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Abstract

Nonlinear topology has been much less inquired compared to its linear counterpart. Ex-
isting advances have focused on nonlinearities of limited magnitudes and fairly homoge-
neous types. As such, the realizations have rarely been concerned with the requirements
for nonlinearity. Here we explore nonlinear topological protection by determining non-
linear rules and demonstrate their relevance in real-world experiments. We take advan-
tage of chiral symmetry and identify the condition for its continuation in general non-
linear environments. Applying it to one-dimensional topological lattices, we can obtain
definite evolution paths of zero-energy edge states that preserve topologically nontrivial
phases regardless of the specifics of the chiral nonlinearities. Based on an acoustic pro-
totype design, we theoretically, numerically, and experimentally showcase the nonlinear
topological edge states that persist in all nonlinear degrees and directions without any
frequency shift. Our findings unveil a broad family of nonlinearities compatible with
topological non-triviality, establishing a solid ground for future drilling in the emergent
field of nonlinear topology.
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1 Introduction23

Topological protection has received a surge of interest owing to its strong immunity to para-24

metric perturbations and geometrical defects. It has been investigated on versatile platforms,25

from quantum mechanics [1] to multifarious classical realms such as electronics [2–5], pho-26

tonics [6–10] and phononics [11–20]. In contrast to the tremendous attention paid to linear27

physics and band theory, topological research has less accented on the intersections with non-28

linear dynamics [10, 21, 22], despite the ubiquity of nonlinearity in nature. The nonlinear29

sources exploited for topological purposes include varactor diodes inserted in electrical cir-30

cuits [4, 5, 23–25], optical materials with intensity-dependent refractive index [10, 26–28],31

geometry [29, 30] or nonlinear stiffness [31–33] of mechanical structures, and active means32

that create nonlinearity together with non-Hermiticity [34]. However, the types of nonlinear-33

ities are rather homogeneous in previous surveys, with a strong dominance of Kerr-like onsite34

nonlinearities [5,6,10,23,26,27,31,33,35–42], due to their ease in passive realizations and35

the link to bosonic quantum systems through the well-known Gross-Pitaevskii equation [43].36

Exceptions arise mainly from the use of specific lasers [28, 34] or electrical elements [4, 25],37

whose self-focusing or defocusing behaviors are described by saturable nonlinear gains.38

The nonlinear effects, once triggered, have resulted in topologically nontrivial phases that39

were mostly trivial in the linear regime [10, 22], allowing for many fascinating phenom-40

ena such as first- or second-order topological insulators [5, 26, 32, 39], soliton propagation41

[27–29, 31, 37, 44, 45], and higher harmonic generations [24, 46–48]. Nevertheless, studies42

reported to date possess their own specific effective range of nonlinearities. Some of them have43

been restricted to weak nonlinear magnitudes to approach theoretical models and/or to en-44

able theoretical analyses (viable linearization and perturbation methods) [4,5,31,35,40,46].45

Others, on the other hand, have required nonlinearity strong enough to activate nonlinear46

states (e.g., solitons) or to localize them clearly (e.g. corner topological states). A few have47

explored large intervals of nonlinear levels from low to high (before chaos), but with the48

edge modes/states shifted in frequency [23, 33, 36, 38, 49], ultimately destroying topological49

phases due to nonlinearity-induced symmetry breaking. Nonlinear topology, discovered within50

limited contents and extents of nonlinearity, has hardly been discussed from a fundamental51

nonlinear perspective thus far. That is, taking the stand on topological demands, what non-52

linearities are actually needed? Is it feasible in practice to keep topological attributes intact53
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across all nonlinear magnitudes?54

To tackle the question, here we unlock limitations to the manipulation of nonlinear topo-55

logical systems in theory and practice, by satisfying a symmetry that maintains topological56

non-triviality permanently. Different types of symmetries can enable topological phases of57

matter [6, 12, 50], including time-reversal symmetry [50], reflection symmetry [51], Parity-58

Time symmetry [34], chiral symmetry [52, 53] or derived sub-symmetries [54]. Our study59

utilizes chiral symmetry that is closely related to the emergence of zero-energy topological60

edge states [55]. We first identify the nonlinear condition for symmetry preservation in gen-61

eral periodic systems. We then introduce eligible nonlinearities in one-dimensional (1D) lat-62

tices to alter the linearly produced stationary topological edge states. Their variations are63

qualitatively predictable assuming chiral nonlinearities with general monotonic dependence64

on amplitudes. A concrete nonlinear case is finally examined in a theoretical lumped element65

circuit and in the equivalent real active nonlinear acoustic system. We confirm theoretically,66

numerically, and experimentally that under chiral symmetry, nonlinear edge states can sustain67

their topologically nontrivial phases while never shifting in frequency.68

2 Chiral symmetry for general nonlinear periodic systems69

In terms of the Hamiltonian H of the system, and in the presence of arbitrary nonlinearities and70

non-localities depending on the different degrees of freedom (ai , b j , ck, · · · ) contained in the71

system, chiral symmetry implies that ΓH(ai , b j , ck, · · · )Γ † = −H(ai , b j , ck, · · · ), with Γ the chiral72

operator and † the conjugate transpose [53]. In the chiral base of the degrees of freedom,73

where Γ =
�

1a 0
0 −1b

�

with 1a and 1b the identity matrices of random sizes, this definition is74

equivalent to say that H(ai , b j , ck, · · · ) is block off-diagonal, namely75

H(ai , b j , ck, · · · ) =
�

0 h(ai , b j , ck, · · · )
h†(ai , b j , ck, · · · ) 0

�

. (1)

Notably, there are no specific restrictions on the nonlinearities in h(ai , b j , ck, · · · ) in Eq. (1).76

They can, in principle, take any form, and rely randomly on the system elements, even in a77

non-local way. The only requirement is that the sites of the same chirality must be uncoupled78

from each other. Conversely, any nonlinearity that creates couplings among them will in-79

evitably cause symmetry breaking, as is the case with the extensively inquired Kerr-like onsite80

nonlinearity [5,6,10,23,26,27,33,35–42].81

3 Generalized nonlinear topological protection with chiral sym-82

metry83

The satisfaction of Eq. (1) allows for chiral symmetry in Hamiltonians of any dimension. For84

a direct application, we focus on the zero-energy edge states in 1D dimerized lattices, where85

