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Abstract

Pairing lies at the heart of superfluidity in fermionic systems. Motivated by recent exper-
iments in mesoscopic Fermi gases, we study up to six fermionic atoms with equal masses
and equal populations in two different spin states, confined in a quasi-two-dimensional
harmonic trap. We couple a stochastic variational approach with the use of an explic-
itly correlated Gaussian basis set, which enables us to obtain highly accurate energies
and structural properties. Utilising two-dimensional two-body scattering theory with a
finite-range Gaussian interaction potential, we tune the effective range to model realistic
quasi-two-dimensional scattering. We calculate the excitation spectrum, pair correlation
function, and number of pairs as a function of increasing attractive interaction strength.
For up to six fermions in the ground state, we find that opposite spin and momentum
pairing is maximised well below the Fermi surface in momentum space. By contrast,
corresponding experiments on twelve fermions have found that pairing is maximal at
the Fermi surface and strongly suppressed beneath [M. Holten et al., Nature 606, 287–
291 (2022)]. This suggests that the Fermi sea — which acts to suppress pairing at low
momenta via Pauli blocking — emerges in the transition from six to twelve particles.
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1 Introduction19

Fermionic superfluidity is a many-body phenomenon occurring in systems as diverse as liquid20

helium-three, superconductors, nuclear matter, neutron stars, and ultracold quantum gases.21

The key commonalities in these systems — that they flow without dissipation, have a non-22

classical rotational moment of inertia, and feature an energy gap in their elementary excitation23

spectrum — arise due to the pairing of fermions. Quantum gases provide an ideal experimental24

arena in which to interrogate the nature of fermion pairing since many of their degrees of25

freedom are highly tunable. Factors such as the number of particles, their internal states and26

interactions, the system dimensionality, and the confinement geometry can all be precisely27

measured and controlled [1–3]. In ultracold atomic Fermi gases, this has led to the realisation28

and detailed study of the crossover from a Bose–Einstein condensate (BEC) of tightly bound29

bosonic pairs to a Bardeen–Cooper–Schrieffer (BCS) superfluid of long-range Cooper pairs in30

three dimensions [4–11]. Restricting these gases to two dimensions strongly alters pairing and31

superfluidity [12–20], and may offer insight into unconventional forms of superconductivity32

encountered in solid-state physics [21,22].33

Very recently, S. Jochim’s group at Heidelberg University have experimentally probed how34

the key features of Fermi superfluidity emerge at the most fundamental level — ‘from the35

bottom up’ [23,24]. The group deterministically prepared nearly pure quantum ground states36

for up to twenty ultracold fermions that were equally distributed between two different spin37

states and confined in a (quasi-)two-dimensional harmonic trap. Their flexible experimental38

set-up enabled them to tune the inter-spin interactions from the non-interacting limit into39

the regime of strong binding, and to extract the single particle and spin resolved momentum40

distribution of the Fermi gas at any intermediate interaction strength. They reported Cooper41

pairing in a system comprising only twelve interacting particles, which manifested as a peak42

in the correlations between atoms with opposing spins and momenta at the Fermi surface in43

momentum space [24]. In another experiment involving as few as six particles, they observed a44

few-body precursor of a quantum phase transition from a normal fluid to a superfluid [23]. The45

precursor transition was signalled by a softening (i.e., a decrease in frequency) of the lowest46

mode in the excitation spectrum when the attractive interaction strength was increased. In the47

many-body limit, this mode becomes associated with amplitude variations of the superfluid48

order parameter and is commonly referred to as the massive ‘Higgs mode’ [25]. While mode49
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softening in the six-atom system had previously been predicted [26], to our knowledge, the50

pair momentum correlations mentioned above have not yet been theoretically calculated.51

Earlier theoretical work on two-dimensional trapped mesoscopic Fermi gases has been52

focused on probing their excitations. In 2016, G. Bruun et al. [26] calculated the monopole53

(zero angular momentum) excitation spectra for between six and twelve fermions interacting54

via a contact potential. For closed-shell configurations, they found that the lowest energy55

mode depends non-monotonically on the interaction strength and mainly consists of coherent56

excitations of time-reversed pairs — which, as mentioned above, has since been confirmed by57

experiment [23]. Their approach employed the harmonic oscillator basis, which is convenient58

for evaluating the Hamiltonian matrix elements, however is poor at approximating the cusps59

in the wave function induced by the short-range interactions [27]. This made it necessary to60

use very large numbers of basis states (on the order of ∼ 107) to numerically converge the61

energies [26], and the size of the calculation made it difficult to solve for two-body observables62

such as momentum-space pair correlations. More recently in 2022, J. Hofmann et al. [28]63

approximated the excitation spectra of the same Fermi systems by using an exactly solvable64

(integrable) s-wave pairing Hamiltonian known as the Richardson model [29,30]. While a full65

contact interaction can couple opposite spins in any combination of harmonic oscillator states,66

the Richardson model only accounts for time-reversed pairing in the same energy level (or67

shell) and assumes a constant coupling strength for all pairs. As such, the formalism retains the68

key matrix elements that give rise to superfluidity [31] and allowed the lowest pair excitation69

mode to be approximated for the first fifteen closed-shell configurations [28]. It was hence70

demonstrated how the minimum energy of pair excitations deepens with increasing particle71

number and shifts toward weaker interaction strengths, consistent with experiment [23].72

In this manuscript, we adopt an entirely different and highly accurate (virtually exact)73

approach for calculating the energetics of two-dimensional trapped mesoscopic Fermi gases,74

which additionally allows us to determine their structural properties and pair correlation func-75

tions. We obtain the excitation spectra variationally, based on the now renowned technique76

introduced by K. Varga and Y. Suzuki in 1995 [32, 33]. The trial wave functions are chosen77

to be combinations of explicitly correlated Gaussians, which permit an analytical evaluation78

of the Hamiltonian matrix elements [34, 35]. The non-linear variational parameters of these79

trial functions, the Gaussian widths, are selected stochastically. The suitability of this method80

to describe ultracold few-particle systems is three-fold [36–38]: 1) Cold atoms are sufficiently81

dilute that only binary interactions are important. Since each Gaussian basis function depends82

explicitly on every two-body correlation (interparticle separation) in the system, a very high83

accuracy is achievable. 2) Cold atoms have universal properties that are independent of the84

microscopic details of the true interaction potential, justifying the assumption of a Gaussian85

interaction. 3) The Gaussian basis functions are flexible enough to simultaneously replicate86

correlations that develop on any length scale, including those of the scattering potential and87

the external confinement. This is because a wave function in a harmonic trap has a natu-88

rally Gaussian dependence at large distances, whereas its short-range cusp is well captured89

by superpositions of Gaussians. Consequently, such an approach has previously been used to90

obtain numerically exact energies and structural properties (such as radial one-body densities91

and pair distribution functions, but not pair momentum correlations) for spin-balanced two-92

component Fermi gases subject to an isotropic three-dimensional harmonic confinement. In93

2011, the three-dimensional system was solved for up to six particles at a full range of interac-94

tion strengths [39], while subsequently in 2014 and 2015, the eight- [40] and ten-particle [41]95

problems were also solved at unitarity. For all three atom numbers, pairing could be evidenced96

by the clear two-peak structure of the (scaled) radial pair distribution functions.97

In the two-dimensional calculations reported here, we employ a shape-resonant Gaussian98

interaction potential — which has a large and variable effective range — to mimic and probe99
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the quasi-two-dimensional nature of real experimental confinement geometries [42–45]. We100

are able to access the second-order pair correlations measured in experiment [24] by evalu-101

ating the matrix elements of the real-space one- and two-body fermionic density matrices in102

the correlated Gaussian basis and then analytically Fourier transforming the results into mo-103

mentum space. We focus on studying the correlations in the ground state for spin-balanced104

two-component Fermi gases in different interaction regimes. The one distinction between our105

theoretical analysis and the experiment is the number of particles. Whereas the latter involved106

twelve atoms, the maximum number that we can consider is six due to computational time107

constraints which are imposed by the first-quantised formulation of the explicitly correlated108

Gaussian (ECG) method. Nevertheless, our calculation of the pair correlation function is new109

and our findings complement the experiment in revealing how pairing emerges in the limit of110

very few fermions.111

This paper is organised as follows: In Sec. 2 we discuss our model of the two-dimensional112

Fermi gas, including the special role played by the effective range of interactions. (Since the113

ECG method has already been thoroughly detailed in the literature, we distill the essential114

aspects which apply to solving the system of interest in Appendix A.) In Sec. 3 we present and115

interpret our results: First, we study the excitation spectrum of the Fermi gas, focusing on116

the unique behaviour of the lowest monopole mode. Subsequently, we elucidate the nature of117

opposite-spin pair correlations in the ground state and we directly compare our calculations118

to experiment. We investigate the effects of particle number, interaction strength, and axial119

confinement strength on both the excitations and pairing. We conclude and identify avenues120

for future research in Sec. 4.121

2 Model122

We theoretically consider equal-mass two-component Fermi gases comprising N = N↑ + N↓123

atoms with balanced spin populations [i.e., N↑ = N↓ = N/2, where N↑ (N↓) is the number of124

‘spin-up’ (‘spin-down’) fermions]. Such a system is exemplified by ultracold fermionic atoms of125
6Li prepared in the two lowest 2S1/2 hyperfine levels. In the experiments of interest, these par-126

ticles are confined to a highly anisotropic single layer of a standing-wave optical dipole trap,127

which freezes out motion along the axial (z) direction. This layer is then superimposed with128

an optical tweezer — or ‘microtrap’ — which provides an isotropic radial harmonic confine-129

ment ωr [23,24,46]. When superimposed on a large ensemble of atoms, the small microtrap130

can locally enhance the chemical potential by a significant amount without modifying the131

temperature of the gas [47]. This leads to a small region of increased densities deep in the132

degenerate regime, and due to Fermi–Dirac statistics, all low-lying energy levels of the micro-133

trap become filled with almost unit probability [46]. By inclining and lowering the trap walls134

in a controlled manner, particles above a certain ‘spill threshold’ can then be deterministically135

removed, leaving behind a stable mesoscopic number of atoms in the ground state [46]. The136

systems of particular relevance to the current study contain as few as N↑ + N↓ = 1+ 1, 2+ 2,137

or 3+3 particles, such that in the non-interacting ground state only the first two 2D harmonic138

oscillator shells are occupied. Interactions (collisions) subsequently induced by a Feshbach139

resonance between distinguishable fermions in the gas (i.e., between the different hyperfine140

states) are low in energy and well described by s-wave two-body physics.141

The system Hamiltonian in two dimensions reads as follows:142

H =
N
∑

i=1

�

−
ħh2

2m
∇2

ri
+ Vext(|ri|)
�

+
N
∑

i< j

Vint(|ri − r j|) , (1)
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where m is the atomic mass and ri denotes the position vector of the i th atom measured from143

the trap centre. The first term corresponds to the kinetic energy of the particles, the second144

term to an external harmonic trap,145

Vext(|ri|) =
mω2

r

2
r2
i , ri ≡ |ri| , (2)

and the third term to short-range pairwise interactions between fermions with unlike spins.146

We model these interactions with a finite-range Gaussian potential [45] that is parameterised147

by a width r0 (> 0) and a depth V0 (< 0):148

Vint(|r|) = V0 exp

�

−
r2

2r2
0

�

− V0
r
lr

exp

�

−
r2

2(2r0)2

�

, (3)

where lr =
p

ħh/(mωr) is the radial harmonic oscillator length scale in the 2D plane. In the149

non-interacting limit of V0 = 0, the Hamiltonian H in Eq. (1) has eigenvalues of ϵ(0) = (2n+150

|m|+ 1)ħhωr , where n = 0, 1, 2, . . . is the principal quantum number and m = 0, ±1, ±2, . . .151

is the quantum number for orbital angular momentum.152

For a fixed value of r0 , the value of V0 can be adjusted to generate potentials with different153

free-space s-wave scattering lengths and effective ranges (or equivalently, we may fix V0 and154

vary r0). We consider two particles elastically scattering via the interaction potential, Eq. (3),155

in two-dimensional free space. We solve the s-wave radial Schrödinger equation for the relative156

motion up to a radius much larger than r0 , matching the logarithmic derivatives of the wave157

functions to the asymptotic form in order to obtain the real-valued s-wave scattering phase158

shift δ(k) [48]. Subsequently, by fitting the phase shift to its low-energy expansion in two159

dimensions,160

cot[δ(k)] =
2
π

�

γ+ ln
�

ka2D

2

��

+
1
π

k2r2D + . . . , (4)

we determine both the s-wave scattering length a2D and the effective range r2D [49–51].1 Here,161

k ≡ |k| is the magnitude of the relative wave vector between the two atoms in the 2D plane and162

