exponentially damped sinu-541

soids. The analysis should begin as soon as the perturbative prescription is relevant. On one542

hand, waiting too long to begin the analysis will make testing GR impossible because the strain543

amplitude has decayed exponentially (e.g., [286, 287]). However, beginning the analysis too544

early could result in overfitting to non-linear features in the signal (e.g., [250, 288]). To un-545

dertake robust tests of GR, some criterion for the analysis start time should be established546

through, e.g., searching for the earliest time at which one can measure self-consistent QNM547

1In this context, primary hair refers to extra charges that are independent of the BH mass and spin (e.g., the
electric charge in the Kerr-Newman solution), whereas secondary hair refers to extra charges that are fixed in terms
of the mass and spin.
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parameters with time [259,260,262]. A further source of systematics is the decomposition of548

QNMs in spherical rather than spheroidal harmonics; if unmodelled, the spherical-spheroidal549

mode mixing introduces biases for highly spinning remnants [250].550

Another important effect of the nonlinearity in the ringdown stage is the presence of551

second-order QNMs [289–291], which are generated through mode-mode couplings. The552

frequency of a second-order QNM is twice as the associated “parent” linear QNM. Its ampli-553

tude and phase are also uniquely determined by the linear mode [292–294], as a nontrivial554

prediction of GR at the nonlinear level. The dominant nonlinear modes may be observable555

with XG detectors, although event rates are uncertain [295].556

An approach complementary to null tests using QNM frequencies and damping times is557

to test QNM amplitude-phase relations predicted by NR simulations within GR. This test was558

successfully applied to GW190521 in [296], finding that measurement errors for this event559

are still large, but would strongly improve for the louder detections routinely expected for XG560

detectors.561

Finally, because of its short duration, one should be careful with the statistical methods and562

their underlying assumptions while analyzing the ringdown signal. Seemingly innocuous data563

processing choices such as the uncertain starting time, duration of the signal, and noise esti-564

mation techniques can lead to materially different inferences [241,268,269,297–299]. While565

the ringdown signal is typically analyzed in the time domain, frequency domain methods have566

also been proposed [257, 269, 300, 301] with the approach of [300] shown to be formally567

equivalent to the time-domain approach [263]. Even then, [300] comes to a different con-568

clusion regarding the ringdown of GW190521 compared to [4] or [302]. This highlights the569

need to better understand systematics and data analysis techniques in the analysis of ringdown570

signals.571

3.2 Inaccurate Modeling of Known Physics in Quasi-Circular Waveform Models572

3.2.1 Higher-order Modes, Precession, and Memory573

Gravitational waveforms can be decomposed in the basis of spin weighted spherical harmonics574

with spin weight s = −2, Y lm
−2 (ι), where ι is the inclination angle. In this basis, for nonprecess-575

ing systems, the dominant contribution to the GW amplitude comes from the (l, |m|) = (2, 2)576

harmonics. The (2,1) and (3, 3) harmonics are subdominant and suppressed by a prefactor577

that goes to 0 for symmetric (equal mass) binaries [303–307]. These modes only contribute578

for systems that are not face-on/off (ι 6= 0,2π), and become particularly important for unequal579

mass binaries. The presence of these higher-order modes causes characteristic modulations in580

the amplitude and phase of the waveform.581

The effect of higher-order modes becomes even more important in the presence of spin-582

induced precession. Spin-induced precession occurs when the spin angular momentum vectors583

of the binary components are not aligned with the orbital angular momentum vector, leading584

to the precession of the orbital angular momentum (or, equivalently, the orbital plane of the585

binary) as well as the spin vectors about the total angular momentum of the binary. The586

effect of precession is best understood by considering two frames of reference [308–310]—587

the inertial frame in which the binary appears to be precessing, and the co-precessing frame that588

follows the instantaneous motion of the orbital plane where the effects of precession disappear.589

The inertial modes can then be approximately described as the sum of nonprecessing modes590

with the same l value and all possible m values, each rotated using Wigner D-matrices which591

depend on the instantaneous position of the orbital plane [311]. Thus, due to spin-induced592

precession, subdominant precessing modes will have contributions from both dominant and593

subdominant nonprecessing modes, increasing the precession effect due to the presence of594

higher-order modes in the waveform [312].595
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A consequence of using nonprecessing modes to approximate the co-precessing-frame sig-596

nal is that these obey the reflection symmetry h`m = (−1)`h∗
`−m, which no longer holds for597

precessing binaries [313, 314]. Most state-of-the-art waveform models, with the exception598

of NRSur7dq4 [237] and IMRPhenomXO4a [315, 316], currently rely on this approximation.599

While the impact of anti-symmetric contributions to the waveform modes is typically small,600

neglecting these effects could result in biased measurements of the spin magnitude and orien-601

tation at high SNR [317,318].602

Currently, state-of-the-art nonprecessing waveforms like IMRPhenomXHM [319] include the603

harmonics (l, |m|) = (2, 1), (3, 3), (3, 2), (4, 4), and SEOBNRv5HM [320], in addition to these,604

also includes (l, |m|) = (4, 3) and (5,5). Their precessing counterparts are IMRPhenomXPHM605

[321] and SEOBNRv5PHM [322], respectively. The widely used NR surrogate waveform model,606

NRSur7dq4, has been trained with simulations with mass ratio less than 4, and contains all607

spherical-harmonic modes with l ≤ 4.608

Many studies have explored the improvement in the inference of source parameters due609

to the inclusion of spin-induced orbital precession and higher-order modes [323–326]. Partic-610

ularly, for edge-on systems, including higher-order modes improves parameter estimation by611

breaking the luminosity distance-inclination angle degeneracy, whereas modulations due to612

spin-induced precession break the degeneracy between the spin and mass parameters. Addi-613

tionally, the amplitude of the higher-order modes also brings information about the mass ratio614

of the source.615

We should note that none of these models discussed above contain the memory modes616

that depend on the binary’s past history. The most well-known of these is the displacement617

memory effect which is dominant in the l = 2, m = 0 mode, and the next leading memory618

effect, known as the spin memory, is dominant in l = 3, m = 0 mode for the non-precessing619

binaries (see e.g., [327] and [328]). There are other higher-order memory effects, but these620

can be extremely sub-dominant. Most of these are discussed in [329] and references therein.621

