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Abstract

Nonlinear topology has been much less inquired compared to its linear counterpart.
Existing advances have focused on nonlinearities of limited magnitudes and fairly ho-
mogeneous types. As such, the realizations have rarely been concerned with the require-
ments for nonlinearity. Here we explore nonlinear topological protection by determining
nonlinear rules and demonstrate their relevance in real-world experiments. We take ad-
vantage of chiral symmetry and identify the condition for its continuation in general
nonlinear environments. Applying it to one-dimensional topological lattices, we show
possible evolution paths for zero-energy edge states that preserve topologically nontriv-
ial phases regardless of the specifics of the chiral nonlinearities. Based on an acoustic
prototype design with non-local nonlinearities, we theoretically, numerically, and exper-
imentally implement the nonlinear topological edge states that persist in all nonlinear
degrees and directions without any frequency shift. Our findings unveil a broad family
of nonlinearities compatible with topological non-triviality, establishing a solid ground
for future drilling in the emergent field of nonlinear topology.
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1 Introduction23

Topological protection has received a surge of interest owing to its strong immunity to para-24

metric perturbations and geometrical defects. It has been investigated on versatile platforms,25

from quantum mechanics [1] to multifarious classical realms such as electronics [2–5], pho-26

tonics [6–10] and phononics [11–20]. In contrast to the tremendous attention paid to linear27

physics and band theory, topological research has less accented on the intersections with non-28

linear dynamics [10, 21, 22], despite the ubiquity of nonlinearity in nature. The nonlinear29

sources exploited for topological purposes include varactor diodes inserted in electrical cir-30

cuits [4, 5, 23–25], optical materials with intensity-dependent refractive index [10, 26–28],31

geometry [29, 30] or nonlinear stiffness [31–33] of mechanical structures, and active means32

that create nonlinearity together with non-Hermiticity [34]. However, the types of nonlinear-33

ities are rather homogeneous in previous surveys, with a strong dominance of Kerr-like onsite34

nonlinearities [5,6,10,23,26,27,31,33,35–42], due to their ease in passive realizations and35

the link to bosonic quantum systems through the well-known Gross-Pitaevskii equation [43].36

Exceptions arise mainly from the use of specific lasers [28, 34] or electrical elements [4, 25],37

whose self-focusing or defocusing behaviors are described by saturable nonlinear gains.38

The nonlinear effects, once triggered, have resulted in topologically nontrivial phases that39

were mostly trivial in the linear regime [10, 22], allowing for many fascinating phenom-40

ena such as first- or second-order topological insulators [5, 26, 32, 39], soliton propagation41

[27–29, 31, 37, 44, 45], and higher harmonic generations [24, 46–48]. Nevertheless, studies42

reported to date possess their own specific effective range of nonlinearities. Some of them have43

been restricted to weak nonlinear magnitudes to approach theoretical models and/or to en-44

able theoretical analyses (viable linearization and perturbation methods) [4,5,31,35,40,46].45

Others, on the other hand, have required nonlinearity strong enough to activate nonlinear46

states (e.g., solitons) or to localize them clearly (e.g. corner topological states). A few have47

explored large intervals of nonlinear levels from low to high (before chaos), but with the48

edge modes/states shifted in frequency [23, 33, 36, 38, 49], ultimately destroying topological49

phases due to nonlinearity-induced symmetry breaking. Nonlinear topology, discovered within50

limited contents and extents of nonlinearity, has hardly been discussed from a fundamental51

nonlinear perspective thus far. That is, taking the stand on topological demands, what non-52

linearities are actually needed? Is it feasible in practice to keep topological attributes intact53
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across all nonlinear magnitudes?54

To tackle the question, here we unlock limitations to the manipulation of nonlinear topo-55

logical systems in theory and practice, by satisfying a symmetry that maintains topological56

non-triviality permanently. Different types of symmetries can enable topological phases of57

matter [6, 12, 50], including time-reversal symmetry [50], reflection symmetry [51], Parity-58

Time symmetry [34], chiral symmetry [52,53] or derived sub-symmetries [54]. Our study uti-59

lizes chiral symmetry that is closely related to the emergence of zero-energy topological edge60

states [55]. We first identify the nonlinear condition for symmetry preservation in general61

periodic systems. We then introduce eligible nonlinearities in one-dimensional (1D) lattices to62

alter the linearly produced stationary topological edge states. Their variations are qualitatively63

predictable assuming chiral nonlinearities with general monotonic dependence on amplitudes.64

A concrete nonlinear case is finally examined in a theoretical lumped element circuit and in65

the equivalent active nonlinear acoustic system. We confirm theoretically, numerically, and ex-66

perimentally that under chiral symmetry, nonlinear edge states can sustain their topologically67

nontrivial phases while never shifting in frequency.68

2 Chiral symmetry for general nonlinear periodic systems69

In terms of the Hamiltonian H of the system, and in the presence of arbitrary nonlinearities and70

non-localities depending on the different degrees of freedom (ai , b j , ck, · · · ) contained in the71

system, chiral symmetry implies that ΓH(ai , b j , ck, · · · )Γ † = −H(ai , b j , ck, · · · ), with Γ the chiral72

operator and † the conjugate transpose [53]. In the chiral base of the degrees of freedom,73

where Γ =
�

1a 0
0 −1b

�

with 1a and 1b the identity matrices of random sizes, this definition is74

equivalent to say that H(ai , b j , ck, · · · ) is block off-diagonal, namely75

H(ai , b j , ck, · · · ) =
�

0 h(ai , b j , ck, · · · )
h†(ai , b j , ck, · · · ) 0

�

. (1)

Notably, there are no specific restrictions on the nonlinearities in h(ai , b j , ck, · · · ) in Eq. (1).76

They can, in principle, take any form, and rely randomly on the system elements, even in a77

non-local way. The only requirement is that the sites of the same chirality must be uncoupled78

from each other. Conversely, any nonlinearity that creates couplings among them will in-79

evitably cause symmetry breaking, as is the case with the extensively inquired Kerr-like onsite80

nonlinearity [5,6,10,23,26,27,33,35–42].81

3 Generalized nonlinear topological protection with chiral sym-82

metry83

The satisfaction of Eq. (1) allows for chiral symmetry in Hamiltonians of any dimension. For84

a direct application, we focus on the zero-energy edge states in 1D dimerized lattices, where85

Eq. (1) is already met by the 2x2 Hamiltonian in the natural base. We start with the linear86

chiral case, for which, the recurrent relations read: ηLan + an+1 = 0 and ηLbn + bn−1 = 0,87

where an and bn are the amplitudes of the two sites of the n-th unit cell, and the N sites an88

(bn) constitute the entire sublattice A (B) of the system. A topologically nontrivial phase is89

obtained if the hopping ratio ηL (ratio between the hopping terms) is smaller than one. The90

resulting linear topological edge state is displayed in Fig. 1, where the sites an carry a decrease91

in amplitudes along A, with the descent rate fixed by ηL. The presence of chiral symmetry92

makes the sites bn stay stationary, independent of an.93
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When nonlinearities get involved in a way that respects Eq. (1), the system energy relations94

read:95

0= an+1 +
�

ηL +ηNLa(an+i , bn+ j)
�

an, 0= bn−1 + [ηL +ηNLb(an+k, bn+l)]bn, (2)

This suggests that, under chiral symmetry, the participation of nonlinearity results only in96

modifications in the hopping ratios. They are transformed from the linear invariant ηL to the97

amplitude-dependent nonlinear variablesηL+ηNLa(an+i , bn+ j) applied to an andηL+ηNLb(an+k, bn+l)98

applied to bn. an+i and bn+ j (an+k and bn+l) refer to each site that the nonlinearity in ηNLa99

(ηNLb) depends on. They can be arbitrary in the system, i.e., the integer i or j or k or l can be100

zero if the dependency occurs within the n-th unit cell, or nonzero if the dependency is on the101

other interacting unit cells.102

Nonlinearity preserves chiral symmetry

A
bs

.

