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We study the effects of correlations in a random environment on a random walker.

The dependence of its asymptotic speed on the correlations is a nonperturbative

effect as it is not captured by a homogeneous version of the same environment.

For a slowly cooling environment, the buildup of correlations modifies the walker’s

speed and, by so, realizes acceleration. We remark on the possible relevance in

the discussion of cosmic acceleration as traditionally started from the Friedmann

equations, which, from a statistical mechanical point of view, would amount to a

mean-field approximation. Our environment is much simpler though, with transition

rates sampled from the one-dimensional Ising model and allowing exact results and

detailed velocity characteristics.

I. INTRODUCTION

The motion of a colloidal particle suspended in a fluid may be well-described by summa-

rizing its environment in terms of its temperature and viscosity and a few other macroscopic

parameters, such as its density profile. However, stronger coupling and nontrivial correla-

tions in the environment can bring complications, and careful consideration is required in

determining the features to be taken into account. For example, a probe embedded in an

equilibrium bath or in an active bath behaves differently, even when both baths have the

same density [1]. Similarly, the motion of a random walker embedded in a biased random

potential is affected by the correlations in the potential. Averaging the correlations out and

keeping only the bias, as in mean-field approaches, may lead to an improper description of

the walker.

In the present paper, we study the above warning in great detail for exactly solvable mod-

els. We take Ising spins as an environment for a biased one-dimensional random walker. Its

asymptotic or stationary speed is self-averaging and we compute that speed as a function
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of temperature for a fixed magnetization. We discover a rich variety of possible behav-

iors, including thresholds and non-monotone behavior of the speed as a function of the

environment’s temperature and biasing parameters. Therefore, slowly changing the Ising

temperature, slower than it takes the walker to achieve steady state, which amounts to

modifying the correlation length, induces a change in speed or an acceleration in the probe’s

movement. That would not be visible in case the environment is described solely by the

magnetization which amounts to an annealed version of the setup.

That brings us to a particular motivation of the paper, which concerns the ongoing debate

(or controversy) regarding the origin or the nature of dark energy. One of the main reasons

to believe there is truly something like ‘dark energy’ (and not only in an effective way) lines

up, so it appears to the authors, with an over-reliance on the Friedmann equations of gen-

eral relativity. We speculate that those Friedman equations represent an annealed average,

which washes out the disorder and yields a non-accelerating expansion of the Universe. Yet,

when looking at a typical disorder realization of the Universe, we may find an accelerating

expansion even without the explicit introduction of a cosmological constant. That scenario

is necessarily nonperturbative.

The literature on random walks in a random environment is vast. Both from the proba-

bility and from the statistical mechanics side, a wide plethora of models have been studied,

and much has been understood and solved, especially in one dimension. We cannot possibly

include all original sources, but we mention the reviews by Zeitouni for the mathematical

theory, [2, 3]. A large literature is also devoted to the diffusion of random walks in a ran-

dom environment. If the average work done on the walker is zero, there can be ultra-slow

diffusion, such as in the Sinai model, [4]. For our purpose, as we are mainly interested in

the form of the asymptotic velocity, we follow the work of Derrida [5]. Somewhat related is

also the extensive numerical study for a Brownian particle in a random potential, [6].

The present paper is concerned with the velocity of the walker in a random force field,

where the force involves Ising-spins and is both thermally and athermally biased. The

forcing at different sites is correlated, and that correlation structure gives a rich behavior

of how the walker is affected by slow cooling of the environment. The reported results are

nonperturbative and exact.
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Plan of the paper: We start in the next Section II with a summary of Derrida’s result for

the stationary velocity of a random walker in a random environment. The analysis is done

for a random walk in the Ising model environment. The Ising configuration σ is sampled

with the standard nearest neighbors coupling and in a magnetic field. There are two cases,

Section III when the work on the walker to jump n → n+ 1 depends on σn, and Section IV

where the work depends on σnσn+1. Each time, we present a full analysis of the influence

of correlations and parameters on the behavior of the velocity as a function of the inverse

temperature. The remarks in Section V end with the suggestion that the results of the

paper, by analogy, fit in the ambition of the backreaction program for understanding the

accelerated expansion of the universe.

II. ONE-DIMENSIONAL SETUP

We consider a random walker Xt on the integer sites in continuous time t. Hops are

allowed only between neighboring sites. The Master Equation describes the evolution of the

probability Prob[Xt = n] = pn(t) and is given by

dpn(t)

dt
= k(n− 1, n)pn−1(t) + k(n+ 1, n)pn+1(t)− (k(n, n− 1) + k(n, n+ 1)) pn(t),

where the hopping rates k(n, n ± 1) from site n to site n ± 1 are chosen from a predefined

distribution (to be specified later) to which we refer as the environment. We thus have a

random walker in a random environment. Averages over this random choice are denoted by

angular brackets ⟨·⟩.

