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Abstract

In this work, we proposed a novel approach for identifying quantum phase transitions in one-
dimensional quantum many-body systems using AutoEncoder (AE), an unsupervised machine
learning technique, with minimal prior knowledge. The training of the AEs is done with re-
duced density matrix (RDM) data obtained by Exact Diagonalization (ED) across the entire
range of the driving parameter and thus no prior knowledge of the phase diagram is required.
With this method, we successfully detect the phase transitions in a wide range of models with
multiple phase transitions of different types, including the topological and the Berezinskii-
Kosterlitz-Thouless transitions by tracking the changes in the reconstruction loss of the AE.
The learned representation of the AE is used to characterize the physical phenomena under-
lying different quantum phases. Our methodology demonstrates a new approach to studying
quantum phase transitions with minimal knowledge, small amount of needed data, and pro-
duces compressed representations of the quantum states.
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1 Introduction18

Understanding the quantum phases and phase transitions of quantum many-body systems is19

a fundamental problem in condensed matter physics. Different phases give rise to physical20

phenomena such as superconductivity and topological insulators [1] which can have a wide21

range of applications [2,3]. Detecting and characterizing these transitions in quantum many-22

body systems is often challenging and requires extensive study of the systems or significant23

computational resources.24

Traditional methods rely on the knowledge of the order parameters to detect phase tran-25

sitions in quantum systems [4]. These order parameters serve as indicators of the system’s26

state and its transitions between different phases. However, finding a suitable order param-27

eter is a highly non-trivial task, especially in topological systems. In topological systems, the28

order parameter is usually non-local, meaning it cannot be described by local observables at a29

single point in the system. Instead, it often involves correlations between distant parts of the30

system, making its identification and measurement more challenging. Recent advancements31

in the study of topological phases have highlighted the importance of non-local string order32

parameters in capturing the unique properties of these systems [5].33

Other popular approaches of detecting phase transitions involve measuring the entangle-34

ment [6–8] or the correlation length in the infinite Density Matrix Renormalization Group35

(iDMRG) [9]. These methods do not define an order parameter for the phase transition but36

attempt to provide information about how correlation changes in the system which often cor-37

responds to a phase change. However, they can be model or phase specific and may not always38

work. The entanglement is not uniquely defined and there exists ambiguity in partitioning the39

system so that the entanglement measured can signal the transitions between different phases.40

The correlation length in iDMRG also does not always possess significant changes across phase41

transitions (see an example in Appendix A). Furthermore, the use of iDMRG requires transla-42

tional symmetry and an area-law entanglement, which can limit its application in, for example,43

disorder systems or states of matters that are determined by long-time dynamics.44

With machine learning (ML) techniques being developed to analyze large data systems, re-45

cent studies have shown they can be efficient tools for solving problems in natural sciences [10]46

such as biology [11,12],chemistry [13] and physics [14] including identifying and character-47

izing quantum phases and phase transitions [15–19] . Early works such as Ref. [20] and Ref.48

[21] used supervised learning with binary classifier neural network to detect phase transition49

in the Ising model, and many-body localization mobility edge in the spin-1/2 Heisenberg chain50

in a random external field, respectively. These works demonstrated the viability of neural net-51

works in detecting phase transitions in equilibrium and out-of-equilibrium systems. However,52

they had the limitations of needing labeled data, thus prior knowledge of the phase diagram,53

for supervised training and was only demonstrated for binary classification of a single transi-54

tion.55

Since then new unsupervised machine learning techniques have been introduced to detect56

phase transitions in a variety of models without the need of labeled data and without empiri-57

cal knowledge of the order parameters [17–19]. Examples of promising recent works in this58

field are Chung et al. which used spin-spin correlation as input with Autoencoders (AE) and59