While these are small effects, they will need to be included to prevent biases, and have now622

been included in a surrogate model for nonprecessing (quasicircular) binary black holes con-623

structed using the waveforms obtained from Cauchy-characteristic evolution [330]. The effect624

of non-linear memory on the binary black hole parameter estimation is studied in [331] where625

the dominant displacement memory in the l = 2, m = 0 mode starts to affect the parameter626

inference at SNR> 60 for the current generation ground-based detectors (such as LIGO A#).627

Moreover, the effect of memory has been studied in the case of neutron star-black hole and628

binary neutron star mergers [332,333], where it is argued that the memory can affect parame-629

ter estimation for the XG detectors. Studies show that it will be difficult to detect the presence630

of memory in individual sources with the current LIGO, Virgo, and KAGRA detectors at O4631

sensitivity or even O5 sensitivity, but it could be detected in a population using the stacking632

procedure (e.g., [334]). Thus, it is necessary to understand the effect of memory on parameter633

estimation and tests of GR at the population-level.634

Therefore, analyzing a GW signal that has a significant magnitude of spin-induced pre-635

cession, higher order mode content, and memory effect with an inaccurate or incomplete636

waveform model may not only deteriorate parameter estimation, but also show biases in the637

inference of other source parameters (see, e.g., [312]). A recent study has investigated sys-638

tematics due to waveform mismodeling by comparing SEOBNRv5PHM and IMRPhenomXPHM. It639

was found that systematic biases can impact the current and future GW-detector networks, af-640

fecting the inference of realistic binary black hole population properties, as well as, the science641

cases of individual loud signals [248], and more in general binaries with large mass ratios and642

high precession. Such systematic biases may eventually find their way into the measurement643

of a beyond-GR parameter depending on the nature of its correlation with the other source644

parameters, inducing a false violation of GR. Hence, it is essential to use accurate waveform645
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models with spin-precession effects, sufficient number of higher-order modes, and memory646

effects while testing a GW signal for a violation of GR.647

3.2.2 Sub-optimal Calibration and Agreement With NR Waveforms648

State-of-the-art waveform models are built by combining and resumming information from649

different analytical methods, such as PN approximation and gravitational self-force theory,650

and then calibrating/validating against NR simulations and merger-ringdown waveforms in651

the test-particle limit, which are obtained by solving the Teukolsky equation. The assessment652

of the accuracy of the waveform models from the two main waveform families (notably EOB653

and IMRPhenom models) can be found in [248, 315, 320, 322, 335–337]. Due to the number654

of calibration parameters and the large number of NR simulations at disposal, it is especially655

important to devise a computationally efficient and flexible calibration procedure. For in-656

stance, in calibrating the SEOBNRv5HM model [320], the authors quantified the agreement657

with NR waveforms in a Bayesian fashion and employed nested sampling to obtain posterior658

distributions for the calibration parameters. State-of-the-art waveform models use best-fit esti-659

mates across the physical parameter space for their calibration parameters. Providing instead660

a probability distribution, modeled for example through a multidimensional Gaussian mixture,661

would allow accounting for uncertainty estimates due to sub-optimal fits, and could mitigate662

waveform systematics at high SNR [338]. Other proposed methods to marginalise over wave-663

form modeling uncertainties include Gaussian process regression [339–342], or introducing664

frequency-dependent amplitude and phase corrections, as in the case of detector calibration665

uncertainty [164]. While these methods may obscure small deviations from GR, particularly666

around the merger phase, significant deviations that exceed the estimated modeling uncer-667

tainties should still be detectable.668

Calibration parameters typically enter in waveform models as higher-order PN coefficients,669

which are currently unknown. Including higher-order analytical information, while push-670

ing the calibration parameters at even higher orders, could improve the accuracy of current671

waveform models, but requires careful studies on how to incorporate and resum this infor-672

mation [320,335,343] Nonetheless, neglecting higher-order PN terms carries an error which673

might become relevant with updates to current detectors and XG detectors, but could be miti-674

gated by marginalizing over higher-order PN coefficients as new model parameters [344]. In-675

corporating results from the post-Minkowskian (PM) approximation [345–348], a weak fields676

expansion in G at all orders in the velocity, is also promising, particularly for highly eccen-677

tric binaries for which relativistic velocities can be reached at each periastron passage even678

in the weak field regime. While PM results have not yet been incorporated in state-of-the-679

art waveform models for bound orbits, remarkable agreement has been obtained comparing680

PM-improved EOB models to NR for scattering orbits [349–352].681

The calibration procedure imposes that the waveform model agrees, as much as possible682

and for the entire coalescence, with the NR waveform. This is often quantified by computing683

the unfaithfulness (or mismatch) M between the model and NR waveform. As detectors be-684

come more sensitive and the SNR increases, the accuracy requirements become more stringent,685

thus demanding smaller unfaithfulness values. Accuracy requirements are usually formulated686

in terms of an indistinguishability criterion [353–357], which states that if two waveforms687

fulfill the condition688

M<
D

2 SNR2 , (1)

for a given power spectral density (PSD) and SNR, then these waveforms are considered in-689

distinguishable, and differences in the recovered parameters are expected to be smaller than690

statistical errors. Here D is an unknown coefficient, usually set to the number of intrinsic pa-691

rameters of the source [356] or tuned with synthetic injections at increasing SNR [357]. Being692
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sufficient, but not necessary, this criterion is generally too conservative, and, if it is violated,693

differences are not necessarily measurable, or may appear in a subset of parameters in which694

one is not typically interested [357, 358]. Toubiana & Gair [359] recently proposed a correc-695

tion to the standard indistinguishability criterion by revisiting some of the hypotheses under696

which it is derived, and employed it to quantify apparent deviations from GR due to waveform697

inaccuracies [360].698

The state-of-the-art multipolar, aligned-spin SEOBNRv5HM model shows a median unfaith-699

fulness of 1.01×10−3 against 442 NR waveforms when using the O5 PSD [361] and considering700

binary total masses in the range [20−300]M�. Using this model would lead to a false deviation701

from GR when measuring the QNM (complex) frequencies of a massive binary black hole with702

a mass ratio of 2, as observed in LISA with an SNR O(100) [360]. This issue occurs because703

for such massive binary black holes, the majority of the SNR lies in the merger-ringdown stage.704