sites
0

1

Hopping ratios increase with nonlinearity

Linear case:

sites an
sites bn

Nonlinear cases:

sites an
sites bn

Hopping ratios decrease with nonlinearity

Figure 1: Qualitative estimations of the evolution laws for zero-energy edge
states in 1D dimerized systems with symmetry-preserving nonlinearities. Pro-
files of the zero-energy edge state that is initially (linearly) topological and then
varied as chiral nonlinearities increase and decrease the hopping ratios on sublat-
tice A, respectively. In each profile, the site amplitudes are normalized such that
a1 = 1. The requirement on the Hamiltonian H is explained in Eq. (1). The variation
trends apply to nonlinearities that lead to monotonic changes in the hopping ratios
as the site amplitudes increase, which can also be non-local. When hopping ratios
in A increase with nonlinearity (the upper branch), the plateau limit is provided by
saturable hopping ratios that do not restrict the associated hopping terms to be of
various types such as polynomial (cubic, quadratic, etc.), saturable or even exotics.
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Unlike a previous theoretical study discussing one particular form of nonlinearity [53],103

here we predict edge state variations under generalized chiral nonlinearities and validate them104

experimentally. We consider the most common relationship between site amplitude and non-105

linear effects, namely nonlinearities cause monotonic changes in the hopping ratios with in-106

creasing site amplitudes. A broad range of classical nonlinearities satisfy this condition, from107

polynomial laws (quadratic or cubic, etc.) to saturable effects. In addition, non-linear laws108

are not restricted to local effects. We first deal with nonlinearities that are positively cor-109

related with amplitudes. Based on an > an+1 of the linear state, these nonlinearities lead110

to | ηNLa(an+i , bn+ j) |>| ηNLa(an+1+i , bn+1+ j) | in the early nonlinear stage (negligible effects111

of sites in B, since they carry zero amplitude initially), where the sign of ηNLa determines112

whether nonlinearity increases or decreases the hopping ratios on A. If ηNLa < 0, we have113

ηL + ηNLa(an+i , bn+ j) < ηL + ηNLa(an+1+i , bn+1+ j) < ηL < 1, i.e., the hopping ratios are di-114

minished by nonlinearity, with the decrement less and less along A. As nonlinearity is further115

strengthened, its positive dependence on amplitudes perpetuates the above law. The first hop-116

ping ratio remains thus the smallest, always yielding the largest reduction of amplitude from117

a1 to a2. Following this trend, we reach a limit situation where solely the first site a1 has a118

nonzero amplitude. The sites bn in B remain at zero amplitude, owing to chiral symmetry119

and the fast decay of the nonlinear mode that prevents it from reaching the other end of the120

system. The total expected edge state variations for nonlinearity decreasing the hopping ratios121

on A (ηNLa < 0) are depicted graphically in the lower branch in Fig. 1.122

The reasoning applies likewise to the opposite scenario ofηNLa > 0, where | ηNLa(an+i , bn+ j) |123

>| ηNLa(an+1+i , bn+1+ j) | results in ηL + ηNLa(an+i , bn+ j) > ηL + ηNLa(an+1+i , bn+1+ j) > ηL.124

Namely the hopping ratios are increased by nonlinearity, with the increment smaller and125

smaller along A. Remarkably, the first ratio is the largest here, contrary to the previous case of126

ηNLa < 0. The enhancement of nonlinearity impels it to first attain 1, at which moment the site127

a2 acquires the same amplitude as a1. After that, if nonlinearity still can increase the hopping128

ratio, a2 exceeds a1 in amplitude. The continuation along this direction makes the ascent of a2129

incessant and towards an infinite level, inevitably ending with a physical instability of the sys-130

tem. For this reason, if the edge states can be practically realized at all nonlinear magnitudes,131

the nonlinearity should always keep the first hopping ratio at 1 once a2 = a1 is reached. The132

other hopping ratios will follow the same result due to the periodicity of the system. That is,133

for ηL+ηNLa(an+i , bn+ j) applied to an, we have ηL+ηNLa(an+i , bn+ j) = 1 once an+1 = an. Such134

a saturable nonlinear law in the hopping ratios does not implies that the nonlinear contents in135

the associated hopping terms should also be the same. Indeed, diverse types of nonlinearities136

can yield a saturation feature in the ratios, including polynomial (quadratic, cubic, etc.), sat-137

urable, or even other exotic ones (e.g., exponential). Ultimately, after successive attainments138

of an+1 = an, all sites in A will exhibit the same amplitude, forming a ’plateau’ over it.139

For actual systems with finite dimensions, the zero-energy mode reaches the other edge140

of the system when all sites in A are nonlinearly endowed with nonzero amplitudes. In this141

case, the excited opposite zero mode causes the amplitude of the sites in B to begin to rise,142

with a lowering from bn to bn−1, i.e., a heightening along the structure. No conclusion can be143

drawn about the direction of changes in the hopping ratios on B. Their increase or decrease144

are separate from those on A, as Eq. (1) states. Despite this, it is certain that from an initial145

value of less than 1, the nonlinearity should drive the hopping ratios up to 1 at most, as146

we prescribed earlier through the sublattice A. The extreme nonlinear result can hereby be147

extrapolated: sites bn conduct an increase in amplitude along B, with merely the first b1 at148

rest. Our overall estimates for the case of nonlinearity increasing the hopping ratios on A149

(ηNLa > 0) are delineated schematically in the upper branch in Fig. 1, where the pattern in B150

may vary depending on individual circumstances.151

Performing the same analysis as above for nonlinearities that are negatively correlated with152
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site amplitudes, one will obtain the same evolution limits as in Fig. 1. Collectively, accounting153

for a monotonic amplitude dependence of the chiral nonlinearity, it is possible to make the154

hopping ratios consistently smaller than or at most equal to 1 for both sublattices A and B,155

hence remain the stationary edge states to be topologically nontrivial at all nonlinear magni-156

tudes. A result similar to part of Fig. 1 was previously observed in a numerical attempt [31],157

but with a particular nonlinear management and without discussing the underlying symmetry158

cause. Distinctively, here our starting point is to interrogate chiral symmetry, thus unveiling a159

broad class of nonlinearities, though not all, that ensures topological non-triviality, regardless160

of nonlinear magnitudes.161

4 A realizable case of nonlinear topological protection with chiral162

symmetry163

To confirm our anticipations in Fig. 1, here we take one example of a concrete finite system164

and investigate it in a practical configuration. It is represented by the periodic lumped ele-165

ment circuit in Fig. 2a, which consists of N = 8 unit cells, each containing linear and nonlinear166

resonators. The linear resonators LF2k−1 and LF2k are identical. They are each made of mass167

M(LF)
2k−1 =M(LF)

2k and capacitor C(LF)
2k−1 = C(LF)

2k , resonating at the frequency fLF. For the nonlinear168

resonators HF2k−1 and HF2k, their linear components, with mass M(HF)
2k−1 and M(HF)

2k , and capac-169

itor C(HF)
2k−1 and C(HF)

2k , exhibit resonance at the frequency fHF, higher than fLF. A larger (linear)170

resonance bandwidth is assigned to HF2k−1 compared to HF2k. The generators V(NL)
2k−1 and V(NL)

2k171

introduce nonlinearity into the resonators HF2k−1 and HF2k, respectively, with opposite signs172

in their nonlinear laws:173

V(NL)
2k−1 = −GNLβ2k−1(bn−1 + an)

2(bn−1 − an), V(NL)
2k = +GNLβ2k(an + bn)

2(an + bn), (3)

where GNL is a constant parameter with which nonlinearity can be tuned in both magnitudes174

and directions. And β2k−1 = C(HF)/C(HF)
2k−1, β2k = C(HF)/C(HF)

2k with C(HF) = (C(HF)
2k−1 +C(HF)

2k )/2.175

The physical domain of the system ends with a resonator HF2N+1 that follows the features176

imposed on the other HF2k−1, thereby all the LF2k−1 (LF2k) satisfy the same recurrent dynamic177

equations (Eq. (A.1) in Appendix A.1), from which one can obtain,178

¨

0= t1b(bn−1, an)bn−1 + t0b(bn, an)bn,

0= t1a(an+1, bn)an+1 + t0a(an, bn)an,
(4)

at two frequencies fL and fH, where an (bn) corresponds to the voltage carried by LF2k−1 (LF2k).179