γ≃ 0.577216 is Euler’s constant. At low energy, the physics is independent of the short-range163

details of the interaction potential and instead exhibits universality with respect to both a2D164

and r2D. Accordingly, in our calculations we choose Gaussian widths small enough, r0 ≲ 0.1lr ,165

to ensure that higher order expansion terms in Eq. (4) are negligible within the energy range166

of interest. We have furthermore implemented a modified version of the model potential —167

given by Eq. (S23) in the supplemental material of Ref. [45]— and have found that it yields168

the same energies as in Fig. 2 for a given two-body binding energy (defined below) and r2D.169

This confirms that effects beyond those of the effective range are indeed negligible.170

In two dimensions the scattering length is always positive, a2D > 0. In a many-body pic-171

ture, the two-component Fermi gas undergoes a crossover from a Bose–Einstein condensate172

of diatomic molecules to a Bardeen–Cooper–Schrieffer superfluid of Cooper pairs as a2D in-173

creases. However, unlike in three dimensions, there is no unitary limit where the system174

becomes scale invariant and the interaction strength (scattering length) diverges. Rather, the175

strongly interacting regime is in the vicinity of ln(kF a2D) = 0, where the Fermi wave vector kF176

denotes the radius of the non-interacting Fermi sea at zero temperature [52].177

1Note that the precise definitions of the two-dimensional scattering length a2D and the two-dimensional effec-
tive range r2D vary in the literature. Our particular definition of r2D has units of squared length, consistent with
Ref. [45].
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Figure 1: (a) The model Gaussian interaction potential, Eq. (3), at V0/(ħhωr) = −70
and r0/lr = 0.1 [where l2

r = ħh/(mωr)]. (b) The two-dimensional scattering length
a2D (in blue) and the two-dimensional effective range r2D (in green) as functions of
the potential depth V0, for a fixed width of r0 = 0.1lr . (Note, this figure is similar to
Fig. 1 in Ref. [45].)

As previously described, in cold-atom experiments a two-dimensional geometry can be178

realised by applying a strong harmonic confinement along the axial direction, with angular179

frequency ωz and length scale lz =
p

ħh/(mωz). Realistically, however, the extent of the gas180

perpendicular to the 2D plane is necessarily finite. At low energy and small lz (such that181

klz ≪ 1), the two-body scattering of distinguishable fermions can be mapped onto a 2D scat-182

tering amplitude with an effective range given by [42–45]2183

r2D = −l2
z ln(2) . (5)

By assigning an appropriately finite and negative value to the effective range parameter in184

the purely two-dimensional model considered here, we can thus mimic the effect on the scat-185

tering of a quasi-two-dimensional confining potential. In particular, through our choice of the186

interaction parameters V0 and r0, we can attribute a value to the dimensionless effective range187

r2D/l
2
r which matches the trap aspect ratio ωz/ωr in a given experiment.188

In practical computations, we tune the effective range to non-negligible negative values189

through a shape resonance [45, 53], which arises due to the general structure of the model190

potential shown in Eq. (3): the first term creates an attractive well that can support virtual191

2 For this mapping to be valid, we furthermore require lz to be much greater than the van der Waals range of
the interactions between atoms — i.e., rvdW ≪ lz < lr — which is always satisfied experimentally.
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bound states, while the second term adds a small repulsive barrier that can couple these virtual192

bound states to free-space scattering states — as depicted in Fig. 1(a). Figure 1(b) illustrates193

the range of combinations of a2D and r2D that can be obtained by fixing r0 and varying V0.194

In this figure and in all our calculations, we restrict our attention to the regime where the195

potential supports a single two-body s-wave bound state in two-dimensional free space [45].3196

To numerically solve the time-independent Schrödinger equation for the Hamiltonian in197

Eq. (1), we employ the method of explicitly correlated Gaussians. A description of this tech-198

nique is provided in Appendix A. We parameterise our results in terms of the effective range r2D199

and the two-body binding energy ϵb > 0, with the latter determined by the following approach.200

For every set of V0 and r0 values that we use to numerically solve a general N↑ + N↓ problem,201

we also solve the corresponding 1 + 1 problem numerically by implementing the correlated202

Gaussian method. This yields the relative energy of the two-body ground state, Erel, 1+1 (see203

Appendix A). The total ground-state energy of one spin-↑ particle and one spin-↓ particle in the204

2D harmonic trap is given by E1+1 = 2ħhωr −ϵb . Since we know that E1+1 = Ecom, 1+1+Erel, 1+1205

and there are no centre-of-mass excitations in the ground state, Ecom,1+1 = ħhωr , we can then206

immediately obtain ϵb .207

3 Results208

We apply the method of explicitly correlated Gaussians to obtain numerically optimised and209

converged basis sets at a wide range of attractive interaction strengths (or binding energies)210

for the fermionic systems of interest. Upon diagonalising the Hamiltonian, we utilise the eigen-211

values to calculate the low-energy excitation spectra of the Fermi gases and the eigenvectors212

to determine their structural properties. With regard to the latter, we focus on investigating213

the nature of opposite-spin pair correlations in the ground state and we directly compare our214

numerics against recent experimental measurements.215

3.1 Excitation Spectrum216

The excitation spectra of the Fermi systems are of fundamental interest since they can reveal217

signatures of pairing [26] and can be experimentally accessed in two dimensions [23]. Figure218

2 displays the lowest energy fermionic excitation spectrum, i.e., the difference ∆E = E1ES −219

EGS between the first-excited-state (E1ES) and ground-state (EGS) energies as a function of the220

two-body binding energy ϵb. In the upper panel (a) we compare our results for N↑ + N↓ = 1221

+1, 2+2, and 3+3 fermions at very nearly zero effective range (numerically, we set r2D/l
2
r =222

−0.001≈ 0), while in the lower panel (c) our results for 3+3 fermions are compared at differ-223

ent fixed values of the effective range. In the middle panel (b), the ground- and first-excited-224

state energies used to calculate the excitation energies of panel (a) are shown separately as a225

reference.226

The non-interacting ground state at ϵb = 0 can assume one of two configurations depend-227

ing on the total number of particles N: either all of the degenerate single-particle states of228

the highest energy level of the 2D harmonic oscillator are filled (‘closed shell’), or some of the229

degenerate states remain empty (‘open shell’). The 1 + 1 and 3 + 3 systems both feature a230

closed-shell ground state that is non-degenerate, whereas the 2+2 ground state is open-shell.231

We restrict our consideration to ground states that are characterised by zero total orbital an-232

3At the point where a new bound state enters the potential both a2D and |r2D| positively diverge. As discussed
in Ref. [45], the potential does not support a two-body bound state in the limit of V0 → 0. In two dimensions
this is in stark contrast to the case of a potential that is everywhere attractive. Such a potential (even one that is
arbitrarily weak) always supports a two-body s-wave bound state in free space because the scattering amplitude
always features a pole at negative energies [52].
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Figure 2: The lowest monopole excitation spectrum for various few-body Fermi sys-
tems. (a) The excitation energy, ∆E = E1ES − EGS , as a function of the two-body
binding energy ϵb for N↑ + N↓ = 1 + 1, 2 + 2, and 3 + 3 fermions at zero effective
range (r2D/l

2
r = −0.001 ≈ 0). (b) The ground- (EGS) and first-excited-state (E1ES)

energies used to calculate ∆E of panel (a). Similar to panel (a), the purple, green,
and blue lines are associated with the 1+ 1, 2+ 2, and 3+ 3 systems, respectively.
(c) The non-monotonic excitation spectrum for 3+ 3 fermions at different effective
ranges. The selected values — r2D/l

2
r = −0.2, −0.1, −0.05, −0.001 — respectively

correspond to trap aspect ratios ofωr/ωz ≈ 1/3.5, 1/7, 1/14, 1/700. [Note that the
blue line in (a) is the same as the short-dashed gray line in (c).]

gular momentum. For the 2+ 2 system, this means that the two highest energy opposite-spin233

fermions reside in different degenerate single-particle states. Since the Hamiltonian is rota-234

tionally symmetric, only monopole excitations between states with the same (i.e., zero) total235

angular momentum occur.4 For all three atom numbers at ϵb = 0, the lowest monopole exci-236

tation has an energy of ∆E = 2ħhωr . This can be attributed either to exciting a single particle237

4 The m quantum numbers for all atoms sum to zero in both the ground and excited states.
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up two harmonic oscillator shells, or to exciting a time-reversed pair of particles (n, m, ↑) and238

(n, −m, ↓) up one shell each.239

As the attractive interaction strength increases from zero, ϵb > 0, the excitation energies240

for systems with different particle numbers in panel (a) evolve very differently. A striking fea-241

ture is the non-monotonic behaviour of ∆E for the case of 3+ 3 fermions. As first argued in242

Ref. [26]5 — and later lucidly discussed in M. Holten’s PhD thesis [46]— this non-monotonicity243

is indicative of pair correlations. The first excited state for 3+3 fermions is a linear combination244

of three degenerate configurations: one being the result of a single-particle excitation and the245

other two the result of pair excitations. The energy of the former grows with ϵb simply because246

increasing the mean-field attraction felt by each particle enhances the effective confinement,247

ωeff
r >ωr — which thereby raises the cost of exciting a single particle, ∆E = 2ħhωeff

r [26]. On248

the other hand, when a pair of particles is excited from the closed-shell ground state they can249

use the degenerate states in the new, otherwise empty harmonic oscillator level to increase250

their wave function overlap. This causes them to gain binding energy, and hence, diminishes251

the cost of monopole excitations monotonically as ϵb increases [26,46].6 At a critical binding252

energy (denoted by ϵc
b) the excitation energy ∆E reaches a minimum. Beyond this point the253

interaction strength becomes comparable to the radial trapping frequency ϵb ∼ ħhωr , which254

signifies that pairing then occurs not only in the excited states, but also in the ground state.255

As a result, the ground-state energy starts decreasing faster than the first-excited-state energy,256

such that ∆E begins to increase [23]. These pairing effects are dominant in the 3+ 3 system257

which leads to the overall non-monotonic dependence of ∆E on ϵb. This is not the case for258

1+ 1 and 2+ 2 fermions in the monopole sector, and consequently, for those systems ∆E in-259

creases monotonically with ϵb instead. In Appendix B, we discuss how our results based on260

the Gaussian interaction potential of Eq. (3) compare quantitatively to the contact interaction261

results from Ref. [26].262

We can consider approaching the many-body limit by increasing the number of particles263

N →∞, while keeping the trap strength ωr the same.7 In this case, if the ground state has264

a closed-shell configuration, then the minimum value of ∆E at the critical binding energy ϵc
b265

will decrease as N increases, eventually reducing to zero in the many-body limit so that pairs266

are coherently excited without any energy cost [25, 26]. In this limit, if ϵb is increased from267

zero to ϵc
b, then the many-body two-component Fermi gas will become unstable and undergo a268

second-order phase transition into a superfluid state. The lowest energy monopole excitation269

of the trapped superfluid corresponds to the Higgs mode with an energy equal to twice the270

superfluid gap [25,46]. Our result for 3+3 fermions in panel (a) can thus be viewed as a few-271

body precursor to the Higgs mode for the Gaussian interaction potential given by Eq. (3). In272

panel (c), we investigate the effect of different quasi-two-dimensional harmonic confinements273

on this ‘few-body Higgs mode’ by varying the effective range parameter r2D introduced in274

Eq. (4). We plot the lowest monopole excitation energy for 3 + 3 fermions at the following275

5 This work calculated the monopole excitation spectrum of the same system (but for contact interactions) by
using exact diagonalisation in the harmonic oscillator basis.