By contrast, a stellar-mass binary black hole with mass ratio 6, observable in O5, would not705

incorrectly lead to a violation of GR at SNR 75 [282], because in this case a large portion of706

the SNR is accumulated during the inspiral stage. Normally, the accuracy of waveform models707

gets worse toward merger, where the presence of higher-order modes becomes more and more708

important, while their modeling is quite challenging. The recent study of [362] investigated709

the impact of inference biases from sub-optimal waveform calibration on a realistic popula-710

tion of binary black holes in XG detectors. They considered two quasi-circular, nonprecessing711

waveform models of the same family (namely, IMRPhenomD [363] and IMRPhenomXAS [364])712

and estimated a mismatch requirement of ∼ 10−5 for 99% of the events with SNR> 100 not713

to be biased.714

Inaccuracies in NR waveforms, due to, e.g., numerical truncation errors and issues with715

GW extraction and extrapolation, are typically at least one order of magnitude smaller than716

errors between semi-analytic models and NR [357]. Nonetheless, they are expected to be-717

come relevant with updates to current detectors and XG detectors, especially for binaries with718

asymmetric masses and orbits inclined with respect to the line of sight [357,365,366].719

4 Astrophysical Aspects720

There are several astrophysical aspects of the source, its surroundings, and the emitted GW721

signal that have not been accounted for in the state-of-the-art waveform models. These aspects,722

if present in the real GW signal, might affect the tests of GR and can lead to false GR violations.723

Here we discuss those astrophysical aspects that we can think of.724

4.1 Gravitational Lensing725

As GW detectors get upgraded and new ones join the network, more and more distant merg-726

ers can be observed. This increases the chance of having a matter density crossing the GW727

travel path, possibly leading to gravitational lensing. Depending on the lens properties and728

the lens-source geometry, different effects can be observed. For the best-aligned and most729

massive cases, we are in the geometric optics limit and lensing leads to several copies or “im-730

ages” of the initial signal. These images have the same frequency evolution but are delayed731

in time, (de)magnified, and can undergo an overall phase shift. When the time delay is large732

enough, these images are distinct, and we face strong lensing [367, 368]. For ground-based733

detectors, typical lenses are galaxies and galaxy clusters [369]. For smaller time delays, cor-734

responding to less aligned systems and lighter lenses, one has millilensing, where the various735

images overlap and sum to a non-trivial signal in-band [370]. This is expected to be due to736

heavy black holes, or dark matter over-densities, for example. Finally, when the GW wave-737

length is comparable to or greater than the size of the lens, we need to perform the full wave-738
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optics treatment [367], and lensing leads to frequency-dependent beating patterns known739

as microlensing. For ground-based detectors, typical lens sources are individual stars, black740

holes, or dark-matter overdensities [371]. It is also important to note there can be interplay741

between these different types of lensing. When strong lensing happens, one or more of the742

images may undergo micro or millilensing because of individual objects present in the strong743

lens [372–374].744

False GR deviations could be expected when GR signals are distorted. For strong lens-745

ing, one can have such an effect for specific values of the overall phase shift. In particular,746

it can take only three distinct values: 0, π/2, or π, corresponding to a minimum, saddle747

point, or maximum of the Fermat potential, and referred to as Type I, II, and III images, re-748

spectively [368, 375]. Under all circumstances, Type I and III images are indistinguishable749

for the GR case because they correspond to no shift or a sign flip in the polarization, which750

cannot be detected [375]. For Type II images, on the other hand, detectability is possible751

when the GW displays higher-order modes. In this case, the phase has different pre-factors752

for different frequency modes and is not degenerate with the (frequency independent) lens-753

ing phase shift anymore [375]. This can be used to detect strong lensing based on a single754

image, although it requires rather large SNRs and very asymmetric, precessing or eccentric755

systems [375–378]. When analyzing Type II images under the unlensed assumptions, one can756

face losses in SNR, possibly missing the event with template searches [376], or biases in pa-757

rameter estimation [377, 378]. Therefore, one can expect this non-trivial feature to also be758

picked up when searching for GR deviations. For example, this is the case with modified disper-759

sion relations that change the frequency evolution of the GW phase in a way possibly similar to760

lensing [379]. The link between Type II images and GR deviations is also highlighted in [380],761

where the authors show that some GR deviations are flagged by Type II search pipelines.762

The cases of millilensing and microlensing are even more favorable in leading to spurious763

GR deviations being detected since they both lead to a non-trivial signal in the detection band,764

although the nature of the resulting image is different between the two cases [367,370,371].765

When analyzing such signals with traditional GR templates, one expects imperfect modeling of766

the signal, leading to coherent power left in the data [381]. This is also confirmed in [382] for767

some tests of GR. In this study, the authors show that milli and microlensed signals can lead to768

spurious deviations from GR, sometimes with a high significance. However, it is also important769

to note that adapted lensing pipelines also clearly see these events as being lensed. Therefore,770

the GR deviation would probably not be confirmed as it would be explained via lensing, under-771

lying the importance of accounting for possible astrophysical effects on the GW signals when772

looking for GR deviations. The link between GR deviations and micro and millilensing is also773

further confirmed in [380], where the authors show that some deviations of GR lead to false774

positives in micro and millilensing searches. In the case of a multi-messenger lensing event in775

which the GW lensed signal is in the wave optics regime but the electromagnetic signal is in776

geometric optics (which is to be expected given their higher frequency), the speed of propaga-777

tion of GWs could appear to be superluminal due to the waveform distortions [383], although778

no information actually arrives faster than light [384].779

A crucial approximation in these studies is the exclusion of the effect of parallel-transporting780

the polarization tensor across the lensing geometry and the treatment of GWs as scalar waves781

which become increasingly violated as one moves from the weak gravity limit. Recent stud-782

ies [385,386] have pointed out the consequences of such an approximation and started treat-783

ing GWs as a tensor field. It is pointed out that there is no notion of a unique “propagation784

direction” as can be defined in the geometric optics limit as well as the wave optics treatment785

for a scalar wave. Similarly, strong gravity effects could add extra phenomenology [387].786

Therefore, all types of lensing—micro, milli, and strong—can potentially lead to spurious787

GR deviations being detected if neglected. Hence, should such deviations be seen, it would788

19



SciPost Physics Community Reports Submission

be crucial to verify possible astrophysical origins of the modification in the GW signal, and in789

particular if the GW event is not lensed.790

4.2 Environmental Effects791

The current waveform models can be referred to as vacuum templates as they only describe792