K-means clustering to find the transition points [17] , and Han et al. which used Monte Carlo60
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state configurations as input for an unsupervised contrastive learning inspired by SimCLR ar-61

chitecture [22] to find the phase transitions [18]. However, these works have some drawbacks62

in limitation and requirements, for example in Chung et al. work the choice of the spin-spin63

correlation functions for each system affects the results [17], making prior knowledge and64

understanding of the system essential for accurately determining the transition points. While65

in Han et al. work, up to 105 state configurations are required for each state in the driving pa-66

rameter space [18], thus demanding significant computational power and limiting the ability67

of exploring systems with multiple driving parameters.68

On the other hand, Kottmann et al. used the entanglement spectrum as input and traced69

the loss of an AE with symmetric connections trained on a single phase to obtain the phase dia-70

gram of the one-dimensional (1D) extended Bose-Hubbard model [19]. The working principle71

is similar to the fidelity approach which measures the similarity between two quantum states,72

and the phase transitions are signaled by the minimum of the fidelity [23–26]. Here the AE loss73

is the analogous to the similarity of the input data to the training region learned. The method74

unveiled the novel region of phase separation between the supersolid and superfluid without75

invoking the analysis of the order parameter and the energy gaps [27]. However, this method76

is not fully unsupervised in the sense that brief knowledge of the phase diagram is needed in77

advance to prepare the training samples. When applying the method on other condensed mat-78

ter systems, we found that the results depend on the choice of the training region. Moreover,79

some phase transitions do not show corresponding change with the entanglement spectrum80

input, necessitating a different input capturing more information and better representation of81

the quantum state.82

In this work, we use the reduced density matrix (RDM) of a many-body system as a better83

input to the AE to detect phase transitions. With fundamental modifications to the machine84

architecture, we trained our machine with data expanding over the entire parameter space,85

thus no prior knowledge of the phase diagram or the order parameter is required. Our scheme86

successfully identified the rich phase diagram in a variety of one-dimensional models, includ-87

ing the spin-1/2 XXZ model where the transition is of Berezinskii-Kosterlitz-Thouless (BKT)88

type, the spin-1 XXZ model possessing the topological Haldane phase, and the spinless Su-89

Schrieffer-Heeger model with interactions. Our approach requires no prior knowledge of the90

model studied, nor specific training regions, and it works with small amount of training data91

and on a variety of quantum many-body systems and different types of quantum phase tran-92

sitions. We also demonstrated the learning ability of the AE by analysing the embedded layer93

structure of the trained machine and showed that it learns a compressed representation of the94

states that is distinct for different phases.95

2 The machine learning model96

The methodology employed in this study comprises three main stages and is summarized in97

the flowchart shown in Fig. 1. In the first stage, data generation is executed using exact98

diagonalization (ED) [28] implemented in the python package QuSpin [29, 30]. Despite ED99

simulations are limited to small system size, this is balanced by its ease of implementation and100

accuracy, making it a valuable technique that is used to study contemporary topics in many-101

body systems [31, 32]. In addition, ED can simulate a wide range of non-equilibrium and102

complex systems which can be difficult for other numerical methods. For example, in some103

non-Hermitian systems, large-sized systems can be prone to numerical instabilities [33] that104

may hinder the use of iDMRG for the study. The ED method provides us with a numerical105

solution for the ground state |Ψ0(λ)〉 of the many-body system at different driving parameters106

λ with high accuracy. The system’s half-block RDMs are then calculated by tracing out the107
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Figure 1: Flowchart illustrating the steps taken to identify quantum phase transitions
in a quantum many-body system with a given Hamiltonian.

degrees of freedom outside the subsystem A, i.e. ρA = Tr/∈A |Ψ0(λ)〉 〈Ψ0(λ)|, and are chosen as108

the input data since they are rich in information about the system and previous works have109

shown the capability of using the RDM to derive the potential order parameters of different110

quantum phases [34,35]. When simulating the input data, we increment the driving parameter111

with steps of order 0.01, generating about 200-800 data points for systems with a single driving112

parameter and 40,000-160,000 data points for systems with two driving parameters. The113

resulting RDM data is then subjected to a scaling process utilizing the interquartile range114