The work by Derrida [5] provides the steady state velocity VN of the walker for a finite

periodic lattice interval of length N ,

VN =
N∑N
n=1 rn

[
1−

N∏
n=1

(
k(n+ 1, n)

k(n, n+ 1)

)]
(II.1)

rn =
1

k(n, n+ 1)

[
1 +

N−1∑
i=1

i∏
j=1

(
k(n+ j, n+ j − 1)

k(n+ j, n+ j + 1)

)]
. (II.2)

In many cases of physically relevant environments, the velocity VN is self-averaging in the

limit N → ∞, i.e., the limit t → ∞ yielding steady behavior and the limit N → ∞ com-

mute, [7].
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Assuming that 〈
log

k(n, n+ 1)

k(n+ 1, n)

〉
> 0, (II.3)

corresponds to pushing the walker to move to the right. Moreover, condition (II.3) implies

lim
N→∞

[
1−

N∏
n=1

(
k(n+ 1, n)

k(n, n+ 1)

)]
= 1,

and the asymptotic velocity (II.1) becomes

V + = lim
N→∞

1
1
N

∑N
n=1 rn

, (II.4)

where we added the superscript “+” to emphasize that the motion of the walker is to the

right.

Alternatively, with regard to (II.3), assuming
〈
log k(n+1,n)

k(n,n+1)

〉
> 0 pushes the walker to the

left. We then put

ℓn =
1

k(n+ 1, n)

[
1 +

N−1∑
i=1

i∏
j=1

(
k(n+ j, n+ j + 1)

k(n+ j, n+ j − 1)

)]
(II.5)

V − = − lim
N→∞

1
1
N

∑N
n=1 ℓn

, (II.6)

where the superscript “−” reminds us that the walker moves to the left.

As an example, we take Eq. 88 of [5], where with probability α, k(n, n + 1) = W,k(n +

1, n) = 1, and with probability 1 − α, k(n, n + 1) = 1, k(n + 1, n) = W for some W > 1.

There is a symmetry α ↔ 1 − α. Then, the velocity is nondecreasing as a function of

α, and the speed is zero for α ∈ [1 − α1, α1], where α1 = W/(1 + W ). The condition

⟨k(n + 1, n)/k(n, n + 1)⟩ = α/W +W (1 − α) < 1 is necessary for V + > 0 and determines

α1, while the weaker (II.3) only defines the direction of pushing, not whether the speed is

nonzero. Note however that the speed can be zero while the walker is still moving to the

right, just not with a displacement proportional to the elapsed time.

Our goal is to map the effect of correlations in the environment on the velocity, i.e., on

(II.4) or (II.6). For that purpose, we consider the Ising model to represent the environment

in the next two sections. This model yields analytic expressions for the velocity, and it

allows to control the correlations by varying the temperature.
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III. ISING SITE DISORDER

In this and the next sections, we use the Ising model to create a disordered environment

for the walker but not in the sense that Ising energy differences decide the transition rates;

the walker is driven by random force in terms of either single site (this section) or bond

(next section) Ising spins.

A. Definition of the model

For random (or, disordered) environment, we choose the standard one-dimensional Ising

model at inverse temperature β with Hamiltonian

HN = −J

N∑
i=1

σiσi+1 − h

N∑
i=1

σi, σi = ±1, (III.1)

for coupling J ≥ 0, magnetic field h, and periodic boundary conditions, σN+1 = σ1 with

(soon) N ↑ ∞.

The Ising configuration σ determines the hopping rates of our walker via

k(n, n+ 1) = e+(βε−a)σn , for n → n+ 1, (III.2)

k(n+ 1, n) = e−(βε−a)σn , for n+ 1 → n, (III.3)

where ε, a are extra parameters that allow tuning the random bias in the behavior of the

walker. Note that the spins over the edge (n, n+1) are not treated symmetrically; that will

change in Section IV.

We can think of −σn as a local slope the walker has to overcome in order to hop from n to

n+1. Interestingly, the bias from ε and the bias from a may compete. There is the thermal

bias 2βε where work 2ε is done and dissipated in a heat bath at inverse temperature β, while

the (dimensionless) parameter a pushes the walker uphill when a > 0. We can think of a

as giving an athermal bias originating from nondissipative effects (such as initial conditions

or local forces). Alternatively, a can be considered as coupling to another environment

(non-Ising) by setting a = β̃ε̃, where then, work 2ε̃ is dissipated to the other bath at inverse

temperature β̃. Obviously, when βε = a, there is no net motion. In other cases, the velocity

can be positive, negative, or zero.

In addition, the environment has a bias as well, determined by the magnetization. To break
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the symmetry in the environment, we set the magnetic field h > 0, and h may depend on β

even to the extent that h(β)β > 0 as β ↓ 0.

Note that the ‘local’ current is not just given by

k(n, n+ 1)− k(n+ 1, n) = 2σn sinh(βε− a).

If we average the disorder at the level of the transition rates, we get

⟨k(n, n± 1)⟩ = cosh(βε− a)±m sinh(βε− a). (III.4)

Using these annealed, averaged (or, homogenized) rates, the current is 2m sinh(βε− a) and

obviously only depends on the magnetization m = ⟨σn⟩ = m(βJ, βh) in the Ising model.

When we do not average the disorder (but allow self-averaging by passing to the limit

N ↑ ∞), we prove that the velocity (or current) depends on the correlations and that it

shows an intriguing dependence on the Ising temperature.