Eq. (1) is already met by the 2x2 Hamiltonian in the natural base. We start with the linear86

chiral case, for which, the recurrent relations read: ηLan + an+1 = 0 and ηLbn + bn−1 = 0,87

where an and bn are the amplitudes of the two sites of the n-th unit cell, and the N sites an88

(bn) constitute the entire sublattice A (B) of the system. A topologically nontrivial phase is89

obtained if the hopping ratio ηL (ratio between the hopping terms) is smaller than one. The90

resulting linear topological edge state is displayed in Fig. 1, where the sites an carry a decrease91

in amplitudes along A, with the descent rate fixed by ηL. The presence of chiral symmetry92

makes the sites bn stay stationary, independent of an.93
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When nonlinearities get involved in a way that respects Eq. (1), the system energy relations94

read:95

0= an+1 +
�

ηL +ηNLa(an+i , bn+ j)
�

an, 0= bn−1 + [ηL +ηNLb(an+k, bn+l)]bn, (2)

This suggests that, under chiral symmetry, the participation of nonlinearity results only in96

modifications in the hopping ratios. They are transformed from the linear invariant ηL to the97

amplitude-dependent nonlinear variablesηL+ηNLa(an+i , bn+ j) applied to an andηL+ηNLb(an+k, bn+l)98

applied to bn. an+i and bn+ j (an+k and bn+l) refer to each site that the nonlinearity in ηNLa99

(ηNLb) depends on. They can be arbitrary in the system, i.e., the integer i or j or k or l can be100

zero if the dependency occurs within the n-th unit cell, or nonzero if the dependency is on the101

other interacting unit cells.102

Nonlinearity preserves chiral symmetry

A
bs

.

sites
0

1

Hopping ratios increase with nonlinearity

Linear case:

sites an
sites bn

Nonlinear cases:

sites an
sites bn

Hopping ratios decrease with nonlinearity

Figure 1: Qualitative estimations of the evolution laws for zero-energy edge
states in 1D dimerized systems with symmetry-preserving nonlinearities. Pro-
files of the zero-energy edge state that is initially (linearly) topological and then
varied as chiral nonlinearities increase and decrease the hopping ratios on sublattice
A, respectively. In each profile, the amplitude of the first site a1 is fixed at 1. The
requirement on the Hamiltonian H is explained in Eq. (1). The variation trends apply
to the entire class of nonlinearities that lead to monotonic changes in the hopping
ratios as the site amplitudes increase.

4



SciPost Physics Submission

Unlike a previous theoretical study discussing one particular form of nonlinearity [53],103

here we predict edge state variations under generalized chiral nonlinearities and validate them104

experimentally. We consider the most common relationship between site amplitude and non-105

linear effects, namely nonlinearities cause monotonic changes in the hopping ratios with in-106

creasing site amplitudes. A broad range of classical nonlinearities satisfy this condition, from107

polynomial laws (quadratic or cubic, etc.) to saturable effects. In addition, non-linear laws108

are not restricted to local effects. We first deal with nonlinearities that are positively cor-109

related with amplitudes. Based on an > an+1 of the linear state, these nonlinearities lead110

to | ηNLa(an+i , bn+ j) |>| ηNLa(an+1+i , bn+1+ j) | in the early nonlinear stage (negligible effects111

of sites in B, since they carry zero amplitude initially), where the sign of ηNLa determines112

whether nonlinearity increases or decreases the hopping ratios on A. If ηNLa < 0, we have113

ηL + ηNLa(an+i , bn+ j) < ηL + ηNLa(an+1+i , bn+1+ j) < ηL < 1, i.e., the hopping ratios are di-114

minished by nonlinearity, with the decrement less and less along A. As nonlinearity is further115

strengthened, its positive dependence on amplitudes perpetuates the above law. The first hop-116

ping ratio remains thus the smallest, always yielding the largest reduction of amplitude from117

a1 to a2. Following this trend, we reach a limit situation where solely the first site a1 has a118

nonzero amplitude. The sites bn in B remain at zero amplitude, owing to chiral symmetry119

and the fast decay of the nonlinear mode that prevents it from reaching the other end of the120

system. The total expected edge state variations for nonlinearity decreasing the hopping ratios121

on A (ηNLa < 0) are depicted graphically in the lower branch in Fig. 1.122

The reasoning applies likewise to the opposite scenario ofηNLa > 0, where | ηNLa(an+i , bn+ j) |123

>| ηNLa(an+1+i , bn+1+ j) | results in ηL + ηNLa(an+i , bn+ j) > ηL + ηNLa(an+1+i , bn+1+ j) > ηL.124

Namely the hopping ratios are increased by nonlinearity, with the increment smaller and125

smaller along A. Remarkably, the first ratio is the largest here, contrary to the previous case of126

ηNLa < 0. The enhancement of nonlinearity impels it to first attain 1, at which moment the site127

a2 acquires the same amplitude as a1. After that, if nonlinearity still can increase the hopping128

ratio, a2 exceeds a1 in amplitude. The continuation along this direction makes the ascent of129

a2 incessant and towards an infinite level, inevitably ending with the system instability. For130

this reason, to allow stable states at all nonlinear magnitudes, the nonlinearity should always131

keep the first hopping ratio at 1 once a2 = a1 is reached. The other hopping ratios follow the132

same result due to the periodicity of the system. That is, for ηL + ηNLa(an+i , bn+ j) applied to133

an, we have ηL + ηNLa(an+i , bn+ j) = 1 once an+1 = an. Such a relationship easily holds if the134

nonlinear hopping terms for an and an+1 are dominated by their site amplitudes, respectively,135

as exemplified by the explicit case in Fig. 2a (see Eqs. (A.5) and (A.6)). It shows that, as the136

nonlinearity strengthens, the sites an (n ≥ 2) successively arrive at the amplitude of a1 and137

then sustain there. Ultimately, they will exhibit the same amplitude, forming a ’plateau’ in A.138