(IQR) robust scalar and simple clipping (see Appendix B). This scaling technique is used due115

to its resilience against outliers, thereby ensuring the data utilized is not skewed.116

The second stage involves leveraging the AE, a neural network architecture designed for117

unsupervised learning. The AE consists of two primary components: an encoder, which maps118

the input to a lower-dimensional latent representation, and a decoder, which maps this lower-119

dimensional representation back to the original input space. The dimension of the latent space120

is usually set to be lower than that of the input to prevent the AE from trivially copying the121

input to the output. In this work, we use a deep learning model consisting of two layers of122

convolutional AE with a shortcut connection across the second layer as sketched in Fig. 2. The123

symmetric shortcut connection allows information to be passed directly from the encoder to124

the decoder, bypassing intermediate layers [36]. The feature maps from a shortcut connection125

and the connected deconvolutional layer are then added, allowing the network to combine126

information from multiple levels of abstraction.127

One application of AE is anomaly detection, where the network is trained on a dataset128

containing mostly normal or non-anomalous data. The AE encodes and decodes this data,129

and the reconstruction error - the difference between the original input and the reconstructed130

output - is calculated. A small reconstruction error indicates that the input data is similar to the131

training data and is therefore considered as normal. Conversely, a large reconstruction error132
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Figure 2: Schematic drawing of the RDM deep learning AE model architecture with
shortcut connection.

suggests that the input data differs significantly from the training data and may be anomalous133

or abnormal. Identifying phase transition is analogous to anomaly detection since data at the134

transition boundary differs significantly from the data within a phase. Therefore, one may135

train the AE with data from a single phase and detect the transition from the abrupt increase136

in the reconstruction error [19]. However, such an approach still requires brief knowledge of137

the phase diagram to select the training data.138

On the other hand, if an AE is trained on multiple distinct types of data, it may exhibit139

different reconstruction errors for each type. This is because the AE learning rate and com-140

pression loss of each data type can differ. Thus, an AE’s reconstruction errors may vary for141

different types of data depending on how well it has learned their respective characteristics142

during training. This means we can train the AE on entire parameter space containing multiple143

phases while still being able to distinguish the different phases, achieving the truly unsuper-144

vised detection of phase transitions. In this work, we trained our AE across the entirety of145

the data range for single driving parameter systems and on about 10% of the data chosen146

randomly for systems with two driving parameters.147

Finally, in the third stage, a visualization process is implemented. This is achieved by148

calculating the Mean Squared Error (MSE), which quantifies the loss between the original149

input and the AE’s reconstruction, i.e.150

MSE(A, B) =
1
n2

n
∑

i=1

n
∑

j=1

(Ai j − Bi j)
2, (1)

where A and B is the n× n input and output matrix respectively. In the following, we will use151

MSE and AE loss interchangeably but they should be understood as the equation above. The152

rate of change of the AE loss as a function of the driving parameters is then plotted for analysis.153

It is postulated that changes in the gradient of this plot can be interpreted as corresponding to154

a phase transition within the system under study. This is because transition points can act as155

outliers in data, leading to an abrupt increase in the reconstruction error. Furthermore, differ-156

ent phases will be learned with different accuracy resulting in changes in loss. By observing157

these changes, we aim to identify the phase transitions in the systems being studied. In ad-158

dition, we also extracted the learned embedding representation of RDM at the Autoencoder159

bottleneck and clustered it according to the quantum phases.160
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Figure 3: (a) The first eight eigenvalues of the half-block reduced density matrix of
the spin-1/2 XXZ chain with N = 20 sites. Inset shows zoom-in of the 6th to 8th
eigenvalues where spectrum crossing at ∆ = −0.5 and local maximum at ∆ = 2,
which do not correspond to a phase transition, are observed. (b) The AE loss as
a function of the driving parameter. There are peaks at ∆’s not corresponding to
the transition points but as a result of the changes in the entanglement spectrum
structure. The vertical dashed lines indicate the theoretically predicted critical points.

