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Abstract

The mean-field theory of Kinetically-Constrained-Models is developed by considering the
Fredrickson-Andersen model on the Bethe lattice. Using certain properties of the dynam-
ics observed in actual numerical experiments we derive asymptotic dynamical equations
equal to those of Mode-Coupling-Theory. Analytical predictions obtained for the dynam-
ical exponents are successfully compared with numerical simulations in a wide range
of models, including the case of generic values of the connectivity and the facilitation,
random pinning and fluctuating facilitation. The theory is thus validated for both con-
tinuous and discontinuous transitions and also in the case of higher order critical points
characterized by logarithmic decays.
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1 Introduction20

One of the most debated questions in glass physics is whether glassy behavior is caused by21

a genuine thermodynamic transition that would be observed if one could equilibrate super-22

cooled liquids below the experimental glass transition [1]. Kinetically-Constrained-Models23

(KCM) [2,3] are often invoked as a proof that such a transition (that is absent in KCM’s) is not24

a logical necessity and that instead dynamic facilitation alone induces the essential features of25

glassiness, including aging and dynamical heterogeneities, that are well documented numeri-26

cally in these models. Besides, recent numerical studies [4] performed with the swap technique27

suggest that dynamic facilitation is indeed at play in supercooled liquids, strengthening ear-28

lier insights [5]. Be as it may, it should be noted that the status of KCM’s as faithful models29

of supercooled liquids relies essentially on numerical studies: important advances have been30

made by the mathematical community [3] but a full theoretical and analytical understanding31

is still lacking. One important issue is the connection with Mode-Coupling-Theory (MCT) [6]32

that has been explored by many authors [7–13]. Efforts to describe theoretically KCM dy-33

namics along this line date back to the very first papers on KCMs [14, 15]. In these earlier34

analytical treatments, approximations were used to derive MCT-like equations, whose solu-35

tion displays many non-trivial features of the dynamics. However, much as in MCT, they also36

wrongly predict a spurious glass transition that is not at all present in actual systems as studied37

by numerical simulations, leading many people to dismiss these approaches altogether. Others38

believe instead that the theory can be fixed and various solutions have been proposed in the39

literature [16–21] but the issue is still considered open. A recent scenario posits that the ap-40

proximations involved have a mean-field (MF) nature and it turns out that taking into account41

fluctuations beyond MF the spurious transition becomes a crossover as observed in realistic42

systems [22,23]. This opens the possibility that the avoided singularity itself, present in both43

KCM’s, Spin-glasses and supercooled liquids, is the real origin of glassy behavior as observed44

above the experimental glass transition, independently of the actual mechanism that causes it45

(e.g. facilitation) and also independently of the presence or not of a thermodynamic transition46

at lower temperatures. At any rate, while MF theory can be worked out analytically in full in47

the case of fully-connected Spin-Glass models [24,25] and supercooled liquids in the limit of48

infinite dimensions [26], a mean-field theory of KCM was still lacking. In this paper we solve this49

problem considering KCMs on the Bethe lattices (BL), i.e. finite-connectivity random graphs50

in which the neighbourhood of a random-chosen site is typically a tree up to a distance that51

is diverging in the thermodynamic limit. Starting from some simple features of the dynamics52

as observed in actual numerical experiments we derive exact MCT-like dynamical equations53

in the most straightforward way. This allows to easily compute the dynamical exponents and54

the predictions are then successfully verified by extensive numerical simulations in a variety55

of models.56

The paper is organized as follows. In Sec. 2, we study the dynamics of the Fredrickson-57

Andersen Model (FA) on the Bethe lattice. In Subsec. 2.1 we define the FA and discuss its glassy58

phenomenology. In Subsec. 2.2, we derive an exact closed equation of motion for the order59

parameter, the persistence function, in the β-regime in the case of BL with fixed coordination60

z = 4 and facilitation f = 2, leaving some technical details to Apps. A and B. In particular, in61

App. A we discuss the case of generic z and f . In Subsec. 2.3 we address the case of FA with62
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continuous transition. In Subsecs. 2.4 and 2.5 we study FA with random pinning and mixed63

facilitation, respectively. Some details of the random pinning are discussed in Apps. C and E.64

In Subsec. 2.6 we show that the spin-spin correlation exhibits the same critical behavior as the65

persistence function. Finally, in Sec. 3 we presents the conclusions. In App. D we provide the66

details of the numerical simulations.67

2 The Fredrickson-Andersen Model on the Bethe Lattice68

2.1 Definitions and glassy phenomenology69

We consider the Fredrickson-Andersen (FA) KCM [14, 15]. Take a system of N independent70

Ising spins with Hamiltonian H = 1
2

∑

i si , meaning that an initial equilibrium configuration is71

easily generated numerically and that the density of negative spins is p = (1+e−β)−1. Complex72

behavior occurs because of a dynamic constraint: a spin can flip only if it has at least f (the73

facilitation) of its z nearest neighbors in the excited (up) state. The relevant observable is74

the persistence, that is equal to one until the spin flips for the first time and zero at all later75

times. Here following [27] we consider the persistence of the negative (blocking) spins. The76

