
SciPost Physics Submission

Theory of Kinetically-Constrained-Models Dynamics

Gianmarco Perrupato1⋆ and Tommaso Rizzo2,3

1 Department of Computing Sciences, Bocconi University, 20136 Milano, Italy
2 Institute of Complex Systems (ISC) - CNR, Rome unit, P.le A. Moro 5, 00185 Rome, Italy
3 Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 5, 00185 Rome, Italy

⋆ gianmarco.perrupato@unibocconi.it

Abstract

The mean-field theory of Kinetically-Constrained-Models is developed by considering the
Fredrickson-Andersen model on the Bethe lattice. Using certain properties of the dynam-
ics observed in actual numerical experiments we derive asymptotic dynamical equations
equal to those of Mode-Coupling-Theory. Analytical predictions obtained for the dynam-
ical exponents are successfully compared with numerical simulations in a wide range
of models, including the case of generic values of the connectivity and the facilitation,
random pinning and fluctuating facilitation. The theory is thus validated for both con-
tinuous and discontinuous transitions and also in the case of higher order critical points
characterized by logarithmic decays.
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1 Introduction19

One of the most debated questions in glass physics is whether glassy behavior is caused by20

a genuine thermodynamic transition that would be observed if one could equilibrate super-21

cooled liquids below the experimental glass transition [1]. Kinetically-Constrained-Models22

(KCM) [2,3] are often invoked as a proof that such a transition (that is absent in KCMs) is not23

a logical necessity and that instead dynamic facilitation alone induces the essential features of24

glassiness, including aging and dynamical heterogeneities, that are well documented numeri-25

cally in these models. Besides, recent numerical studies [4] performed with the swap technique26

suggest that dynamic facilitation is indeed at play in supercooled liquids, strengthening ear-27

lier insights [5]. Be as it may, it should be noted that the status of KCMs as faithful models28

of supercooled liquids relies essentially on numerical studies: important advances have been29

made by the mathematical community [3] but a full theoretical and analytical understanding30

is still lacking. One important issue is the connection with Mode-Coupling-Theory (MCT) [6]31

that has been explored by many authors [7–13]. Efforts to describe theoretically KCM dy-32

namics along this line date back to the very first papers on KCMs [14, 15]. In these earlier33

analytical treatments, approximations were used to derive MCT-like equations, whose solu-34

tion displays many non-trivial features of the dynamics. However, much as in MCT, they also35

wrongly predict a spurious glass transition that is not at all present in actual systems as studied36

by numerical simulations, leading many people to dismiss these approaches altogether. Others37

believe instead that the theory can be fixed and various solutions have been proposed in the38

literature [16–21] but the issue is still considered open. A recent scenario posits that the ap-39

proximations involved have a mean-field (MF) nature and it turns out that taking into account40

fluctuations beyond MF the spurious transition becomes a crossover as observed in realistic41

systems [22,23]. This opens the possibility that the avoided singularity itself, present in both42

KCMs, Spin-glasses and supercooled liquids, is the real origin of glassy behavior as observed43

above the experimental glass transition, independently of the actual mechanism that causes it44

(e.g. facilitation) and also independently of the presence or not of a thermodynamic transition45

at lower temperatures. At any rate, while MF theory can be worked out analytically in full in46

the case of fully-connected Spin-Glass models [24,25] and supercooled liquids in the limit of47

infinite dimensions [26], a mean-field theory of KCM was still lacking. In this paper we solve this48

problem considering KCMs on the Bethe lattices (BL), i.e. finite-connectivity random graphs49

in which the neighbourhood of a random-chosen site is typically a tree up to a distance that50

is diverging in the thermodynamic limit. Starting from some simple features of the dynamics51

as observed in actual numerical experiments we derive exact MCT-like dynamical equations52

in the most straightforward way. This allows to easily compute the dynamical exponents and53

the predictions are then successfully verified by extensive numerical simulations in a variety54

of models.55

We consider the Fredrickson-Andersen (FA) KCM [14,15]. Take a system of N independent56

Ising spins, si ∈ {±1}, for i = 1, . . . , N , with Hamiltonian H = 1
2

∑

i si . This setup allows57

for straightforward numerical generation of an initial equilibrium configuration, where the58

density of spins in the negative state is p = (1+ e−β)−1. Complex behavior occurs because of59

a dynamic constraint: a spin can flip only if it has at least f (the facilitation) of its z nearest60
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neighbors in the positive state. A relevant observable is the local persistence φi(t) of the61

negative (blocking spin). More precisely φi(t) is equal to one at site i if spin si is negative62

for all times t ′, 0 ≤ t ′ ≤ t, and zero otherwise. The average persistence φ(t) = 1/N
∑

iφi(t)63

counts the fraction of negative spins that never flipped up to time t, and it represents an64

order parameter for the problem. The FA model on the Bethe lattice is known to exhibit65

dynamical arrest [27–32]: at and below the critical temperature Tc the persistence converges66

to a plateau value φplat that is approached in a power-law fashion, meaning that for T ≤ Tc67

typical instances of the system contain an extensive cluster of spins that are blocked at all68

times. The appearance of such a cluster implies ergodicity breaking. In the ergodicity broken69

phase, the configuration space divides into an exponential number of equilibrium states [33].70