The frequencies fL and fH are dominated by the resonances of the resonators LFn and HFn,180

respectively, as derived in detail in Appendix A.1 and depicted in Fig. 6 in Appendix B.1. The181

relations in Eq. (4) are in line with Eq. (2), where the hopping terms take the forms of:182



















t1a(an+1, bn) = C(HF)
2k−1 +GNLC(HF)

�

a2
n+1 + bnan+1 − b2

n

�

,

t0a(an, bn) = C(HF)
2k −GNLC(HF)

�

a2
n + bnan − b2

n

�

,

t1b(bn−1, an) = C(HF)
2k−1 +GNLC(HF)

�

b2
n−1 + anbn−1 − a2

n

�

,

t0b(bn, an) = C(HF)
2k −GNLC(HF)

�

b2
n + anbn − a2

n

�

,

(5)

The hopping ratios ηL + ηNLa and ηL + ηNLb in Eq. (2) can be determined accordingly by183

ηL +ηNLa = t0a(an, bn)/t1a(an+1, bn) and ηL +ηNLb = t0b(bn, an)/t1b(bn−1, an).184
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Figure 2: Evolution of the chiral symmetry protected nonlinear topological edge
states: theoretical demonstration in a lumped element circuit with coupled res-
onators. (a) The considered 1D nonlinear system. It is made of 8 unit cells, each
composed of 2 linear resonators LFn and 2 nonlinear resonators HFn (n = 2k − 1
and 2k) where nonlinearity is added through the generators V(NL)

n . The topological
edge state is generated at two different frequencies fL and fH, which rely on the reso-
nance of the resonators LFn (at fLF) and HFn (at fHF) respectively. The derivations are
detailed in Appendix A.1 and B.1 (Fig. 6). (b) Nonlinear variations of the linearly
generated stationary topological edge state, under the intervention of the nonlin-
earity given in (a). The nonlinear levels and directions are tuned by the constant
parameter GNL in the nonlinear law. It increases (decreases) the hopping ratios on
sublattice A with GNL < 0 (GNL > 0). The edge state frequency fH is identified from
the spectra of an and bn (n= 1, 2,3, 4) in the frequency range of [fi,fe]. All the edge
state amplitudes in (b) are normalized to the same value. They are obtained with
the Harmonic Balance Method (Appendix A.3), and the results for more cases are
summarized in Fig. 9. A time domain analysis with the time-integration method is
outlined in Appendix B.1 (Fig. 10). In addition to the edge states, the local topologi-
cal marker [53] In (of the n-th unit cell, drawn at the location of each bn) is equally
displayed for each case (gray lines), which takes values between 0 (not topological)
and 1 (topological, indicated by dashed lines).
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Theoretically, after deriving Eq. (4), the edge state generations also require closed-closed185

boundary conditions in the system, i.e., the voltages associated with b0 and ae in Fig. 2a should186

be zero. Such a non-driven configuration cannot be easily implemented in practice, especially187

in the acoustic system we opt for, as excitation is necessary to trigger the edge states experi-188

mentally. For this reason, the theoretical exploration here is carried out by directly considering189

boundary conditions that are feasible in experiments while playing the same role as the ideal190

b0 = ae = 0. Specifically, we let b0 and ae each obey an equivalent non-reflecting boundary191

condition in planar acoustic wave propagation. On this basis, the (planar wave) excitation is192

included in b0. The definitions of the overall boundary conditions are detailed in Appendix193

A.2. They produce the same results as those obtained with b0 = ae = 0, as proved in Fig. 7 in194

Appendix B.1, which are therefore undertaken in all the following studies.195

With reliable boundary conditions, Eqs. (4) and (5) allow stationary topological edge states196

to be properly generated in our lumped-element system. In the linear regime where GNL = 0,197

Eq. (5) yields t0a = t0b = C(HF)
2k and t1a = t1b = C(HF)

2k−1, i.e., the hopping terms for an (bn) and198

an+1 (bn−1) are directly mapped to the capacitances C(HF)
2k in HF2k and C(HF)

2k−1 in HF2k−1. The199

imposed resonance bandwidth relation between the resonators HF2k and HF2k−1 leads to t0a200

(t0b)<t1a (t1b), i.e., the hopping ratio ηL = t0a/t1a = t0b/t1b smaller than 1, the resulting linear201

edge state is thus topologically non-trivial. By contrast, in the nonlinear regime where GNL ̸= 0,202

the hopping terms are dictated by the nonlinearity engaged. Their amplitude dependence is203

defined non-local, which is not only on the sites an and bn inside the associated n-th unit204

cell, but also on the sites bn−1 and an+1 in the adjacent ones, as expressed in Eq. (5). Despite205

this complexity, the chosen nonlinearities make the generated nonlinear edge states rigorously206

maintain chiral symmetry, since the relations in Eq. (4) (thus Eq. (2)) are consistently satisfied207

regardless of the nonlinear magnitudes and directions. Interestingly, the expressions of the208

hopping terms in Eq. (5) indicate that t0a(an, bn) ̸= t0b(bn, an) if GNL ̸= 0, i.e., the coupling209

between bn and an, represented by t0a in the associated Schrodinger equations Eq. (4), is210

different from the coupling between an and bn represented by t0b. Accordingly, the nonlinearity211

we introduce into the system results in the relevant hopping being non-reciprocal. Such a212

property has hardly been captured in former research in nonlinear topology, where intentions213

were mostly placed on approaching reciprocal cases [4].214

It should be emphasized that, the results in Eqs. (4) and (5) are obtained without any215

assumption on any behaviors of the elements in the constituent system. They are derived216

explicitly at two different frequencies fL and fH, as mentioned earlier and detailed in Appendix217

A.1. This implies that we can precisely give rise to two stationary topological edge states218

within one single one-dimensional lattice. In particular, the two states exhibit also different219

properties. The one at fL is significantly more sensitive in response to losses in the dominant220

resonators LFn, manifesting itself in a severe distortion at a weak loss level, whereas the state221

at fH can be nearly immune. Their theoretical comparison is provided in Fig. 8 in Appendix B.1222

(the experimental results of the state at fL are given in Appendix B.3). Our attention here is223

devoted to the edge state at fH which can remain intact in the actual experimental conditions.224

Its evolution is revealed in Fig. 2b. In the initial linear scenario, the hopping ratio is defined225

at around 0.41 (equal to C(HF)
2k /C

(HF)
2k−1). The edge state frequency fH is recognized from the226

site spectra in Fig. 2b, at the zero amplitudes of all sites bn. Nonlinearity is then triggered227

and prescribed using the constant parameter GNL in the nonlinear law. When GNL decreases228

along negative values, the hopping ratios on sublattice A gradually enlarge. The first ratio229

keeps receiving the greatest increment. It takes the lead to reach 1, followed by the others230

in succession. At the very end, the plateau on A is infinitely approached, with solely the last231

hopping ratio still small. Conversely, in the direction GNL > 0, nonlinearity incessantly reduces232

the hopping ratios on A. The relative descent (with respect to the former site) of a2 remains233

the largest compared to the other sites. The extreme case of only a1 surviving is also attained.234

8
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As for the sites bn in B, their amplitudes rise exclusively after the activation of the opposite235

zero mode (along GNL < 0), presenting the expected increasing order from b1 to b8.236