FA model on the Bethe lattice is known to exhibit dynamical arrest [28–33]: at and below the77

critical temperature Tc the persistence converges to a plateau value φplat that is approached78

in a power-law fashion. The transition is intimately related to bootstrap percolation (BP) (also79

called k-core) [3] because the presence of a BP cluster in the initial configuration implies that80

the corresponding spins are blocked at all times, thus both Tc andφplat can be easily computed81

from its solution on the Bethe lattice (see Ref. [28] and the App. A). In particular for z = 482

and f = 2 the average persistence φ(t) obeys at Tc = 0.480898 (pc = 8/9):83

φ(t)−φplat ≈
1

(t/t0)a
, t ≫ 1 , (1)

where φplat = 21/32 1. The problem is that through the mapping with BP we can compute84

the critical temperature and the plateau value (even their fluctuations [27, 35]), but not the85

dynamical exponent a. Furthermore numerical simulations [27–29, 32] have shown that the86

transition has a Mode-Coupling-Theory nature. This means that for temperatures near Tc there87

is a β-regime corresponding to time-scales τβ on which the persistence is almost equal toφplat88

followed, in the liquid phase (T > Tc), by the α-regime during which the persistence decays89

from φplat to zero. Within MCT the deviations of the dynamical correlators from the plateau90

value in the β regime is controlled by the following equation [6]:91

σ = −λ g2(t) +
d
d t

∫ t

0

g(t ′) g(t − t ′) d t ′ , (2)

where σ is a linear function of Tc − T . In the liquid phase Eq. (2) implies that g(t) leaves the92

plateau with a −t b law, and the model-dependent exponents a and b are determined by the93

so-called parameter exponent λ through94

λ=
Γ 2(1− a)
Γ (1− 2a)

=
Γ 2(1+ b)
Γ (1+ 2b)

. (3)

From Eq. (2) it also follows that τβ diverges with σ from both sides as τβ ∝ |σ|−1/(2 a).95

Similarly the time-scale of the α regime increases as τα ∝ |σ|−γ with γ = 1/(2a) + 1/(2b).96

1The overlap function exhibits similar features to the persistence function, namely in the long-time limit it jumps
at Tc from zero to a finite plateau value, which is approached with the same power-law behaviour of Eq. (1) [31,34].
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Sellitto [29] has shown numerically that all the above scaling laws are satisfied in FA models97

on the BL, as if for some reason the persistence obeyed Eq. (2) with g(t)≡ φ(t)−φplat . In the98

following we show that this is indeed the case, obtaining also analytical expressions for the99

exponents a and b through the parameter λ. We present the argument for the z = 4, f = 2 case100

and then extend it to generic values. This allows to demonstrate the theory more broadly, also101

in presence of continuous transitions, where φplat = 0. We then study random pinning [32],102

thus confirming the theory for logarithmic time-decays as well. Further validation will come103

from mixed facilitation models [36].104

2.2 Dynamical equations in the β regime105

To derive the equation we begin with a number of definitions. The blocked persistence φb(t) is106

the fraction of negative spins that have been blocked at all times less than t. Naturally we have107

φ(t) ≥ φb(t) as a spin that is facilitated (i.e. not blocked) does not necessarily flip, however108

one can argue and confirm numerically (see App. B) that at large times δφb(t)≡ φb(t)−φplat109

and δφ(t)≡ φ(t)−φplat approach zero with the same leading term (t/t0)−a. More precisely110

one can argue that the difference φ(t)−φb(t) is proportional to dφ/d t, and thus it vanishes111

with a much faster power law 1/ta+1. We refer the reader to App. B for a complete discussion112

of this point. We also define the zero-switch blocked persistence φ(0)b (t) as the fraction of neg-113

ative sites that have been blocked up to time t because at least three of their neighbors have114

remained in the negative state at all times less than t.115

The possible cases can be represented graphically as:116

+ = φ(0)b (t), (4)

where the full lines represent the neighbors of the blocked site (circle) which have always117

remained negative at all times less than t, and the dashed line the others.118

We also define the one-switch blocked persistence φ(1)b (t) as the fraction of negative sites119

that have been blocked because two neighbors have been always negative, a third neighbor120

has been negative up to some t ′, and a fourth neighbor has been negative between some121

time 0 < t ′′ < t ′ and t. Note that this fourth neighbor should not have been negative at all122

times between 0 and t, since this contribution is already counted in φ(0)b (t). Again this can be123

represented graphically:124

= φ(1)b (t). (5)

The top lines in the diagram (5) represent a switching couple of neighbors: the top right line125

corresponds to a neighbor which is negative up to time t ′, and the top left line a neighbor126

which is negative between t ′′ and t.127

To clarify the origins of the names we note that at each time less than t a blocked site has a128

blocking set, i.e. a set of at least three neighbors in the negative (blocking) state. Given a time129

range (t, t ′) we say that there is a minimal blocking set if the intersection between the blocking130

sets at all times in the interval is itself a blocking set. Now the zero-switch persistence counts131

those spins for which there is a minimal blocking set in the interval (0, t), while the one-switch132

persistence counts those blocked spins for which there is a minimal blocking set between zero133

and t ′ and a different minimal blocking set between t ′ and t. Finally ∆φb(t) > 0 counts all134

contributions to φb(t) other than φ(0)b (t) and φ(1)b (t):135

φb(t) = φ
(0)
b (t) +φ

(1)
b (t) +∆φb(t) . (6)
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Figure 1: The hierarchy between the different contributions to the blocked persis-
tence as observed in numerical simulations on the BL for f = 2, z = 4 and p = pc

(N = 16×106). From top to bottom: φ(0)b (t)−φplat ,φ
(1)
b (t),∆φb(t). The value of a

used to construct the asymptotic (dashed) lines is given by the analytical expression
obtained for λ= 2/3.