3 Learning the Phase Diagrams161

We apply the above scheme to several 1D quantum systems, including spin and fermionic mod-162

els possessing various types of phase transitions. The periodic boundary condition is adopted163

unless otherwise specified. The results demonstrate the capability of our method in identifying164

different quantum phase transitions with high accuracy.165

3.1 Spin-1/2 XXZ model166

The Hamiltonian of the XXZ model reads167

H =
∑

j

(S x
j S x

j+1 + S y
j S y

j+1 +∆Sz
j S

z
j+1), (2)

where S x
j , S y

j , Sz
j are the spin-1/2 operators and∆ is the parameter characterising the anisotropy168

in the spin-spin interaction. The ground state phase diagram consists of three distinct phases:169

the ferromagnetic (FM) phase, the critical (XY) phase, and the antiferromagnetic (AFM) phase170

[38–41]. The system experiences quantum phase transitions between these phases with the171

anisotropy parameter∆ at -1 and 1 respectively. The XY-AFM transition at∆=1 is a Berezinskii-172

Kosterlitz-Thouless (BKT) type which have been challenging for detection using other methods173

such as the fidelity susceptibility [25,42,43].174

In Kottman et. al.’s work, they mainly used the entanglement spectrum, i.e. the half-block175

reduced density matrix eigenvalues, from a single phase as training data for the AE [19].176

However, we find that the entanglement spectrum is insufficient and presents some issues177

when AE is trained on the entire parameter range as shown in figure 3(b). While there are178

peaks in the AE loss signalling the transitions at∆= −1 and 1 respectively, there are also other179
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Figure 4: Magnitude of the gradient of the AE loss for the spin-1/2 XXZ model train
on half-block RDM. Inset shows the AE loss as a function of ∆. Here N = 20. The
vertical dashed lines correspond to the theoretical transition points at ∆= ±1.

peaks with comparable magnitudes to the one at ∆ = 1 (the BKT transition) taking place180

within a phase. This can be understood from the qualitative structure of the entanglement181

spectrum, where the first eight values as a function of ∆ are plotted in Fig. 3(a). The two182

peaks at ∆ = −1 and 1 reflect the significant changes in the two dominating eigenvalues in183

the spectrum. However, the lower eigenvalues can also carry non-trivial features, for example,184

the crossing around ∆ = −0.5 and the local maximum around ∆ = 2 without the system185

undergoing a phase transition. This in turn causes the additional peak observed in the AE186

loss.187

This shows that using the entanglement spectrum to train on an entire parameter space188

requires prior knowledge of which eigenvalues to focus on. However, this will then defeat189

the goal of investigating phase transitions in new models. Even though the transitions in this190

spin-1/2 XXZ model have significant changes in the dominating eigenvalues, this may not be191

the case for other models. One example is the Spin-1 XXZ model which we considered in the192

next section (see Appendix C).193

To solve the issue, we turn to training the AE with half-block RDM data from the entire194

range of∆. The entanglement spectrum is derived from the eigenvalues of the RDM and offers195

insights into entanglement of the subsystem and its complement. The RDM, from which the196

entanglement spectrum is derived, provides a more comprehensive picture, encompassing a197

complete description of the subsystem’s state including the entanglement information. This198

depth of information within the RDM can make discerning quantum phases difficult. However,199

with neural networks capabilities analyzing complex data, it becomes feasible to use RDM to200

identify phase transitions. As such, in our use of AE to detect phase transitions in quantum201

many-body systems, the RDM stands out as a more advantageous input compared to the en-202

tanglement spectrum. Figure 4 shows the resultant AE loss and its gradient magnitude as a203

function of ∆. There are three main distinctive regions corresponding to the three phases,204

and the transitions are captured by the abrupt changes in the loss gradient near ∆ = −1 and205