To reveal the topological aspect of the system, we plot for each unit cell n, the local topo-237

logical marker In (Fig. 2b) that generalizes in real space and for finite size systems, the bulk238

winding number of 1D chiral symmetric insulators [53]. This marker applies to the linearisa-239

tion of Eq. (2) around a given nonlinear mode and captures the topology of small perturba-240

tions around it. It is particularly suitable for systems with inhomogeneous hopping amplitudes,241

such as ours, where the lattice translation invariance breaks down and the usual bulk wind-242

ing number, defined in the Brillouin zone, becomes inappropriate. At an interface between a243

topological region where In = 1 and a topologically trivial region where In = 0, the linearised244

system also develops a zero-energy mode. Due to chiral symmetry, smoothly increasing the245

amplitude of the nonlinear edge state amounts to adding this linearized zero-mode to the non-246

linear background zero-mode without changing its frequency [53]. Therefore, high-amplitude247

nonlinear modes can be obtained by summing up linearized chiral-symmetry-protected topo-248

logical zero modes captured by In. When nonlinear magnitude is increased along GNL > 0,249

the interface between the topological phase where In = 1 and the edge where In vanishes250

becomes sharper. The nonlinear edge mode is thus localized more and more on a single site at251

the edge. In contrast, when GNL < 0, the high amplitude region is associated with a vanishing252

topological marker, indicating a trivial phase, while low amplitude regions are still topologi-253

cal. The interface zero mode is displaced toward the bulk with increasing nonlinear magnitude254

along GNL < 0. Accordingly, the amplitude rise of the nonlinear mode also shifts toward the255

bulk, which further displaces the topological transition between In = 1 and In = 0 in a self-256

sustaining loop, leading to a plateau shape of the nonlinear edge state in the end.257

We confirm with Fig. 2b that in our system, the chiral nonlinearities maintain the topo-258

logical edge state at its linearly produced frequency fH. Contrarily, if nonlinearity breaks the259

symmetry, the edge state loses its topological features: its amplitude rises on both sublattices260

A and B, and its frequency shifts away from fH (see Fig. 11 in Appendix B.1). The site spectra261

in Fig. 2b evidence in addition that the amplitude relation of an+1 < an is linearly valid over262

the entire frequency range of [fi, fe] displayed therein. It can be nonlinearly transformed up263

to an+1 = an only, as the state at fH shows. Not surprisingly, if nonlinearity is further enhanced264

from an already reached an+1 = an, instability would occur at the related frequency. The left-265

most spectra in Fig. 2b corresponds to the stability limit of this situation, where the site a1266

is caught up by a2 at a frequency different from fH. However, the nonlinear edge state at fH267

is perpetually stable, since its variations always satisfy an+1 ≤ an. Collectively, the nonlinear268

results in Fig. 2b fully demonstrate our inferences for the general context of nonlinearity.269

5 Experimental validations270

After theoretical exploration of the realizable lattice in Fig. 2, an equivalent active nonlinear271

acoustic system is adopted for experimental validation, as pictured in Fig. 3a. A waveguide272

is used to connect all the resonant elements. The passive Helmholtz resonators are mounted273

on its (top) side to play the role of the linear LFn, while electrodynamic loudspeakers are274

inserted inside and are actively controlled to act as the nonlinear HFn. The control for each275

loudspeaker involves a feedback loop, which uses as inputs the acoustic pressures measured276

on both faces of the loudspeaker membrane and returns in real-time an output current to277

the loudspeaker terminals. The corresponding control law combines (i) a linear part that278

implements the required impedance for HFn while compensating for the natural losses in the279

loudspeaker, and (ii) a nonlinear part that realizes the desired nonlinearities given in Eq. (3),280

as described in detail in Appendix A.6 and Fig. 5. The achieved active resonators HFn are fully281
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adjustable and reconfigurable, allowing for replicating the theoretical analysis in Fig. 2b. 8282

unit cells are constructed in experiments, each composed of two equally spaced Helmholtz283

resonators and two equally spaced active loudspeakers. After the last cell, one additional284

loudspeaker is inserted and controlled to achieve the last nonlinear resonator HF2N+1 in Fig. 2a,285

which is necessary for satisfying Eqs. (4) and (5), as explained in the previous section and286

Appendix A.1. Therefore, there are in total 17 active loudspeakers and 16 passive Helmholtz287

resonators in the physical domain of the experimental system. The portions of each volume288

enclosed by adjacent loudspeakers are denoted as Va in Fig. 3a. Their behaviors on the sub-289

wavelength scales are similar to that of capacitors, acting as Ca in the theoretical model in290

Fig. 2a. Collectively, the proposed acoustic system is equivalent to the theoretical lattice in291

Fig. 2a, as sketched in Fig. 3a (see derivations in Appendix A.6). A non-reflecting anechoic292

termination is installed at each end of the physical domain, with the excitation source fixed293

at one end. The desired boundary conditions (Appendix A.2) for b0 and ae in Fig. 2a are294

accordingly put into practice. The entire system including all the components, is described295

more in detail in Appendix A.5 and illustrated in Fig. 4 therein.296

We focus on the topological edge state at fH in the main text, as stated in the theoretical297

studies. It is successfully implemented first in the linear case, as illustrated in Fig. 3b (detailed298

linear results in Fig. 14 in Appendix B.3). A hopping ratio of around 0.54 is obtained, not very299

far from the theoretical one of 0.41 (Fig. 2b). The discrepancy stems from the approximation of300

each space Va as a lumped element (the capacitor Ca in the theoretical model), see explanations301

in Appendix A.6 and demonstrations with simulation results in Appendix B.2. Based on the302

linear results, nonlinearity is added to the system and tailored by the constant parameter GNL,303

as theoretically set in Fig. 2b. When nonlinear magnitude is reinforced along GNL < 0, the304

hopping ratios on A increase. The sites an sequentially attain the same level, enabling the305

theoretical plateau limit at the greatest extent of nonlinearity. In the meantime of the ascent306

on sublattice A, the sites in B first remain at rest and then rise in amplitude from the last one307

b8, which comply also with the theoretical projections.308

For nonlinearity decreasing the hopping ratios with GNL > 0, the shape of the edge state309

is centralized more and more on the structure (left) end, with all sites in B staying stationary.310

The nonlinear variation along this direction proceeds until the first hopping ratio (the smallest311

one) on A falls to about 0.2, with respect to the linear one of 0.54. The limit of only a1 being312

dynamic cannot be observed, as a physical instability arises experimentally. This is caused by313

the time delay unavoidable in feedback control on the loudspeakers, which injects energy into314

each space Va enclosed by adjacent loudspeakers. When going beyond the limit case shown in315

Fig. 3b, the energy accumulations due to such a control delay cannot be fully compensated for,316

thereby leading to physical instability undoubtedly. A time-domain analysis is performed in317

Appendix B.2 where the control time delay is taken into account in real-time in the simulations.318

The relevant numerical results are shown in Fig. 12, which confirms the current experimental319

observations. Nevertheless, all expected laws of variations are exhaustively justified by exper-320

iments. The realized nonlinear edge state preserves its topologically nontrivial phases, with321

frequency unchanged at fH, since chiral symmetry is here rigorously obeyed by nonlinearity.322

In the opposite situation where nonlinearity breaks chiral symmetry, the edge state will conse-323

quently be distorted in shape and shifted in frequency, as evidenced by theoretical, numerical,324

and experimental demonstrations in Figs. 11, 13, and 16 in Appendix B, respectively. In addi-325

tion to inappropriate nonlinearities, non-negligible losses can also break chiral symmetry, as326

in the case of the second edge state at fL. Its experimental results are summarized in Appendix327

B.3 (Figs. 17 and 18), in which the persistent dominance of loss effect dramatically disrupt328

topological properties, as in the theoretical prediction (Fig. 8). Contrary to it, the edge state329

at fH is barely affected by actual losses in the system, thanks to the active control by which the330

dependent loudspeakers are corrected to be virtually loss-free.331
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Figure 3: Evolution of the chiral symmetry protected nonlinear topological edge
state: experimental validation in an active nonlinear acoustic system. (a) The
actual system that realizes the theoretical lattice in Fig. 2a. The unit cell consists
of two passive linear Helmholtz resonators (acting as LFn) and two active nonlinear
loudspeakers (acting as HFn). There are two anechoic ends installed at the ends of
the system, together with an excitation source at one end. The entire domain of
the system is displayed in Fig. 4 in Appendix A.5. The an and bn correspond to the
acoustic pressures applied to the Helmholtz resonators LF2k−1 and LF2k, respectively.
(b) Nonlinear topological edge states, measured as nonlinearity is progressively al-
tered using the constant control parameter GNL. The hopping ratios on sublattice A
are increased (decreased) along GNL < 0 (GNL > 0). The edge state frequency fH is
identified from the spectra of ai and bi (i= 1, 2,3, 4). Experimental results of more
nonlinear cases are given in Fig. 15 in Appendix B.3.
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6 Conclusion332