GWs from isolated binary systems in a vacuum environment, neglecting realistic astrophysical793

surroundings of the source. However, in reality, the binary is always in an astrophysical en-794

vironment that impacts the binary’s orbital evolution and hence results in a GW signal from795

the binary different than the vacuum template. There are many scenarios in which the GW796

signal from an environment-embedded binary system could be different from its correspond-797

ing vacuum signal. These are, but not limited to, (i) the source resides in a dense environ-798

ment [388–391] such as dense cores of massive stars [392–394], accretion disks of active799

galactic nuclei [32, 395–400], and star clusters (see, e.g., [401]), (ii) the source resides in800

a dark matter halo [32, 402–407], and (iii) the source is immersed in a strong electromag-801

netic field [408, 409]. Moreover, the peculiar acceleration of the source with respect to the802

observer, i.e., time-varying Doppler shift [410–413] and the acceleration of the universe, i.e.,803

time-varying redshift [410,414,415] itself could lead to GW signals being different from vac-804

uum templates.805

The situation where there is a massive bosonic field that is amplified around black holes806

via superradiance (see, e.g., [416]) is also sometimes considered an environmental effect and807

can similarly lead to deviations from a vacuum binary black hole signal. However, there are808

significant differences in this case compared to the environmental effects considered above.809

Most importantly, in this case the size of the deviation is set by the universal properties of the810

boson and the properties of the binary, not the specifics of where the binary formed. This makes811

the deviations more similar to a deviation from GR (which also depends on the properties of the812

binary and some universal parameters). However, there are many ways to distinguish binaries813

of black holes with boson clouds from GR deviations. Some of these are discussed in Sec. 4.3.2,814

since the emitted GW signal in such a scenario will be similar to the one from binaries of black815

hole mimickers (e.g., there will be tidal effects from the boson clouds). Additionally, since816

the superradiant growth of the clouds is only possible for certain pairs of black hole masses817

and spins (see, e.g., [417]), it should be easy to distinguish this case from modified gravity818

(or black hole mimickers) when considering the population. The time dependence of the tidal819

deformability and non-black hole multipole moments due to perturbations or even disruption820

of the clouds due to the effects of the other black hole (see, e.g., [418–420]) should allow one821

to distinguish the boson cloud case from black hole mimickers even for individual sources.822

Additionally, one can obtain constraints on the boson mass from the contributions from the823

superradiant instability to the stochastic background of GWs [421,422]. Furthermore, boson824

clouds are expected to emit a nearly periodic and long-duration GW signal [421, 422] and825

no evidence of such signals is found in current GW data, which provides constraints on the826

ultra-light scalar boson field mass (see, e.g., [423–426]).827

Returning to environmental effects proper, the detailed modeling of different environmen-828

tal effects on the binary’s GW signal is challenging and requires computationally expensive NR829

simulations [393]. However, in the literature, these effects have been approximated as a cor-830

rection to the vacuum GW signal’s PN phase evolution. For example, at the leading order, dy-831

namical friction due to gas accretion can be modeled as a−5.5PN correction whereas collision-832

less (collisional) accretion can be modeled as a −4.5PN (−5.5PN) correction [391,427–429].833

The accretion and dynamical friction due to a scalar dark matter cloud give rise to a −4PN834

and −5.5PN correction, respectively, to the phase at the leading order [430]. Electromagnetic835

effects have been computed at next-to-leading order (at 3PN) by taking into account the whole836

electromagnetic structure of a star. The leading magnetic corrections at 2PN order (assuming837
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a constant and aligned magnetic dipole) to the GW phase are found to be comparable to a838

1.5PN point-particle effect [431,432]. Phase correction due to the line-of-sight peculiar accel-839

eration of the source has been computed up to 3.5PN order [411,433] while the acceleration840

of the universe leads to a −4PN correction to the phase at leading order [414,415].841

It has been argued that the magnitude of the environmental [32, 434] and cosmologi-842

cal [410] effects are expected to be quite small and hence could be neglected for ground-843

based detectors. However, there could be scenarios where these effects are non-negligible,844

e.g., stellar-mass compact binaries would merge around a supermassive black hole and one can845

still get a significant deviation from the vacuum template in the bands of LIGO/Virgo/KAGRA846

detectors [433]. Moreover, near supermassive black holes, in galactic nuclei, triple systems847

of stars are common and they mostly are hierarchical in nature [435–437], i.e., a tight inner848

binary is orbiting a tertiary on a wider orbit which forms the outer binary. In these hierarchical849

triples, the tertiary brings interesting features to the GW signal emitted by the inner binary,850

e.g., the oscillation of eccentricity and inclination of the inner binary’s orbit due to the Kozai-851

Lidov mechanism [438, 439]. Such oscillations could modify the frequency evolution of the852

inner binary and this needs to be taken into account in waveform modeling [440,441].853

A recent study by Santoro et al. [442] showed that particularly large environmental effects854

can significantly bias the parameter estimation if vacuum templates are used for the analysis,855

even when not directly detectable by LIGO-like instruments. Although this bias requires ex-856

tremely dense environments that are not predicted by standard astrophysical models, it would857

be important to find out if such biases in parameters could lead to false GR violations for more858

sensitive XG detectors.859

Likewise, ringdown templates are simple and based on predictions from vacuum GR. Modi-860

fications of GR usually lead to extra polarizations or include degrees of freedom with different861

modes, introducing a simple handle to test for beyond-GR physics. However, environmen-862

tal effects, such as accretion disks, dark matter halos or any form of matter outside of black863

holes introduces low-frequency modes or drastic changes to higher overtones, de-stabilizing864

the spectrum [32, 443, 444]. Concrete examples suggest that spectral instability of the domi-865

nant mode introduces changes in the waveform only well after coalescence, but the relevance866

of overtone instability for time-domain waveforms still needs to be well understood [445].867

However, it is worth mentioning that environmental effects will be possibly important only868

for certain events, while likely negligible for the majority. Thus, any competing beyond-GR869

interpretation of environmental effects should coherently explain this non-trivial dependence870

on the source.871

4.3 Mistaken Source Class872

4.3.1 Beyond Compact Object Mergers on Bound Orbits873

Parabolic or hyperbolic scattering [446] as well as head-on collision of compact objects [447–874