1. The FM and AFM phases have low AE loss and gradient. On the other hand, the XY phase206

starts with the highest loss but decreases in a linear like fashion with small fluctuations that207

plateaus at the XY-AFM transition point. This suggests learning the FM and AFM phases is208

easier than the XY phase, which is also consistent with the expectation that the XY phase has209

a more complex order parameter. Note that despite the similarity in concept between the AE210
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Figure 5: (a) The color map of the logarithm of the magnitude of AE loss gradient
for the spin-1 XXZ model with∆ and D as the driving parameters. (b) and (c) shows
the logarithm of the magnitude of AE loss gradient at fixed D = 0 and D = 0.8,
respectively. The vertical dashed lines correspond to the transition points predicted
in [37]. Lattice size of N = 12 is used here.

approach and the fidelity approach, we managed to detect the XY-AFM transition with GS data211

while the latter approach needed 1st excited state to detect the transition [26].212

3.2 Spin-1 XXZ model213

We next consider a system with more than one driving parameter. The one-dimensional Spin-1214

XXZ Model with uniaxial single-ion-type anisotropy given by the Hamiltonian [37]215

H =
∑

j

(S x
j S x

j+1 + S y
j S y

j+1 +∆Sz
j S

z
j+1) + D
∑

j

(Sz
j )

2, (3)

where S x
j , S y

j , Sz
j are the spin-1 operators at site j, ∆ is the spin-spin interaction anisotropy216

parameter, and D characterises the uniaxial sinlge-ion anisotropy. The system has a rich217

ground state phase diagram consisting of a topological Haldane phase, a large-D, Neel, FM218

and XY phases. The system undergoes quantum phase transitions between these phases as the219

anisotropy parameters ∆ and D are varied.220

Figure 5(a) shows the magnitude of the AE loss as a function of the driving parameters221

for the machines trained on RDM data. Given that our training data has increased by over an222

order of magnitude with two driving parameters, the AE’s loss and its gradient are significantly223
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Figure 6: Classifier phase prediction of spin-1 XXZ model. Black lines represents the
phase boundaries extracted from Ref. [37].

reduced. Therefore, we use a logarithmic scale when plotting to more clearly visualize these224

changes. Five distinct regions can be identified, among which the regions corresponding to225

the FM and XY phases are particularly prominent. Although the other regions have a close226

magnitude of the AE loss, clear boundaries separating these regions can be observed. In figures227

5(b) and (c), we extract the logarithmic changes in loss at fixed D = 0 and D = 0.8 respectively228

as a function of∆. The sudden changes in loss gradient align closely with the predicted phase229

transition points in the literature [37]. This alignment underscores the reliability of the method230

in estimating the transition points.231

To achieve clearer boundaries between the phases, especially between the XY, large-D and232

the Haldane phases, we trained 50 simple supervised classifier networks (with the architecture233

presented in Appendix D) on small regions (200 data points) centered within each phase as234

identified in Fig. 5, and used the networks to predict the phase diagram. The predicted phase235

diagram with the phase boundary averaged over the 50 runs is shown in Fig. 6, and the236

transition points for D = 0 and D = 0.8 are presented in Table 1. The obtained critical points237

match well with the expected results in Ref. [37] for transitions between the FM, XY, large-238

D, and Haldane phases, with a slight deviation in the Haldane-Neel transition. The slight239

deviation may attribute to the fact that the topological Haldane phase is more difficult to240

learn in general due to the long range entanglement and the classifier learned features of the241

Haldane phase near the Haldane-Neel transition are too similar to learned features of the Neel242

phase.243

After training the AE on the RDM data, it learns a compressed representation in each244

layer. We examine the learned representation at the bottleneck, where the RDM size has been245

compressed from 36×36 = 729×729 to 81×81. Figure 7 shows visualizations of the learned246

representations picked from two points in each phase. The learned representations from each247

phase show a distinct pattern, indicating the AE’s ability to learn distinct features for each248

phase.249
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D = 0
Transition Mean prediction ± std Expected
FM-XY -1.01 ± 0.00 -1.00 ± 0.05
XY-Haldane 0.05 ± 0.04 0.00 ± 0.05
Haldane-Neel 1.10 ± 0.03 1.20 ± 0.05

D = 0.8
Transition Mean prediction ± std Expected
FM-XY -1.45 ± 0.00 -1.50 ± 0.05
XY-LargeD -0.67 ± 0.05 -0.60 ± 0.05
LargeD-Haldane 0.67 ± 0.08 0.70 ± 0.05
Haldane-Neel 1.54 ± 0.03 1.70 ± 0.05

Table 1: Comparison of predicted and expected transition points in the spin-1 XXZ
model at different values of D. The error in the prediction is taken as the standard
deviation, denoted as "std". The expected value is taken from digitizing Fig. 1 in
Ref. [37] with an accuracy of 0.1.