We consider the case of a slow cooling environment. Namely, the rate of change of the

environment’s temperature is much slower than the rate of the walker to reach a steady

state at a particular temperature. This means that the behavior of the asymptotic velocity

as a function of temperature can be considered as the time evolution of the velocity, V (t) =

V (β(t)), which amounts to a quasistatic transformation. We also mention this point in

Remark 6 of Section V. Clearly, the case of a slowly increasing temperature is also interesting

and applicable under the same quasistatic assumption.

B. Asymptotic speed

We compute (II.4), and we use the self-averaging property, [5], to have, with probability

one, (
V +

)−1
= lim

N→∞

1

N

N∑
n=1

⟨rn⟩N , (III.5)

with the Ising-average ⟨·⟩N using periodic boundary conditions, N + 1 = 1 indicated by the

subscript N .

It is useful to rewrite (II.2) in the form

rn =
N−1∑
ℓ=0

Cℓ(n), (III.6)
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where C0(n) =
1

k(n,n+1)
and for 0 < ℓ < N ,

Cℓ(n) =
1

k(n, n+ 1)

ℓ∏
j=1

k(n+ j, n+ j − 1)

k(n+ j, n+ j + 1)

= e−2(βε+a)σn · · · e−2(βε+a)σn+ℓ−1e−(βε+a)σn+ℓ .

We need the Ising-average of (III.6) and we observe that

⟨Cℓ(n)⟩N = ⟨Cℓ(1)⟩N =: cℓ(N). (III.7)

Therefore, (III.5) equals

(
V +

)−1
= lim

N→∞

1

N

N∑
n=1

N−1∑
ℓ=0

⟨Cℓ(n)⟩N = lim
N→∞

1

N

N∑
n=1

N−1∑
ℓ=0

cℓ(N)

= lim
N→∞

N−1∑
ℓ=0

cℓ(N). (III.8)

To perform the above sum, we need to calculate the ℓ-th term

cℓ(N) =
〈
e−2(βε−a)σ1 · · · e−2(βε−a)σℓe−(βε−a)σℓ+1

〉
N
=

1

ZN

Tr
(
(S2M)ℓS1M

N−ℓ
)
, (III.9)

where we have introduced the transfer-matrix for the Ising model (III.1),

M :=

eβ(J+h) e−βJ

e−βJ eβ(J−h)

 , ZN = Tr
(
MN

)
and matrices

S1 :=

e−(βε−a) 0

0 e(βε−a)

 , S2 :=

e−2(βε−a) 0

0 e2(βε−a)

 . (III.10)

Upon taking the limit N → ∞ of (III.9), a standard calculation yields

cℓ := lim
N→∞

cℓ(N) =
e−βh+3(βε−a)

(λ1 − λ2) (µ1 − µ2)

×

[(
µ1

λ1

)ℓ (
e−2(βε−a)µ1 − λ2

) [
eβJ

(
1− e−2(βε−a)

)
+ eβh−2(βε−a) (λ1 − µ2)

]
−

(
µ2

λ1

)ℓ (
e−2(βε−a)µ2 − λ2

) [
eβJ

(
1− e−2(βε−a)

)
+ eβh−2(βε−a) (λ1 − µ1)

] ]
, (III.11)



8

where

λ1,2 = eβJ cosh(βh)± e−βJ

√
1 + e4βJ sinh2(βh) (III.12)

µ1,2 = eβJ cosh(βh− 2(βε− a))± e−βJ

√
1 + e4βJ sinh2(βh− 2(βε− a)). (III.13)

The infinite sum (III.8) is a geometric sum in powers of µ1/λ1 and µ2/λ1 as can be seen

by the explicit expression for cℓ in (III.11). Since µ1 > µ2, the sum converges for µ1 < λ1.

Thus, the velocity V + in (III.8) is nonzero if and only if µ1 < λ1, in which case it equals

V + =
2e2βJ sinh(βε− a) sinh(βh− (βε− a))

√
e4βJ sinh2(βh) + 1

e4βJ sinh(βh) sinh(βh− (βε− a)) + cosh(βε− a)
. (III.14)

See Fig. 1 for a plot of the velocity as function of β for different a, ε, h.

FIG. 1. Velocity V ± vs inverse temperature β for J = 1. The left velocity V − (III.18) is obtained

from V + (III.14) by the mapping V −(ε, a) = −V +(−ε,−a). Thus, flipping signs of ε, a simulta-

neously flips the velocity, and therefore, we consider only cases of competing and noncompeting

biases. (a) ε = −0.1, a = −0.1 have the same sign and therefore compete. This results in a non-

monotonic behavior of V +. At β = a/ε the velocity vanishes, and for colder temperatures it is

negative. (b) ε = 0.1, a = −0.1 are in the same direction, which yields a monotonically increasing

velocity with β. Note that the magnetic field h must be large enough to induce positive V +.

We are interested in the effects of correlations in the environment on the velocity. To

decouple the effects of bias and correlations, we want to change β while keeping the mag-

netization m fixed. That requires making the magnetic field h = h(β) a function of β that



9

keeps m fixed. Since the Ising-magnetization is known,

m =
e2βJ sinh(βh)√

1 + e4βJ sinh2(βh)
, (III.15)

the velocity (III.14) can be expressed in terms of that magnetization (valid for 0 < m ≤ 1),

V + = 2 sinh(βϵ− a)
m− tanh(βϵ− a)

√
e4βJ +m2(1− e4βJ)

1−m tanh(βϵ− a)
√

e4βJ +m2(1− e4βJ)
. (III.16)

For m = 0, the environment is symmetric, and the velocity is zero. At m = 1, the velocity

becomes V +(m = 1) = 2 sinh(βε− a) = ⟨k(n, n + 1)⟩ − ⟨k(n + 1, n)⟩: since the system is

completely ordered then, averaging at the level of the hopping rates as in (III.4) yields the

correct result.