6Similarly, the remaining pairs of particles in the lower harmonic oscillator shell can increase their wave function
overlap and gain binding energy by occupying the degenerate states that are now free. Thus, the pair excitation
energy is a many-particle quantity that can only be accurately determined by taking the entire mesoscopic sample
into account [46].

7In free space where BCS theory applies, the many-body limit is typically approached by increasing both the
number of particles N →∞ and the system volume V →∞ in such a way that the density n = N/V remains
constant. In our scenario where ωr is fixed, we instead have n →∞ when N →∞ and pairing is suppressed
at small enough binding energies ϵb ≪ ħhωr . If we wish to make our system amenable to BCS theory, we could
keep n constant by reducing the trap strength ωr while increasing N . In that case, the trapping frequency would
vanishωr → 0 for N →∞, which means the condition ϵb ≪ ħhωr would never be satisfied in the many-body limit.
Consequently, a superfluid state with a finite gap would always exist at zero temperature for any non-vanishing
interaction strength.
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effective ranges: r2D/l
2
r = −0.2,−0.1,−0.05,−0.001 — which are associated with trap aspect276

ratios of: ωr/ωz ≈ 1/3.5, 1/7, 1/14, 1/700, respectively, according to Eq. (5). Notably, we277

find that as the magnitude of the negative effective range increases, the minimum value of∆E278

decreases and shifts to smaller binding energies, i.e., ϵc
b decreases. In addition, we see that the279

dependence of∆E on the value of r2D (or lz) is lessened at smaller ϵb. The experiment against280

which we will later compare our calculated pair momentum correlations had radial and axial281

trapping frequencies ofωr = 2π×1,101 Hz andωz = 2π×7,432 Hz [24]. These frequencies282

correspond to a trap aspect ratio of ∼ 1/7 and an effective range of r2D/l
2
r = −0.1027≈ −0.1283

— designated by the thick red line in panel (c). The value of the critical binding energy for284

this line is ϵc
b ≈ 0.953ħhωr .285

3.2 Pair Correlation Function286

Pairing — regardless of the exact mechanism by which the particles attract each other — is287

a correlation phenomenon. This means that we can extract its description from the quantum288

two-body density matrix, which contains a complete set of information on all two-body corre-289

lations in the system [54]. In the position representation, the two-body density matrix reads290

as follows:291

ρ(r1, r′1; r2, r′2) = 〈ψ
†
↑(r1)ψ↑(r

′
1)ψ

†
↓(r2)ψ↓(r

′
2)〉 , (6)

where 〈· · · 〉 denotes an expectation value, and ψ†
σ(r) and ψσ(r) are fermionic field creation292

and annihilation operators, respectively (with σ = ↑, ↓). The diagonal matrix elements of293

Eq. (6) correspond to the instantaneous correlations between all particles’ positions, whereas294

the off-diagonal elements are responsible for two-particle coherence [54]. The diagonal ele-295

ments are of particular interest since they are directly accessible in experiments. These ele-296

ments, 〈η↑(r1)η↓(r2)〉 — written using the density operator, ησ(r) = ψ†
σ(r)ψσ(r) — specifi-297

cally provide the probability of simultaneously finding opposite-spin fermions at positions r1298

and r2. They can equivalently be written as 〈n↑(p1)n↓(p2)〉— with nσ(p= ħhk) the momentum-299

space density operator — in order to give the probability of simultaneously finding opposite-300

spin fermions with momenta p1 and p2. Since the signatures of opposite-spin pairing are301

predominantly evident in the momentum correlations, we focus on the latter. Note that even302

in the purely non-interacting regime, coincidences of a spin-↑ fermion with momentum p1 and303

a spin-↓ fermion with momentum p2 can still occur. In this limit, the two-particle density dis-304

tribution becomes a direct product of independent single-particle densities: 〈n↑(p1)n↓(p2)〉=305

〈n↑(p1)〉〈n↓(p2)〉 [54]. We therefore subtract this quantity so as to only account for correla-306

tions caused solely by interactions, leading to the second-order correlation function, C(2), that307

features in S. Jochim’s experiments [24]:308

C(2)(p1, p2) = 〈n↑(p1)n↓(p2)〉 − 〈n↑(p1)〉〈n↓(p2)〉 . (7)

We theoretically evaluate C(2) by using the method of explicitly correlated Gaussians, relegat-309

ing the details of this calculation to the appendices, while focusing the main text on a discus-310

sion of our results. In Appendix C, we define the expectation values in Eq. (7) in terms of the311

one- and two-body fermionic density matrices in position and momentum space. The real-312

space one-body density matrix in the correlated Gaussian basis has previously been derived in313

Ref. [39] for the case of an isotropic three-dimensional harmonic confinement. In Appendix D,314

we perform the analogous derivation in two dimensions and then analytically Fourier trans-315

form the result to determine expressions for 〈n↑(p1)〉 and 〈n↓(p2)〉. In Appendix E, we extend316

this approach to obtain the correlated Gaussian matrix elements of the real-space two-body317

density matrix. The Fourier transformation into momentum space can again be carried out318

analytically to yield an expression for 〈n↑(p1)n↓(p2)〉.319
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Figure 3: C(2)(p↑, p̄↓) as a function of p↑ with p̄↓ fixed at the black point for 3+ 3
fermions in the ground state. The radii of the dashed circles signify |p̄↓| and pF .
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A pertinent question is how to define (or approximate) the Fermi momentum pF = ħhkF320

in a few-body system. The harmonic trap in the radial direction provides not only a natural321

length scale for the Fermi gas lr =
p

ħh/(mωr), which sets the average interparticle spacing,322

but also a natural momentum scale pr =
p

ħhmωr . When there are only very few particles, the323

step in the momentum distribution at pF for a given spin component is ‘smeared out’, with a324

width on the order of pr . Thus, while the mesoscopic sample is characterised by two distinct325

momentum scales pr and pF , an unambiguous definition of pF does not exist because the Fermi326

surface is coarse-grained [46]. One option in this case is to simply use the continuum equation327

which typically defines the Fermi momentum in a many-body system pF =
p

2mϵF , where the328

Fermi energy ϵF is the energy of the non-interacting ground state at zero temperature. Instead,329

we choose to define pF in a manner consistent with Ref. [55] which also theoretically probes330

the many-body physics of two-component Fermi gases from the few-body regime. Therein the331

authors employ the local density approximation (LDA) in three dimensions to determine pF332

as a smooth function of the number of particles N ≤ 10. Although the applicability of either333

the continuum equation or the LDA to such small atom numbers may be questioned, the latter334

approach minimises few-body shell effects and smoothly extrapolates to the correct result in335

the large-N limit. We therefore define a local chemical potential µ(r) = µ − Vext(|r|), which336

depends on the global chemical potential µ= ∂ϵ/∂N, where ϵ is the total energy of the trapped337

gas. In two dimensions, a trapped non-interacting Fermi gas with balanced spin populations338

has the particle number density,339

n(r) =
m
π

�

µ−
mω2

r

2
r2

�

, (8)

which gives the total number of particles,340

N = 2N↑ =

∫

d2r n(r) =
µ2

ω2
. (9)

Above, the radial co-ordinate r ≡ |r| is integrated from zero up to the Thomas–Fermi radius341

rTF =
Æ

2µ/(mω2
r ). By using the definition of the trap length lr , we then immediately obtain342

pF = (8N↑)
1/4ħh/lr (10)

as the local Fermi momentum at the centre of the trap.343

We first take the correlation function C(2)(p1, p2) in Eq. (7) and fix p2 to a single value344

denoted by p̄2, while allowing p1 to vary. We plot the results for the ground state of the N↑ +345

N↓ = 3+ 3 Fermi system in Fig. 3. The effective range is set to the experimental value in all346

panels, r2D/l
2
r = −0.1, and the binding energy increases across the panels from left to right.347

We consider all (non-zero) binding energies measured in Fig. 2 of Ref. [24]: ϵb/(ħhωr) =348

0.79, 1.20, 1.97 — except for ϵb/(ħhωr) = 15.908 — and two additional intermediate values:349

ϵb/(ħhωr) = 0.40, 1.59. The horizontal and vertical axes on each plot respectively measure350

the x and y components of p1 ≡ p↑. The value of p̄2 ≡ p̄↓ is indicated by the black point (•)351

and a dashed circle is drawn at that radius, while another dashed circle is drawn at the radius352

of the Fermi momentum pF . In the upper panels p̄2 is located inside the Fermi sea, whereas353

in the lower panels it is positioned on the Fermi surface. All panels utilise the same colour354

scaling. Our figure can be directly compared against plots (a)–(j) in Fig. 2 of Ref. [24]. As was355

8At this binding energy, the 6+6 system in the experiment formed bosonic pairs that were strongly interact-
ing [24]. In the BEC limit of even higher binding energies, the particles would form non-interacting point-like
molecules that reside in the ground state of the harmonic oscillator [11]. Later in Sec. 3.3 where we determine
the number of pairs in the 3+ 3 ground state, we will find that we are never close to the deep BEC regime for our
considered range of binding energies, ϵb ≲ 2ħhωr .

12



SciPost Physics Submission

Figure 4: The calculated opposite-momentum pair correlator C(2)(p) as a function
of momentum p for the ground state of N↑ + N↓ = 3 + 3 fermions. The multiple
panels are associated with different interaction strengths ∼ ϵb , whereas the axial
confinement ∼ r2D is varied within each panel. In the experiment of Ref. [24] the
measured binding energies were ϵb/(ħhωr) = 0.00, 0.79, 1.20, and 1.97, while the
trap aspect ratio corresponded to an effective range of r2D/l

2
r = −0.1 (marked by the

thick red line). The vertical gray line designates the Fermi momentum pF .

found in experiment, for particles with different spins there are only considerable second-356

order correlations between those which have opposing momenta. However, in contrast to the357

experiment we see that pairing in the 3+3 system is dominant inside the Fermi sea, rather than358

on the Fermi surface, at all considered binding energies. The experiment for 6+ 6 fermions359

instead showed pairing to be dominant on the Fermi surface at binding energies of ϵb/(ħhωr)360
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= 0.79, 1.20, and 1.97.361

In view of Fig. 3, we define the opposite-momentum pair correlator as C(2)(p1 = p, p2 =362

−p), as was done in Ref. [24]. Due to radial symmetry, C(2)(p, −p) ≡ C(2)(p) only depends363

on the magnitude of the particles’ momenta and can thus be expressed as a one-dimensional364

correlation function. C(2)(p) is plotted in its dependence on momentum p for 3+ 3 fermions365

in the ground state in Fig. 4. We explore the parameter space by varying both the two-body366

binding energy ϵb and the effective range r2D. Each panel is associated with one of the bind-367

ing energies previously considered in Fig. 3. Inside a given panel, the thick red line corre-368

sponds to the experiment’s value of the effective range, r2D/l
2
r = −0.1, whereas the thin gray369

lines correspond to the other effective ranges featured in the excitation spectra of Fig. 2(c).370

[Note that in every panel of Fig. 4, there is one point along the red curve that matches with371

one point in the associated 2D contour plot of Fig. 3 (with the same binding energy) — but372

otherwise, these figures contain different information.] Similar to in Ref. [24], we include as373

a green line the limit from standard BCS theory (normalised to the correct number of parti-374

cles), which is valid when the mean-field superfluid gap greatly exceeds the binding energy:375

∆ =
p

2ϵbϵF ≫ ϵb [12], where ϵF = p2
F/(2m) denotes the Fermi energy. While this result376

is not quantitatively accurate for only six (or twelve) particles because it neglects quantum377

fluctuations, it nonetheless provides a qualitative picture of the many-body limit — namely, a378

single peak at the Fermi momentum pF . The details of the BCS calculation can be found in379

Ref. [24] and are reproduced here in Appendix F for completeness.380

Across all panels of Fig. 4, we observe that the strength of the correlations (the maximum381

height of the peak) increases with increasing binding energy. This aligns with expectations382

that larger binding energies (or interaction strengths) lead to an increase in pairing. On the383

other hand, the horizontal position of the peak’s maximum barely changes with the binding384

energy. Within a panel, we see that increasing the magnitude of the negative effective range385

(at a fixed binding energy) also enhances the pair correlations. But again, this does not shift386

the peak horizontally. We therefore conclude that opposite spin and momentum pairing for387