FM:  = -1.8, D = 0.0 XY:  = -1.0, D = 0.4 LargeD:  = -0.2, D = 0.8 Haldane:  = 0.5, D = 0.3 Neel:  = 1.6, D = 0.0

FM:  = -1.7, D = 0.0 XY:  = -0.7, D = 0.4 LargeD:  = 0.0, D = 0.8 Haldane:  = 0.8, D = 0.3 Neel:  = 1.7, D = 0.0
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Figure 7: Learned bottleneck embedding of the five phases in spin-1 XXZ model.
The rows show that embeddings are different when ∆, D are sampled from different
phases, while the columns show that the embedding is similar when they are sampled
from the same phase.

We further analysed the learned representations by projecting them into 2D feature space250

using a non-linear dimensionality reduction technique known as Uniform Manifold Approxi-251

mation and Projection (UMAP) [44]. Dimensionality reduction is a process used in data anal-252

ysis and machine learning to simplify high-dimensional data into a lower-dimensional form,253

making it more manageable and computationally efficient. By reducing the number of random254

variables under consideration, it retains the essential features of the data, thereby facilitating255

tasks such as data visualization. The UMAP stands out for its effectiveness and efficiency. It256

operates on the principle that uses Riemannian geometry to construct a graph representa-257

tion of the high-dimensional data. The algorithm then optimizes a low-dimensional graph to258

closely resemble the high-dimensional one, resulting in a simplified representation that retains259

the original data’s topological structure. By preserving the global structure of data, UMAP al-260

lows for the clear identification of clusters or groups of similar data points, providing valuable261

insights that are critical in data-driven decision-making processes.262

We trained a UMAP transformer on 200 data points from each of the five phases observed263
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Figure 8: UMAP visualization of the AE learned representation for the spin-1 XXZ
model RDM projected onto a 2D feature space. Here the lattice size is N = 12, D = 0
and 0.8 in (a) and (b) respectively, with ∆ = [−2,2]. The data points are colored
with respect to the expected transition points in Ref. [37].

in Fig. 5(a) and use it to visualize the learned representations in the AE on a 2D feature space.264

Figures 8 (a) and (b) show the visualization of the learned representation at D = 0 and 0.8265

respectively for ∆ = [−2,2], which is the same range shown in Figs. 5 (b) and (c) . It is266

clear that each phase data points cluster together forming four separate clusters, with few267

outliers at transition boundaries, e.g. transition points between XY-Haldane being outliers,268

this matches with the small deviation of the theoretical transition point at ∆ = 0 shown in269

Figs. 5 (b) and (c). Being able to successfully cluster the phases embedding demonstrates270

that the learned representation contains information that correlates to the phase properties271

which makes it potentially useful in future analysis of the phases’ order parameters and other272

machine learning applications [45,46].273

3.3 The Su-Schrieffer-Heeger Model274

We further applied the proposed method to a spinless fermion model, namely the Su-Schrieffer-275

Heeger (SSH) model, which is a foundational model that has been frequently investigated in276

the study of topological insulators [35,47]. The interacting SSH model is characterized by the277

following Hamiltonian:278
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H = −t
∑

j

�

(1+η)c†
j,Ac j,B + (1−η)c

†
j,Bc j+1,A+ h.c.
�

(4)