449]may give rise to GW signals which may resemble that of a quasi-circular CBC close to the875

peak of the signal. Therefore, for relatively short-duration signals, there is a risk of confusing876

a compact binary merger with one of the above classes of sources, leading to biases on the877

source parameters and thereby affecting tests of GR. In the case of GW190521, studies have878

discussed the degeneracy between a precessing compact binary in quasi-circular orbit with a879

binary that undergoes head-on collision [450] and a merger of two nonspinning black holes on880

hyperbolic orbits [451]. It is argued that the lack of premerger features in certain precessing881

configurations in quasi-circular CBC may mimic a head-on collision leading to underestima-882

tion of mass parameters and overestimation of luminosity distance when a quasi-circular CBC883

waveform is employed for parameter estimation. Obviously, such biases will directly affect884

most tests of GR.885
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However, precise estimates of final spin can help in distinguishing head-on collision from886

a quasi-circular CBC. For example, if the inferred remnant black hole spin is high (e.g., ∼ 0.7887

as was the case for GW190521), this could make the head-on collision unlikely as very special888

configurations may need to be invoked to explain this. As the head-on collisions are them-889

selves very special configurations, additional requirements such as this (large remnant spin)890

may weigh down their possibility in a model selection problem. Further, due to the special891

symmetries of the head-on collision, the spherical harmonic modes excited in a head-on col-892

lision may differ from those in a quasi-circular CBC. For instance, unlike quasi-circular CBCs,893

in head-on collisions ` = 2, m = 0 mode may be as strong as ` = 2, m = 2. Such features may894

also help in a model selection problem. A dedicated study that looks into the effect of degener-895

acy between quasi-circular CBC and head-on collision or parabolic/hyperbolic encounters and896

how that impacts tests of GR will be very useful. To do this we require more accurate analytical897

or numerical waveform modeling of head-on collision and parabolic/hyperbolic encounters.898

4.3.2 Black Hole Mimickers899

There are various exotic compact objects that are massive and compact enough that gravita-900

tional waveforms from binaries of such objects could be close to those from a binary black hole901

(see, e.g., [452, 453]). The simplest such objects can be described by GR minimally coupled902

to a non-Standard Model field (e.g., an ultralight scalar field describing dark matter [454]).903

More complicated models for such objects involve nonminimally coupled fields, where it may904

make more sense to treat the additional scalar field as part of the gravity sector. However,905

even in the case where gravity is still GR, the specifics of the waveform would still differ from906

that of a binary black hole in GR, and one would thus obtain a false deviation from GR when907

applying a test of GR based on a binary black hole waveform model. The most theoretically908

well-modelled such objects are boson stars (see, e.g., [455]), which are formed from a mas-909

sive complex scalar or vector field, that may be self-interacting, as is necessary to obtain more910

compact stars (that are thus more similar to black holes)—see, e.g., [456]. However, there are911

many other models, including quite exotic objects, like gravastars [457], which have an inte-912

rior made of de Sitter space. A concrete framework for these exotic objects might require GR913

deviations [458], but they can be described also using exotic matter within GR (e.g., [459]).914

For all of these cases, there will be the same matter effects on the inspiral that one finds in915

the PN approximation for binary neutron stars (some of which are discussed in Section 3.1.2),916

albeit with different values. In particular, there will be effects of nonzero tidal deformabilities917

(see, e.g., [456, 459–461]), tidal disruption (at least for sufficiently unequal-mass binaries;918

see, e.g., [462]), and the excitation of resonant modes in the objects (see, e.g., [463]), as well919

as effects from multipoles that are different from those in black holes (see, e.g., [173, 464])920

and possibly a lack of the relatively large GW absorption (a.k.a. tidal heating) one obtains with921

black holes (see, e.g., [465]). However, since recent studies [206,466] have shown that neu-922

tron stars can have larger GW absorption than black holes if they have a sufficiently large shear923

viscosity, it is possible that the same is true for some potential black hole mimickers, though924

this is not the case for, e.g., standard models of boson stars. There will also be differences925

in the merger-ringdown part of the signal (see, e.g., for simulations of orbiting binary boson926

stars [467–470]). If the merger of a binary of exotic compact objects forms an ultracompact927

object (i.e., an object that has a light ring outside its surface), then the ringdown is nearly928

indistinguishable from that of a black hole and a train of modulated pulses—known as GW929

echoes—is emitted in the late postmerger stage [32, 471]. From the analysis of current GW930

events, no evidence for postmerger echoes has been found with unmodelled and modelled931

searches [4, 5, 472–477], despite claims of echo detections in [478–481]. Moreover, for per-932

fectly reflecting objects the presence of echoes is disfavored by the current upper bounds on933

the stochastic background in the advanced LIGO frequency band [482].934
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If one has a single population of exotic stars that are formed from a single fundamental935

field, then the non-GR effects in the inspiral will be solely determined by the masses of the936

objects, and there will be a maximum mass of stable stars, just as in the neutron star case. Thus,937

if one can measure these effects (and the masses of the stars) accurately (using, e.g., a more938

refined version of the analysis given in [483]), then one can check if the signals are indeed939

consistent with coming from a population of binaries of such stars. While alternate theories940

of gravity with an intrinsic scale will have a roughly similar behavior, where the GR deviation941

decreases with increasing mass of the black holes, it seems unlikely that an alternative theory942

of gravity would be able to mimic the situation of exotic stars to a high degree of accuracy.943

Moreover, if there is a population of exotic binaries as well as binary black holes, then one944

may observe binary black holes with very similar masses, spins, and distances as the exotic945

binaries, where a modified theory would predict that one would also observe deviations for946

the black hole binaries. Thus, while it is likely that the two situations could be confused947

with initial observations, it should be straightforward to distinguish them with high-accuracy948

observations. However, the ability of a given set of observations to distinguish specific exotic949

star models and specific alternative theories would need to be tested with explicit calculations.950

For instance, black holes can have nonzero tidal deformabilities in certain alternative the-951

ories, such as those that introduce higher-order-in-curvature corrections in the action [460,952