For actual systems with finite dimensions, the zero-energy mode reaches the other edge139

of the system when all sites in A are nonlinearly endowed with nonzero amplitudes. In this140

case, the excited opposite zero mode causes the amplitude of the sites in B to begin to rise,141

with a lowering from bn to bn−1, i.e., a heightening along the structure. No conclusion can be142

drawn about the direction of changes in the hopping ratios on B. Their increase or decrease143

are separate from those on A, as Eq. (1) states. Despite this, it is certain that from an initial144

value of less than 1, the nonlinearity should drive the hopping ratios up to 1 at most, as145

we discovered earlier through the sublattice A. The extreme nonlinear result can hereby be146

extrapolated: sites bn conduct an increase in amplitude along B, with merely the first b1 at147

rest. Our overall estimates for the case of nonlinearity increasing the hopping ratios on A148

(ηNLa > 0) are delineated schematically in the upper branch in Fig. 1, where the pattern in B149

results from the explicit nonlinearity considered later in Fig. 2a.150

Performing the same analysis as above for nonlinearities that are negatively correlated151

with site amplitudes, one will obtain the same evolution limits as in Fig. 1. Collectively, ac-152
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counting for a monotonic amplitude dependence of the chiral nonlinearity, the hopping ratios153

can always stay smaller than or at most equal to 1 for both sublattices A and B. Therefore,154

the derived variation tendencies lead to the nonlinear edge states that remain topologically155

nontrivial, whatever the nonlinear contents. A result similar to part of Fig. 1 was previously ob-156

served in a numerical attempt [31], but with a particular nonlinear management and without157

discussing the underlying symmetry cause. Distinctively, here our starting point is to interro-158

gate chiral symmetry, thus unveiling the entire class of nonlinearities that ensures topological159

non-triviality.160

4 Example of nonlinear topological protection with chiral symme-161

try162

To confirm our anticipations in Fig. 1, we take the example of a concrete finite system repre-163

sented by the lumped element circuit in Fig. 2a. It consists of 8 unit cells, each with linear164

and nonlinear resonators. The linear resonators LF2k−1 and LF2k are identical and exhibit a165

resonance at a lower frequency fLF. The nonlinear resonators HF2k−1 and HF2k resonate at the166

same frequency fHF, higher than fLF, while a larger (linear) resonance bandwidth is assigned167

to HF2k−1 compared to HF2k. The generators V(NL)
2k−1 (V(NL)

2k ) introduce nonlinearity into HF2k−1168

(HF2k), with the explicit nonlinear laws given also in Fig. 2a. The overall system allows sta-169

tionary topological edge states at two different frequencies (Appendix A.1, Fig. 4), dominated170

by the resonance of LFn and HFn (n = 2k − 1 and 2k), respectively. The voltages carried by171

LF2k−1 (LF2k) correspond to the amplitudes of sites an (bn). In the linear regime, the hopping172

terms for an (bn) and an+1 (bn−1) are directly mapped to the capacitances C(HF)
2k−1 in HF2k−1 and173

C(HF)
2k in HF2k. In the nonlinear regime, instead, they are dictated by the nonlinearity engaged.174

Their amplitude dependence is complex: it is not only on the sites an and bn inside the asso-175

ciated n-th unit cell, but also on the sites bn−1 and an+1 in the adjacent ones (Eqs. (A.5) and176

(A.6)). Despite this complexity, the chosen nonlinearities are rigorously chiral.177

Our attention is devoted to the topological edge state where the resonance of HFn prevails.178

Its nonlinear evolution is revealed in Fig. 2b. In the initial linear scenario, the hopping ratio179

is defined at around 0.41 (equal to C(HF)
2k /C

(HF)
2k−1). The edge state frequency fH is recognized180

from the site spectra in Fig. 2b, at the zero amplitudes of all sites bn. Nonlinearity is then181

triggered and prescribed using the constant parameter GNL in the nonlinear law. When GNL182

is decreased along negative values, the hopping ratios on sublattice A are gradually enlarged.183

The first ratio keeps receiving the greatest increment. It takes the lead to reach 1, followed by184

the others in succession. At the very end, the plateau on A is infinitely approached, with solely185

the last hopping ratio still small. Conversely, in the direction GNL > 0, nonlinearity incessantly186

reduces the hopping ratios on A. The relative descent (with respect to the former site) of a2187

remains the largest compared to the other sites. The extreme case of only a1 surviving is also188

attained. As for the sites bn in B, their amplitudes rise exclusively after the activation of the189

opposite zero mode (along GNL < 0), presenting the expected increasing order from b1 to b8.190
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Figure 2: Evolution of the chiral symmetry protected nonlinear topological edge
states: theoretical demonstration in a lumped element circuit with coupled res-
onators. (a) The considered 1D nonlinear system. It is made of 8 unit cells, each
composed of 2 linear resonators LFn and 2 nonlinear resonators HFn (n = 2k − 1
and 2k) where nonlinearity is added through the generators V(NL)

n . (b) Nonlinear
variations of the linearly generated stationary topological edge state, under the in-
tervention of the nonlinearity given in (a). The nonlinear levels and directions are
tuned by the constant parameter GNL in the nonlinear law. It increases (decreases)
the hopping ratios on sublattice A with GNL < 0 (GNL > 0). The edge state fre-
quency fH is identified from the spectra of an and bn (n= 1,2, 3,4) in the frequency
range of [fi,fe]. All the edge state amplitudes in (b) are normalized to the same
value. They are obtained with the Harmonic Balance Method (Appendix A.3), and
the results for more cases are summarized in Fig. 6. A time domain analysis with
the time-integration method is outlined in Appendix B.1 (Fig. 7). In addition to the
edge states, the local topological marker [53] In (of the n-th unit cell, drawn at the
location of each bn) is equally displayed for each case (gray lines), which takes values
between 0 (not topological) and 1 (topological, indicated by dashed lines).
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To reveal the topological aspect of the system, we plot for each unit cell n, the local topo-191