A crucial observation is that at large times a hierarchy between the different contributions136

emerges, as shown in Fig. 1:137

1≫ φ(0)b (t)−φplat ≫ φ
(1)
b (t)≫∆φb(t) t ≫ 1 . (7)

This implies that the critical behavior of φb(t) (and thus of φ(t) as we said earlier) is given138

by φ(0)b (t) at leading order. In turn, φ(0)b (t) can be written exactly in terms of the cavity139

persistence φ̂(t), defined as the probability that a site persists in the negative state at all times140

smaller than t if we force one of its neighbors (the root) to be negative at all times. We have141

indeed:142

φ
(0)
b (t) = 4 p φ̂(t)3(1− φ̂(t)) + p φ̂(t)4. (8)

Note that the above equation is the very same that one encounters in bootstrap percolation143

φplat = 4 p φ̂3
plat(1− φ̂plat) + p φ̂4

plat , (9)

where φplat is the probability that a site belongs to the k-core, and φ̂plat is the corresponding144

cavity quantity. We emphasize that the previous formula holds because one can factorize the145

contributions from different branches, this is possible due the tree-like structure of the Bethe146

lattice but would not hold in a generic, say 2D, lattice.147

At large times the distance from the plateau value, φ(0)b (t)−φplat , is proportional to the148

difference between φ̂(t) and its plateau value φ̂plat = 3/4. In particular at the critical tem-149

perature pc = 8/9 we have150

φ
(0)
b (t)−φplat ≈

3
2
δφ̂(t) , δφ̂(t)≡ φ̂(t)− φ̂plat . (10)

The cavity persistence is the typical object that occurs in analytical computations on the Bethe151

lattice, and indeed in the following we will show that it obeys a self-consistent equation. As152
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we did for the persistence we introduce the blocked cavity persistence φ̂b(t), that counts the153

cavity sites that were blocked at all times t ′ < t. Similarly to the site persistence one can154

argue that at large times φ̂b(t) and φ̂(t) have the same critical behavior approaching φ̂plat155

with the same leading term (2/3)/(t/t0)a. More precisely one can argue that the difference156

φ̂(t) − φ̂b(t) is proportional to dφ̂/d t and thus it vanishes with a much faster power law157

1/ta+1, φ̂(t) = φ̂b(t) + O(1/ta+1). The cavity blocked persistence can be also written as a158

sum of zero-switch and one-switch terms:159

φ̂b(t) = φ̂
(0)
b (t) + φ̂

(1)
b (t) +∆φ̂b(t), (11)

and the crucial hierarchy emerges at large times as well:160

1≫ φ̂(0)b (t)− φ̂plat ≫ φ̂
(1)
b (t)≫∆φ̂b(t) t ≫ 1 . (12)

If we replace δφ̂b(t) for δφ̂(t) (which is correct at order O(1/ta+1)) and neglect ∆φ̂b(t)161

(which is correct to order 1/t2a according to Fig. 1) we obtain:162

δφ̂(t) = δφ̂(0)b (t) + φ̂
(1)
b (t), (13)

where both terms in the RHS can be expressed in terms of δφ̂(t) to obtain a closed equation.163

Let’s discuss φ̂(0)b . The zero-switch cavity persistence is given exactly by:164

φ̂
(0)
b (t) = 3 p φ̂(t)2(1− φ̂(t)) + p φ̂(t)3, (14)

to be compared with the corresponding BP expression:165

φ̂plat = 3 p φ̂2
plat(1− φ̂plat) + p φ̂3

plat . (15)

In particular, close to the critical probability pc = 8/9, i.e. for small δp ≡ p − pc , we have on166

the time-scale τβ of the β-regime:167

δφ̂
(0)
b (t) = δφ̂(t) +

27
32
δp−

4
3
δφ̂2(t) + . . . (16)

Note that the linear term δφ̂(t) cancels with the LHS of Eq. (13) and thus we have to study168

the equation at the next order, where φ̂(1)b (t) = O(1/t2 a) contributes. On the other hand at169

this order it is still correct to neglect ∆φ̂b(t) = O(1/t3 a).170

Let’s discuss the second summand of Eq. (13), φ̂(1)b (t). According to the definition of171

φ̂
(1)
b (t)we have one neighbor that remains negative up to a time t ′, another one that is negative172

between time t ′′ and t with 0< t ′′ < t ′, and a third one that is negative at all times less than173

t. The probability that a cavity site flips between time t ′ and t ′+d t ′ is given by −(dφ̂/d t ′)d t ′.174

The total probability that one site is negative between time t ′′ and t with 0 < t ′′ < t ′ can be175

computed invoking the reversibility of the dynamics: it is equal to the probability that starting176

at equilibrium at time t, and moving backward in time the site is negative up to time t − t ′177

but not up to time t, leading to a factor φ̂(t − t ′) − φ̂(t). As already discussed we have to178

subtract φ̂(t) because the case t ′ = 0 (and then t ′′ = 0) leads to a contribution which is already179

taken into account by the diagram with one dashed leg in Eq. (4). At this point integrating180

over t ′, multiplying by a factor six counting all possible switching couples of neighbors, by the181

probability p of initialising the cavity spin in the negative state, and by the probability φ̂(t)182

that the third neighbor remains negative at all times less than t we obtain:183

φ̂
(1)
b (t) = −6 p φ̂(t)