The correlations appear in the dependence of (III.16) on the coupling βJ , where we recall

that the correlation length is

ξ ≃ 1

2
e2βJ

for βJ ≫ 1, and |m| ≪ 1 (low temperature and small magnetic field).

Looking closer at the velocity (III.14), the marginal case is obtained when λ1 = µ1, with

λ1 and µ1 given in (III.12), (III.13). The equality is obtained when βh− 2(βε− a) = ±βh.

Moreover, µ1 < λ1 (which yields V + > 0) only when 0 < βε − a < βh. Using (III.15), the

last inequality can be written as e2βJ sinh(βε− a) < m√
1−m2 .

Summarizing: it is necessary and sufficient for V + > 0 that

a < βε, and f(β) := e2βJ sinh(βε− a) <
m√

1−m2
(III.17)

(Note that the first inequality is the one obtained by (II.3): plugging in the hopping rates

(III.2) yields −2(βε− a)⟨σn⟩ < 0, which for h > 0 reduces to βε− a > 0.)

The case of V − ≤ 0 is analyzed similarly. Following the same procedure as above, we

find (recall (III.14))

V − = −
2e2βJ sinh(a− βε) sinh(βh+ (βε− a))

√
e4βJ sinh2(βh) + 1

e4βJ sinh(βh) sinh(βh+ (βε− a)) + cosh(βε− a)
, (III.18)

or, in terms of magnetization (see (III.16))

V − = −2 sinh(a− βϵ)
m− tanh(a− βϵ)

√
e4βJ +m2(1− e4βJ)

1−m tanh(a− βϵ)
√

e4βJ +m2(1− e4βJ)
. (III.19)
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The conditions for nonzero V − < 0 remain µ−
1 < λ1, where µ

−
1 = µ1(ε 7→ −ε, a 7→ −a) in

(III.13). The same arguments that were used in the case of V + apply here and the necessary

and sufficient conditions for V − < 0 are (compare with (III.17))

a > βε, and f(β) >
m√

1−m2
. (III.20)

C. Discussion

In this Section we analyze the behavior of the velocity from the analytic expression of

V ± for fixed m and changing β, (III.16).

Consider first the case ε = 0 and the walker moving to the right. The conditions

(III.17) simplify to a < 0 and e2βJ sinh(−a) < m√
1−m2 . Therefore, V + > 0 if and

only if a < 0 and βa := 1
2J

log
[

m
sinh(|a|)

√
1−m2

]
> 0. It implies that there is a nonzero

speed V + only at sufficiently high temperatures (0 ≤ β < βa) and the velocity to the

right is zero, even at infinite temperature, when the magnetization m is too small (when

m < sinh(|a|)/ cosh(a) = tanh(|a|)). The velocity V + (still for ε = 0) is plotted in Fig.

2(a). We see it decreases when lowering the temperature. Indeed, increasing correlations in

the environment may create larger domains that oppose the walker’s motion to the right,

thereby reducing its velocity. For large enough correlations, these domains trap the walker

to a halt. Analyzing the motion to the left corresponding to conditions (III.20), yields

similarly that V − < 0 if and only if a > 0 and 0 ≤ β < βa.

For the case a = 0 and motion to the right, the conditions (III.17) simplify to 0 < βε

and e2βJ sinh(βε) < m√
1−m2 . Similar to the previous case, there is now a βm > 0 such that

V + > 0 if and only if 0 < β < βm. Note that for β = 0 the velocity is zero, simply

because the hopping rates (III.2) are symmetric for a = 0, β = 0. As β increases, the

hopping rates (III.2) become more asymmetric, inducing a nonzero velocity. On the other

hand, correlations in the environment increase and reduce the velocity. These competing

effects yield a velocity that depends non-monotonically on β, shown in Fig. 2(b). The case of

motion to the left results in the same conditions and the same form of the (negative) velocity.

The behavior becomes even richer when both a and ε are nonzero. We analyze in detail
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FIG. 2. The velocity as a function of β, for fixed magnetization, where J = 1. (a): ε = 0, a = −0.1

yields a decreasing velocity with β. The threshold magnetization for V + > 0 is ma = tanh(|a|) ≈

0.1. (b): ε = 0.1, a = 0 produces a non-monotone behavior of the velocity.

the case of motion to the right V + with the conditions (III.17); the case of motion to the left

V − is obtained from the very same considerations but starting with the conditions (III.20).

Consider first the case a > 0. Our first condition in (III.17), βε > a, implies that for

V + > 0 we must have ε > 0 and β > a/ε (needing sufficiently low temperatures). The value

a/ε is a positive threshold for β to have a strictly positive velocity, and applies for any value

of m. The second condition in (III.17) yields another threshold temperature, βm(ε, a), a

function of both ε and a that solves

f(β) = e2βJ sinh(βε− a) =
m√

1−m2
. (III.21)

Clearly, (as we assume m > 0), we must have βm(ε, a) > a/ε.