3+ 3 fermions is consistently largest at momenta significantly below the Fermi surface. This388

again contrasts with the experimental measurements for 6 + 6 fermions [24], where C(2)(p)389

was observed to peak at p = pF for the same range of binding energies, ϵb ≲ 2ħhωr .390

In Fig. 5, we overlay the theoretical results on the experimental measurements mentioned391

above at binding energies of ϵb/(ħhωr) = 0.79, 1.20, and 1.97 — taken from plots (l), (m),392

and (n) in Fig. 2 of Ref. [24]. In each panel the smooth red, blue, and green curves show the393

calculated opposite-momentum pair correlator C(2)(p) as a function of momentum p for the394

ground state of 1+1, 2+2, and 3+3 fermions, respectively (with r2D/l
2
r = −0.1). The purple395

line is the experimental data for the 6 + 6 ground state. To properly compare systems with396

different particle numbers we rescale the momentum along the horizontal axis by the Fermi397

momentum pF . [Note that our definition of the Fermi momentum, Eq. (10), differs slightly398

from the continuum definition used in Ref. [24]. For 6+6 (3+3) fermions this difference is only399

about 7% (10%).] Due to the rescaling, we can see that qualitatively — and quantitatively at400

large momenta, p > pF — there is minimal difference in the pairing between the 2+2 and 3+3401

systems. This may be related to the fact that the non-interacting ground state for both four and402

six particles involves the same number of harmonic oscillator shells. Notably, the experimental403

C(2)(p) function peaks at pF and vanishes at p→ 0,9 while the theoretical C(2)(p) function for404

fewer particles peaks well below the Fermi surface and remains finite at small momenta. We405

remark that the depicted C(2)(p) results for 1+ 1 fermions have been compared to the results406

9It should be noted that the error bars on the experimental data in Fig. 5 are much larger at small momenta than
at high momenta. This is because C(2)(p) is experimentally determined by ‘counting’ pairs of atoms with opposite
spins and momenta that occur anywhere around a ‘ring’ of radius p in momentum space, and then dividing by
that radius. Due to a purely statistical effect, at very small radii the numbers of counts are also very small, which
means those data points are inherently less reliable.
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Figure 5: The opposite-momentum pair correlator C(2)(p), plotted as a function of
the rescaled momentum p/pF , and compared for different particle numbers. Each
panel corresponds to a different binding energy ϵb. The smooth red, blue, and green
curves are the theoretical results for N↑ + N↓ = 1 + 1, 2 + 2, and 3 + 3 fermions
in the ground state, respectively (at the experiment’s value of the effective range,
r2D/l

2
r = −0.1), while the purple line is the experimental data for the 6+ 6 fermion

ground state. The vertical gray line designates the Fermi momentum pF .

of another method of exact diagonalisation which uses a numerical B–spline basis set,10 and407

in all cases, the agreement was found to be exact.408

3.3 Number of Pairs409

We can compute the number of opposite-momentum pairs, Npair , by integrating C(2)(p) over410

two-dimensional momentum space. In Fig. 6, we plot Npair (red points) as a function of interac-411

tion strength ϵb for the 3+3 closed-shell ground state (with r2D/l
2
r = −0.1). This figure directly412

10B–splines are piece-wise polynomials which can be defined through recursive relations [56]; for a review of
their application to quantum atomic and molecular physics, consult Ref. [57].

15



SciPost Physics Submission

illustrates how the system evolves from an unpaired to a paired state. For much stronger in-413

teractions than those shown, ϵb≫ 2ħhωr , all the fermions form tightly bound bosonic dimers,414

reminiscent of the deep BEC regime in macroscopic systems, and the number of pairs becomes415

maximal, Npair = 3.11 Here, we see that for weak-to-moderate interactions only a small frac-416

tion of the system is paired. The analogous experimental data for the 6+6 closed-shell ground417

state is provided in Fig. 3 of Ref. [24]. In a closed-shell structure, all the energy levels up to418

the Fermi energy are fully occupied and there is a gap of ħhωr between the completely filled419

and completely empty levels. This energy gap stabilises the state against small perturbations,420

and consequently, pairing is suppressed at small binding energies, ϵb ≪ ħhωr [46]. A criti-421

cal binding energy ϵc
b must be reached before it becomes energetically favourable to excite422

fermions into the empty higher levels and form pairs [46]. As we discussed in the final para-423

graph of Sec. 3.1, we can approach the many-body limit by increasing the number of particles424

N →∞, while keeping the trap strength ωr fixed. In this limit, the system remains in the425

normal state for ϵb ≪ ħhωr and undergoes a quantum phase transition to a superfluid state426

with long-range order at ϵc
b . On the mesoscopic scale a precursor of this phase transition can427

be observed in the fermionic excitation spectra of systems with a closed-shell ground state.428

The critical binding energy for 3+ 3 fermions is associated with the minimum energy of the429

lowest monopole excitation in Fig. 2(c) — for r2D/l
2
r = −0.1 (i.e., the thick red line) this value430

is ϵc
b ≈ 0.953ħhωr . The prediction for Npair from standard mean-field BCS theory (see either431

Ref. [24] or Appendix F) is given by the solid blue line in Fig. 6. In order to describe meso-432

scopic samples, the authors of Ref. [24] off-set the BCS result by the critical binding energy433

as a type of first-order approximation of finite-size effects. In Fig. 6, we find that the shifted434

model (dashed green line) fits our numerics (red points) very well for ħhωr ≲ ϵb ≲ 2ħhωr . Be-435

low this however, the grand canonical ensemble on which the model is based leads to a sharp436

onset of pairing at ϵc
b [24]. By contrast, we see that the 3+3 system smoothly transitions into437

a paired state for ϵb > 0 due to the small fixed particle number. A similar smooth transition438

was observed for the 6 + 6 system [24], corroborating how the ground-state paired fraction439

evolves with interaction strength in mesoscopic Fermi gases.440

3.4 Discussion441

By comparing the results for the pair correlation function of Sec. 3.2 with those from the ex-442

periment in Ref. [24], one could surmise that the transition from an atomic Fermi system with443

few-body pairing to one with (qualitatively) many-body pairing occurs somewhere between444

six and twelve particles. We point out that in two dimensions, as was eloquently discussed in445

Ref. [58], there is a strong connection between the few- and many-body physics of fermion446

pairing: Elementary quantum mechanics shows that for two isolated particles in a vacuum447

(such as two distinguishable spin–1/2 fermions), a bound state always exists for an arbitrarily448

weak, purely attractive interaction [58]. It can also be shown that the existence of a two-body449

bound state for isolated particles is a necessary and sufficient condition for the Cooper insta-450

bility of the many-body Fermi sea [12]. This connection is not present in three dimensions:451

In that case, the interactions must reach a threshold strength before they are able to bind two452

isolated particles. This means that pairing at arbitrarily weak interactions in three dimensions453

must be entirely attributed to many-body effects [58]. When the two fermions are on top of454

a non-interacting filled Fermi sea, rather than in vacuum, the density of available scattering455

states is altered due to the presence of the other atoms. Momentum states beneath the Fermi456

surface are unavailable due to Pauli blocking, and at weak interactions, the particles’ momenta457

are restricted to a narrow shell just above the Fermi surface. The three-dimensional density of458

11While our calculations suggest this to be the case, at strong binding energies of ϵb > 2ħhωr it is challenging
to properly model the tight composite bosonic wave functions, and thus, to obtain fully numerically converged
energies and structural properties within a reasonable time frame.
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Figure 6: The number of opposite-momentum pairs Npair (red points) as a function
of interaction strength ϵb for the 3+ 3 fermion ground state (with r2D/l

2
r = −0.1).

The maximum possible number of pairs is Npair = 3. At larger binding energies, the
mesoscopic sample can be accurately described by shifting the result from standard
BCS theory by the critical binding energy, ϵc

b ≈ 0.953ħhωr (vertical gray line) [24].

states is proportional to the square root of the energy ρ3D(ϵ)∝
p
ϵ, but at the Fermi surface459

it becomes constant ρ3D(ϵF ) just like in two dimensions. The effectively reduced dimension-460

ality of the system hence allows the formation of a two-body bound state for arbitrarily weak461

attraction [58,59].462

In the many-body regime, Cooper pairing tends to be concentrated at the Fermi surface463

regardless of whether the system is two- or three-dimensional. This is because any two distin-464

guishable particles need to scatter in order to pair (i.e., to become entangled). Likewise, the465

system needs to build up a superposition of many momenta in order to form a paired state.466

(This is made clear, for example, by recalling the structure of the ansatz for the superfluid467

ground-state wave function in standard BCS theory [59, 60].) However, Pauli blocking pre-468

vents these processes from happening deep inside the Fermi sea. For the Fermi sea to pair,469

some scattering states would need to be made available at low momenta — and this would470

require removing some particles from the Fermi sea by scattering them across a large momen-471

tum. The attractive interactions must therefore become strong enough to make it energetically472

favourable for those particles to scatter out. For weak-to-moderate interactions pairing is hence473

localised at the Fermi surface due to Pauli blocking, but begins to spread deeper into the Fermi474

sea as the interaction strength increases [59]. For very strong interactions the Fermi surface475

completely breaks up and pairing occurs at all momenta. In this limit the many-body system476

transitions from Cooper pairs to molecules [24,60].477

Having only very few particles thus leads to the question of how strong is the Pauli block-478

ing effect of the Fermi sea? Indeed, the extent of the occurrence of Pauli blocking can be con-479

sidered a measure of the extent to which the system can be legitimately called a ‘Fermi sea’.480

Because the experimental C(2)(p) function peaks at the Fermi momentum pF for a wide range481

of interaction strengths, ϵb ≲ 2ħhωr , this suggests that 6+ 6 fermions is already approaching482

the number of particles required for a quantum many-body system and essentially constitutes483

a Fermi sea. By contrast, the theoretical C(2)(p) function peaks substantially below the Fermi484

momentum in the same interaction regime. This indicates that 3+3 fermions is still a few-body485

system in which the low-momentum states are paired. It would therefore be of considerable486

interest to extend our calculations to 4+ 4, 5+ 5, and 6+ 6 particles to confirm this interpre-487

tation. Alternatively, it would be interesting to experimentally measure the pair correlation488
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function for a number of particles smaller than 6+ 6 [24] to compare against our results. As489

we discuss in Appendix A, the main burden on computational time for increasing particle num-490

ber is the rapid increase in the number of permutations required to antisymmetrise the wave491

function — which currently limits our investigation to 3 + 3 atoms. If the 6 + 6 calculation492

were feasible timewise, then the additional full harmonic oscillator shell in the non-interact-493

ing ground state may be enough to qualitatively modify the outcome from the 3+ 3 case. In494

three dimensions, energies and some structural properties (but not opposite-momentum pair495

densities) have previously been obtained for 4+ 4 [40] and 5+ 5 [41] fermions at unitarity496

by using basis sets that account for the most important but not all correlations. However, this497

approach may be less accurate at weak-to-moderate interactions. Besides particle number, an-498

other factor which may have played a role in the difference of results is temperature, i.e.,499

our calculations assumed zero temperature, while the experiment was performed at a finite500

temperature which led to a ground-state fidelity of 76% [24]. Nevertheless, we expect this to501

be less significant since many-body Monte–Carlo simulations have shown that temperature502

affects the weight and sharpness of the pair correlation peak, rather than shifting the peak to503

lower or higher momenta [61,62].504

4 Conclusions and Outlook505

In summary, we have used the method of explicitly correlated Gaussians to study the exci-506

tations and pairing in two-dimensional trapped mesoscopic Fermi gases. For the closed-shell507

configuration of 3 + 3 fermions, we reproduced the known [23, 26] non-monotonic depen-508

dence of the lowest monopole mode on the attractive interaction strength. For 1 + 1, 2 + 2,509

and 3+ 3 fermions in the ground state, we found that time-reversed pairing is predominant510

at momenta significantly below the Fermi momentum. We explored the effects of varying the511

interaction strength (binding energy) and axial confinement (effective range) on the system512

properties. The difference between the experimental measurements for 6+6 fermions (where513

pairing mainly occurred at the Fermi surface) [24] and the calculations for 3+3 fermions is yet514

to be resolved. Improving the computational methodology to handle particle numbers greater515

than six — or conversely, obtaining the experimental data for fewer than twelve particles —516

would help to fill in this picture.517

There are many avenues for future theoretical work on this topic. Means of increasing the518

numerical convergence rate for stronger binding energies, ϵb > 2ħhωr , (in addition to higher519

particle numbers) should continue to be sought. It would moreover be experimentally relevant520

to compare our (quasi-)two-dimensional calculation to a pure three-dimensional one and to521

confirm the effect of finite temperature in mesoscopic samples. Another extension would be522

to consider finite angular momentum sectors which become relevant in the case of anisotropic523

trapping potentials or spin imbalances. For instance, could one engineer a ‘few-body probe’524

of the Fermi–polaron problem [63]? Finally, in view of the large-scale quench experiments525

reported in Ref. [64], it would be useful to simulate the effect of an interaction quench in the526

few-body limit in order to shed further light on the dynamics of the emergence of superfluidity527

in two-component Fermi gases.528
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A Method of Explicitly Correlated Gaussians539