∫ t

0

dφ̂
d t ′
(t ′) (φ̂(t − t ′)− φ̂(t)) d t ′ . (17)
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Figure 2: Parametric plot of the relative shift of the effective exponent ae f f (see the
text) with respect to the analytical prediction a vs. the shift from the plateau. From
top to bottom: z = 6 f = 4, z = 5 f = 3 and z = 4 f = 2. Each point is obtained by
performing numerical simulations at different sizes (4× 106 ≤ N ≤ 32× 106), and
then extrapolating to infinite volume. The dashed lines are guides for the eye. Inset:
distance of the persistence from the plateau value vs t. From bottom to top z = 6
f = 4, z = 5 f = 3 and z = 4 f = 2. The continuous lines correspond to Cz, f t−az, f ,
where the az, f ’s are predicted analytically (see Table 1), and C6,4 ≈ 0.42, C5,3 ≈ 0.62
and C4,2 ≈ 1.15.

Note that to write Eq. (17) the local tree-like structure of the Bethe lattice is again crucial,184

allowing the contributions coming from the unconditioned neighbors of the cavity spin to be185

considered independent. At this point substituting Eqs. (16) and (17) into Eq. (13), we find186

that up to second order in δφ̂(t) the cavity persistence satisfies the following closed equation:187

0=
27
32
δp−

4
3
δφ̂2(t)− 4

∫ t

0

dφ̂
d t ′
(t ′) (φ̂(t − t ′)− φ̂(t)) d t ′, (18)

where δp = p−pc . Integrating by parts, Eq. (18) can be rewritten exactly as the MCT equation188

(Eq. (2)) with189

σ =
27
128

δp , λ=
2
3
→ a = 0.340356. (19)

The computation can be extended rather easily to generic ( f , z) values. In table 1 we display190

the results up to z = 7 while the complete formula is given in App. A. As we can see from191

Fig. 2, the predicted values compare well with the numerical data. The small discrepancies can192

be rationalized recalling that power-laws typically have power-laws corrections, and a more193

careful procedure is to study the effective exponent ae f f ≡ −d lnδφ/d ln t, that converges to194

the actual exponent at large times (small values of δφ).195

2.3 Fredrickson-Andersen models with continuous transitions196

If f = z−1 the BP transition occurs at pc = 1/(z−1) and it is continuous, i.e. φplat is a contin-197

uous function of p at pc . This means thatφplat = φ̂plat = 0 at the transition. One finds that for198
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z f pc φplat λ a b

4 2 0.888889 0.65625 2/3 0.340356 0.69661
5 2 0.949219 0.855967 5/8 0.355765 0.768048
5 3 0.724842 0.413229 0.715095 0.32053 0.615707
6 2 0.970904 0.922852 3/5 0.364399 0.812034
6 3 0.834884 0.657417 0.690587 0.330849 0.656427
6 4 0.602788 0.294163 0.734359 0.311953 0.583922
7 2 0.981146 0.95232 7/12 0.369929 0.841922
7 3 0.88713 0.775028 0.672474 0.338095 0.686806
7 4 0.730978 0.522658 0.719926 0.318419 0.607721
7 5 0.513688 0.226228 0.744684 0.307169 0.566936

Table 1: Dynamical parameters of the FA model on the Bethe lattice with connectivity
z and facilitation f .

z=3 f=2

z=4 f=3

z=5 f=4

10 50 100 500 1000 5000 104
1.×10-4

5.×10-4
0.001

0.005

0.010

0.050

0.100

t

ϕ
(t
)

Figure 3: From top to bottom: persistence function φ(t) for z = 3,4, 5 and f = z−1
(continuous models). The points represent numerical simulations (N = 16 × 106).
The dashed lines represent the analytical prediction z/2 (t/t0)−2a. The microscopic
time-scale t0, which for z = 3,4, 5 is t0 = 1.05,0.148, 0.0502, is the unique parame-
ter fitted from the data, while δ and a are computed analytically (see the text) .
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all values of the connectivity (see App. A), φ̂(t) decays as t−a with λ= 1/2 → a = 0.395263199

for all z. However, at variance with the discontinuous case, in which δφ(t)∝ δφ̂(t), φ(t)200

is quadratic in φ̂(t) and thus its dynamic exponent is doubled: φ(t) ≈ z φ̂2(t)/2 ∝ 1/t2a. In201

Fig. 3 we show the persistence for connectivity three, four and five, confirming the prediction202

that the exponent does not depend on the connectivity.203

2.4 A3 singularity in random pinning204

In [32, 37] Random Pinning (RP) has been considered. RP imposes a further dynamical con-205

straint: once the initial configuration is generated with a given value of p, a fraction c of spins206

drawn at random is not allowed to move. In the z = 4, f = 2 case, one finds a tricritical207

point at c = 1/5 and p = 5/6, where the transition becomes continuous, and the persistence is208

expected to decay logarithmically to a plateau value φplat = 3/8. The transition is indeed an209

instance of an A3 singularity [6,38,39] that has attracted considerable interest in a number of210

contexts including attractive liquids [40, 41], confined liquids [42, 43] and randomly pinned211

liquids [44, 45]. Following the same steps leading to Eq. (18) we find that in this case (see212

the App. C) the deviation from φplat at the tricritical point is described asymptotically by:213