+U
∑

j

n j,An j,B + V
∑

j

n j,Bn j+1,A,

where c†
j,A(B) and c j,A(B) are the creation and annihilation operators for a spinless fermion at279

site A(B) in the unit cell j, respectively. The parameter t represents the hopping amplitude280

between the nearest-neighboring sites and is taken to be 1 for convenience, η is the parameter281

characterizing the anisotropy in the intercell and the intracell hopping, and U and V char-282

acterize the strength of intracell and intercell interactions respectively, n j,A(B) = c†
j,A(B)c j,A(B)283

is the number operator at site A(B) of the j-th unit cell. In the absence of interactions, the284

SSH model exhibits a topological phase denoted as O− for η < 0 where a quasi-local order285

parameter has been identified by careful analysis of the RDM spectrum [35,47]. A topological286

phase transition takes place at η = 0 and the system transforms to a trivial phase denoted287

as O+ for η > 0 [48]. In the presence of interactions, the model exhibits a rich ground state288

phase diagram consisting of multiple phases [35].289

We study the model at η= −0.6 and the interaction range U ∈ [1.0, 5.0] and V ∈ [−4.0, 0]290

where the topological phase O−, the trivial phase O+, and a charge density wave (CDW) phase291

reside in. The logarithm of the magnitude of the AE loss gradient is shown in Fig. 9. Two292

boundary lines representing the transitions between the three phases are clearly observed in293

plot (a). These transition lines mostly agree with that found in previous works [35, 47]. In294

Fig. 9(b), we plot the logarithmic change of the loss at fixed U = 3 as a function of V . Sharp295

spikes are observed at values of V that are consistent with the transition points found in [35].296

The results further demonstrate the generalizability of our method to identify phase transition297

in many-body systems.298

4 Conclusion299

In this work, we have presented an approach for identifying and visualizing quantum phase300

transitions with minimal prior knowledge using unsupervised machine learning techniques301

that does not require labeled data and does not need specific regions to train on. Our method302

is based on neural networks, which enable us to measure changes in the reduced density ma-303

trix with driving parameters by analysing the reconstruction loss. We have demonstrated the304

capability of our method in detecting various types of phase transitions, including topological305

and BKT transitions, in several quantum systems. No prior knowledge of the order parameters306

or the phase diagram is required in the process, and our method does not necessitate a large307

amount of training data and is effective even with small system sizes. This makes the method308

readily applicable for studying phase transitions in a wide range of novel quantum systems,309

thus serves as a new tool that complements existing methods by providing new perspectives310

and broadening the range of the quantum systems that can be explored.311

In addition, we showed that relevant features of a phase can be extracted from the com-312

pressed representation embedding of the Autoencoder, which can be clustered according to313

the system’s phase with dimensionality reduction techniques such as UMAP. This suggests how314

quantum states are represented within neural networks and can be useful for further analysis315

to extract insights into the underlying physics of each phase and may help identify the order316

parameters.317

Looking forward, the approach described here can be further refined and expanded to318

tackle even more complex systems. For example, non-equilibrium systems such as the many-319
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Figure 9: (a) Color map of the logarithm of the absolute AE loss gradient for the
interacting SSH model with U and V as the driving parameters. (b) The logarithm
of the absolute AE loss gradient as a function of V at fixed U = 3. Dashed lines at
V = −3,−1.2 are the transition points obtained in [35]. Here η= −0.6 and a system
size of 10 unit cells is considered.

body systems with disorders, periodically driven systems with non-equilibrium phases such as320

discrete time crystals [49,50], or higher-dimensional systems.321
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A iDMRG correlation length in the Spin-1/2 XXZ Model464

Figure 10 compares the change in the gradient of AE loss with the correlation length obtained465

from iDMRG for spin-1 XXZ model in Eq. (3). Both methods accurately detect the topological466

to non-topological Haldane-Neel transition at ∆ = 1.2. However, the XY-Haldane transition,467

which is believed to be a BKT type, is not detected by the correlation length at ∆ = 0. In468

contrast, our method is able to capture this transition. This demonstrates an example of model469

specificity for iDMRG correlation length application and our method’s potential for broader470

applicability across different quantum systems.471
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Figure 10: The gradient of AE loss (in blue) and iDMRG correlation length ξ (in
red) as a function of the spin-spin interaction anisotropy parameter ∆ in Spin-1 XXZ
model. The uniaxial single-ion anisotropy is set to D = 0. A system of 12 sites is
considered in the ED simulation in the AE approach. The theoretical phase transitions
are indicated by the vertical dashed lines.