To numerically solve the time-independent Schrödinger equation for the Hamiltonian given by540

Eq. (1), we complement the stochastic variational method with the use of explicitly correlated541

Gaussian basis functions [36]. In this section, we provide a concise pedagogical discussion542

of the main components of this approach which apply to solving systems of trapped two-543

component fermions. Other works which have implemented this technique in the same context544

include Refs. [39–41,65–67].545

Due to the quadratic form of both the kinetic energy and the external potential energy, the546

Hamiltonian (1) can be separated into a centre-of-mass component and a relative component:547

H = Hcom+Hrel. We define a set of independent Jacobi co-ordinates x = (x1, x2, . . . , xN )T,548

where xN = (r1+ r2+ · · ·+ rN )/N denotes the centre-of-mass position and (x1, x2, . . . , xN−1)T549

corresponds to relative motion degrees of freedom. The eigenfunctions of the centre-of-mass550

Hamiltonian are just the well known non-interacting states of the two-dimensional harmonic551

oscillator for a particle with mass M = m1 +m2 + · · ·+mN : HcomΨcom(xN ) = EcomΨcom(xN ).552

Thus, it only remains to solve the Schrödinger equation for the relative motion: HrelΨrel(x1,553

x2, . . . , xN−1) = ErelΨrel(x1, x2, . . . , xN−1) [68].554

The Jacobi vectors x and single-particle co-ordinates y= (r↑1, r↓2, r↑3, . . . , r↓N ) are related by555

an N× N linear transformation matrix U [68]:556

x= Uy −→ xi =
N
∑

j=1

Ui jr
σ
j , rσi =

N
∑

j=1

(U−1)i jx j (i = 1, . . . , N) . (A.1)

Here, we have introduced a superscript on the single-particle co-ordinates to designate the557

pseudospin (σ = ↑, ↓) and have ordered them in such a way that the first atom is spin-up, the558

second is spin-down, the third is spin-up, and so forth. Note, in addition, that x and y are559

‘supervectors’ (or vectors of vectors) and the double-line font is used in this work to signify a560

matrix. For two-component Fermi gases with balanced spins (N = 2N↑ = 2N↓), we choose to561

construct U in a manner following Ref. [41]: The first N↑ Jacobi co-ordinates correspond to the562

distances between unlike pairs of fermions. The next N↑/2 [or (N↑ − 1)/2 if N↑ is odd] Jacobi563

co-ordinates correspond to the distances between the centres of mass of the first and second564

pair, the third and fourth pair, and so on. The remaining Jacobi vectors connect the larger sub-565

units. For example, in the case of N = 6 the transformation matrix is (with m12···i ≡ m1 +m2566

+ · · ·+mi and m12···N ≡ m1 +m2 + · · ·+mN = M):567

U=

















1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

m1r↑1/m12 m2r↓2/m12 −m3r↑3/m34 −m4r↓4/m34 0 0
m1r↑1/m1234 m2r↓2/m1234 m3r↑3/m1234 m4r↓4/m1234 −m5r↑5/m56 −m6r↓6/m56

m1r↑1/M m2r↓2/M m3r↑3/M m4r↓4/M m5r↑5/M m6r↓6/M

















.

(A.2)
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The relative Hamiltonian Hrel may be recast in terms of the relative Jacobi co-ordinates x568

= (x1, x2, . . . , xN−1)T (in the remainder of this section only, the supervector x excludes the569

centre-of-mass position) [68]. The relative kinetic energy operator T can be rewritten as570

T =
N−1
∑

i=1

−
ħh2

2µi
∇2

xi
, µi =





N
∑

j=1

(Ui j)2

m j





−1

, (A.3)

whereµi is the mass associated with the Jacobi co-ordinate xi . Similarly, the harmonic trapping571

potential term becomes572

N−1
∑

i=1

µiω
2
r

2
x2

i , (A.4)

while the two-body interaction term is transformed by reformulating the interparticle distance573

vector:574

N
∑

i=1

N
∑

j= i+1

Vint(ri j) , ri j ≡ |ri − r j|=
�

ω(i j)
�T

x . (A.5)

Above, ω is a transformation tensor whose (i, j)-th component is an (N − 1)-dimensional575

vector with the p-th element given by
�

ω(i j)
�

p = (U
−1)ip − (U−1) jp [68].576

We expand the eigenstates of the relative Hamiltonian in terms of explicitly correlated577

Gaussian basis functions. The unsymmetrised basis functions for states with zero total relative578

orbital angular momentum may be written as follows [68] using single-particle co-ordinates,579

φα(y) =
N
∏

j> i=1

exp

�

−
1

2α2
i j

(ri − r j)
2

�

= exp



−
N
∑

j> i=1

1

2α2
i j

(ri − r j)
2



, (A.6)

and using Jacobi co-ordinates,580

φA(x) = exp
�

−
1
2

xTAx
�

, Apq =
N
∑

i=1

N
∑

j= i+1

1

α2
i j

�

ω(i j)
�

p

�

ω(i j)
�

q . (A.7)

The N(N − 1)/2 Gaussian widths αi j are treated as non-linear variational parameters which581

are selected semi-stochastically and optimised by minimising the energy of the state of inter-582

est. Physically, small αi j are required to describe contributions that occur at small interparticle583

separations ri j , while large αi j are needed to describe contributions occurring at large ri j . Due584

to the principle of Pauli exclusion, interparticle distances are generally much longer when the585

atom indices i and j correspond to identical fermions, rather than to distinguishable fermions.586

Consequently, the αi j parameters are generated randomly with one concession: those corre-587

sponding to same-spin fermions are restricted to be on the order of the radial harmonic trap588

length lr , while those corresponding to different-spin fermions are permitted to range from a589

fraction of the interaction potential width r0 up to a couple of times lr [65]. Numerically, each590

basis function is encoded as a unique (N − 1)× (N − 1) correlation matrix A, which has the591

properties of being real, symmetric and positive definite by virtue of the fact that the Gaussian592

widths are positive real numbers. The property of positive definiteness ensures that the basis593

functions are normalisable [68].594

The correlated Gaussian technique relies on a generalisation of the variational principle595

which accounts for excited states [38]. The basic principle states that the expectation value596
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of a Hamiltonian, say Hrel, with respect to any normalised wave function provides an upper597

bound on the exact ground-state energy. If we now assume that ϵ1 ≤ ϵ2 ≤ · · · are the exact598

eigenenergies of Hrel, and E1 ≤ E2 ≤ · · · ≤ ENb
are the variational eigenvalues of Hrel obtained599

from the subspace spanned by Nb basis functions — then the generalised principle informs us600

that ϵ1 ≤ E1, ϵ2 ≤ E2 , . . . , ϵNb
≤ ENb

. This is proven in Sec. 3.1 of Ref. [68].601

For the nth eigenstate of Hrel, the expansion in the correlated Gaussian basis (ignoring sym-602

metrisation for now) reads,603

Ψ
(n)
rel =

Nb
∑

i=1

c(n)i φAi
(x) , (A.8)

where the expansion coefficients c(n)i are linear variational parameters. Minimising the varia-604

tional energy En with respect to these coefficients leads to a generalised eigenvalue problem605

[38, 68]: HrelC = EOC. Here, Hrel and O are the Hamiltonian and overlap matrices, respec-606

tively, with elements given by (in two dimensions)607

(Hrel)AiA j
≡ 〈φAi

|Hrel |φA j
〉 , OAiA j

≡ 〈φAi
|φA j
〉=

(2π)N−1

det[Ai +A j]
(i, j = 1, . . . , Nb) . (A.9)

The nth lowest variational eigenvalue En corresponds to the nth diagonal element of the diago-608

nal matrix E, while the associated eigenvector c(n) is contained in the nth column of the matrix609

C (not to be mistaken for the other C matrix defined in Appendices D and E). The generalised610

variational principle guarantees that En provides an upper bound on the nth exact eigenenergy611

ϵn of Hrel [38,68].612

Conveniently, evaluating the matrix elements of Hrel amounts to performing simple matrix613

operations on A [68]. In two dimensions the (unsymmetrised) matrix element for the relative614

kinetic energy operator reads,615

〈φAi
|T |φA j

〉= ħh2 Tr[Ai (Ai +A j)
−1A jM] , Mkl =

N
∑

i=1

UkiUl i

mi
(k, l = 1, . . . , N − 1) .

(A.10)

The matrix elements for arbitrary one- and two-body operators are respectively given by616

〈φAi
|V (rk) |φA j

〉= OAiA j

bk

2π

∫

d2r V (r) exp
�

−
1
2

bkr2
�

, (A.11a)

〈φAi
|V (rk − rl) |φA j

〉= OAiA j

bkl

2π

∫

d2r V (r) exp
�

−
1
2

bkl r
2
�

, (A.11b)

with617

1
bk
=
�

ω(k)
�T
(Ai +A j)

−1ω(k) ,
�

ω(k)
�

p = (U
−1)kp , (A.12a)

1
bkl
=
�

ω(kl)
�T
(Ai +A j)

−1ω(kl) , (A.12b)

which can be used to treat the confining and interaction potentials [68]. Note that in order to618

endow the wave function with fermionic exchange symmetry, the antisymmetrisation operator619

must be acted on the unsymmetrised basis states when calculating the Hamiltonian and overlap620

matrix elements — and this is described in Appendix D.621

We follow the two-step procedure detailed in Refs. [38,41] to construct the explicitly cor-622

related Gaussian basis. The first step is the basis set enlargement, in which new basis functions623
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(new matrices Ai) are added one at a time. The second step is the basis function refinement, in624

which the existing Ai matrices are adjusted one at a time. Both steps are cyclically repeated as625

necessary until the energy of the state of interest is converged (changes by less than a preset,626

very small value). Due to the fact that the basis is over-complete, the rate of convergence is627

rapid [36].628

To add a new basis function Ai to the basis set, we generate a large number (say ‘p’) of trial629

basis functions stochastically within preset parameter windows: {Ai,1, Ai,2 , . . . , Ai, p}. Since630

one more basis state always lowers the energy,12 we choose to keep the matrix Ai, j ≡ Ai that631

lowers the energy of the state of interest the most. Similarly, to refine an existing basis function632

Ai , we generate ‘p’ trial replacement basis functions stochastically: {A′i,1, A′i,2 , . . . , A′i, p}. We633

subsequently determine which one affords the lowest energy for the state of interest, labelling634

it by A′i, j ≡ A
′
i , and if this energy is lower than the original energy, then we replace Ai by A′i .635

In both the enlargement and refinement phases, in order to determine how the energy636

eigenvalues are affected by the inclusion of a given trial basis function, we do not need to637

solve the full (K + 1)× (K + 1)-dimensional generalised eigenvalue problem through matrix638

diagonalisation. Instead, we can exclude the concerned (i th) row and column from the Hamil-639

tonian and overlap matrices, and diagonalise the resulting generalised eigenvalue problem640

of size K× K . The eigenvalues of the (K + 1)-dimensional matrix can then be found as the641

roots of a secular equation which depends on the eigenvalues and normalised eigenvectors of642

the K-dimensional submatrix, and on the i th row and column of Hrel and O. The full details643

— which are based on Gram–Schmidt orthogonalisation13 — are provided in Ref. [32]. Se-644

lecting from a large number of trial basis functions thus becomes numerically feasible since645

root-finding is computationally much faster than matrix diagonalisation, and because the K-646

dimensional submatrix need only be diagonalised once. In addition, both the enlargement647

and refinement subroutines can be efficiently parallelised over a number (Nc) of MPI cores648

on a high-performance computer [38]. We generate p/Nc trial basis functions on each core,649

and then compare the eigenenergies across all Nc cores by using the ‘MPI_Allreduce’ function.650

Once the basis function that lowers the energy the most has been chosen, this information is651

synchronised across all cores by using the ‘MPI_Bcast’ function.652

The results for 1+1, 2+2, and 3+3 fermions are shown in Sec. 3. The main hindrance to653

theoretically considering higher particle numbers derives from the first-quantised formulation654

of the ECG approach — namely, the antisymmetrisation requirement to sum over all possible655

permutations of identical particles, as mentioned above and in Appendix D. For equally popu-656

lated two-component systems of N fermions, this number of permutations is Np = [(N/2)!]2,657

such that the evaluation of a single matrix element becomes very time consuming as the num-658

ber of particles increases (refer to Table 1). Combined with basis sizes on the order of at least659

thousands of states, this makes the 6+ 6 system of fermions considered by experiment [24]660

computationally out of reach.661

N 2 4 6 8 10 12
Np 1 4 36 576 14,400 518,400

Table 1: Scaling of the number of permutations Np with the number of particles N.