0= µ g3(t) − g2(t) +
d
d t

∫ t

0

g(t ′) g(t − t ′) d t ′ (20)

with µ = 2/3, leading to [38]: g(t) ≈ 4ζ(2)µ−1 ln−2(t/t0) at large times (ζ(x) is the Rie-214

mann Zeta function). In Fig. 4 we plot the effective exponent parametrically, together with i)215

the leading term, ii) the correction 24ζ(3)µ−1 ln−3(t/t0) ln ln(t/t0) from Eq. (20) [38] and216

iii) the solution of a well known Schematic F12 Mode-Coupling-Theory model with parame-217

ters tuned to have the predicted asymptotic behavior, see App. E. As expected the effective218

exponent converges to zero at large times. The parametric expression allows to eliminate the219

dependence on the unknown timescale t0.220

2.5 Mixed facilitation models221

Models with mixed facilitation display complex phase diagrams also characterized by higher-222

order singularities [36, 47]. In particular we considered a z = 4 Bethe lattice in which a223

fraction c of the spins has facilitation three while the remaining 1− c fraction has facilitation224

two. In the (c, p) plane there is a line of continuous transitions pc = 1/(3c) for c > ct r ic = 1/2225

where we find λ = 1/(2 c). In Fig. 5 we display numerical data for the persistence together226

with the corresponding analytical predictions, again with excellent agreement.227

2.6 From the persistence to the correlation228

The theory presented so far deals with the time evolution of the persistence φ(t). As we said229

before, this is a standard observable in numerical simulations and most importantly allows230

to establish the deep quantitative connection between the FA model and bootstrap percola-231

tion. Another important observable, often studied in the literature, is the spin-spin correlation232

C(t) ≡ N−1
∑N

i si(0)si(t). For ( f , z) values corresponding to discontinuous transitions, nu-233

merical simulations show that C(t) displays the same critical behavior of φ(t): decreasing234

the temperature towards Tc it develops a two-step relaxation and below Tc it approaches at235

infinite times a plateau value qEA, in analogy with spin-glass models. We note that while φplat236

can be easily computed by means of the analogy with bootstrap percolation, the overlap qEA237

obeys more complex iterative equations that we have obtained and solved recently [34]. Thus238

some questions naturally arise: can we obtain dynamical equations for C(t) as well? Are the239
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Figure 4: Effective exponent vs. δφ at the A3 singularity of random pinning, see
text. Starting from the top left the first two continuous lines are the leading (red)
and subleading (green) approximate solutions of Eq. (20). The third line (orange)
is the solution of the F12 model [46]. The points, interpolated by the dashed line,
are numerical data, obtained by averaging over 200 samples of size N = 16× 106.
Inset: distance of the persistence from the plateau value φplat = 3/8 as a function
of t. Dashed line: numerical data, continuous line: solution of the F12 model. The
unknown timescale t0 is fitted from the data.
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Figure 5: Persistence function φ(t) of the mixed model f = 2,3 on a Bethe lattice
with z = 4. From top to bottom c = 0.7,0.8, 0.9,1 (see the text). The points represent
numerical simulations (N = 16 × 106). The dashed lines represent the analytical
prediction 2 (t/t0)−2a. In this case a, t0 depend on c. The time-scale t0, which for
c = 0.7,0.8, 0.9,1 is t0 = 0.44, 0.28,0.19,0.145, is the unique parameter fitted from
the data, while a is computed analytically (see the text) .
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Figure 6: Critical behaviour of the correlation in FA with f = 2 and z = 4 com-
pared with the persistence φ(t) of the blocked-down spin, and the total persistence
φ tot(t) of all blocked spins. From bottom to top: Aδφ(t) (blue dots), A′δφ tot(t)
(green dots), δC(t)≡ C(t)−qEA (orange dots), and a reference curve∝ t−a (dashed
line), with a = 0.340356. The prefactor A′ = 1 − qso f t(Tc) ≈ 0.548 is obtained by
comparing the square-root behavior of qEA(T ) close to Tc (that is computed analyti-
cally using the techniques presented in [34]) with that of the plateau value ofφ tot(T )
(see Eq. (22)), that can be easily found using the analogy with bootstrap percolation.
The prefactor of δφ(t) is A= A′ 143/128 ≈ 0.612. Numerical data are obtained on
a system with size N = 9× 106.
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dynamical exponents the same? Numerical simulations (see Fig. 6) confirm indeed that this240

is the case, i.e. we have at the critical temperature241

C(t)− qEA∝
1
ta

(21)

with the same exponent a obtained for the persistence. In the following we will give a simple242

argument to rationalize this finding.243

Below the critical temperature one can identify different equilibrium states where a finite244

fraction of the spins are blocked forever (their local magnetization is mi = ±1) while the re-245

maining “soft” spins have local magnetization−1< mi < 1. In analogy with Spin-Glass models246

one can define the Spin-glass susceptibility χSG =
∑

i |〈sis j〉 − 〈si〉〈s j〉|2/N that measures the247

fluctuations of the soft spins inside a given states. Now it turns out that, at variance with spin-248

glass models, the spin-glass susceptibility remains finite at the critical point. This was observed249

numerically in [31] and confirmed analytically in [34]. This apparently marginal feature is250

essential in the following. To make the argument let us sit at T = T−c where the blocked cluster251

has just appeared. As long as φ(t) has not reached φplat there are spins that have not moved252

yet but will move at later times. Clearly these sites make C(t) different from qEA because253

their local magnetisation has remained blocked to ±1 instead of taking its equilibrium value254

mi . The spins that have moved instead thermalize rapidly to the equilibrium value precisely255

because the soft spins are not critical, as implied by the fact that χSG remains finite T = Tc .256