Interestingly, despite the global Boltzmann-Gibbs measure being factorized, conditioning on71

a state one finds that spins are non-trivially correlated. For a study of the static properties of72

the equilibrium states in the ergodicity-broken phase, we refer the reader to [33].73

The transition happening at Tc is intimately related to bootstrap percolation (BP) (also74

called k-core) [3] because the presence of a BP cluster in the initial configuration implies that75

the corresponding spins are blocked at all times. As shown in [27] (see also App. A), both Tc76

and φplat can be easily computed by means of this correspondence with BP by the solution of77

self-consistent equations. In particular for z = 4 and f = 2 the average persistence φ(t) obeys78

at Tc = 0.480898 (pc = 8/9):79

φ(t)−φplat ≈
1

(t/t0)a
, t ≫ 1 , (1)

where φplat = 21/32 1. The problem is that through the mapping with BP we can compute80

the critical temperature and the plateau value (even their fluctuations [34, 35]), but not the81

dynamical exponent a. Furthermore numerical simulations [27, 28, 31, 35] have shown that82

the transition has a Mode-Coupling-Theory nature. This means that for temperatures near Tc83

there is a β-regime corresponding to time-scales τβ on which the persistence is almost equal84

to φplat followed, in the liquid phase (T > Tc), by the α-regime during which the persistence85

decays from φplat to zero. Within MCT the deviations of the dynamical correlators from the86

plateau value in the β regime is controlled by the following equation [6]:87

σ = −λ g2(t) +
d
d t

∫ t

0

g(t ′) g(t − t ′) d t ′ , (2)

where σ is a linear function of Tc − T . In the liquid phase Eq. (2) implies that g(t) leaves the88

plateau with a −t b law, and the model-dependent exponents a and b are determined by the89

so-called parameter exponent λ through90

λ=
Γ 2(1− a)
Γ (1− 2a)

=
Γ 2(1+ b)
Γ (1+ 2b)

. (3)

From Eq. (2) it also follows that τβ diverges with σ from both sides as τβ ∝ |σ|−1/(2 a).91

Similarly the time-scale of the α regime increases as τα ∝ |σ|−γ with γ = 1/(2a) + 1/(2b).92

Sellitto [28] has shown numerically that all the above scaling laws are satisfied in FA models93

on the BL, as if for some reason the persistence obeyed Eq. (2) with g(t) ≡ φ(t)−φplat . In94

the following we show that this is indeed the case, obtaining also analytical expressions for95

the exponents a and b through the parameter λ. We present the argument for the z = 4,96

f = 2 case and then extend it to generic values. This allows to demonstrate the theory more97

1The overlap function exhibits similar features to the persistence function, namely in the long-time limit it jumps
at Tc from zero to a finite plateau value, which is approached with the same power-law behavior of Eq. (1). See
Sec. 4 for a discussion about this point.
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broadly, also in presence of continuous transitions, whereφplat = 0. We then examine random98

pinning, initially investigated numerically in [31] for the FAM, thereby confirming the theory99

for logarithmic time decays as well. Further validation will come from mixed facilitation mod-100

els [36].101

The paper is organized as follows. In Sec. 2, we derive an exact closed equation of motion102

for the order parameter, the persistence function, in the β-regime in the case of FA on the BL103

with fixed coordination z = 4 and facilitation f = 2, leaving some technical details to Apps. A104

and B. In particular, in App. A we discuss the case of generic z and f . In Subsec. 3.1 we address105

the case of FA with continuous transition. In Subsecs. 3.2 and 3.3 we study FA with random106

pinning and mixed facilitation, respectively. Some details of the random pinning are discussed107

in Apps. C and E. In Sec. 4 we show that the spin-spin correlation exhibits the same critical108

behavior as the persistence function. Finally, in Sec. 5 we presents the conclusions. In App. D109

we provide the details of the numerical simulations.110

2 Dynamical equations in the β regime111

To derive the equation we begin with a number of definitions which are novel to this study.112

The blocked persistenceφb(t) is the fraction of negative spins that have been blocked at all times113

less than t. Naturally we have φ(t)≥ φb(t) as a spin that is facilitated (i.e. not blocked) does114

not necessarily flip, however one can argue and confirm numerically (see App. B) that at large115

times δφb(t)≡ φb(t)−φplat and δφ(t)≡ φ(t)−φplat approach zero with the same leading116

term (t/t0)−a. More precisely one can argue that the difference φ(t)−φb(t) is proportional117

to dφ/d t, and thus it vanishes with a much faster power law 1/ta+1. We refer the reader to118