12 If a basis of size K yields an ordered set of eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λK , then a basis of size K +1 will yield
an ordered set of eigenvalues γ1 ≤ γ2 ≤ · · · ≤ γK+1 , such that γ1 ≤ λ1 ≤ γ2 ≤ λ2 ≤ · · · ≤ γK ≤ λK ≤ γK+1.

13 This orthogonalisation method avoids numerical instabilities caused by linear dependencies, which may oth-
erwise arise due to the over-completeness of the basis set.
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Figure 7: The lowest monopole excitation spectrum for N↑+N↓ = 3+3 fermions. We
overlay our result at zero effective range (in blue) on the contact interaction result
from Fig. 1 of Ref. [26] (in green). In each case, we normalise ϵb by a critical value ϵc

b ,
which is defined as the two-body binding energy that gives the minimum excitation
energy ∆E.

B Comparison to a Contact Interaction662

The spatial extent of the potential selected to model short-range binary collisions in the ul-663

tracold Fermi gas can, to a small degree, quantitatively affect the lowest monopole excitation664

spectrum. Above in Fig. 7, we show again our result for 3+ 3 fermions at an effective range665

of r2D/l
2
r = −0.001≈ 0, which we obtained by using the finite-range Gaussian interaction po-666

tential given in Eq. (3). Although the effective range of this potential is fixed and close to zero,667

the physical width r0 varies between 0.01lr and 0.05lr over the depicted range of binding en-668

ergies. This leads to a small downward shift in the excitation energy — which becomes larger669

with increasing binding energy — when compared to an analogous calculation [26] based on670

a contact interaction with zero range (r0 → 0) [69, 70]. Within our model, we can estimate671

the zero-range limit of a contact interaction by starting with the value of ∆E at a particular672

binding energy ϵb, and then systematically reducing the Gaussian width r0, while varying the673

depth V0 such that ϵb remains constant. In this way, we can construct a plot of ∆E versus r0674

and then extrapolate to the limit of r0 = 0 [41]. The process can subsequently be repeated675

at all desired binding energies. Interestingly, due to the second term in Eq. (3), decreasing676

the potential width for a fixed binding energy and basis size causes ∆E to increase. However,677

since this also corresponds to a deeper potential, the result becomes less accurate. Increasing678

the basis size to improve the level of accuracy, in turn, lowers ∆E. In general, we found that679

the very deep and narrow potentials generated by this limiting procedure made it necessary680

to use very large basis sets in order to numerically converge the excitation energy. Therefore,681

we only performed this check at a single binding energy.682

C Definitions of the Pair Correlator and Density Matrices683

As done in Eq. (7), we define the second-order pair correlation function for opposing spins as684

follows:685

C(2)(p1, p2) = 〈n↑(p1)n↓(p2)〉 − 〈n↑(p1)〉〈n↓(p2)〉 , (C.1)
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where686

eρ(p1, p2)≡ 〈n↑(p1)n↓(p2)〉= 〈c
†
p1↑

cp1↑c
†
p2↓

cp2↓〉 , (C.2)

eρ↑(p1)≡ 〈n↑(p1)〉= 〈c
†
p1↑

cp1↑〉 , (C.3)

eρ↓(p2)≡ 〈n↓(p2)〉= 〈c
†
p2↓

cp2↓〉 . (C.4)

Here, c†
pσ (cpσ) is the fermionic creation (annihilation) operator for a particle with momentum687

p and pseudospin σ in the language of second quantisation (with σ = ↑, ↓). The “ eρ ” de-688

note momentum-space density matrix elements and these can be related to the position-space689

density matrix elements which we have calculated in the correlated Gaussian basis (refer to690

Appendices D and E, below).691

To this end, we make use of the relationship between the creation operators in position692

[ψ†
σ(r)] and momentum (c†

pσ) space:693

c†
pσ =

1
2π

∫

drψ†
σ(r) e

ip·r , (C.5)

cpσ =
1

2π

∫

drψσ(r) e
− ip·r . (C.6)

Inserting these relations into the definition (C.3) of the one-body density matrix for the spin-↑694

atoms in momentum space yields695

eρ↑(p1) =
1

(2π)2

∫ ∫

dr dr′ 〈ψ†
↑(r)ψ↑(r

′)〉e− ip1·(r′− r) =
1

(2π)2

∫ ∫

dr dr′ρ↑(r, r′) e− ip1·(r′− r) .

(C.7)

This result involves the position-space one-body density matrix for the spin-↑ atoms, which696

can be written as697

ρ↑(r, r′) =

�∫

· · ·
∫

dr↑1dr↓2 · · · dr↑N−1dr↓N

�

�

�Ψ(r↑1, r↓2, · · · , r↑N−1, r↓N )
�

�

�

2
�−1

×
∫

· · ·
∫

dr↓2 dr↑3 dr↓4 · · · dr↑N−1dr↓NΨ(r, r↓2, r↑3, r↓4, · · · , r↑N−1, r↓N )Ψ
∗(r′, r↓2, r↑3, r↓4, · · · , r↑N−1, r↓N )

(C.8)

in the first quantisation picture, where Ψ = ΨcomΨrel is the total N-body wave function. The698

first line of Eq. (C.8) is a normalisation constant; in the second line we integrate the density699

ΨΨ∗ over all co-ordinates except those of a single spin-↑ particle. Expressions analogous to700

Eqs. (C.7)–(C.8) can readily be written down for the spin-↓ case (C.4). Similarly, the two-body701

density matrix for spin-↑-spin-↓ pairs is given by702

eρ(p1, p2) =
1

(2π)4

∫

· · ·
∫

dr1dr′1dr2 dr′2 〈ψ
†
↑(r1)ψ↑(r

′
1)ψ

†
↓(r2)ψ↓(r

′
2)〉e
− ip1·(r′1− r1)e− ip2·(r′2− r2)

=
1

(2π)4

∫

· · ·
∫

dr1dr′1dr2 dr′2 ρ(r1, r′1; r2, r′2) e
− ip1·(r′1− r1)e− ip2·(r′2− r2) (C.9)

in momentum space, and by703

ρ(r1, r′1; r2, r′2) =

�∫

· · ·
∫

dr↑1dr↓2 · · · dr↑N−1dr↓N

�

�

�Ψ(r↑1, r↓2, · · · , r↑N−1, r↓N )
�

�

�

2
�−1

×
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∫

· · ·
∫

dr↑3 dr↓4 · · · dr↑N−1dr↓NΨ(r1, r2, r↑3, r↓4, · · · , r↑N−1, r↓N )Ψ
∗(r′1, r′2, r↑3, r↓4, · · · , r↑N−1, r↓N )

(C.10)

in position space. Above, we integrate over all co-ordinates except those of one spin-↑ particle704

and one spin-↓ particle. Note that all integrals in this section are two-dimensional, i.e, we have705

written dr ≡ d2r for brevity. Furthermore, for numerical convenience we order the atoms so706

that the first one is spin-↑, the second is spin-↓, the third is spin-↑, etc., as done in Appendix A707

[see Eqs. (A.1)–(A.2)].708

D Derivation of the One-Body Terms in the Pair Correlator709

To derive closed analytical expressions for the one-body terms in Eq. (C.1), we follow the710

prescription given in Appendix A of Ref. [39] (which is in three dimensions), while making711

the necessary modifications for a two-dimensional system.712

When we calculated the excitation spectra in Fig. 2, we separated off the centre-of-mass713

degrees of freedom and expanded the eigenstates of the relative Hamiltonian in terms of the714

explicitly correlated Gaussian basis functions. These basis functions depended on a set of non-715

linear variational parameters which were optimised through energy minimisation. In order716

to calculate the pair correlator C(2) we now need to utilise the full N-body wave function, so717

we multiply the optimised basis set by the unnormalised ground-state centre-of-mass wave718

function [39]:719

Ψ(GS)
com (xN) = exp

�

−
x2

N

2a2
ho/N

�

, xN =
N
∑

i=1

rσi
N

. (D.1)

The unsymmetrised (and unnormalised) basis functions that incorporate the centre-of-mass720

motion thus read as follows:721

φA(x) = exp
�

−
1
2

xTAx
�

, (D.2)

where x = (x1, x2, . . . , xN−1, xN) denotes the full set of N Jacobi position vectors defined in722

Appendix A. Here, A is an N×N symmetric and positive definite correlation matrix comprising723

N(N − 1)/2 variational parameters (the Ai j with i = 1, . . . , N − 1 and j ≥ i), which are724

optimised semi-stochastically. To force the centre-of-mass degrees of freedom into the ground725

state, we manually set the matrix elements AiN and ANi (with i = 1, . . . , N −1) to zero, while726

setting ANN to N/a2
ho [39]. We reiterate that x is a ‘supervector’ (or vector of vectors) and the727

double-line font is used in this work to designate a matrix. The Jacobi vectors x and single-728

particle co-ordinates y ≡ (y1, . . . , yN ) = (r
↑
1, r↓2, r↑3, . . . , r↓N ) are related by the N× N linear729

transformation matrix U, which has been defined in Eqs. (A.1)–(A.2) of Appendix A.730

Now that we have set up the system, our first goal is to derive the correlated Gaussian731

matrix elements of the real-space one-body density matrix for the spin-↑ atoms, Eq. (C.8) (the732

derivation for the spin-↓ atoms follows analogously):733

[ρ↑(r, r′)]AA′
OAA′

≡
〈φA|ρ↑ |φA′〉
〈φA|φA′〉

= (OAA′)−1

∫

· · ·
∫

d2N−2yred

�∫

d2r↑1δ(r− r↑1)φA(x)

��∫

d2r↑1δ(r
′− r↑1)φA′(x)

�

. (D.3)
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In this equation we have defined yred = (r
↓
2, r↑3, r↓4, . . . , r↑N−1, r↓N ), δ( · · · ) represents the two-734

dimensional Dirac delta function, and735

OAA′ ≡ 〈φA|φA′〉=
(2π)N

det[A+A′]
(D.4)

is the overlap matrix element [68] for the (unsymmetrised) ECG basis functions associated736

with the correlation matrices A and A′. It is convenient to express the right-hand-side of Eq.737

(D.3) in terms of the Gaussian generating function [68],738

g(s; A, x) = exp
�

−
1
2

xTAx+ sTx
�

, (D.5)

where s denotes an auxiliary supervector with the same dimensionality as x. The basis func-739

tion in Eq. (D.2) can therefore be written as φA(x) = g(0; A, x). By using the fact that xTAx=740

yTUTAUy, we re-express the basis function φA in terms of y and separate off the r↑1 depen-741

dence:742

φA(y) = g(0; B, yred)exp
�

−
1
2

b1(r
↑
1)

2 − (bTyred)
Tr↑1

�

. (D.6)

Here, B is an (N−1)×(N−1)-dimensional matrix given byUTAUwith the first row and column743

removed, b is an (N−1)-dimensional vector given by ((UTAU)12 , . . . , (UTAU)1N ), and b1 is a744

scalar given by (UTAU)11. In addition, Eq. (D.6) contains the quantity745

(bTyred)
Tr↑1 =

N
∑

j=2

b j−1 yT
j r↑1 , (D.7)

where b j denotes the j th element of the vector b. To continue we define {B′, b′, b′1} analo-746

gously to {B, b, b1}, substitute the expressions for φA(x)→ φA(y) and φA′(x)→ φA′(y) into747

Eq. (D.3), and then evaluate the two Dirac delta functions. This yields748

[ρ↑(r, r′)]AA′ ≡ 〈φA|ρ↑ |φA′〉=
∫

· · ·
∫

d2N−2yred g(0; B, yred) g(0; B′, yred)×

exp
§

−
1
2

b1r2 −
1
2

b′1(r
′)2 − (bTyred)

Tr− [(b′)Tyred]
Tr′
ª

, (D.8)

which can be rewritten as749

[ρ↑(r, r′)]AA′ =

∫

· · ·
∫

d2N−2yred g[−(br+ b′r′); B+B′, yred]exp
§

−
1
2

�

b1r2 + b′1(r
′)2
�

ª

.