In other words the magnetization of a spin that unblocks reaches rapidly its asymptotic value,257

even if we are at the critical point. It follows that the only thing that determines the deviations258

of C(t) from qEA is the fact that there is a number of spins that should be soft but have not yet259

moved and thus the critical behavior of the overlap is fully controlled by that of the persistence.260

We emphasize again that in order to make the argument it is essential that the fluctuation of261

the overlap inside a state are not critical and thus as soon as a spin unblocks it quickly reaches262

equilibrium. In the opposite case we would have seen an additional dynamical slowing down263

and a slower relaxation of C(t) compared to that of φ(t).264

The argument extends to temperature close to Tc either in the liquid or glassy phase, and265

implies that on the time-scale τβ of the β-regime the following relationship holds:266

C(t)− qEA = A(φ(t)−φplat) T ≈ Tc , t = O(τβ), (22)

where A is a constant that depends on ( f , z) but not on the temperature. Indeed consider267

the total persistence φ tot(t), which measures the fraction of spins (both up and down) that268

have remained unchanged since the initialization. The total persistence has the same critical269

behavior of φ(t). In particular, following the arguments of section 2.2, one finds that:270

φ tot(t)−φ tot
plat ≈

143
128

�

φ(t)−φplat

�

T ≈ Tc , t = O(τβ), (23)

where φ tot
plat = 2757/4096 can be easily computed using the analogy with BP. If spins rapidly271

thermalize after moving for the first time, then for T ≈ Tc and t = O(τβ):272

C(t) = φ tot(t) + qso f t(Tc)(1−φ tot(t)), (24)

since the self-overlap of blocked spins is equal to one. In Eq. (24) we introduced the av-273

erage overlap qso f t(Tc) of the soft spins at the critical temperature Tc . Therefore, subtract-274

ing the plateau values in (24), we find that Eq. (22) holds with A = A′ 143/128, where275

A′ = 1 − qso f t(Tc). Note that qso f t(T ) is regular at Tc , at variance with qEA(T ), that has a276

square-root singularity. The square-root singularity however is only determined by the fact277

that the fraction of soft spin has a square-root singularity:278

qEA(T )≈ qEA(Tc) + (1− qso f t(Tc))(φ
tot
plat(T )−φ

tot
plat(Tc)) (25)
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The quantity qso f t(Tc) can be computed by the techniques of [34], comparing the square-root279

behavior of qEA(T ) with that of φ tot
plat(T ).280

In conclusion we have shown that the critical behavior of δC(t)≡ C(t)−qEA is determined281

solely by the critical parameter δφ(t) ≡ φ(t) − φplat because δC(t) is a linear function of282

δφ(t) with prefactor A = A′ 143/128, where A′ = 1− qso f t(Tc). See Fig. 6 for a comparison283

between δC(t), δφ(t) and δφ tot(t)≡ φ tot(t)−φ tot
plat .284

3 Conclusions285

We have shown that the persistence of the FA model on the Bethe lattice obeys the critical286

equation of MCT. We note that this provides one of the most simple derivations of this equa-287

tion, being the main ingredient leading to the memory kernel obtained by simple probabilistic288

arguments. The theory has been extended and validated in a variety of contexts. The possible289

extension to models with conserved dynamics, notably the Kob-Andersen model [48–50] is left290

for future work. It is remarkable that the exact asymptotic equation is obtained solely from291

the assumption that ∆φb(t) (and ∆φ̂b(t)) is negligible at large times according to the hier-292

archy observed numerically. We are currently investigating the origin of this hierarchy whose293

understanding should eventually allow to compute systematically the corrections O(t−2 a),294

O(t−3 a), . . . , to the leading t−a behavior. Note in particular that from Fig. 1, ∆φb(t) seems to295

decay as t−3a.296

Acknowledgements297

Funding information We acknowledge the financial support of the Simons Foundation (Grant298

No. 454949, Giorgio Parisi).299

A The General Case ( f , z)300

In this section we derive the closed equation for the persistence, extending the argument pre-301

sented in Sec. 2.2 to generic ( f , z). The critical probability and the plateau value can be302

expressed in terms of the function:303

F(P, k, fb)≡
k
∑

i= fb

�

k
i

�

P i(1− P)k−i , (A.1)

where we set k ≡ z−1. The parameter P is the cavity probability of the BP cluster, namely the304

probability that a spin (cavity spin) is blocked if one of its neighbors (the root) is conditioned305

in the down state, and it obeys the equation:306

P = p F(P, k, fb), (A.2)

where fb ≡ k + 1− f is the number of neighbors that must be blocked in the negative state307

(besides the root) for the cavity spin to be blocked in the negative state. At the critical temper-308

ature the above equation develops a solution with P ̸= 0. In the discontinuous case P jumps309

from zero to a finite value at Pc . The finite value can be determined by the equation310

�

F(Pc , k, fb)− Pc
dF(P, k, fb)

dP

�

�

�

�

P=Pc

�

P− fb
c = 0 . (A.3)
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Note that the above equation is a polynomial of degree k− fb, and thus it is linear for f = 2,311

and quadratic for f = 3. The critical probability is given by:312

pc = Pc /F(Pc , k, fb) , (A.4)

while the plateau value is given by:313

φplat = pc F(Pc , k+ 1, fb + 1) . (A.5)