Summarizing, we have that for a > 0, ε < 0 the velocity is zero, whereas for a > 0, ε > 0,

the velocity is positive in some range β ∈ (a/ε, βm(ε, a)). See inset of Fig. 3(a).

In the case a < 0, ε < 0, the first condition of (III.17) requires β < a/ε. That cutoff

value of the velocity is independent of m (as indicated by the red line in Fig. 3(b)). For the

second condition in (III.17), we note that for the threshold β, (III.21), there could now be

zero, one or two solutions that are smaller than a/ε. The value of m determines the number

of solutions. This can be understood by the behavior of f(β) in the range (0, a/ε): It is
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strictly positive, and at the edges it attains the values f(0) = − sinh(a) > 0 and f(a/ε) = 0.

Simple examination of f(β) shows it has a single maximum βmax in (0, a/ε), and therefore

we find the following three possibilities. If αm := m/
√
1−m2 < − sinh(a) there is a single

solution βm2 such that V + > 0 in the range (βm2 , a/ε). (The threshold determining if there

are one or two solutions can be rearranged as ma := tanh(|a|), such that for any m < ma

there is a single solution.) If − sinh(a) < αm < f(βmax), there are two solutions, βm1 < βm2

such that V + > 0 in two separate ranges (0, βm1) and (βm2 , a/ε). Lastly, if f(βmax) < αm,

then V + > 0 for the entire range (0, a/ε). These cases are all shown in Fig. 3(b) in blue,

orange, and green, respectively. Note that the region [βm1(ε), βm2(ε)] where V + = 0 also

applies to left motion, namely V − = 0 in this region as well; see Fig. 3(b). For large values

of m where there is no solution to (III.21), (such that αm > f(βmax)) the velocity can also

exhibit non-monotonic behavior; see e.g., the green line for m = 0.35 in Fig. 3(b).

Lastly, in the case a < 0, ε > 0, the first condition in (III.17) always holds, and the

second condition gives a threshold βm that solves (III.21). The solution βm is positive when

|a| is small enough: if sinh(−a) < m/
√
1−m2, there is a solution βm(ε) > 0 such that for

any β ∈ [0, βm(ε)) the velocity V + is positive. This threshold magnetization is given by

m = tanh(|a|); see Fig. 4(a). We conclude that the case a < 0, ε > 0 is similar to the case

a = 0, ε > 0 plotted in Fig. 2(b), only shifted to the left.

The walker also exhibits motion to the left, see Figs. 3, 4. Adjusting the arguments

presented in the paragraphs above for V − < 0, given in conditions (III.20), is straightforward

and results in a complementary range of β by mapping ε 7→ −ε, a 7→ −a, as can be seen by

comparing panels (a), (b) in Figs. 3, 4.

IV. ISING BOND DISORDER

We consider again the same disordered environment as sampled from the one-dimensional

Ising model. However, in contrast with (III.2) where a single local spin value is used, this
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FIG. 3. Velocity V ± as a function of β, for fixed magnetization m, where J = 1. In both plots,

the biases ε and a compete. Insets magnify the region around β = a/ε marked by the vertical red

line. (a): ε = 0.1, a = 0.15 yields a non-monotonic velocity V + with β, nonzero in (a/ε, βm). (b):

ε = −0.1, a = −0.15, yields nonzero velocity already at β = 0. For any value of m the velocity

vanishes at β = a/ε. For large values of m the velocity is decreasing in β. Yet, for smaller m,

V + can be non-monotone, and at low enough values of m, the velocity can even vanish at some

value βm1 (that depends on m), and then reappear at βm2 . The symmetry a 7→ −a, ε 7→ −ε

corresponding to V + 7→ −V −, V − 7→ −V + is apparent from comparing (a) and (b).

FIG. 4. Velocity V +, V − as a function of β, for fixed magnetization m, where J = 1. The two

plots correspond to noncompeting ε and a. (a): ε = 0.2, a = −0.05 results only in motion to the

right, i.e., V − is zero for any temperature. If m < ma := tanh(|a|) ≈ 0.05, then V + = 0 for any

β. However, for m > ma, there is a range [0, βm(ε)) where V + > 0. For large enough values of m,

V + is non-monotone. (b): ε = −0.2, a = 0.05, yields a symmetric picture, where V + 7→ −V − and

V − 7→ −V +.
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time, the local coupling energies enter. That is, we take hopping rates

k(n, n+ 1) = e(βϵ−a)σnσn+1

k(n+ 1, n) = e−(βϵ−a)σnσn+1 . (IV.1)

When the spins σn = σn=1 over the edge agree, the particle prefers to move to the right when

βϵ > a and to the left when βϵ < a. We refer to this model as the “bond model” since the

bias is determined by the local interaction energy i.e., the alignment between neighboring

spins. Therefore, nonzero velocity can appear even at h = 0.

The same procedure as in the previous Section allows calculating explicitly the velocity

as a function of the parameters ϵ, a, β, J, h:

V + =
e4b

(√
e4K sinh2H + 1− 2eb+2K sinh b coshH

)2

− e8b+4K sinh2H − 1

2e3b+2K coshH e2b+4K sinh2 H+1√
e4K sinh2 H+1

+ e5b+4K (cosh(2H)− e2b) + 2e2b cosh b
, (IV.2)

where b = −βϵ + a,K = βJ,H = βh. The simpler case of only a single bias, namely ε = 0

or a = 0, is plotted in Fig. 5, whereas the general case is plotted in Fig. 6.