(D.9)

Above, the quantity br is an (N−1)-dimensional supervector with elements b jr, where j = 1,750

. . . , N− 1. By employing the two-dimensional relation [68] shown below,751

∫

· · ·
∫

d2Nx g(s; A, x) =
(2π)N

det[A]
exp
�

1
2

sTA−1s
�

, (D.10)

we arrive at a compact expression for the correlated Gaussian matrix elements of the one-body752

density matrix in real space:753

[ρ↑(r, r′)]AA′ = c1exp
§

−
1
2

�

cr2 + c′(r′)2 − arTr′
�

ª

, (D.11)
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which depends on the following scalars,754

c1 =
(2π)N−1

det[B+B′]
, (D.12)

c = b1 − bTCb , (D.13)

c ′ = b′1 − (b
′)TCb′, (D.14)

a = bTCb′ + (b′)TCb , (D.15)

and on the matrix,755

C= (B+B′)−1 . (D.16)

Our second goal is now to evaluate the Fourier transform of Eq. (D.11) — as defined by756

Eq. (C.7) — in order to obtain the correlated Gaussian matrix elements of the one-body density757

matrix in momentum space:758

[ eρ↑(p1)]AA′ =
1

(2π)2

∫ ∫

d2rd2r′ [ρ↑(r, r′)]AA′ e
− ip1·(r′− r) . (D.17)

By defining X= r′− r, Eq. (D.17) becomes759

[ eρ↑(p1)]AA′ =
c1

(2π)2

∫ ∫

d2rd2X exp[−i (px
1 X x + p y

1 X y)]×

exp
§

1
2

�

g1(r
2
x + r2

y) + g2(X
2
x + X 2

y) + g3(rx X x + ry X y)
�

ª

, (D.18)

with the scalars,760

g1 = a− c − c ′, (D.19)

g2 = −c ′, (D.20)

g3 = a− 2c ′. (D.21)

For g1< 0, the integral over r can be performed analytically:761

∫ +∞

−∞

∫ +∞

−∞
drx dry exp
§

1
2

�

g1(r
2
x + r2

y) + g2(X
2
x + X 2

y) + g3(rx X x + ry X y)
�

ª

= −
2π
g1

exp

�

4g1 g2 − g2
3

8g1
(X 2

x + X 2
y )

�

. (D.22)

This allows the integral over X to then be carried out analytically, as well, for 4g1 g2− g2
3 > 0:762

∫ +∞

−∞

∫ +∞

−∞
dX x dX y exp[−i (px

1 X x + p y
1 X y)]

�

−
2π
g1

exp

�

4g1 g2 − g2
3

8g1
(X 2

x + X 2
y )

��

=
16π2

4g1 g2 − g2
3

exp

�

2g1

4g1 g2 − g2
3

�

(px
1 )

2 + (p y
1 )

2
�

�

. (D.23)

Thus, the correlated Gaussian matrix elements of the momentum-space one-body density ma-763

trix for the spin-↑ atoms are given by764

[ eρ↑(p1)]AA′ =
4c1

4g1 g2 − g2
3

exp

�

2g1

4g1 g2 − g2
3

p2
1

�

, (D.24)
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with momentum p1 ≡ |p1|. We have checked that the two conditions, g1< 0 and 4g1 g2 − g2
3765

> 0, are indeed satisfied numerically. We can now evaluate Eq. (C.3) for the ground state (GS)766

by using the derived results for [ eρ↑(p1)]AiA j
(D.24) and OAiA j

(D.4):767

〈n↑(p1)〉 ≡
〈Ψ(GS) |n↑(p1)|Ψ(GS)〉
〈Ψ(GS) |Ψ(GS)〉

=

∑

i, j c∗i [ eρ↑(p1)]AiA j
c j

∑

i, j c∗i OAiA j
c j

. (D.25)

Above, the second expression is obtained from the first by inserting two complete sets of ECG768

basis states into both the numerator and denominator, and ci = 〈φAi
|Ψ(GS)〉 is the i th (real)769

coefficient of the full ground-state wave function which is found by diagonalising the Hamil-770

tonian (see Appendix A).771

To enhance the clarity of our discussion up until this point, we have used unsymmetrised772

basis functions — but of course, in reality, when we derive the ECG matrix elements we need773

to appropriately antisymmetrise the fermionic basis [68]. This means that we need to act the774

antisymmetrisation operator,775

P =
Np
∑

i=1

si Pi , (D.26)

on both the bra 〈φA| and the ket |φA′〉. Here, P represents the sum of all possible Np permu-776

tation operators Pi for the reordering of identical fermions, weighted by the signs si of those777

permutations. Conveniently, in the ECG approach acting a single permutation operator on a778

basis function simply amounts to a redefinition of the correlation matrix A→ Ā(i):779

PiφA(x) = Pi exp
�

−
1
2

xTAx
�

= exp
§

−
1
2

xT
�

�

TPi

�TATPi

�

x
ª

≡ exp
�

−
1
2

xTĀ(i)x
�

= φĀ(i)(x) ,

(D.27)

where TPi
is the (N − 1)× (N − 1)-dimensional permutation matrix corresponding to the i th

780

permutation — as defined in Eq. (2.30) of Ref. [68]. Accordingly, it is straightforward to write781

down the antisymmetrised matrix element of a given operator, say B:782

〈φA|B |φA′〉 → 〈PφA|B |PφA′〉=
Np
∑

i=1

Np
∑

j=1

si s j 〈φĀ(i)|B |φĀ′( j)〉 , (D.28)

which comprises N2
p terms. If B is invariant under the exchange of any pair of identical atoms783

(i.e., if it commutes with all permutation operators Pi), then we can use this fact — and also784

the fact that each permutation is an idempotent operator, (Pi)2 = 1 ∀ i — to show that785

〈PφA|B |PφA′〉= Np〈PφA|B |φA′〉= Np〈φA|B |PφA′〉 . (D.29)

Now, the right-hand side is a sum of only Np terms. These operator conditions are clearly sat-786

isfied by the identity, and hence, the overlap matrix element in the denominator of Eq. (D.3)787

can be antisymmetrised as follows:788

OAA′ ≡ 〈φA|φA′〉 → Np〈φA|PφA′〉= Np

Np
∑

j=1

s j 〈φA|φĀ′( j)〉= Np

Np
∑

j=1

s j (2π)N

det[A+ Ā′( j)]
. (D.30)

Equation (D.29) additionally holds for the Hamiltonian H in Eq. (1), but not for the density789

matrices in Appendix C, and thus the numerator of Eq. (D.3) must be antisymmetrised by using790

Eq. (D.28). Calculations of structural properties are consequently much longer than those of791
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energy and excitation spectra. Note that the redefined correlation matrices Ā(i) and Ā′( j) will792

affect the values of the Bmatrix, b vector, and b1 scalar first appearing in Eq. (D.6) (as well as793

their primed equivalents), and all subsequent quantities that depend on these. Equation (D.29)794

is very useful since in the ECG method, the principal limiting factor on computational time for795

increasing particle number N is the number of permutations Np required to antisymmetrise796

the wave function, as we discussed in Appendix A.797

E Derivation of the Two-Body Term in the Pair Correlator798

We can directly extend the approach in Appendix D to derive a closed analytical expression for799

the two-body term in Eq. (C.1). To this end, we consider the two-body density matrix for spin-800

↑-spin-↓ pairs in real space, Eq. (C.10), and we calculate its matrix elements in the explicitly801

correlated Gaussian basis. The two-body equivalent of Eq. (D.3) is shown below:802

[ρ(r↑, r′↑; r↓, r′↓)]AA′

OAA′
≡
〈φA|ρ |φA′〉
〈φA|φA′〉

= (OAA′)−1

∫

· · ·
∫

d2N−4yred

�∫ ∫

d2r↑1 d2r↓2δ(r↑ − r↑1)δ(r↓ − r↓2)φA(x)

�

×
�∫ ∫

d2r↑1 d2r↓2δ(r
′
↑ − r↑1)δ(r

′
↓ − r↓2)φA′(x)

�

, (E.1)

where now yred = (r
↑
3, r↓4, . . . , r↑N−1, r↓N ), while OAA′ ≡ 〈φA|φA′〉 is still defined by Eq. (D.4).803

By using Eqs. (A.1) and (D.5), we rewrite the basis function φA in terms of y and separate off804

the r↑1 and r↓2 dependencies:805

φA(y) = g(0; B, yred)exp
�

−
1
2

b1(r
↑
1)

2 −
1
2

b2(r
↓
2)

2 − b3(r
↑
1)

Tr↓2 − (b
T
1yred)

Tr↑1 − (b
T
2 yred)

Tr↓2

�

.

(E.2)

Above, the (N −2)× (N −2)-dimensional matrix B is given by UTAU with the first and second806

rows and columns removed. Equation (E.2) additionally contains two (N−2)-dimensional vec-807

tors:808

b1 = ((UTAU)13 , (UTAU)14 , . . . , (UTAU)1N ) , (E.3)

b2 = ((UTAU)23 , (UTAU)24 , . . . , (UTAU)2N ) , (E.4)

and three scalars: b1 = (UTAU)11, b2 = (UTAU)22 , b3 = (UTAU)12 . To be clear, we mention809

that810

(bT
i yred)

Trσi =
N
∑

j=3

(bi) j−2 yT
j rσi , (E.5)

where (bi) j denotes the j th element of the vector bi (with i = 1, 2). We also define analogous811

quantities {B′, b′1, b′2, b′1, b′2, b′3} which correspond to the basis function φA′ . To proceed, we812

substitute the expressions for φA(x) → φA(y) and φA′(x) → φA′(y) into Eq. (E.1), and then813

evaluate the four Dirac delta functions. This gives814

[ρ(r↑, r′↑; r↓, r′↓)]AA′ ≡ 〈φA|ρ |φA′〉=
∫

· · ·
∫

d2N−4yred g(0; B, yred) g(0; B′, yred)×

29



SciPost Physics Submission

exp
§

−
1
2

b1r2
↑ −

1
2

b2 r2
↓ − b3 rT

↑ r↓ − (b
T
1yred)

Tr↑ − (bT
2 yred)

Tr↓

ª

×

exp
§

−
1
2

b′1(r
′
↑)

2 −
1
2

b′2(r
′
↓)

2 − b′3(r
′
↑)

Tr′↓ − [(b
′
1)

Tyred]
Tr′↑ − [(b

′
2)

Tyred]
Tr′↓

ª

, (E.6)

which can be reformulated as815

[ρ(r↑, r′↑; r↓, r′↓)]AA′ =

∫

d2N−4yred g[−(b1r↑ + b2r↓ + b′1r′↑ + b′2r′↓); B+B
′, yred]×

exp
§

−
�

1
2

b1r2
↑ +

1
2

b2 r2
↓ + b3 rT

↑ r↓ +
1
2

b′1(r
′
↑)

2 +
1
2

b′2(r
′
↓)

2 + b′3(r
′
↑)

Tr′↓

�ª

. (E.7)

Here b1r↑, for instance, is an (N − 2)-dimensional supervector with elements (b1) j r↑, where816

j = 1, . . . , N−2. By applying the identity in Eq. (D.10), we can solve the integral over yred to817

yield an expression for the ECG matrix elements of the two-body density matrix in real space:818