484]. However, in such models the dimensionless tidal deformabilities are proportional to in-953

verse powers of the black hole mass, 1/M n, where n is a positive integer that depends on the954

theory (n= 4 or 6 in the calculations cited). This is not a good match for the mass dependence955

of any of the boson star models considered in [460], and while it might be possible to find an956

exotic star model that gives a better match, the stars would still have a maximum mass, while957

the black holes in the alternative theory have nonzero tidal deformabilities for all masses. The958

black holes also have differences in the spin-induced multipoles (see, e.g., [485]) that would959

also have to be reproduced by the exotic stars, which is unlikely to be possible to more than960

moderate accuracy. For instance, for some families of boson stars, the spin-induced moments961

have minimum values larger than their Kerr values (similar to the minimum values of tidal962

deformability), and show a different spin dependence than one obtains for alternative theo-963

ries (see, e.g., [486]). Additionally, there will be differences in the GW absorption comparing964

black holes in this theory and black hole mimickers with no horizon (which will generally have965

a much smaller GW absorption cross section than black holes). However, one also expects that966

the GW absorption in such theories will differ from that in GR due to the differences in the967

static tidal response, given the relation between this and GW absorption/tidal heating (see,968

e.g., [487]). Moreover, there are also changes to the binary’s dynamics that do not come from969

finite size effects in such theories (see, e.g., [488]), albeit only occurring at high PN orders.970

Thus, individual signals from binaries of exotic compact objects could be confused with a971

GR deviation in many tests (which do not include the expected non-black hole modifications972

to the waveform). However, binaries of black hole mimickers will in general be able to be973

distinguished from a modification to GR, even one that predicts nonzero tidal deformabilities974

for black holes, at sufficiently high SNRs and when analyzing the population of signals, or975

possibly when performing multiple independent tests of a single signal.976

4.4 Statistical Assumptions of Astrophysical Population977

Combining information from multiple signals is a powerful method to perform stronger tests978

of GR. However, assumptions on the underlying astrophysical population and the statistical979

methods adopted to perform the joint analysis can affect the results.980

Biases due to waveform modelling systematics can pile up when stacking multiple events981

in a catalog. Several studies [90,136,489,490] show that even if systematics are under control982

at the level of the individual events, the accumulation of biases in a population analysis can983
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produce false deviations from GR if the catalog is large enough. Depending on the actual984

population of resolved signals and on the way the events are combined, false deviations can985

appear with as little as ∼ 30 events with SNR> 20 in the most pessimistic scenarios [490].986

Moreover, restricting the study to golden events with high SNR is even more vulnerable to false987

deviations once these events become routine in XG detectors [90, 136], although techniques988

to mitigate the biases have been proposed [489].989

Furthermore, combining events requires concrete assumptions about the impact of the990

astrophysical population and the detectability of GW sources that violate GR. Many param-991

eterized tests of GR infer the presence of expected correlations between individual source992

parameters (such as the total mass of a binary black hole system) and the deviation parame-993

ter [491]. These correlated features within the inferred posterior distributions for individual994

events imply that specific choices regarding the astrophysical population distribution can skew995

these results to different regions of the parameter space.996

In a recent study, Payne et al. [492] demonstrate that neglecting the astrophysical popula-997

tion leads to inferences which are ∼ 0.4σ less consistent with GR within GWTC-3 for parame-998

terized tests of GR. However, they show that such biases can be mitigated by jointly inferring999

the astrophysical population properties while combining the distributions of GR violation pa-1000

rameters. Furthermore, Magee et al. [493] illustrate that neglecting the loss in detectability1001

of signals with GR violations places constraints on PN deviations that are up to 10% too nar-1002

row when ignoring the selection bias in the population. These studies highlight the need to1003

carefully consider the underlying statistical methodologies used when attempting to test GR.1004

In the same vein, astrophysical inaccuracies or biases in the properties of a source population1005

(e.g., imperfect mass distributions) could also lead to false GR deviations. For example, this1006

can happen if events are detected in regions of the parameter space disfavored by astrophysi-1007

cal population models, such as hierarchical mergers from black holes residing in the theorized1008

upper-mass gap [494]. Tests of GR will need to adopt the ever-growing astrophysical popula-1009

tion knowledge to remain sufficiently unbiased.1010

Combining events to test GR also requires assumptions on the GR deviations that are being1011

tested. If the GR modification is common among all the events (as in the case of, e.g., a1012

nonzero graviton mass or a nonzero time variation Ġ of Newton’s constant), one can multiply1013

the individual, marginalized likelihoods on the deviation parameter to obtain the combined1014

likelihood for the catalog [90, 490, 495, 496]. On the other hand, if the GR deviations are1015

independent for each event (as may be the case if black holes have “hair”), one can multiply1016

the individual Bayes factors in favor of GR to obtain the total evidence from the catalog [90,1017

490, 495]. In a more general framework where the distribution of GR deviations across the1018

catalog is a known function of the event parameters (such as masses, spins, and compactness),1019

one would need to perform a full Bayesian hierarchical inference on the population [495,497].1020

Studies have shown that testing GR at the population level under one of the three assump-1021

tions listed above (that all events share the same beyond-GR parameter; that modified theories1022

introduce a new unrelated parameter for each detection; or that GR deviations across the cat-1023

alog are a known function of the event parameters) can lead to the wrong conclusions if the1024

underlying GR deviation does not satisfy the assumption [495,497]. Moreover, the accumula-1025

tion of biases across the catalog due to waveform systematics can change significantly depend-1026

ing on which method is chosen to combine multiple events [90, 490]. Recent work by [498]1027

suggests that performing a full Bayesian analysis should be the most robust approach, but it1028

still requires assumptions that can make the inference inherently model-dependent [495].1029

As shown by [499], the finite size of the observed catalog will produce cosmic-variance1030

effects that can cause to incorrectly infer deviations from GR, but a bootstrapping technique1031

can be used to mitigate this effect.1032
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5 When Does a Cause Become Important?1033

Not all effects discussed in this paper are created equal, with some being always important1034

for understanding false GR violations, such as non-stationary noise artifacts and glitches (see1035