logical marker In (Fig. 2b) that generalises in real space and for finite size systems, the bulk192

winding number of 1D chiral symmetric insulators [53]. This marker applies to the linearisa-193

tion of Eq. (2) around a given nonlinear mode and captures the topology of small perturba-194

tions around it. It is particularly suitable for systems with inhomogeneous hopping amplitudes,195

such as ours, where the lattice translation invariance breaks down and the usual bulk wind-196

ing number, defined in the Brillouin zone, becomes inappropriate. At an interface between a197

topological region where In = 1 and a topologically trivial region where In = 0, the linearised198

system also develops a zero-energy mode. Due to chiral symmetry, smoothly increasing the199

amplitude of the nonlinear edge state amounts to adding this linearized zero-mode to the non-200

linear background zero-mode without changing its frequency [53]. Therefore, high-amplitude201

nonlinear modes can be obtained by summing up linearized chiral-symmetry-protected topo-202

logical zero modes captured by In. When nonlinear magnitude is increased along GNL > 0,203

the interface between the topological phase where In = 1 and the edge where In vanishes204

becomes sharper. The nonlinear edge mode is thus localized more and more on a single site at205

the edge. In contrast, when GNL < 0, the high amplitude region is associated with a vanishing206

topological marker, indicating a trivial phase, while low amplitude regions are still topologi-207

cal. The interface zero mode is displaced toward the bulk with increasing nonlinear magnitude208

along GNL < 0. Accordingly, the amplitude rise of the nonlinear mode also shifts toward the209

bulk, which further displaces the topological transition between In = 1 and In = 0 in a self-210

sustaining loop, leading to a plateau shape of the nonlinear edge state in the end.211

We confirm with Fig. 2b that in our system, the chiral nonlinearities maintain the topo-212

logical edge state at its linearly produced frequency fH. Contrarily, if nonlinearity breaks the213

symmetry, the edge state loses its topological features: its amplitude rises on both sublattices214

A and B, and its frequency shifts away from fH (see Figs. 8, 10 and 14 in Appendix B). The site215

spectra in Fig. 2b evidence in addition that the amplitude relation of an+1 < an is linearly valid216

over the entire frequency range of [fi, fe] displayed therein. It can be nonlinearly transformed217

up to an+1 = an only, as the state at fH shows. Not surprisingly, if nonlinearity is further en-218

hanced from an already reached an+1 = an, instability would occur at the related frequency.219

The leftmost spectra in Fig. 2b corresponds to the stability limit of this situation, where the site220

a1 is caught up by a2 at a frequency different from fH. However, the nonlinear edge state at fH221

is perpetually stable, since its variations always satisfy an+1 ≤ an. Collectively, the nonlinear222

results in Fig. 2b fully demonstrate our inferences for the general context of nonlinearity.223

5 Experimental validations224

After exploration of the theoretical lattice (Fig. 2), an equivalent active nonlinear acoustic225

system is adopted for experimental validation (Fig. 3a). A waveguide is used for connecting all226

the elements. Passive Helmholtz resonators are mounted on its (top) side to play the role of the227

linear LFn, while electrodynamic loudspeakers are inserted inside and are actively controlled228

to act as the nonlinear HFn. The control for each loudspeaker involves a feedback loop, where229

a nonlinear control law is appropriately defined based on the acoustic pressures measured on230

both faces of the loudspeaker membrane (Appendix A.6 and Fig. 11). The control output is231

returned to the loudspeaker terminals in real-time in the form of a drive current, achieving232

active resonators HFn with fully adjustable and reconfigurable characteristics. A total of 8233

unit cells are constructed in experiments, each composed of two equally spaced Helmholtz234

resonators and two equally spaced active loudspeakers. The sub-wavelength portions of tube235

Va, enclosed by adjacent speakers, behave similarly to capacitors. Accordingly, the system in236

Fig. 3a realizes the theoretical lattice in Fig. 2a.237
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Figure 3: Evolution of the chiral symmetry protected nonlinear topological edge
state: experimental validation in an active nonlinear acoustic system. (a) The
actual system that realizes the theoretical lattice in Fig. 2a. The unit cell consists
of two passive linear Helmholtz resonators (acting as LFn) and two active nonlin-
ear loudspeakers (acting as HFn). The whole system starts and ends both with the
controlled loudspeakers. The an and bn correspond to the acoustic pressures applied
to the Helmholtz resonators LF2k−1 and LF2k, respectively. (b) Nonlinear topologi-
cal edge states, measured as nonlinearity is progressively altered using the constant
control parameter GNL. The hopping ratios on sublattice A are increased (decreased)
along GNL < 0 (GNL > 0). The edge state frequency fH is identified from the spectra
of ai and bi (i= 1, 2,3, 4). Experimental results of more nonlinear cases are given in
Fig. 13 in Appendix B.3.
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The same investigations as in the theoretical studies are performed experimentally. First,238

the topological edge state is successfully implemented in the linear case, as illustrated in Fig. 3b239

(detailed linear results in Fig. 12 in Appendix B.3). A hopping ratio of around 0.54 is obtained,240

not very far from the theoretical one of 0.41 (Fig. 2b). The discrepancy stems from the ap-241

proximation of each space Va as a lumped element (Appendix A.6). Based on the linear results,242

nonlinearity is added to the system and tailored by the constant parameter GNL, as theoreti-243

cally set in Fig. 2b. When nonlinear magnitude is reinforced along GNL < 0, the hopping ratios244

on A increase. The sites an sequentially attain the same level, enabling the theoretical plateau245

limit at the greatest extent of nonlinearity. In the meantime of the ascent on sublattice A, the246

sites in B first remain at rest and then rise in amplitude from the last one b8, which comply247

also with the theoretical projections.248

For nonlinearity decreasing the hopping ratios with GNL > 0, the shape of the edge state249

is centralized more and more on the structure (left) end, with all sites in B staying stationary.250