In this study, we explored the nonlinear possibilities for the persistence of topological non-333

triviality. We targeted the symmetry-protected topological class and put the emphasis on chiral334

symmetry. The condition to secure symmetry was first formulated for general nonlinear peri-335

odic systems. It was then applied to one-dimensional lattices in which zero-energy topological336

edge states were modified by chiral nonlinearities. The trajectories of their nonlinear evolu-337

tion were predicted based on a monotonic amplitude dependence of the nonlinearities. The338

results show that chiral symmetry can consistently maintain the edge states in a topologically339

nontrivial phase in the nonlinear regime, regardless of the explicit forms and magnitudes of340

the nonlinearities, whether local or non-local. The derived nonlinear topological edge states341

were put into practice through the consideration of a concrete finite system, with theoreti-342

cal representation in a lumped element circuit, and with numerical (Appendix A.4 and B.2)343

and experimental implementations in an equivalent active nonlinear acoustic system. Our in-344

vestigations reveal a broad class of chiral nonlinearities that keep the topological attributes345

intact and the edge state frequency unshifted across all nonlinear magnitudes, opening up346

new avenues of thought for the continued study of nonlinear topology.347
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A Methods358

A.1 Achievement of a topological system with chiral symmetry359

The dynamics of the lumped-element circuit in Fig. 2a is described in the time domain by360



















∆
(HF)
2k−1q2k−1 +C(HF)

2k−1V(NL)
2k−1 = C(HF)

2k−1 (bn−1 − an) ,
∆
(HF)
2k q2k +C(HF)

2k V(NL)
2k = C(HF)

2k (an − bn) ,

∆
(LF)
2k−1

�

q2k−1 − q2k − q(a)2k−1

�

= C(LF)
2k−1an,

∆
(LF)
2k

�

q2k − q2k+1 − q(a)2k

�

= C(LF)
2k bn,

(A.1)
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Taking into account the expressions of the nonlinear voltage generators V(NL)
2k−1 and V(NL)

2k given361

in Eq. (3), Eq. (A.1) yields362



















∆
(HF)
t q2k−1 = C(HF)

2k−1 (bn−1 − an) +GNLC(HF) (bn−1 + an)
2 (bn−1 − an) ,

∆
(HF)
t q2k = C(HF)

2k (an − bn)−GNLC(HF) (an + bn)
2 (an − bn) ,

∆
(LF)
t

�

q2k−1 − q2k − q(a)2k−1

�

= C(LF)
2k−1an,

∆
(LF)
t

�

q2k − q2k+1 − q(a)2k

�

= C(LF)
2k bn,

(A.2)

The time-domain variables in Eq. (A.2) include:363

(I) The q2k−1, q2k and q(a)n (n = 2k − 1 and n = 2k), which designate the charges of the364

resonators HF2k−1, HF2k and the capacitor Ca in Fig. 2a, respectively.365

(II) The voltages applied to LF2k−1 and LF2k that are equivalent to an and bn in the topological366

dimerized lattice, as delineated in Fig. 2a.367

(III), The time-domain differential operators ∆(HF)
t and ∆(LF)

t , which read368















∆
(HF)
t =

�

M(HF)
2k−1C(HF)

2k−1
d2

dt2
+ 1

�

=

�

M(HF)
2k C(HF)

2k
d2

dt2
+ 1

�

,

∆
(LF)
t =

�

M(LF)
2k−1C(LF)

2k−1
d2

dt2
+ 1

�

=

�

M(LF)
2k C(LF)

2k
d2

dt2
+ 1

�

,

(A.3)

since all the resonators LF2k−1 and LF2k resonate at the same frequency fLF, while all the HF2k−1369

and HF2k resonate at fHF.370

Substituting Eq. (A.3) into Eq. (A.2) and eliminating all terms containing charges, the371

equations on voltages can be obtained as follows:372







∆tan =∆
(LF)
t

�

C(HF)
1 bn−1 +C(HF)

2 bn −C(HF)
1 V(NL)

2k−1 +C(HF)
2 V(NL)

2k

�

,

∆tbn =∆
(LF)
t

�

C(HF)
1 an+1 +C(HF)

2 an +C(HF)
1 V(NL)

2k+1 −C(HF)
2 V(NL)

2k

�

,
(A.4)

where C(HF)
1 = C(HF)

2k−1, C(HF)
2 = C(HF)

2k , and where the fourth-order differential operator ∆t takes373

the form of ∆(HF)
t ∆

(LF)
t Ca +∆

(HF)
t C(LF) + 2C(HF)∆

(LF)
t .374

It is worth noticing that, to derive Eq. (A.4) also for the last one bN, there should be an375

additional resonator HF2N+1 which makes the associated charge q2N+1 also satisfy the first376

equation in Eq. (A.2). Hence, the physical domain of the system should start with a HF1377

and end with a HF2N+1. Under this circumstance, if ∆t in Eq. (A.4) can be zero, it leads to378

Eq. (4) in Section 4, with the hopping terms expressed in Eq. (5). This suggests that the379

stationary topological edge state can be generated from a solution for ∆t = 0. Focusing on380

the fundamental frequency ω at where we have d
d t = iω (with i the complex unit), ∆t = 0 is381

transformed to the frequency domain as:382

ω4−
��

1+ 2
C(HF)

Ca

�

ω2
HF +

�

1+
C(LF)

Ca

�

ω2
LF

�

ω2+ω2
HFω

2
LF

�

1+ 2
C(HF)

Ca
+

C(LF)

Ca

�

= 0, (A.5)

whereωHF = 2πfHF andωLF = 2πfLF are the resonance frequencies of the resonators HFn and383

LFn, respectively. And C(LF) = C(LF)
2k−1 = C(LF)

2k , C(HF) = (C(HF)
2k−1 +C(HF)

2k )/2.384

Interestingly, the determinant of the equation in Eq. (A.5) is strictly positive, i.e., ∆t = 0385

presents two solutions. This is why our system allows for topological edge states at two differ-386

ent frequencies (at fL and fH), see Fig. 6 in Appendix B.1 for physical explanations. In all edge387

state profiles shown in this study, an and bn correspond to the absolute amplitudes extracted at388

the fundamental frequency. Regarding the higher harmonic generations, we confirm theoret-389

ically, numerically, and experimentally that they are consistently lower than 1% in achieving390
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the edge state at fH. Thus we can assume no energy conversion from the fundamental compo-391

nent to the higher harmonics in our system, in which case, the derivation of Eq. (A.5) using392
d
d t = iω holds directly.393

A.2 Boundary conditions394

In our search for applicable boundary conditions, we eventually found that the typical Non-395

Reflecting Boundary Conditions (NRBCs) in planar acoustic wave propagation/excitation can396

replace the ideal one of b0 = ae = 0. Based on an electro-acoustic analog where electri-397

cal (voltage, current) is equivalent to acoustic (pressure, flow), NRBCs are translated into398

ae = γai2N+1 (b0 = γai1) for the right (left) end of the system in the non-driven case, in which399

i2N+1 (i1) represents the electrical current circulating in HF2N+1 (HF1), and γa = Zc/S with Zc400

the specific acoustic impedance of the air and S the surface area of the propagation medium.401