As in Section III, to analyze the conditions for vanishing velocity, we spell out the velocity

to the right V +, and the corresponding left-motion can be obtained by a similar analysis.

The condition for nonzero velocity is unchanged, µbond
1 < λ1, where λ1 remains unchanged

from (III.12), and

µbond
1 = eβJ−2(βϵ−a) cosh βh+ e−βJ+2(βϵ−a)

√
1 + e4βJ−8(βϵ−a) sinh2 βh. (IV.3)

It is readily seen that β = β1 := a/ε gives µbond
1 = λ1, i.e., V

+ = 0. On the other hand,

the necessary condition (II.3) in the bond model (IV.1) reduces to 2(βε − a)⟨σnσn+1⟩ > 0,

implying that β1 is always a threshold inverse temperature for nonzero velocity.

For h = 0, λ1(h = 0) = 2 cosh(βJ) and µbond
1 (h = 0) = 2 cosh(βJ − 2(βε− a)). As

consequence, with h = 0, the marginal case λ1(h = 0) = µbond
1 (h = 0) corresponds to

βJ = ± [βJ − 2(βϵ− a)], which yields two thresholds

β1 = a/ε, β2 = a/(ε− J), (IV.4)

relevant only when β1 ≥ 0 or β2 ≥ 0 (and β1 was obtained before).
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FIG. 5. The velocity for the bond model as a function of β for J = 1. Left and right columns

correspond to fixed h and fixed m, respectively. The examined values of ε, a yield only motion to

the right. (a-b) ε = 0.1, a = 0 yield V +(β = 0) = 0 which increases monotonically with β. (c-d)

ε = 0, a = 0.1 has a threshold β = β∗ beyond which V + > 0 and increases monotonically. For fixed

h, (c), the threshold is always positive β∗(h) > 0, whereas for fixed m, (d), the threshold β∗(m)

becomes zero for m > ma(a = 0.1) ≈ 0.34, see (IV.5).

The threshold inverse temperatures β1, β2 appear in Figs. 5, 6 where J = 1. For ε =

0.1, a = 0, Fig. 5(a-b), we find β1 = β2 = 0, and for ε = 0, a = −0.1, Fig. 5(c-d), the

threshold corresponds to β2 = 0.1, and β1 is undefined. For ε = −0.1, a = −0.1, Fig. 6(a-b),

the thresholds correspond to β1 = 1, β2 ≈ 0.09, and for ε = 0.1, a = −0.1, Fig. 6(c-d),

β1 = −1 is irrelevant and β2 ≈ 0.11. For ε = 1.1, a = −0.1, Fig. 6(e-f), β1 ≈ −0.09 and

β2 = −1 are both irrelevant, which means that V + = 0 for all β at h = 0.

Another limit that can be analyzed is β = 0, where for any fixed h we get µbond
1 (β = 0) =

2 cosh(2a) ≥ 2 = λ1(β = 0). This means that for any fixed h at β = 0, the velocity is zero,

as can be seen in Figs. 5(a,c), 6(a,c,e).

The case of fixed magnetization, where h = h(β), changes this last conclusion. The
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FIG. 6. The velocity for the bond model as a function of β for J = 1. Left and right columns

correspond to fixed h and fixed m, respectively. (a-b) ε = −0.1, a = −0.1 show competing biases

resulting in non-monotonic behavior of V +. For any value of h, (a), and for any value of m, (b),

the velocity vanishes at β1 = a/ε, see (IV.4), where the walker changes its direction. However, the

threshold β∗ beyond which V + > 0 for both (a) and (b) depends on the values of the parameters.

For h = 0 (equivalent to m = 0) it is given in (IV.4). (c-d) ε = 0.1, a = −0.1 yield V + > 0 that

increases monotonically with β. Here, there also exists a threshold β∗ beyond which V + > 0 that

depends on the parameters. (e-f) ε = 1.1, a = −0.1. At h = 0 (m = 0), the velocity is zero for

any β. At high enough h, (e), the velocity becomes positive at a threshold β∗(h) and increases

monotonically with β > β∗(h). For the fixed m case, (f), the velocity can be strictly zero (for

small m), have a monotonic decreasing behavior (moderate m), or even exhibit a non-monotonic

behavior (large m).
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analysis is done by rewriting λ1, µ
bond
1 in terms of the magnetization, using (III.15),

λ1 =
1√

1−m2

(
eβJ

√
1 +m2(e−4βJ − 1) + e−βJ

)
µbond
1 =

1√
1−m2

(
eβJe−2(βϵ−a)

√
1 +m2(e−4βJ − 1) + e−βJe2(βϵ−a)

√
1 +m2(e−8(βϵ−a) − 1)

)
.

For β = 0, this reduces to

λ1(β = 0) =
2√

1−m2

µbond
1 (β = 0) =

1√
1−m2

(
e2a + e−2a

√
1 +m2(e8a − 1)

)
.