The nonlinear variation along this direction proceeds until the first hopping ratio (the smallest251

one) on A falls to about 0.2, with respect to the linear one of 0.54. The limit of only a1 being252

dynamic cannot be observed, as instability arises first, which is in accordance with time-domain253

analysis (Appendix B.2, Fig. 9). Nevertheless, all expected laws of variations are exhaustively254

justified by experiments. The realized nonlinear topological edge states are negligibly affected255

by losses in the system. They preserve topologically nontrivial phases and with unchanged256

frequency at fH, since chiral symmetry is here rigorously obeyed by nonlinearity.257

6 Conclusion258

In this study, we explored the nonlinear possibilities for the persistence of topological non-259

triviality. We targeted the symmetry-protected topological class and put the emphasis on chiral260

symmetry. The condition to secure symmetry was first formulated for general nonlinear peri-261

odic systems. It was then applied to one-dimensional lattices in which zero-energy topological262

edge states were modified by arbitrary nonlinearities with chiral symmetry. The trajectories263

of their nonlinear evolution were predicted based on a monotonic amplitude dependence of264

the nonlinearities. The results show that chiral nonlinearities can consistently maintain the265

edge states in a topologically nontrivial phase, regardless of the explicit nonlinear form and266

magnitude. The derived nonlinear topological edge states were put into practice through the267

consideration of a concrete finite system, with theoretical representation in a lumped element268

circuit, and with numerical (Supplementary Materials, Section S2) and experimental imple-269

mentations in an equivalent active nonlinear acoustic system. By virtue of chiral symmetry,270

our investigations reveal a broad class of nonlinearities that keep the topological attributes in-271

tact and the edge state frequency unshifted across all nonlinear magnitudes, opening up new272

avenues of thought for the continued study of nonlinear topology.273
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A Methods284

A.1 Achievement of a topological system with chiral symmetry285

The dynamics of the lumped-element circuit in Fig. 2a is described by286



















∆
(HF)
t q2k−1 = C(HF)

2k−1 (bn−1 − an) +GNLC(HF) (bn−1 + an)
2 (bn−1 − an) ,

∆
(HF)
t q2k = C(HF)

2k (an − bn)−GNLC(HF) (an + bn)
2 (an − bn) ,

∆
(LF)
t

�

q2k−1 − q2k − q(a)2k−1

�

= C(LF)
2k−1an,

∆
(LF)
t

�

q2k − q2k+1 − q(a)2k

�

= C(LF)
2k bn,

(A.1)

where C(HF) is the average of the capacitors C(HF)
2k−1 and C(HF)

2k .287

The time-domain variables in Eq. A.1 are:288

(I) The q2k−1, q2k and q(a)n (n= 2k−1 and n= 2k), which denote the charges of the resonators289

HF2k−1, HF2k and the capacitor Ca in parallel with LFn, respectively.290

(II) The voltages applied to LF2k−1 and LF2k, which correspond to the time responses of an and291

bn in the topological dimerized lattice. The site amplitudes of the edge states in Fig. 2b are292

extracted at the frequency of the fundamental component, while higher harmonic generations293

are negligible in our system (less than 1% in all cases).294

(III) The generators V(NL)
2k−1 and V(NL)

2k , which deliver voltages that comply with the desired non-295

linearity given in Fig. 2a.296

(IV), The time-domain differential operators ∆(HF)
t and ∆(LF)

t , which read297















∆
(HF)
t =

�

M(HF)
2k−1C(HF)

2k−1
d2

dt2
+ 1

�

=

�

M(HF)
2k C(HF)

2k
d2

dt2
+ 1

�

,

∆
(LF)
t =

�

M(LF)C(LF) d2

dt2
+ 1

�

.

(A.2)

Substituting Eq. (A.2) into Eq. (A.1) and eliminating all terms containing charges, the298

equations on voltages can be obtained as follows:299







∆tan =∆
(LF)
t

�

C(HF)
1 bn−1 +C(HF)

2 bn −C(HF)
1 V(NL)

2k−1 +C(HF)
2 V(NL)

2k

�

,

∆tbn =∆
(LF)
t

�

C(HF)
1 an+1 +C(HF)

2 an +C(HF)
1 V(NL)

2k+1 −C(HF)
2 V(NL)

2k

�

,
(A.3)

with ∆t = ∆
(HF)
t ∆

(LF)
t Ca +∆

(HF)
t C(LF) + 2C(HF)∆

(LF)
t , and with C(HF)

1 = C(HF)
2k−1, C(HF)

2 = C(HF)
2k ,300

C(HF) = (C(HF)
1 +C(HF)

2 )/2.301

If ∆t = 0 is possible, then Eq. (A.3) leads to302

¨

0= t1b(bn−1, an)bn−1 + t0b(bn, an)bn,

0= t1a(an+1, bn)an+1 + t0a(an, bn)an,
(A.4)

The Eq. A.4 satisfies the general description of 1D chiral topological systems in Eq. 2, where303
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the hopping terms t1b, t1b, t1b and t1b are expressed explicitly as follows,304



















t1a(an+1, bn) = C1
(HF) +GNLC(HF)

�

a2
n+1 + bnan+1 − b2

n

�

,

t0a(an, bn) = C2
(HF) −GNLC(HF)

�

a2
n + bnan − b2

n

�

,

t1b(bn−1, an) = C1
(HF) +GNLC(HF)

�

b2
n−1 + anbn−1 − a2

n

�

,

t0b(bn, an) = C2
(HF) −GNLC(HF)

�

b2
n + anbn − a2

n

�

,

(A.5)

with C1
(HF) = C(HF)

2k−1 and C2
(HF) = C(HF)

2k . Accordingly, the hopping ratios ηL+ηNLa and ηL+ηNLb305

can be obtained from306

ηL +ηNLa =
t0a(an, bn)

t1a(an+1, bn)
, ηL +ηNLb =

t0b(bn, an)
t1b(bn−1, an)

. (A.6)

The derivation from Eq. (A.3) to (A.4) implies that, if the higher harmonic generations are307

negligible in the system, topological edge states can be achieved at the fundamental frequen-308

cies in the presence of a solution for ∆t = 0. This is exactly the case in our system, where309

the higher harmonic generations are consistently lower than 1%. All the edge state profiles310

shown in this study refer to the absolute amplitudes of the fundamental components of an and311

bn. Interestingly, two frequencies allow∆t = 0, i.e., the topological edge states are attained at312

two different frequencies in our system, see Fig. 4 in Appendix B.1 for physical explanations.313