When excitation is taken into account in addition, the corresponding end is subjected to402

a total acoustic pressure, which includes the incoming source pinc and the wave reflected403

by the physical domain pref = pinc − γai1 (NRBC forces no reflection in the direction of inci-404

dence). Collectively, for the case of excitation at b0, the boundary conditions are defined as405

b0 = pinc + pref = 2pinc − γai1 and ae = γai2N+1. We prove with Fig. 7 in Appendix B.1 that406

these conditions are equivalent to the theoretically required b0 = ae = 0, in terms of the edge407

state generations. They are thus undertaken for all the studies of the concrete theoretical408

model and the equivalent experimental acoustic system.409

A.3 Methods for theoretical solvings410

To solve the problem associated with the circuit in Fig. 2a, we consider the original dynamic411

equations in Eq. A.1 where all the variables are time-dependent. Two standard methods are412

exploited for solving these nonlinear differential equations, namely the harmonic balance413

method [56–58] and the time-integration method [59]. They are capable of handling strong414

levels of nonlinearities, in contrast to the perturbation method and the method of multiple415

scales that are valid only at weak nonlinearities.416

The Harmonic Balance Method (HBM) refers to a semi-analytical method [56–58] which417

determines the steady-state solutions of the nonlinear problem. The first 27 harmonics of each418

variable are taken into account when solving Eq. A.1. The outcomes show that the higher har-419

monic generations are lower than 1% in our system. The an and bn in Fig. 2b correspond to the420

absolute amplitudes of their fundamental harmonic components (at the edge state frequency421

fH). The detailed results (more nonlinear cases than in Fig. 2b) are summarised in Fig. 9 in422

Appendix B.1.423

The time integration method, with the fourth-order Runge-Kutta (RK4), is utilized to solve424

the problem directly in the time domain, which accounts for the transient responses. The425

relevant results are given in Fig. 10 in Appendix B.1.426

A.4 Time-domain simulation of the experiments.427

To better guide and analyze the experiments, we performed time-domain simulations for the428

active nonlinear acoustic system built in practice (Fig. 3a). The approach involves a Finite429

Difference Time Domain (FDTD) method by discretization of the 1D wave equations. Practical430

details are accounted for in the simulations, that is (i) we consider the wave propagation inside431

each space Va between two adjacent loudspeakers (with FDTD), (ii) we add losses in all the432

resonant elements and the transmission medium according to the experimentally estimated433

values, (iii) we simulate the actual active control on each loudspeaker where a time delay434

exists, which is experimentally determined to be 100µs. The details of the control principle435
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and definition are described in the following section A.6. Regarding the numerical settings,436

we randomly take the experimental values of one loudspeaker to define all the others. The437

simulation outcomes are summed up in Fig. 12 in Appendix B.2. They are essentially identical438

to the experimental ones.439

A.5 Characterisations of the experimental setup440

Anechoic end 2

Anechoic end 1
Active acoustic system

a

Source

b

Anechoic end 2 Anechoic end 1

α α

f (Hz)
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1

f (Hz)

Source

Figure 4: The overall experimental setup. Besides the physical domain displayed
in Fig. 3a, the overall system includes also two anechoic terminations at the ends,
for which the absorption coefficients α are measured and shown in (b). The driven
source refers to a loudspeaker that is mounted on the top side of the duct next to the
anechoic end numbered 1 in (a), it plays the role of b0 in Fig. 2a together with the
end 1. The boundary ae is realized by the end number 2.

The overall experimental system is pictured in Fig. 4a, where the non-reflecting bound-441

ary conditions are achieved with anechoic terminations at both ends of the system. They are442

qualified by absorption coefficients higher than 0.998 from 140Hz (less than 5% of reflec-443

tion), as shown in Fig. 4b. The waveguide refers to a PVC duct with a cross-sectional area444

of 6cm × 6cm, which ensures planar wave propagation until 2.86kHz. The manufactured445

Helmholtz resonators (labeled with HRn in Fig. 3a) reach a transmission coefficient of around446

0.08 at their resonance frequencies in the range of [110.5Hz, 111.5Hz], corresponding to an447

acoustic resistance of 0.005Zc with Zc the specific acoustic impedance of the air. The elec-448

trodynamic loudspeakers are all the same commercially available Visaton FRWS 5 SC model,449

while they possess different resonance frequencies (within [345 Hz,375 Hz]) and bandwidths,450

which we calibrated beforehand.451

A.6 Active control on the electrodynamic loudspeakers.452

The loudspeaker membrane behaves as a mass-spring-damper system in the linear regime453

(weak input levels). The motion equation for its displacement ξ read454

Mms
∂ 2

∂ t2
ξ(t) +Rms

∂

∂ t
ξ(t) +

1
Cms
ξ(t) = ptot(t)Sd − Bli(t), (A.6)
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In the passive open-circuit case, the membrane is subject to the total acoustic pressure ptot455

over its effective surface area Sd, and the mechanical forces which rely on the mechanical456

mass Mms, resistance Rms, and compliance Cms. Its dynamics are characterized by a specific457

acoustic impedance Zs (ratio between acoustic pressure and velocity) in the frequency domain:458

Zs(jω) =
1
Sd

�

jωMms +Rms +
1

jωCms

�

.459
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Figure 5: Active control on the loudspeakers. The linear part of the control is used
for altering the impedance Zn of each loudspeaker to make them resonate at the same
frequency while achieving different resonance bandwidths between odd and even
ones. The nonlinear part of the control is for producing the nonlinear generators V(NL)

n
needed in the theoretical lattice in Fig. 2a. ADC (DAC) denotes the Analog-Digital
(Digital-Analog) Converter. A control time delay exists mainly due to the AD and DA
conversions and is thus unavoidable for the control law definition. We compensate
for this delay effect by carefully defining the control laws, see implementation details
in Appendix A.6.

The active control on each loudspeaker is implemented by specifying the current i(t), which460

creates an electromagnetic force through the moving coil with a force factor of Bl. The con-461

trol approach is depicted in detail in Fig. 5, where the control law is digitally defined with a462

Speedgoat real-time target machine manipulated in the Simulink environment of MATLAB. It463

produces the current i(t) in the form of,464

i(t) = F−1 (Φ(jω) · Ptot(jω)) +F−1
�

Sd

Bl
−Φ(jω)
�

∗

�

(−1)n
C(exp)

C(exp)
n

GNLptot(t) (pf(t) + pb(t))
2

�

,

(A.7)
where pf and pb are the acoustic pressures measured at the front and rear faces of the loud-465

speaker membrane, which are the two inputs for the control. F−1 and the symbol ∗ designate466

the inverse of the Fourier Transform and the time convolution, respectively. The total acoustic467

pressure ptot reads ptot = pf(t)− pb(t), with Ptot = F(ptot) its Fourier transform. C(exp)
n refers to468

the acoustic compliance achieved for the n-th loudspeaker which differs between n = 2k − 1469

and n = 2k, and C(exp) is the average of two successive ones. C(exp)
2k−1 and C(exp)

2k are equivalent470

to the electrical capacitors C(HF)
2k−1 and C(HF)

2k in Eq. (A.2), respectively.471

In Eq. (A.7), the linear part of control is represented by a linear transfer function Φ(jω),472

whereas the nonlinear part is determined by the parameter GNL. For the linear part, Φ(jω) is473

used to tailor the impedance properties of the loudspeaker,474

Φ=
Sd

Bl
· β

Zst(jω)− Zs(jω)
Zst(jω)

. (A.8)

It targets a specific acoustic impedance Z(F)st with two degrees of freedom,475

Z(F)st =
Zst Zs

(1− β)Zst + β Zs
=
�

1− β
Zst

+
β

Zs

�−1

, (A.9)
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in which the control-designed impedance Zst corresponds to a one-degree-of-freedom res-476

onator. It is made in parallel with the passive one Zs, while their weights are adjusted by477

the constant parameter β .478

For the control execution, there exists a time delay τ from control inputs to outputs, which479

is unavoidable in reality. It is taken into account in simulating the practical case by trans-480

forming i(t) into i(t−τ) for Eq. (A.6), and is experimentally determined at 100µs. Since the481

loudspeakers are naturally different, the control time delay affects them differently, yielding482

discrepancies in control results. Nevertheless, the addition of the parameter β in the linear483

control law allows such an issue to be compensated for in experiments, by balancing between484