If a = 0, then at β = 0, µbond
1 = λ1 and thus V +(β = 0) = 0 as seen in Fig. 5(b). If a < 0,

then the condition for V + > 0, µbond
1 < λ1, corresponds to

m2 >
e4a(2− e2a)2 − 1

e8a − 1
≡ m2

a, (IV.5)

namely, there is some threshold magnetization ma beyond which the velocity is nonzero

already at β = 0. The intuition for ma is simple. At β = 0, increasing m, corresponds

to decreasing the number of domain walls, i.e., decreasing the number of traps. ma is the

threshold corresponding to this number of domain walls. See Figs. 5(d), 6(b,d,f) where

ma(a = −0.1) ≈ 0.34. The case a > 0 corresponds to reversing the inequality (IV.5).

In the single bias case, Fig. 5, we observe that the velocity (to the right) increases as the

temperature decreases, both for fixed Ising magnetic field h and for fixed Ising magnetiza-

tion m. This is expected as these single biases favor motion to the right, and decreasing

temperature reduces the number of domain walls, hence reducing the number of bonds that

favor left motion. The threshold for V + > 0 is β = 0 in the a = 0 case, Fig. 5(a,b), and

some β = β∗ ≥ 0, for the ε = 0 case, Fig. 5(c,d).

For the competing biases case, Fig. 6(a,b), the velocity exhibits non-monotonic behavior.

V + > 0 in the appropriate finite region of temperatures determined by (IV.4). There are

a few factors at play which are responsible for the non-monotonicity. First, reducing the

temperature makes neighboring spins align, which enhances both the thermal and athermal

biases, ε = −0.1 and a = −0.1, respectively. At small β, the thermal bias is less relevant,

and thus the athermal bias a < 0 enhances the motion to the right, increasing the velocity.

As β increases, the thermal bias ε > 0 (favoring motion to the left) becomes important,

reducing the velocity to a halt at β1 = a/ε, beyond which it is reversed, i.e., the motion is

to the left with V − < 0.
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The case of the two biases pointing in the same direction is shown in Figs. 6(c-f). Specif-

ically, consider a < 0, ε > 0, both favor pushing to the right for aligned spins. Increasing β

makes the thermal bias ε stronger and also lowers the number of domain walls. The naive

expectation is that both effects would enhance the velocity. However, as we show below,

this is not always the case. One hint for this is that while the threshold β1 < 0, (IV.4), the

threshold β2 = a/(ε− J) can be positive (depending on the sign of ε− J), suggesting there

is a competition between ε and J that determines the onset of nonzero velocity.

Consider first the simpler case where ε < J shown in Fig. 6(c,d). Here 0.1 = ε < J = 1,

so β2 > 0, meaning there is a threshold temperature for the h = 0 case; see Fig. 6(c).

Indeed, increasing β increases the alignment of neighboring spins, which is aided by the

thermal bias ε > 0 becoming more relevant, producing nonzero velocity. These effects also

make the velocity V + increase monotonically with β. The thresholds β∗(h) for the onset of

V + > 0 for h > 0 decrease with the magnetic field simply because it is easier to destroy

domain walls when h is larger. Once the magnetization saturates (which can happen only

for h > 0), the velocity saturates to grow with the thermal bias ε (see Fig. 6(a) for h > 0,

at large enough β).

For the fixed magnetization case, still for ε < J , Fig. 6(d), we find a similar behavior,

only that the threshold temperature β∗(m) becomes zero at large enough magnetization

m > ma (recall (IV.5)). For ϵ = 0 we are in Fig. 5(d) which indeed resembles Fig. 6(d).

The case ε > J corresponds to pushing hard, which might result in zero velocity. When

ε is large, increasing β, on the one hand, reduces the number of domain walls, but it also

makes them oppose the motion more strongly. Whether the walker overcomes the opposing

domain walls depends on the parameters.

In the case of h = 0, ε > J means β2 < 0, (IV.4), and thus, the velocity is zero for any β;

see Fig. 6(e). This suggests that the rate at which domain walls are destroyed is not large

enough to overcome their opposing hopping rates. Increasing h further reduces the number

of domain walls, and for h > h∗, nonzero velocity starts to appear at some β∗(h) > 0. Once

there is nonzero velocity, i.e., when h > h∗, then the velocity increases monotonically with

β; see Fig. 6(e).

The fixed magnetization case, Fig. 6(f), behaves differently. As analyzed before, the value

a = −0.1 determines the threshold magnetization ma ≈ 0.34, (IV.5), beyond which there

is nonzero velocity at β = 0. We observe that increasing β affects the velocity differently,
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depending on the magnitude of m. For small m, the velocity decreases monotonically until

it vanishes, whereas for large m, it first increases and then decreases to zero. The case of

fixed m, Fig. 6(f), where for large β the velocity vanishes, is dramatically different from the

case of fixed h, Fig. 6(e), where the velocity increases with β. The reason must be that

when fixing m < 1, the number of domain walls decreases more slowly than when h > 0 is

fixed. Note that in the bond model, the velocity vanishes due to a small but strong trap,

in contrast to the case of the site model. In all, that is an instance of pushing harder and

getting nowhere.

V. ADDITIONAL REMARKS

The previous detailed discussions have shown the varied and rich behavior of the asymp-

totic speed as a function of the (cooling) temperature, depending on parameters character-

izing the bias and the environment. We add different remarks, again zooming out from the

observations in the previous sections.