[ρ(r↑, r′↑; r↓, r′↓)]AA′ = a1exp
§

−
1
2

�

c1r2
↑ + c′1(r

′
↑)

2 + c2 r2
↓ + c′2(r

′
↓)

2 + d1rT
↑ r↓+

d ′1(r
′
↑)

Tr′↓ − f1rT
↑ r
′
↑ − f2 rT

↓ r
′
↓ − f3 rT

↑ r
′
↓ − f4 rT

↓ r
′
↑

�

ª

, (E.8)

which depends on the following scalars,819

a1 =
(2π)N−2

det[B+B′]
, (E.9)

c1 = b1 − bT
1Cb1 , d ′1 = 2b′3 − (b

′
1)

TCb′2 − (b
′
2)

TCb′1 , (E.10)

c′1 = b′1 − (b
′
1)

TCb′1 , f1 = bT
1Cb′1 + (b

′
1)

TCb1 , (E.11)

c2 = b2 − bT
2Cb2 , f2 = bT

2Cb′2 + (b
′
2)

TCb2 , (E.12)

c′2 = b′2 − (b
′
2)

TCb′2 , f3 = bT
1Cb′2 + (b

′
2)

TCb1 , (E.13)

d1 = 2b3 − bT
1Cb2 − bT

2Cb1 , f4 = bT
2Cb′1 + (b

′
1)

TCb2 , (E.14)

and on the matrix,820

C= (B+B′)−1 . (E.15)

Next, we Fourier transform Eq. (E.8) according to Eq. (C.9) in order to obtain the ECG ma-821

trix elements of the two-body density matrix in momentum space:822

[ eρ(p1, p2)]AA′ =
1

(2π)4

∫

· · ·
∫

d2r↑d
2r′↑d

2r↓d
2r′↓ [ρ(r↑, r′↑; r↓, r′↓)]AA′ e

−ip1·(r′↑− r↑)e−ip2·(r′↓− r↓) .

(E.16)

By changing variables to X↑ = r′↑− r↑ and X↓ = r′↓− r↓, Eq. (E.16) becomes823

[ eρ(p1, p2)]AA′ =
a1

(2π)4

∫

· · ·
∫

d2r↑d
2r↓d

2X↑d
2X↓ exp[−i (px

1 X x
↑ + p y

1 X y
↑ + px

2 X x
↓ + p y

2 X y
↓ )]×

exp
�

1
2

¦

g1

�

(r x
↑ )

2+ (r y
↑ )

2
�

+ g2

�

(r x
↓ )

2+ (r y
↓ )

2
�

+ g3

�

r x
↑ r x
↓ + r y

↑ r y
↓

�

+

h(1, x)
temp r x

↑ + h(1, y)
temp r y

↑ + h(2, x)
temp r x

↓ + h(2, y)
temp r y

↓ + h(3)temp

©

�

, (E.17)

where824

g1 = f1 − c1 − c′1 , (E.18)
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g2 = f2 − c2 − c′2 , (E.19)

g3 = f3 + f4 − d1 − d ′1 , (E.20)

are constant scalars, while825

h(1, i)
temp = ( f1 − 2c′1)X

i
↑ + ( f3 − d ′1)X

i
↓ , (E.21)

h(2, i)
temp = ( f4 − d ′1)X

i
↑ + ( f2 − 2c′2)X

i
↓ , (E.22)

h(3)temp = −c′1[(X
x
↑ )

2 + (X y
↑ )

2]− c′2 [(X
x
↓ )

2 + (X y
↓ )

2]− d ′1(X
x
↑ X x
↓ + X y

↑ X y
↓ ) , (E.23)

are temporary functions of the integration variables X↑ and X↓ (with i = x , y). In similarity to826

the previous section, the integral over r↓ can be performed analytically for g2 < 0, and then827

so can the integral over r↑ for 4g1 g2 − g2
3 > 0:828

∫ +∞

−∞
· · ·
∫ +∞

−∞
dr x
↑ dr y
↑ dr x

↓ dr y
↓ exp
�

1
2

¦

g1

�

(r x
↑ )

2+ (r y
↑ )

2
�

+ g2

�

(r x
↓ )

2+ (r y
↓ )

2
�

+

g3

�

r x
↑ r x
↓ + r y

↑ r y
↓

�

+ h(1, x)
temp r x

↑ + h(1, y)
temp r y

↑ + h(2, x)
temp r x

↓ + h(2, y)
temp r y

↓

©

�

=
16π2

4g1 g2 − g2
3

exp
�

−
1/2

4g1 g2 − g2
3

×
�

g1

n
�

h(2, x)
temp

�2
+
�

h(2, y)
temp

�2o

+ g2

n
�

h(1, x)
temp

�2
+
�

h(1, y)
temp

�2o

− g3

¦

h(1, x)
temp h(2, x)

temp + h(1, y)
temp h(2, y)

temp

©

��

=
16π2

t0
exp
�

1
2t0

¦

t1

�

(X x
↑ )

2+ (X y
↑ )

2
�

+ t2

�

(X x
↓ )

2+ (X y
↓ )

2
�

+ t3

�

X x
↑ X x
↓ + X y

↑ X y
↓

�©

�

, (E.24)

where we have defined829

t0 = 4g1 g2 − g2
3 , (E.25)

t1 = − ( f4 − d ′1)
2 g1 − ( f1 − 2c′1)

2 g2 + ( f4 − d ′1)( f1 − 2c′1)g3 , (E.26)

t2 = − ( f2 − 2c′2)
2 g1 − ( f3 − d ′1)

2 g2 + ( f3 − d ′1)( f2 − 2c′2)g3 , (E.27)

t3 = − 2( f4 − d ′1)( f2 − 2c′2)g1 − 2( f3 − d ′1)( f1 − 2c′1)g2

+ [( f4 − d ′1)( f3 − d ′1) + ( f2 − 2c′2)( f1 − 2c′1)]g3 . (E.28)

Therefore, Eq. (E.17) can now be written as830

[ eρ(p1, p2)]AA′ =
a1

(2π)4
16π2

t0

∫ ∫

d 2X↑d
2X↓ exp[−i (px

1 X x
↑ + p y

1 X y
↑ + px

2 X x
↓ + p y

2 X y
↓ )]×

exp
�

1
2

¦

s1

�

(X x
↑ )

2+ (X y
↑ )

2
�

+ s2

�

(X x
↓ )

2+ (X y
↓ )

2
�

+ s3

�

X x
↑ X x
↓ + X y

↑ X y
↓

�©

�

, (E.29)

which involves831

s1 = t1/t0 − c′1 , (E.30)

s2 = t2/t0 − c′2 , (E.31)

s3 = t3/t0 − d ′1 . (E.32)

At this point, the integral over X↓ can be carried out analytically for s2 < 0:832

∫ +∞

−∞

∫ +∞

−∞
dX x
↓ dX y

↓ exp[−i (px
2 X x
↓ + p y

2 X y
↓ )]×
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exp
�

1
2

¦

s2

�

(X x
↓ )

2+ (X y
↓ )

2
�

+ s3

�

X x
↑ X x
↓ + X y

↑ X y
↓

�©

�

= −
2π
s2

exp
�

1
8s2

¦

4
�

(px
2 )

2+ (p y
2 )

2
�

− s2
3

�

(X x
↑ )

2+ (X y
↑ )

2
�

+ 4is3 (p
x
2 X x
↑ + p y

2 X y
↑ )
©

�

. (E.33)

Subsequently, for 4s1s2 − s2
3 > 0 we can analytically evaluate the integral over X↑ as well:833

∫ +∞

−∞

∫ +∞

−∞
dX x
↑ dX y

↑ exp[−i (px
1 X x
↑ + p y

1 X y
↑ )]× exp
§

1
2

s1

�

(X x
↑ )

2+ (X y
↑ )

2
�

ª

×

exp
�

1
8s2

¦

4
�

(px
2 )

2+ (p y
2 )

2
�

− s2
3

�

(X x
↑ )

2+ (X y
↑ )

2
�

+ 4is3 (p
x
2 X x
↑ + p y

2 X y
↑ )
©

�

= −
8πs2

4s1s2 − s2
3

exp

�

2

4s1s2 − s2
3

¦

s2

�

(px
1 )

2+ (p y
1 )

2
�

+ s1

�

(px
2 )

2+ (p y
2 )

2
�

− s3 (p
x
1 px

2 + p y
1 p y

2 )
©

�

.

(E.34)

Collating and simplifying these results leads to a compact expression for the ECG matrix ele-834

ments of the momentum-space two-body density matrix for spin-↑-spin-↓ pairs:835

[ eρ(p1, p2)]AA′ =
a1

(2π)4
16π2

4g1 g2 − g2
3

�

−
2π
s2

�

�

−
8πs2

4s1s2 − s2
3

�

×

exp

�

2

4s1s2 − s2
3

¦

s2

�

(px
1 )

2+ (p y
1 )

2
�

+ s1

�

(px
2 )

2+ (p y
2 )

2
�

− s3 (p
x
1 px

2 + p y
1 p y

2 )
©

�

=
16a1

(4g1 g2 − g2
3 )(4s1s2 − s2

3 )
exp

�

2

4s1s2 − s2
3

�

s2 p2
1 + s1 p2

2 − s3 (p
x
1 px

2 + p y
1 p y

2 )
�

�

, (E.35)

with momenta p1 ≡ |p1| and p2 ≡ |p2|. We have checked numerically that g2 and s2 are less836

than zero, while 4g1 g2− g2
3 and 4s1s2− s2

3 are greater than zero, as required. The expectation837

value 〈n↑(p1)n↓(p2)〉 can now be evaluated with respect to the ground state in a manner akin838

to Eq. (D.25). For particles with both opposite spins and opposite momenta (p1 = −p2 ≡ p)839

this final result simplifies even further [and notice its similarity to Eq. (D.24)]:840

[ eρ(p, −p)]AA′ =
16a1

(4g1 g2 − g2
3 )(4s1s2 − s2

3 )
exp

�

2(s1 + s2 + s3)
4s1s2 − s2

3

p2

�

, (E.36)

with momentum p ≡ |p|. We remark that for clarity, we have used the unsymmetrised basis841

functions defined by Eq. (D.2) in the above discussion. However, in actuality, these must be842

antisymmetrised according to the prescription provided at the end of the previous appendix.843

F Bardeen–Cooper–Schrieffer (BCS) Theory844

In this appendix, we describe the BCS theoretical treatment for completeness and ease of ac-845

cess. The ensuing derivation of the opposite-momentum pair correlation function, C(2)(p, −p)846

≡ C(2)(p), was first performed in Ref. [24] and the results are relevant to Figs. 4 and 6 in the847

current work.848

Within BCS theory, the expectation values in Eqs. (C.2)–(C.4) can be directly evaluated849

with respect to the ground state by applying the Bogoluibov transformation:850

cp↑ = upγp↑ − vpγ
†
−p↓ , (F.1)

cp↓ = upγp↓ + vpγ
†
−p↑ , (F.2)
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where851

u2
p = (1+ ϵp/ξp)/2 , (F.3)

v2
p = (1− ϵp/ξp)/2 . (F.4)

The BCS spectrum of excitations is given by ξp = (ϵ2
p +∆

2)1/2. Here, ϵp = p2/(2m) − ϵF is852

the free electron dispersion measured relative to the Fermi energy, and the mean-field value of853

the superfluid gap is ∆= (2ϵbϵF )1/2 [12]. By replacing the particle creation and annihilation854

operators (c†
pσ, cpσ) with fermionic quasiparticle operators (γ†

pσ, γpσ), and then using the fact855

that the BCS ground state is the quasiparticle vacuum, γpσ|ΨBCS〉= 0, we arrive at856

C(2)(p) = 〈c†
p↑cp↑c

†
−p↓c−p↓〉 − 〈c

†
p↑cp↑〉〈c

†
−p↓c−p↓〉

=N 2 ∆2

4(ϵ2
p +∆2)

. (F.5)

The normalisation factor N is determined by fixing the single-spin atom number in the non-857

interacting limit (∆= 0):858

N↑ =

∫

〈c†
p↑cp↑〉 dp= 2πN

∫ ∞

0

v2
p p dp . (F.6)
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