Zst and Zs. Fig. 14 in Appendix B.1 shows the results for linearly generated topological edge485

state at fH. As for the nonlinear part of the control law in Eq. (A.7), when the sub-wavelength486

cavity Va between adjacent loudspeakers exhibits predominantly capacitor characteristics (the487

assumption under consideration, see Fig. 3a), we have pf = bn−1 and pb = an for loudspeakers488

with even indexes, and pf = an and pb = bn for those with odd indexes. In this case, the non-489

linear laws perfectly achieve the generators VNL
2k−1 and VNL

2k (Eq. (3)) required in the theoretical490

lattice in Fig. 2a.491

Performing the above hybrid (linear and nonlinear) control on each loudspeaker, they all be-492

come Active Electroacoustic Resonators [60–63] (labeled with AERn in Fig. 3a), presenting493

the desired properties for realizing HFn. A low level of less than 1 Pa is maintained for sys-494

tem excitation. It ensures the linear behaviors of the loudspeakers in the passive (control off)495

regime. Thus, nonlinearity is generated and tuned in an exact way, i.e., through the active496

control only (using the constant parameter GNL in the control law). The time responses of an497

and bn are measured by the microphones below Helmholtz resonators, as indicated in Fig. 3a.498

The edge states shown in Fig. 3b refer to their components at the fundamental frequency (edge499

state frequency fH). We confirm with measurements that the higher harmonic generations are500

consistently less than 1% in our acoustic system, which is in line with the theoretical model.501

The detailed experimental results for the nonlinear topological edge state at fH are provided502

in Fig. 15 in Appendix B.3. The cases where nonlinearities break chiral symmetry are investi-503

gated in Appendix B. Figs. 11, 13 and 16 show the corresponding theoretical, numerical, and504

experimental results, respectively. In addition to the state at fH that we have focused on in the505

main text, the results for the other edge state at fL are summarized in Appendix B.3. In Fig. 8,506

we theoretically demonstrate that the edge state at fL is extremely sensitive to the losses in the507

dominant passive resonators LFn. In Figs. 17 and 18, we prove with experimental observations508

that the actual losses, even already very weak, still cause the state fL to be severely distorted,509

see Appendix B.3 for more explanations.510
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B Supplementary results511

Here in the Appendix B.1, B.2 and B.3, we show supplementary results for the theoretical512

study of the lumped-element model in section 4, the time-domain simulations of the actual513

acoustic system, and the experimental realizations in section 5, respectively.514

B.1 Theoretical results515

This section includes:516

Fig. 6: Principle and physical explanations for generating dual-band topological edge states517

in our lumped-element system illustrated in Fig. 2a. Indeed, the impedance of the resonators518

HFn, having the form of iωM(HF)
n + 1/(iωC(HF)

n ), is dominated by the terms 1/(iωC(HF)
n ) at519

frequency much lower than its resonance frequency fHF (small value of ω), which is taken520

place when close to fLF, since we impose fLF < fHF in our system. In contrast, the impedance521

of the resonators LFn, reading iωM(LF)
n + 1/(iωC(LF)

n ), is dominated by the terms iωM(LF)
n at522

frequency much higher than its resonance frequency fLF, which occurs at the vicinity of fHF. For523

these reasons, only one type of resonances, LFn or HFn, can actually act, depending on whether524

the frequency is close to fLF or fHF (the other resonance behaves as either a capacitor or a mass,525

as aforementioned). Accordingly, our lumped-element model is equivalent to a system made526

of single-resonant unit cells at two different frequencies, as depicted in Fig. 6. If C(HF)
2k < C(HF)

2k−1527

is always met, then the two approximate cases correspond each to a classic topological lattice.528

This suggests that one can simplify the system by removing for instance the resonators LFn,529

which would also produce the recurrent relations that we derived for the current system in530

Eq. (4). However, when combining the two types of resonances, it is possible to achieve,531

within one single lattice, two topological edge states presenting completely different features,532

which motivated the development of our current system. The one we studied in the main text533

shows robustness in response to all potential losses in the system, whereas the other one at534

fL is exceedingly sensitive to losses in the dominant resonators LF, as witnessed by Fig. 8 in535

Appendix B.1. The experimental results for the state at fL are outlined in Figs. 17 and 18.536
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Figure 6: Dual-band topological edge states in a single finite system: analysis
in the linear regime. In the considered lumped-element model, we require that the
resonance frequency of the resonators LFn is lower than that of HFn, i.e., fLF < fHF.
Therefore, the resonators HFn exhibit mainly capacitance characteristics in the vicin-
ity of fLF, leading to the manifestation of only the resonance of LFn in the unit cell.
Similarly, when close to the frequency fHF which is far from fLF, the resonators LFn
have solely mass behaviors. Collectively, our system is equivalent to a classic topo-
logical lattice made of single-resonant unit cells at two different frequencies, denoted
as fL and fH, which depends on the resonance frequencies fLF and fHF, respectively, as
delineated herein and detailed explained in Section B.1 above. Their mathematical
derivations are provided in Appendix A.1.
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Fig. 7: Proof of the equivalence between the theoretically ideal non-driven boundary condi-537

tions b0 = ae = 0 (Fig. 7b) and the non-reflecting driven ones (Fig. 7c) that are more realizable538

for experimental realizations. The latter is derived and explained in detail in Section A.2.539
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Figure 7: Identification of realizable boundary conditions. (a) The lumped ele-
ment circuit considered, with b0 and ae the input and output boundaries, respectively.
qn designates the charge of the resonator HFn. (b) Zero-energy topological edge
state at fH derived with the ideal closed-closed boundary conditions (b0 = ae = 0),
and with a nonzero initial conditions of q1 ̸= 0 (left inset) or q2N+1 ̸= 0 (right in-
set), respectively. (c) Zero-energy topological edge state at fH derived with the Non-
Reflecting Boundary Conditions (NRBCs) for both ends of the system (see Appendix
A.2 for details), in which i2N+1 (i1) represents the electrical current circulating in
HF2N+1 (HF1), and γa = Zc/S with Zc the specific acoustic impedance of the air and
S the surface area of the propagation medium. The excitation is defined at each of
the two ends, respectively, through an incoming pressure source pinc. All results are
obtained with the 4-th order Runge-Kutta. They evidence the equivalence between
the two types of boundary conditions. In this study, we opt for the NRBCs in (c)
which is more realizable in our acoustic experiments.

20



SciPost Physics Submission

Fig. 8: The influence of losses on the two topological edge states, where losses in the capacitors540

Ca and in the resonators LFn are defined with respect to Zc, the specific acoustic impedance541

of the air. On the contrary, since the resonators HFn are eventually implemented with actively542

controlled loudspeakers, their losses are quantified through a constant factor µR acting on the543

natural resistance of the loudspeakers. The results in Fig. 8 show that the edge state at a lower544

frequency fL is more sensitive to the losses in the system, especially in the dominant resonators545

LFn. Conversely, the performance of the edge state at a higher frequency fH is more robust.546

It is relatively little affected by all potential losses, and we also performed active control to547

further minimize losses in the dependent resonators HFn.548
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Figure 8: Influence of losses on the two topological edge states at fH and fL: the
theoretical results when adding losses in each component. Here we add losses to
the resonators HFn (through µR), the LFn (with RLF) and the capacitors Ca (with Ra),
respectively, as sketched in (a). The spectra around the two corresponding linear
edge states are given in (b).
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Fig. 9: Detailed theoretical results obtained by solving Eq. (A.2) with the Harmonic Balance549

Method (HBM). More cases are shown here compared to Fig. 2 in the main text.550
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Figure 9: Evolution of the chiral symmetry protected nonlinear topological edge
states: detailed theoretical results. The solutions are obtained with the Harmonic
Balance Method (A.3). The level of nonlinearity is tuned using the constant param-
eter GNL, the value of which varies in the negative (a) and positive (b) directions,
respectively. All inset figures are displayed within the same amplitude range as in
Fig.2 in the main text, while results of more nonlinear cases are showcased here.