1. For the Ising site disorder of Section III, putting J = 0 makes the spins σi independent.

The rates (III.2) then reduce to the Derrida example in Section 4.4 in [5]. In his

notation, the hopping rates are W = e2(βε−a) > 1 and 1, chosen with probability

α = (1 + tanh(βh))/2 and 1 − α. There the velocity vanishes for α < α∗, for some

α∗ > 1/2.

2. Consider the observation of an overdamped probe (like our walker) that accelerates.

This acceleration can surely be the result of extra pushing, e.g., increasing the bias

in the environment. However, as shown above, acceleration can also be the result of

changing correlations in an environment with a fixed bias. Hence, a proper under-

standing of the environment is required to resolve these two possible scenarios.

3. The scenario and results set out in the previous two sections obviously have a wider

relevance. As exactly solvable models, they are useful, but they relate to a more

general conclusion: the possibly rich dependence of the asymptotic speeds on the fluc-

tuation structure in the environment. The main point remains a warning against an

exaggerated homogenization of mean-field character of the background. On the other

hand, our probes/walkers are moving in one dimension, and trapping is obviously
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more common in one dimension. Higher dimensions might alter some of the behaviors

observed here. However, it is plausible that homogenizing the environment prior to

calculating observables would still yield a different result from a calculation that con-

siders the spatial structure of the environment. Higher dimensional space also affects

the appearance of phase transitions allowing clustering and phase segregation. That

is reminiscent of the Kibble-Zurek mechanism [8] where domain structure is formed

through cosmological phase transitions. Phase separation at fixed density or magne-

tization may cause the probe to move rapidly in one phase and slowly in the other

phase. Nevertheless, the effective disorder that a probe encounters in high(er) dimen-

sions may very well resemble the Ising-site or Ising-bond environments that have been

studied explicitly in the present paper.

4. The asymptotic speed V is not thermodynamic, in the sense that V depends also on

the time-symmetric parts k(n, n+ 1), k(n+ 1, n) in the transition rates (and not only

on the ratios k(n, n+1)/k(n+1, n) that connect with work and heat, [9]). We can see

that in the presence of the matrix S1, (III.10), in (III.9). That is rather normal given

the case that our results are nonperturbative and include a higher-order response of

the walker to multiple biases.

5. The site- and bond-disordered models exhibit qualitatively different behavior, as can

for instance be seen by the fixed magnetization scenario shown in Fig. 2 and Fig. 5(b,d).

In the bond-disorder model, Fig. 5(b,d), the speed is always increasing for lower tem-

peratures and for higher m. That is certainly not the case for the site-disorder; see

Fig. 2. The difference is, of course, that for the bond-disorder, the walker is possibly

slowed down at domain walls, not in the bulk of domains. At lower temperatures, the

domain walls decrease. For the Ising-site disorder, the bulk of the domains matters.

6. The fact that fluctuation behavior, correlations, and phase separation play a role in

the behavior of the speed of the walker in a random environment is not surprising.

Homogenization (like in (III.4) or mean-field like treatments) would ignore the corre-

lations and miss the essential physics.

As a final remark we dare to suggest an analogy with the famous dark-energy problem,

[10–17]. That the expansion of the Universe is accelerating has obtained evidence

around 1998-99 from the observations of high-redshift Type Ia supernovæ, [18]. Stars
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and galaxies keep their shape but the distance between them is growing at an increas-

ing rate. In fact, one could have expected a deceleration under the influence of gravity,

which at first sight competes with the expansion (anti-gravity effect). In addition,

the so-called “coincidence or fine-tuning problem” arises, of why given the enormous

age of the universe, only recently (at the time of structure formation) gravity and

anti-gravity effects are of comparable sizes.

The possible (only conceptual) relation of our work with that so-called “dark en-

ergy” problem is obtained by thinking of the distance between galaxies as the distance

traveled by our walker in a disordered environment. As the environment cools, the

competition between the biases (denoted by ε (expansion) and a (attraction) in the

models above) changes, and the rate of expansion may change, e.g., yielding accelera-

tion. That point is missed in a fully homogenized analysis, as e.g. in the Friedmann-

Lemâıtre-Robertson-Walker equations. Including fluctuations requires a nonpertur-

bative analysis away from a mean-field analysis. In that sense, our suggestion is in

line with the backreaction-program [19–22], except that, for the discussion of cosmic

expansion, our modeling is technically simplified.

VI. CONCLUSIONS

A random environment is obviously more than its density or magnetization. Fluctuations

and correlations matter for the speed of the walker, producing a very rich variety of possi-

bilities. We have illustrated that point in considerable detail via exact solutions when the

environment is made from the one-dimensional Ising model. We have considered site- and

bond-versions, and with thermal and athermal biases but in all cases we could start from

the same Derrida formula [5]. The dependence of velocity on temperature at fixed mag-

netization shows a number of regimes, from which we observe deceleration or acceleration

as correlation lengths change. As the environment cools and depending on the competition

between the biases, the walker will change its (asymptotic) speed, from zero to a positive

value and will show various non-monotone behaviors.

The results explicitly state the case for a rich and varied velocity characteristic as long as

the environment is not homogenized.
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