A.2 Boundary conditions314

Theoretically, for the edge state generations, we require that the boundaries b0 and ae of the315

lumped element circuit in Fig. 2a satisfy b0 = ae = 0. However, this is not directly achievable316

in practice, especially for the acoustic system we chose for the experiments. In our search for317

applicable boundary conditions, we eventually found that the typical Non-Reflecting Bound-318

ary Conditions (NRBCs) in planar acoustic wave propagation can replace the ideal ones, as319

proved in Fig. 5 in Appendix B.1. They are thus undertaken for all the studies of the concrete320

theoretical model and the equivalent experimental system.321

A.3 Methods for theoretical solvings322

To solve the problem associated with the circuit in Fig. 2a, we consider the original dynamic323

equations in Eq. A.1 where all the variables are time-dependent. Two standard methods are324

exploited for solving these nonlinear differential equations, namely the harmonic balance325

method [56–58] and the time-integration method [59]. They are capable of handling strong326

levels of nonlinearities, in contrast to the perturbation method and the method of multiple327

scales that are valid only at weak nonlinearities.328

The Harmonic Balance Method (HBM) refers to a semi-analytical method [56–58] which329

determines the steady-state solutions of the nonlinear problem. The first 27 harmonics of each330

variable are taken into account when solving Eq. A.1. The outcomes show that the higher har-331

monic generations are lower than 1% in our system. The an and bn in Fig. 2b correspond to the332

absolute amplitudes of their fundamental harmonic components (at the edge state frequency333

fH). The detailed results (more nonlinear cases than in Fig. 2b) are summarised in Fig. 6 in334

Appendix B.1.335

The time integration method, with the fourth-order Runge-Kutta (RK4), is utilized to solve336

the problem directly in the time domain, which accounts for the transient responses. The337

relevant results are given in Fig. 7 in Appendix B.1.338
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A.4 Time-domain simulation of the experiments.339

To better guide and analyze the experiments, we performed time-domain simulations for the340

active nonlinear acoustic system built in practice (Fig. 3a). The approach involves a Finite Dif-341

ference Time Domain (FDTD) method by discretization of the 1D wave equations. Practical342

details are accounted for in the simulations, that is (i) we consider the wave propagation inside343

each space between two nearby loudspeakers (with FDTD), (ii) we add the losses in all reso-344

nant elements and transmission lines according to the experimentally estimated values, (iii)345

the actual active control on each loudspeaker, with the control principle and laws explained346

in the following section for experiments (Eqs. (A.7) and (A.8) with i(t) changing to i(t−τ),347

and with τ = 100µs). Regarding the numerical settings, we randomly take the experimental348

values of one loudspeaker to define all the others. The simulation outcomes are summed up349

in Fig. 9 in Appendix B.2. They are essentially identical to the experimental ones.350

A.5 Characterisations of the experimental setup351

In the experimental setup (Fig. 3a), the non-reflecting boundary conditions are achieved with352

anechoic terminations at both ends of the system, which are qualified by absorption coeffi-353

cients higher than 0.998 from 140 Hz (less than 5% of reflection). The waveguide refers to354

a PVC duct with a cross-sectional area of 6 cm × 6 cm, which ensures planar wave propaga-355

tion until 2.86kHz. The manufactured Helmholtz resonators (labeled with HRn in Fig. 3a)356

reach a transmission coefficient of around 0.008 at their resonance frequencies in the range of357

[110.5Hz, 111.5Hz], corresponding to an acoustic resistance of 0.005Zc with Zc the specific358

acoustic impedance of the air. The electrodynamic loudspeakers are all the same commer-359

cially available Visaton FRWS 5 SC model, while they possess different resonance frequencies360

(within [345 Hz,375 Hz]) and bandwidths, which we calibrated beforehand.361

A.6 Active control on the electrodynamic loudspeakers.362

The loudspeaker membrane behaves as a mass-spring-damper system in the linear regime363

(weak input levels). The motion equation for its displacement ξ read364

Mms
∂ 2

∂ t2
ξ(t) +Rms

∂

∂ t
ξ(t) +

1
Cms
ξ(t) = ptot(t)Sd − Bli(t), (A.7)

In the passive open-circuit case, the membrane is subject to the total acoustic pressure ptot365

over its effective surface area Sd, and the mechanical forces which rely on the mechanical366

mass Mms, resistance Rms, and compliance Cms. Its dynamics are characterized by a specific367

acoustic impedance Zs (ratio between acoustic pressure and velocity) in the frequency domain,368

Zs(jω) =
1
Sd

�

jωMms +Rms +
1

jωCms

�

.369

The active control on each loudspeaker is implemented by specifying the current i(t), which370

creates an electromagnetic force through the moving coil with a force factor of Bl. The control371

approach is depicted in detail in Fig. 11, where the control law is digitally defined with a372

Speedgoat real-time target machine manipulated in the Simulink environment of MATLAB. It373

produces the current i(t) in the form of,374

i(t) = F−1 (Φ(jω) · Ptot(jω)) +F−1
�

Sd

Bl
−Φ(jω)
�

∗

�

(−1)n
C(exp)

C(exp)
n

GNLptot(t) (pf(t) + pb(t))
2

�

,

(A.8)
where pf and pb are the acoustic pressures measured at the front and rear faces of the loud-375

speaker membrane, which are the two inputs for the control. F−1 and the symbol ∗ designate376

the inverse of the Fourier Transform and the time convolution, respectively. The total acoustic377
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pressure ptot reads ptot = pf(t)− pb(t), with Ptot = F(ptot) its Fourier transform. C(exp)
n refers to378

the acoustic compliance achieved for the n-th loudspeaker which differs between n = 2k − 1379

and n = 2k, and C(exp) is the average of two successive ones, they are equivalent to the elec-380

trical capacitors C(HF)
1 for n= 2k− 1, C(HF)