For f = z − 1 we have fb = 1, and the lowest power of P in the function F is one, implying a314

continuous transition (φplat = φ̂plat = 0) with315

pc = 1
Á�

dF(P, k, 1)
dP

�

�

�

P=0

�

=
1
k

. (A.6)

At this point, in order to compute the dynamical equation we have to study φ̂(1)b (t) (see MT) at316

the second order in δφ̂. Consider the cavity spin. We are interested in the case in which: fb−2317

neighbors (beside the root) are always blocked down up to time t, one neighbor is blocked318

down from 0 to t ′ < t, another neighbor is blocked down from t ′′ < t ′ to t. Following the319

same arguments of the case (4, 2), at the second order in δφ̂ we have:320

φ̂
(1)
b (t) = p Ck, fb

P fb−1
c (1− Pc)

k− fb−1

∫ t

0

�

−
dφ̂
d t ′
(t ′)

�

�

φ̂(t − t ′)− φ̂(t)
�

d t ′, (A.7)

where the combinatorial factor321

Ck, fb
=
�

k
fb − 1

�

(k− fb + 1)(k− fb) (A.8)

counts all possible couples of neighbours such that one of them is blocked down from 0 to322

t ′ < t, and the other is blocked down from t ′′ < t ′ to t. Thus the closed equation for δφ̂(t)323

becomes:324

0= F(Pc , k, fb)δp+ p
1
2

d2F(P, k, fb)
dP2

�

�

�

P=Pc

δφ̂2(t)+

+ p Ck, fb
P fb−1

c (1− Pc)
k− fb−1

∫ t

0

�

−
dφ̂
d t ′
(t ′)

�

�

φ̂(t − t ′)− φ̂(t)
�

d t ′. (A.9)

At this point integrating by part, we can write Eq. (A.9) in the MCT form [6]:325

σ = −λδφ̂2(t) +
d
d t

∫ t

0

δφ̂(t ′)δφ̂(t − t ′) d t ′, (A.10)

finding the two parameters σ and λ:326

σ =
F(Pc , k, fb)

pc Ck, fb
P fb−1

c (1− Pc)k− fb−1
δp (A.11)

327

λ= 1+

1
2

d2F(P,k, fb)
dP2

�

�

�

P=Pc

Ck, fb
P fb−1

c (1− Pc)k− fb−1
. (A.12)

In particular for f = 2 we have λ = 1+k
2 k . In the continuous case Eqs. (A.11) and (A.12)328

becomes329

σ =
1

k− 1
δp, λ=

1
2

, (A.13)

however, as already discussed, at variance with the discontinuous case, φ(t) is quadratic in330

φ̂(t) and thus its dynamic exponent is doubled: φ(t)≈ zφ̂2(t)/2∝ 1/t2a.331
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Figure 7: Difference between the average local persistence φ(t) and φb(t) (the
average local persistence of the sites that have never been facilitated up to time t)
in the case of z = 4 and f = 2 at the critical temperature. The dashed line is the
expectation C/ta+1∝ dφ/d t, C ≈ 180. The data correspond to the average of 80
samples of size N = 16× 106.

B Difference Between the Persistence and the Blocked Persistence332

As discussed in the MT the persistenceφ(t), the blocked persistenceφb(t), and the zero-switch333

persistence φ(0)(t) all have the same critical behaviour. This is easily observed in numerical334

simulations (see Fig. 8). In this section we want to discuss an argument for justifying this335

result. Let us note that in principle a spin could have been facilitated at some time in the past336

but did not switch due to a thermal fluctuation. However it is clear that the higher the number337

of times that it was facilitated, the lower the probability that it did not switch. Now due to338

the reversible nature of the dynamics, if the spin was facilitated at some distant time t ′ in the339

past with probability one, it must have been facilitated many times at later times, leading to a340

vanishing probability that it did not switch. In other words we expect that once a site becomes341

facilitated, it will switch with probability one after a finite time tsw that is short on the time342

scale of the critical dynamics. The only possibility is that the site has become facilitated at a343

time t ′ close to t, i.e. t − t ′ = O(tsw). On the other hand the number of sites that become344

facilitated between times t − tsw and t is given by345

φb(t − tsw)−φb(t)≈ −tsw
dφb(t)

d t
≪ φb(t), (B.1)

thus we expect that the difference between φ(t) and φb(t) is proportional O(1/ta+1) at large346

times, and that it can be neglected with respect to 1/ta. The argument is confirmed by the347

numerical data (see Fig. 7).348

C Random Pinning349

In the random pinning variation of the Fredrickson-Andersen model, after drawing the initial350

condition, a fraction c of sites selected at random are frozen (pinned), i.e. they are not updated351
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Figure 8: From bottom to top: zero-blocked persistence δφ0(t) = φ0(t) − φplat ,
blocked persistence δφb(t) = φb(t)−φplat , and persistence δφ(t) = φ0(t)−φplat
for z = 4 and f = 2 at the critical point. In this case pc = 8/9, φplat = 21/32 and
a = 0.340356. The data correspond to averages over 80 samples of size N = 16×106.

through the dynamics. In the case z = 4, f = 2, that we studied in the MT, the cavity probability352

of being blocked down is given by:353

P = p c + p (1− c) F(P, 3, 2). (C.1)

In the c − p plane Eq. (C.1) determines a critical line (see Fig. 9), which can be computed354

solving the following system of equations:355

1= p (1− c)
dF(P, 3, 2)

dP
= 6 (1− c) p P (1− P),

0= F(P, 3, 2)− P
dF(P, 3, 2)

dP
+

c
1− c

= P2 (4P − 3) +
c

1− c
.