Fig. 10: Theoretical results obtained by solving Eq. (A.2) with the time integration method551

(fourth-order Runge-Kutta). The evolutionary trends of the nonlinear edge state are consistent552

with those obtained with HBM (Fig. 9), except that the limit cases cannot be reached on553

account of the transition process. We demonstrate with simulations that reaching the plateau554

limit is actually possible (Appendix B.2, Fig. 12), as the hopping ratios are caused to be larger555

in the practical realizations.556
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Figs. 11: To better demonstrate the necessity of preserving chiral symmetry, we perform studies557

for cases where chiral symmetry is broken. Two nonlinearities are taken as examples:558

(i), the first one is defined by559

(

V(NL)
2k−1 = +GNLC(HF)β2k−1 (bn−1 + an)

2 (bn−1 − an) ,

V(NL)
2k = +GNLC(HF)β2k (an + bn)

2 (an − bn) ,
(B.1)

where the signs for V(NL)
2k−1 and V(NL)

2k are all positive, as opposite to the nonlinearity with chiral560

symmetry where their signs are opposites.561

(ii), the second one is562

(

V(NL)
2k−1 = −GNL (bn−1 + an)

2 (bn−1 − an) ,

V(NL)
2k = +GNL (an + bn)

2 (an − bn) ,
(B.2)

where the signs keep the same as the case with chiral symmetry, but the applied constant563

factors in V(NL)
2k−1 and V(NL)

2k are modified.564

The results in Fig.11 demonstrate that, when nonlinearity breaks chiral symmetry, a cou-565

pling between the two sublattices A and B is created. Consequently, the sites bn in B move one566

by one together with those in A, which causes the edge state to be shifted in frequency and567

distorted in shape. The sane studies as in Fig. 11 are carried out numerically with time-domain568

simulations in Fig. 13 and experimentally with the acoustic system in Fig. 16, from which the569

same conclusion can be drawn.570
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Figure 11: Evolution of nonlinear topological edge state when nonlinearities
break chiral symmetry: theoretical results. Two forms of nonlinearities are inves-
tigated in (a) and (b), respectively. Results agree well with the numerical outcomes
in Fig. 13 and the experimental ones in Fig. 16 where the same forms of nonlinear-
ities are considered. They show that breaking chiral symmetry produces couplings
between the two sublattices A and B, which causes the edge state to be shifted in
frequency and distorted in shape.

25



SciPost Physics Submission

B.2 Simulation results571

This section includes572

Fig. 12: Detailed time-domain simulation results of the realized nonlinear topological edge573

states. Notably, practical situations are accounted for in the simulation (Appendix A.4), where574

the pressure is not precisely homogeneous in each closed volume Va, and the control uses the575

pressures close to each loudspeaker as inputs (Appendix A.6). In contrast to the simulations,576

the theoretical study assumes that the volume Va behaves as a capacitor Ca, thus presenting the577

same pressure over it. This eventually causes a difference in hopping ratios in the two studies.578

In theoretical results, the hopping ratio of the linear edge state is around 0.41, corresponding579

to the compliance ratio between C(HF)
2k and C(HF)

2k−1. Whereas the linear hopping ratio obtained580

in simulations is equal to 0.52, larger than the theoretical value. The experimental value is581

0.54, consistent with simulation outcomes.582

Fig. 13: Simulation results for two cases where nonlinearities break chiral symmetry. They583

are in comparison with the theoretical ones in Fig. 11 and the experimental ones in Fig. 16,584

where the same forms of nonlinearities are considered. All studies show good agreement.585

They evidence that breaking chiral symmetry produces couplings between the two sublattices586

A and B, which causes the edge state to be shifted in frequency and distorted in shape.587
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Figure 12: Time-domain simulation results. Results derived from time-domain
simulation of the actual acoustic system. Nonlinearity adheres to chiral symmetry.
The hopping ratios are (a) increased along GNL < 0, and decreased along GNL > 0,
respectively.
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Figure 13: Evolution of nonlinear topological edge state when nonlinearities
break chiral symmetry: simulation results. The actual acoustic system is simu-
lated in the time domain. Two forms of nonlinearities are investigated in (a) and
(b), respectively. Results agree well with the theoretical outcomes in Fig. 11 and the
experimental ones in Fig. 16 where the same forms of nonlinearities are considered.
They show that breaking chiral symmetry produces couplings between the two sub-
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B.3 Experimental results588

This section includes experimental results for the topological edge state at fH in Figs. 14, 15,589

16, and for that at fL in Fig. 17 and 18, i.e.,590

Fig. 14: Experimental results of the topological edge state at fH in the linear regime. In the591

frequency range of interest bounded by the dark dashed lines, the active (linear) control on592

the loudspeakers using Eq. (A.9) can achieve perfectly the impedance behaviors required by593

HFn in the theoretical model in Fig. 2a, despite the discrepancies in their natural (control-off)594

behaviors. The absorption coefficients of all loudspeakers are actively decreased from around595

0.7 to less than 0.1 in the vicinity of fH. The relevant topological edge state shows robustness596

also in responses to other actual losses (as evidenced in Fig. 8), thus it is eventually generated597

with barely any distortions in experiments.598
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Figure 14: Linear control results of topological edge state at fH. Comparison
between the cases of control off and control on. The measured specific acoustic
impedance ZS and absorption coefficient α are also illustrated in both cases, for all
the 17 loudspeakers in use. The edge state is linearly generated without distortions.

Fig. 15: Detailed experimental results of the nonlinear topological edge state at fH. More non-599

linear cases are shown compared to Fig. 3. They are in perfect agreement with both theoretical600

(in Fig. 9) and numerical (in Fig. 12) studies.601
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Figure 15: Evolution of the chiral symmetry protected nonlinear topological
edge states: detailed experimental results. More results are given here compared
to Fig. 3 in the main text, for (a) GNL < 0 and (b) GNL > 0, respectively.
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Fig. 16: Experimental results for cases where nonlinearities break chiral symmetry. They are in602

comparison with the theoretical ones in Fig. 11 and the simulation ones in Fig. 13, where the603

same forms of nonlinearities are considered. All studies show good agreement. They evidence604

that breaking chiral symmetry produces couplings between the two sublattices A and B, which605

causes the edge state to be shifted in frequency and distorted in shape.606
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Figure 16: Evolution of nonlinear topological edge state when nonlinearities
break chiral symmetry: experimental results. Two forms of nonlinearities are
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nonlinearities are considered. They show that breaking chiral symmetry produces
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Fig. 17: Experimental results of the topological edge state at fL in the linear regime. The607

(linear) impedance properties (bandwidths and frequency) of the loudspeakers are tailored608

targeting a frequency range different from that of the previous edge state at fH. The resonance609

of LFn plays a dominant role in this case, as explained in Fig. 6 in Appendix B.1. The associated610

edge state is sensitive to the losses in LFn, as theoretically demonstrated in Fig. 8. Since611

LFn are realized with passive Helmholtz resonators in experiments, where losses unavoidably612

exist (even already small, see A.5), the edge state is unfortunately generated with noticeable613

distortion at fL, i.e., the sites an and bn are strongly coupled.614
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Figure 17: Linear control results of topological edge state at fL. Comparison
between the cases of control off and control on. The measured specific acoustic
impedance ZS and absorption coefficient α are also illustrated in both cases, for all
the 17 loudspeakers in use. The edge state is linearly generated with considerable
distortions.

Fig. 18: Detailed experimental results of the topological edge state at fL when nonlinearity615

is introduced. The nonlinear evolution of the edge state can be roughly identified along the616

direction of GNL > 0, as can be noticed from the results in Fig. 18a. However, for GNL < 0617

(Fig. 18b), the edge state is dramatically destroyed, at which we fail to discover the expected618

nonlinear variation laws. This is mainly due to the loss effect already important in the linear619

regime (see Fig. 17), which remains consistently much stronger than the nonlinear effect after620

nonlinearity comes into play. Therefore, our study in the main part focuses on the other edge621

state at fH, where the losses in the dominant elements (the resonators HFn) can ultimately be-622

come negligible by applying active controls, resulting in perfectly intact nonlinear topological623

edge state.624
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Figure 18: Experimental results of the nonlinear topological edge states at fL.
Results are shown for (a) GNL > 0 and (b) GNL < 0, respectively. Remarkably, the
edge state at fL is severely distorted due to the actual losses in the system, even
though the losses are already small.
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