2 n= 2k, and C(HF) in Eq. (A.1).381

In Eq. (A.8), the linear part of control is represented by a linear transfer function Φ(jω),382

whereas the nonlinear part is determined by the parameter GNL. For the linear part, Φ(jω) is383

used to tailor the impedance properties of the loudspeaker,384

Φ=
Sd

Bl
· β

Zst(jω)− Zs(jω)
Zst(jω)

. (A.9)

It targets a specific acoustic impedance Z(F)st with two degrees of freedom,385

Z(F)st =
Zst Zs

(1− β)Zst + β Zs
=
�

1− β
Zst

+
β

Zs

�−1

, (A.10)

in which the control-designed impedance Zst corresponds to a one-degree-of-freedom res-386

onator. It is made in parallel with the passive one Zs, while their weights are adjusted by387

the constant parameter β .388

For the control execution, there exists a time delay τ from control inputs to outputs, which389

is unavoidable in reality. It is taken into account in simulating the practical case by trans-390

forming i(t) into i(t−τ) for Eq. (A.7), and is experimentally determined at 100µs. Since the391

loudspeakers are naturally different, the control time delay affects them differently, yielding392

discrepancies in control results. Nevertheless, the addition of the parameter β in the linear393

control law allows such an issue to be compensated for in experiments, by balancing between394

Zst and Zs. Fig. 12 in Appendix B.1 shows the results for linearly generated topological edge395

state.396

As for the nonlinear part of the control law in Eq. (A.8), when the sub-wavelength cavity Va397

between adjacent loudspeakers exhibits predominantly capacitor characteristics (the assump-398

tion under consideration, see Fig. 3a), we have pf = bn−1 and pb = an for loudspeakers with399

even indexes, and pf = an and pb = bn for those with odd indexes. In this case, the nonlin-400

ear laws perfectly achieve the generators VNL
2k−1 and VNL

2k required in the theoretical lattice in401

Fig. 2a.402

Performing the above hybrid (linear and nonlinear) control on each loudspeaker, they all be-403

come Active Electroacoustic Resonators [60–63] (labeled with AERn in Fig. 3a), presenting404

the desired properties for realizing HFn. A low level of less than 1 Pa is maintained for sys-405

tem excitation. It ensures the linear behaviors of the loudspeakers in the passive (control off)406

regime. Thus, nonlinearity is generated and tuned in an exact way, i.e., through the active407

control only (using the constant parameter GNL in the control law). The time responses of an408

and bn are measured by the microphones below Helmholtz resonators, as indicated in Fig. 3a.409

The edge states shown in Fig. 3b refer to their components at the fundamental frequency (edge410

state frequency fH). We confirm with measurements that the higher harmonic generations are411

consistently less than 1% in our acoustic system, which is in line with the theoretical model.412

The detailed experimental results of nonlinear topological edge states are provided in Fig. 13413

in Appendix B.3. The cases where nonlinearities break chiral symmetry are investigated in Ap-414

pendix B. Figs. 8, 10 and 14 show the corresponding theoretical, numerical, and experimental415

results, respectively.416
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B Supplementary results417

Here in the Appendix B.1, B.2 and B.3, we show supplementary results for the theoretical study418

of the lumped-element model in section 4, the time-domain simulation of the actual acoustic419

system, and the experimental realization in section 5, respectively.420

B.1 Theoretical results421

This section includes:422

Fig. 4: Principle and physical explanations for the generation of dual-band topological edge423

states in our lumped-element system.424

Fig. 5: Proof of the equivalence between the theoretically ideal boundary conditions (Fig. 5b)425

and the non-reflecting ones (Fig. 5c) that are more realizable for our acoustic experiments.426

Fig. 6: Detailed theoretical results obtained by solving Eq. (A.1) with the Harmonic Balance427

Method (HBM). More cases are shown compared to Fig. 2 in the main text.428

Fig. 7: Theoretical results obtained by solving solving Eq. (A.1) with the time integration429

method (fourth-order Runge-Kutta).430

Figs. 8: Theoretical results for two cases where nonlinearities break chiral symmetry. They are431

in comparison with the simulation outcomes in Fig. 10 and the experimental ones in Fig. 14,432

where the same forms of nonlinearities are considered.433

B.2 Simulation results434

This section includes435

Fig. 9: Detailed time-domain simulation results of the realized nonlinear topological edge436

states. Notably, practical situations are accounted for in the simulation (Appendix A.4), where437

the pressure is not precisely homogeneous in the cavity, and the control uses the pressures close438

to each loudspeaker as inputs (Appendix A.6). By contrast, the theoretical study assumes that439

the cavity between successive HFn behaves as a capacitor, thus presenting the same pressure440

over it. This eventually causes a difference in hopping ratios in the two studies. In theoretical441

results, the hopping ratio of the linear edge state is around 0.41, corresponding to the compli-442

ance ratio between C(HF)
2 and C(HF)

1 . Whereas the linear hopping ratio obtained in simulations443

is equal to 0.52 (0.54 in experiments), larger than the theoretical value.444

Fig. 10: Simulation results for two cases where nonlinearities break chiral symmetry. They are445

in comparison with the theoretical ones in Fig. 8 and the experimental ones in Fig. 14, where446

the same forms of nonlinearities are considered.447

B.3 Experimental results448

This section includes449

Fig. 11: Principle of the real-time feedback control applied to electrodynamic loudspeakers.450

Fig. 12: Experimental results of the topological edge state at fH in the linear regime.451