Sections 2.1 and 2.2) while some will not be important until XG detectors or beyond, such1036

as unaccounted effects of the physics of gas and dust in the environment of binary black hole1037

mergers (see Section 4.2). In this Section, we gauge when each of these causes will become1038

important in terms of the generation of GW observatory.1039

It is worth stressing that some level of systematics is unavoidable. For example, waveform1040

models are intrinsically imperfect: even without missing any physics and removing current1041

waveform systematics, there will always be intrinsic limitations due to truncation errors in per-1042

turbative schemes, calibration inaccuracy with NR waveforms, phenomenological modelling1043

of the merger, unavoidable numerical errors in NR simulations. Thus, we will have to always1044

face some degree of waveform systematics, noise artifact, or astrophysical uncertainty, whose1045

potential impact will grow for high SNR events. The point here is to control such systematics as1046

much as possible, to a level that make them negligible with respect to a putative GR deviation.1047

We summarize the discussion in Table 1. We note that this is intended as a rough guide as1048

exact predictions for the size of relative effects can depend on a number of factors, and one1049

expects improvements in the coming years (e.g., one expects waveform systematics to improve1050

in the coming years, however, we do not consider this here). Below we give our reasoning for1051

why we think these causes will be important (or not) for a given detector sensitivity.1052

Cause O4 A+ A# XG
Non-Stationary Noise 3 3 3 3

Non-Gaussian Noise/Glitches 3 3 3 3

Overlapping Signals 7 7 7 3

Data Gaps 7 7 7 3

Detector Calibration 7 7 7 3

Eccentricity 3 3 3 3

Tidal Effects 7 3 3 3

Kick-induced Effects 7 7 7 3

Ringdown Modes 3 3 3 3

Precession and Higher-order Modes 3 3 3 3

Memory 7 7 3 3

Sub-optimal Waveform Calibration 7 7 3 3

Lensing 7 7 7 3

Environmental Effects 7 7 7 3

Source Misclassification 3 3 3 3

Astrophysical Population Assumptions 3 3 3 3

Table 1: Summary of the causes discussed in this paper that can potentially mimic
a GR deviation while performing tests of GR. The tick means the effect should be
accounted for in the waveform models and/or analysis methods when analyzing data
of a GW detector of a given sensitivity. The cross means the effect is sub-dominant
to show up as a false GR violation with that detector sensitivity.

5.1 Noise Systematics1053

Non-stationarities, non-Gaussianities, overlapping signals Non-stationary and non-Gaussian1054

noise artifacts are an ever-present analysis burden in the current generation of observatories1055
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as discussed in Sections 2.1 and 2.2. While the extent to which these artifacts will alter with1056

upgrades to current observatories or persist in future-generation observatories remains un-1057

certain, it is difficult to imagine that they will subside to any degree. It therefore behooves1058

analysts to understand and mitigate these noise sources as post-processing steps before making1059

any claim of a GR violation. On the other hand, the effect of contamination from overlapping1060

signals, whether they be super- or sub-threshold to detection, will only increase and get worse1061

as the sensitivity of instruments gets better.1062

Data Gaps For current-generation detectors, data gaps are not expected to pose a problem1063

for tests of GR due to the typically short duration of signals in the band and the low likelihood1064

of data gaps occurring precisely during those times. For XG observatories, however, data gaps1065

could become more problematic, as the signal duration increases to many hours to days, and1066

the likelihood of gaps increases.1067

Detector calibration For the current generation of observatories, uncertainties due to de-1068

tector calibration do not introduce biases in parameter estimation when assuming general-1069

relativistic waveforms, and therefore are not expected to introduce problems in tests of GR1070

(e.g., [102] and see Section 2.5). For XG observatories, assuming an ≈ 1% relative error on1071

the amplitude, and ≈ 1◦ error in phase, detector calibration error leads to mismatch errors of1072

approximately 10−5, which may be problematic for tests of GR [500]. Of course, this is only a1073

dominant source of uncertainty if other sources (e.g., waveform systematics) can be mitigated1074

below this level.1075

5.2 Waveform Systematics1076

Eccentricity Employing non-precessing, eccentric waveforms, some papers have claimed the1077

evidence for eccentricity in observed GW signals [128, 129, 138–140]. Although this is con-1078

tentious (see discussion in Section 3.1.1), it points to the fact that effects of eccentricity are1079

already relevant in current observations, and therefore already pose a difficulty when per-1080

forming tests of GR. This will continue to be a problem, and may be further exacerbated, as1081

observatories become more sensitive.1082

Tidal Effects Tidal signatures may be present in several observed neutron star binary merg-1083

ers (e.g., [62, 501]), although a confident detection of tidal signature is yet to occur. While1084

misspecification of tidal effects is unlikely to appear as a GR violation in current detectors, a1085

clean tidal signature may be present in A+ observatories for dynamical tidal effects [502], and1086

XG detectors for linear tides (e.g., [503,504]).1087

Kick-induced Effects The kick-induced effects are too small to be detected with the current1088

GW detectors but could potentially be observed in XG era [234, 235]. The XG detectors are1089

expected to observe∼ 4−5 events per year for which these effects will be constrained to better1090

than ∼ 10% [234].1091

Ringdown Tests of GR and the no-hair theorem are already performed using the ringdown1092

of loud GW signals (e.g., [1]) where the challenges that arise with specifying the ringdown1093

start time and avoiding overfitting to nonlinearities are already present. These challenges will1094

only intensify as the ringdown signals become louder in future observatories (e.g., [286]).1095
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Precession and Higher-order Modes Several events in the existing GWTC have strong ev-1096

idence of higher-order modes due, e.g., to large mass ratios such as GW190412 [505] and1097

GW190814 [506]. There are several events that have evidence of spin precession, such as1098

GW190521 [507] and GW200129 ( [70], although see [71,508]). It is therefore important to1099

account for spin precession and higher-order modes in current analyses, and the inclusion of1100

higher modes will become even more important as the sensitivity of observatories continues1101

to improve.1102

Memory Displacement memory is too small to be detected in individual events with the1103

sensitivities of current detectors [334, 509–511]. A memory signal is expected to influence1104

parameter estimation results in loud events with SNR greater than 60, expected during the1105