(C.2)

The plateau value of the persistence φplat is connected to the value of P through356

φplat = p c + p (1− c) F(P, 4, 3). (C.3)

For 0 ≤ c < 1/5, when p is small, Eq. (C.1) admits a solution because of the fraction of357

pinned spins, and of a small fraction of unpinned spins which are blocked due to the presence358

of neighboring spins which are pinned down. By increasing p one finds another solution359

which appears discontinuously at the transition line. From a dynamical point of view this360

singularity is analogous to that obtained at c = 0. In particular the expression for the λ361

parameter exponent is given by expression Eq. (A.12), where in this case the critical cavity362

probability Pc depends on the fraction c of pinned spins through Eq. (C.2).363

Increasing c, the jump of φplat at the critical line gets smaller and smaller and it vanishes364

for c = 1/5, p = 5/6, where the transition becomes continuous. This point is found by adding365

to system (C.2) the condition366

0=
d2F(P, 3, 2)

dP2
, (C.4)
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Figure 9: Phase diagram of the random pinning with z = 4, f = 2. The dashed line
corresponds to a discontinuous transition (A2 transition in the MCT terminology)
line. At the terminal point (c = 1/5, p = 5/6) the transition becomes continuous with
a logarithmic decay of the persistence (A3 MCT transition). In the inset: φplat as a
function of p at fixed value of c. From right to left the first three curves correspond to
c = 0.18, 0.19,195, and the last curve is obtained at c = 1/5, crossing the A3 point.
Note that at variance with the unpinned case here φplat is in general different from
zero also in the liquid phase.

which implies that in the equation for the dynamics, instead of quadratic term δφ2 (see367

Eq. (A.9)) here there is a cube δφ3. Indeed at the continuous critical point one finds:368

0=
1
6

d3F(P, 3, 2)
dP3

�

�

�

P=Pc

δφ̂3(t) + 6 Pc

∫ t

0

�

−
dφ̂
d t ′
(t ′)

�

�

φ̂(t − t ′)− φ̂(t)
�

d t ′. (C.5)

Equation (C.5) corresponds in the MCT language to an A3 singularity which, as discussed in369

the MT, is associated with a logarithmic decay of the persistence.370

D Numerical Simulations371

The numerical simulations have been performed according to the following scheme. The first372

step is the generation of the graph. In our case we consider a Bethe lattice with fixed coordina-373

tion z. More precisely we start from an “elementary cell” C with n nodes, such that each node374

has z neighbors. After that we create M replicas, C1, . . . ,CM of the cell. In this way each site375

i has M replicas, that we denote by σa
i , where a = 1, . . . , M is the replica index. At this point376

we define a new graph. For each edge (i, j) of the cell, we generate a random permutation377

P of (1,2, . . . , M), and, for each a, we replace the edge connecting σa
i to σa

j with an edge378

connecting σa
i to σP(a)

j . Note that this procedure, the so-called M -layer construction [51],379

does not change the coordination of the nodes. In this way, as shown in [51], one obtains380

for large M an instance of Bethe lattice (the density of cycles of fixed length is vanishing for381

M →∞). The simulations discussed in the text are performed on lattices with coordination382
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Figure 10: Example of “elementary cells”. On the left the case z = 3, on the right
z = 5. The cells have periodic boundary conditions.

z = 3, 4,5, 6. The cases z = 4, 6 are obtained starting from, respectively, a square and a cubic383

cell. The cells for the cases z = 3, 5 are shown in Fig. 10 . In all cases we start from elementary384

cells which are bipartite, i.e. each node can be associated with either, say, a “black” or “white”385

label, in such a way as two nodes of the same color are not connected. As we will discuss386

shortly this is a particularly convenient choice for the dynamics. It is worth noticing that the387

M -layer construction conserves the bipartition property of the cells.388

The second step is the generation of the initial configuration. This part is trivial in KCMs389

since the probability distribution of the initial configuration is factorized on the sites of the390

lattice. After these two steps we are given an instance of the problem, that we want to evolve391

with the dynamics. We mainly used Metropolis moves (a negative mobile spin is flipped with392

probability e−β and a positive mobile spin is flipped with probability one) with a chessboard393

updating sequence (all black spins are updated sequentially and then all the white spins are394

updated sequentially). A fundamental observation [27] is that other dynamics (e.g. Glauber)395

and updating orders (e.g. random order) at large enough times produce curves which differ396

only by a constant shift in time, that in the mode-coupling equation affects only the unknown397

time-scale constant t0. As already observed in [27], the chessboard/Metropolis scheme turns398

out to be the most convenient in terms of CPU time and relaxation time of the dynamics.399

E The F12 Model400

The data shown in Fig. 4 of the MT were obtained solving numerically the following equation:401

ġ(t) + g(t) +

∫ t

0

dτK(t −τ) ġ(τ) = 0, (E.1)

with402

K(t) = g(t) + g2(t), g(0) = 1. (E.2)

The asymptotic behaviour of the previous equation corresponds to the asymptotic behavior403

of equation (10) in the MT with µ = 1. To obtain a solution corresponding to generic µ one404

has to divide the solution of (E.1) by µ. The data in the MT are obtained using the gitHub405

library [46].406
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