Fig. 13: Detailed experimental results of the realized nonlinear topological edge states. More452

nonlinear cases are shown compared to Fig. 3.453

Fig. 14: Experimental results for cases where nonlinearities break chiral symmetry. They are454

in comparison with the theoretical ones in Fig. 8 and the simulation ones in Fig. 10, where the455

same forms of nonlinearities are considered.456
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Figure 4: Dual-band topological edge states in a single finite system. Each unit
cell (with index n) of the system includes 2 types of resonators, (i) identical res-
onators LFn (n= 2k−1 and 2k) resonating at a frequency fLF, and (ii) resonators HFn
resonating at fHF higher than fLF, but with different resonance bandwidths between
odd (HF2k−1) and even (HF2k) ones. In the linear regime where all HFn possess no
nonlinearities, with fLF < fHF, the resonators HFn exhibit mainly capacitance charac-
teristics in the vicinity of fLF, leading to the manifestation of only the resonance of LFn
in the unit cell. Similarly, when close to the frequency fHF which is far from fLF, the
resonators LFn have barely any impact, only the resonance of HFn can act. Therefore,
our system is equivalent to a classic topological lattice made of single-resonant unit
cells at two different frequencies, denoted as fL and fH, respectively, as delineated
in this figure. Their mathematical derivations are provided in Appendix A.1. After
introducing arbitrary nonlinearities, the linearly achieved topological edge states can
persist and remain intact at these two frequencies, provided that the chiral symmetry
is consistently satisfied, as we proved in the main text.
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Figure 5: Identification of realizable boundary conditions. (a) The lumped ele-
ment circuit considered, with b0 and ae the input and output boundaries, respectively.
qn designates the charge of the resonator HFn. (b) Zero-energy topological edge
state at fH derived with the ideal closed-closed boundary conditions (b0 = ae = 0),
and with a nonzero initial conditions of q1 ̸= 0 (left inset) or q2N+1 ̸= 0 (right in-
set), respectively. (c) Zero-energy topological edge state at fH derived with the Non-
Reflecting Boundary Conditions (NRBCs) for both ends of the system, where excita-
tion is defined at each end, respectively. Based on an electro-acoustic analog where
electrical (voltage, current) is equivalent to acoustic (pressure, flow), NRBCs are
translated into ae = γai2N+1 (b0 = γai1) for the right (left) end of the system, in which
i2N+1 (i1) represents the current circulating in HF1 (HF2N+1), and γa = Zc/S with Zc
the specific acoustic impedance of the air and S the surface area of the propagation
medium. The planar wave excitation at the left (right) end of the system can be ex-
pressed by the total pressure in the form of b0 = 2pinc − γai1 (ae = 2pinc − γai2N+1),
with pinc the incoming source that comes from infinity (there is no reflection in the
direction of incidence). All results are obtained with the 4-th order Runge-Kutta.
They evidence the equivalence between the two types of boundary conditions. In
this study, we opt for the NRBCs in (c) which is more realizable in our acoustic ex-
periments.
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Figure 6: Evolution of the chiral symmetry protected nonlinear topological edge
states: detailed theoretical results. The solutions are obtained with the Harmonic
Balance Method (A.3). The level of nonlinearity is tuned using the constant param-
eter GNL, the value of which varies in the negative (a) and positive (b) directions,
respectively. All inset figures are displayed within the same amplitude range as in
Fig.2 in the main text, while results of more nonlinear cases are showcased here.
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Figure 7: Evolution of the chiral symmetry protected nonlinear topological edge
states: results obtained with the time integration method (fourth-order Runge-
Kutta). Cases of GNL < 0 and GNL > 0 are summarized in (a) and (b), respectively.
The evolutionary trends of the nonlinear edge state are consistent with those obtained
with HBM (Fig. 6), except that the limit cases cannot be reached on account of the
transition process. We demonstrate with simulations that reaching the plateau limit
is actually possible (Appendix B.2, Fig. 9), as the hopping ratios are caused larger in
the practical realizations.
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Figure 8: Evolution of nonlinear topological edge state when nonlinearities
break chiral symmetry: theoretical results. Two forms of nonlinearities are inves-
tigated in (a) and (b), respectively. Results agree well with the numerical outcomes
in Fig. 10 and the experimental ones in Fig. 14 where the same forms of nonlinear-
ities are considered. They show that breaking chiral symmetry produces couplings
between the two sublattices A and B, which causes the edge state to be shifted in
frequency and distorted in shape.
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Figure 9: Time-domain simulation results. Results derived from time-domain
simulation of the actual acoustic system. Nonlinearity adheres to chiral symmetry.
The hopping ratios are (a) increased along GNL < 0, and decreased along GNL > 0,
respectively.
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Figure 10: Evolution of nonlinear topological edge state when nonlinearities
break chiral symmetry: simulation results. The actual acoustic system is simu-
lated in the time domain. Two forms of nonlinearities are investigated in (a) and
(b), respectively. Results agree well with the theoretical outcomes in Fig. 8 and the
experimental ones in Fig. 14 where the same forms of nonlinearities are considered.
They show that breaking chiral symmetry produces couplings between the two sub-
lattices A and B, which causes the edge state to be shifted in frequency and distorted
in shape.
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Figure 13: Evolution of the chiral symmetry protected nonlinear topological
edge states: detailed experimental results. More results are given here compared
to Fig. 3 in the main text, for (a) GNL < 0 and (b) GNL > 0, respectively.

24



SciPost Physics Submission

400Hz 420Hz 400Hz 420Hz 400Hz 420Hz 400Hz 420Hz

P
a

400Hz 420Hz
0

5

0

a

b

V2k-1
(NL)=+GNLC

(HF)β2k-1(bk-1+ak)
2(bk-1-ak) V2k

(NL)=+GNLC
(HF)β2k(ak+bk)

2(ak-bk)Without Chiral symmetry 1:

-0.02 -0.03 -0.05-0.04

site number

V2k-1
(NL)=-GNL(bk-1+ak)

2(bk-1-ak) V2k
(NL)=+GNL(ak+bk)

2(ak-bk)Without Chiral symmetry 2:

site number site number site number site number

GNL

P
a

0

4

P
a

400Hz 420Hz 400Hz 420Hz 400Hz 420Hz

0

4

P
a

0

4

1 16 1 16 1 16 116 1 16

fHfH400Hz 420HzfHfH

-0.12 -0.13 -0.14 -0.154-0.15 -0.156
GNL

0 -0.04 -0.06 -0.1-0.08

site number1 16site number1 16site number1 16 site number1 16

400Hz 420HzfH

site number1 16

1

site number1 16
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