A# era [331], implying at this stage memory needs to be properly accounted for in waveforms1106

models. Memory will have a significant influence in XG observatories; for example, Cosmic Ex-1107

plorer is predicted to have 3 to 4 events per year where memory is detectable for an individual1108

event [334], amplifying the need to properly account for memory effects.1109

Waveform Calibration If we consider NR simulations to be the ground truth, then current1110

waveform calibration errors refer to systematic biases introduced because the waveform ap-1111

proximants do not exactly match the NR simulations. But even NR waveforms carry uncer-1112

tainties associated with, e.g., resolution effects and finite radius extraction. Such waveform1113

calibration errors on the order of a few percent in amplitude, and a couple of degrees in phase,1114

are subdominant to stochastic noise processes for binary neutron star observations at approxi-1115

mately 100 Mpc in A+ observatories [164]. Waveform uncertaintes are currently smaller than1116

this, implying they are not a potential source of bias for tests of GR. This is not necessarily1117

true in the A# and XG era when even NR waveforms will not be sufficiently accurate for unbi-1118

ased parameter estimation recovery [337,500]. This latter point motivates the continual need1119

for more accurate NR simulations and waveform extraction methods, as well as waveform1120

approximations.1121

5.3 Astrophysical Aspects1122

Lensing In current and future detectors like advanced LIGO and A+, the estimated rate of1123

strong lensing events for binary neutron stars is approximately 0.1%, while for binary black1124

holes it is expected to be around 0.2%. These figures are consistent across various stud-1125

ies [512–514]. Following this, advanced LIGO is anticipated to detect approximately 0.1 lens-1126

ing events per year, whereas A+ is projected to observe 1 event annually. However, with XG1127

detectors, O(100) events could be detected per year. It is important to note that these rates1128

serve as a lower bound for millilensing and microlensing, since they could occur together with1129

strong lensing in events. Therefore, lensing effects will not be a significant issue only until XG1130

era.1131

Environmental Effects Astrophysical environments in which one may anticipate binary sys-1132

tems merging (and which may leave an imprint on the GW signal) include thick (ρ̄ ∼ 10−8 g/cm3)1133

and thin (ρ̄ ∼ 0.1 g/cm3) accretion disks around active galactic nuclei [32], cold dark mat-1134

ter spikes (ρ̄ ∼ 10−6 g/cm3) [404], superradiant-boson clouds (ρ̄ ∼ 0.1 g/cm3) [416] and1135

the dynamical fragmentation of massive stars (ρ̄ ∼ 107 g/cm3) [393]. Santoro et al. [442]1136

found no support for environmental effects in GWTC-1, and found the environmental density1137

would need to be ∼ 20 g/cm3 to be observable. This likely does not correspond to any of the1138

astrophysical environments mentioned previously. For advanced LIGO design sensitivity, they1139

find that dynamical friction effects are detectable at ρ̄ ¦ 10g/cm3 for a GW170817-like event,1140
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while the effect of collisionless accretion is only visible for densities 10-100 times greater. As1141

there are no proposed environments with such densities, it is unlikely for environmental ef-1142

fects to be visible in advanced LIGO data. They find that XG observatories will be sensitive to1143

environmental densities of ∼ 10−3 g/cm3, which includes both thin accretion disks and super-1144

radiant clouds. It is therefore likely that environmental signatures will only become relevant1145

for GR tests in XG and beyond.1146

Source Misclassification The problem of source misclassification is ever-present in tests of1147

GR and must be considered when mitigating against false GR violations. For example, while1148

current analyses find no evidence of GW echoes that would provide evidence of black-hole1149

mimickers (see Section 4.3.1), these non-detections only place limits on, e.g., the reflective1150

properties of the ultra-compact objects. As the sensitivity of the GW network improves, we1151

will continue to probe the parameter space of potential black-hole mimickers.1152

Astrophysical Population Assumptions The problem of fortifying hierarchical tests of GR1153

against population assumptions and modelling systematics will be ever-present. Statistical1154

assumptions on how to combine the information from individual events require care, as they1155

reflect implicit assumptions on the beyond-GR theory that is being tested [241,495]. Incorrect1156

prior assumptions on the astrophysical population can cause biases if the deviation parame-1157

ters are correlated with individual source parameters. These biases can be mitigated by jointly1158

inferring the astrophysical population when performing hierarchical tests of GR, or in the1159

high-SNR limit of XG detectors if the degeneracies between source parameters and deviation1160

parameters are not perfect [492]. Effects due to the finite size of the catalog [499] or selec-1161

tion effects against large deviations [493] can also lead to biases in population constraints if1162

not properly accounted for. Finally, waveform systematics (both due to missing physics and1163

sub-optimal calibration) can accumulate in a population analysis and lead to infer false GR1164

violations even if the biases are under control at the single-event level [136,490]. This effect1165

will be even more prominent when restricting the test to high-SNR events that can be routinely1166

observed with XG detectors [90].1167

6 Summary1168

Since the first detection in 2015, GW observations are now routinely used to test GR in highly1169

dynamical and non-linear gravity regimes. Several tests of GR exist at the moment and the1170

majority of them rely on comparing the GW data with well-motivated, state-of-the-art wave-1171

form models. The GW observations from the LIGO-Virgo-KAGRA collaboration have so far1172

not found any deviation from GR, but this may not be the case forever, especially with the1173

increased sensitivity of GW detectors. In the future, all these well-motivated, state-of-the-art1174

waveform models may fall short of explaining all the features in the high-quality data due to1175

the complexity of the physics of GW sources and the detector noise modeling.1176

In this paper, we listed the possible causes that can lead to an apparent GR deviation us-1177

ing observations from ground-based GW detectors given the current waveform models and1178

data analysis techniques that are available to the community. We grouped these causes into1179

three broad categories: noise systematics, waveform systematics, and astrophysical aspects.1180

Noise systematics include noise being non-stationary and/or non-Gaussian with or without1181

time-overlapping signals present in the data, gaps in data, and errors in instrument calibra-1182

tion. Waveform systematics include cases of missing physics such as eccentricity, tides, kicks,1183

overtones, mirror modes, and non-linear ringdown modes, and sub-optimal modeling and1184

calibration (with NR waveforms) of quasi-circular waveforms. Astrophysical aspects include1185
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gravitational lensing, non-vacuum environments, mistaken source classes, and assumptions of1186

astrophysical population.1187

Our list is admittedly not complete and we might have missed some other important causes1188

of false GR deviation. However, we hope that this paper will serve as a starting point for the1189

community to study, understand, and document the effects of these causes on tests of GR. In a1190

follow-up paper, we will discuss what actions could be taken when a significant GR deviation is1191

detected and propose a possible formulation of a GR violation detection checklist. We hope that1192

these efforts will prepare us for the time when there will be an actual statistically significant1193

GR deviation found in the GW data.1194
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