B Data Preprocessing472

Data preprocessing is a crucial step in preparing data for machine learning algorithms and can473

significantly impact the performance of the model. One essential aspect of data preprocessing474

is data scaling, which involves normalizing data to a common range to prevent variables with475

large ranges from dominating the model. While standard scaling techniques such as z-score476

normalization and min-max scaling are commonly used, they may not be robust to outliers,477

which can significantly impact model performance and can change data spread (min-max scal-478

ing compress data inliers into a narrow range) and data distribution (standard scalar assumes479

normal distribution of data). In contrast, interquartile range (IQR) robust scaling, as defined480

by481

Xscaled =
X −median(X )

IQR(X )
, (5)

is a technique that can be used to normalize data in the presence of outliers. IQR robust scaling482

is based on the interquartile range of the data, which is less sensitive to outliers than the483

mean or standard deviation. We found that IQR followed by clipping outlier values is the best484
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performing scaling technique because the magnitude of the RDM values differs significantly485

across different phases and we need to scale the data such that all data is of similar order of486

magnitude. After the IQR robust scaling, we implement additional simple clip scaling to the487

99.9 percentile of the data to further reduce the influence of outlier points.488

C Entanglement Spectrum in the Spin-1 XXZ Model489

Figures 11 (a) and (b) show the first few values of the entanglement spectrum of the Spin-1490

XXZ. The first three dominating values of the spectrum are featureless at the transition be-491

tween XY-Haldane phases at ∆ = 0. The transition can be only observed starting from the492

4th eigenvalue where there is a level crossing. However, besides the features observed at the493

true critical points, lower eigenvalues also show non-trivial changes at ∆ = −0.8 and ∆ = 1494

which do not correspond to a phase transition. This will in turn lead to extra peaks in AE loss495

when it is trained with entanglement spectrum data as shown in figure 11 (c). This further496

demonstrates the deficiency of using ES as input for the AE.497
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Figure 11: (a) The largest three eigen-values of the half-block RDM of the spin-1
XXZ model of lattice size N = 12, D = 0. The values change significantly near the
FM-XY transition and the Haldane-Neel transition at ∆ = −1 and 1.2 respectively,
but not the XY-Haldane transition point at∆ = 0. (b) Tthe 4th, 6th, 8th values of the
entanglement spectrum. They show significant features at∆= −0.8 and 1 which do
not correspond to any phase transitions. (c) Loss of AE trained on the entanglement
spectrum. Vertical dashed lines indicate the theoretical transition points.

D Classifier for phase prediction of the spin-1 XXZ model498

Figure 12 and Table 2 shows the schematic drawing and the detailed architecture of the net-499

work used for phase classification in the spin-1 XXZ model. The architecture is composed of500

two convolutional layers with strides and kernel size 3× 3 followed by flatten and two dense501

layers with final softmax prediction layer that gives probability of each phase. Dropout of 20%502

is used between dense layers to prevent overfitting.503

19



SciPost Physics Submission

RD
M

Inp
ut

Co
nv
1

Co
nv
2

De
ns
e1

De
ns
e2Fla

tte
n

Dropout

FM

XY

LargeD

Haldane

Neel

Dropout Dropout

So
ftm
ax

pr
ed
ict
ion

Figure 12: Schematic drawing of the RDM convolutional classifier model architec-
ture.

Layer Number Layer Type
1 Input
2 Conv2D + pooling
3 Conv2D + pooling
4 Flatten
5 Dropout
6 Dense
7 Dropout
8 Dense
9 Dropout
10 Dense (Softmax)

Table 2: Classifier model architecture
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