App. B for a complete discussion of this point. We also define the zero-switch blocked persistence119

φ
(0)
b (t) as the fraction of negative sites that have been blocked up to time t because at least120

three of their neighbors have remained in the negative state at all times less than t.121

The possible cases can be represented graphically as:122

+ = φ(0)b (t), (4)

where the full lines represent the neighbors of the blocked site (circle) which have always123

remained negative at all times less than t, and the dashed line the others.124

We also define the one-switch blocked persistence φ(1)b (t) as the fraction of negative sites125

that have been blocked because two neighbors have been always negative, a third neighbor126

has been negative up to some t ′, and a fourth neighbor has been negative between some127

time 0 < t ′′ < t ′ and t. Note that this fourth neighbor should not have been negative at all128

times between 0 and t, since this contribution is already counted in φ(0)b (t). Again this can be129

represented graphically:130

= φ(1)b (t). (5)

The top lines in the diagram (5) represent a switching couple of neighbors: the top right line131

corresponds to a neighbor which is negative up to time t ′, and the top left line a neighbor132

which is negative between t ′′ and t.133

To clarify the origins of the names we note that at each time less than t a blocked site has a134

blocking set, i.e. a set of at least three neighbors in the negative (blocking) state. Given a time135
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Figure 1: The hierarchy between the different contributions to the blocked persis-
tence as observed in numerical simulations on the BL for f = 2, z = 4 and p = pc

(N = 16×106). From top to bottom: φ(0)b (t)−φplat ,φ
(1)
b (t),∆φb(t). The value of a

used to construct the asymptotic (dashed) lines is given by the analytical expression
obtained for λ= 2/3.

range (t, t ′) we say that there is a minimal blocking set if the intersection between the blocking136

sets at all times in the interval is itself a blocking set. Now the zero-switch persistence counts137

those spins for which there is a minimal blocking set in the interval (0, t), while the one-switch138

persistence counts those blocked spins for which there is a minimal blocking set between zero139

and t ′ and a different minimal blocking set between t ′ and t. Finally ∆φb(t) > 0 counts all140

contributions to φb(t) other than φ(0)b (t) and φ(1)b (t):141

φb(t) = φ
(0)
b (t) +φ

(1)
b (t) +∆φb(t) . (6)

A crucial observation is that at large times a hierarchy between the different contributions142

emerges, as shown in Fig. 1:143

1≫ φ(0)b (t)−φplat ≫ φ
(1)
b (t)≫∆φb(t) t ≫ 1 . (7)

This implies that the critical behavior of φb(t) (and thus of φ(t) as we said earlier) is given144

by φ(0)b (t) at leading order. In turn, φ(0)b (t) can be written exactly in terms of the cavity145

persistence φ̂(t), defined as the probability that a site persists in the negative state at all times146

smaller than t if we force one of its neighbors (the root) to be negative at all times. We have147

indeed:148

φ
(0)
b (t) = 4 p φ̂(t)3(1− φ̂(t)) + p φ̂(t)4. (8)

Note that the above equation is the very same that one encounters in bootstrap percolation149

φplat = 4 p φ̂3
plat(1− φ̂plat) + p φ̂4

plat , (9)

where φplat is the probability that a site belongs to the k-core, and φ̂plat is the corresponding150

cavity quantity. We emphasize that the previous formula holds because one can factorize the151
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contributions from different branches, this is possible due the tree-like structure of the Bethe152

lattice but would not hold in a generic, say 2D, lattice.153

At large times the distance from the plateau value, φ(0)b (t)−φplat , is proportional to the154

difference between φ̂(t) and its plateau value φ̂plat = 3/4. In particular at the critical tem-155

perature pc = 8/9 we have156

φ
(0)
b (t)−φplat ≈

3
2
δφ̂(t) , δφ̂(t)≡ φ̂(t)− φ̂plat . (10)

The cavity persistence is the typical object that occurs in analytical computations on the Bethe157

lattice, and indeed in the following we will show that it obeys a self-consistent equation. As158

we did for the persistence we introduce the blocked cavity persistence φ̂b(t), that counts the159

cavity sites that were blocked at all times t ′ < t. Similarly to the site persistence one can160

argue that at large times φ̂b(t) and φ̂(t) have the same critical behavior approaching φ̂plat161

with the same leading term (2/3)/(t/t0)a. More precisely one can argue that the difference162

φ̂(t) − φ̂b(t) is proportional to dφ̂/d t and thus it vanishes with a much faster power law163

1/ta+1, φ̂(t) = φ̂b(t) + O(1/ta+1). The cavity blocked persistence can be also written as a164

sum of zero-switch and one-switch terms:165

φ̂b(t) = φ̂
(0)
b (t) + φ̂

(1)
b (t) +∆φ̂b(t), (11)

and the crucial hierarchy emerges at large times as well:166

1≫ φ̂(0)b (t)− φ̂plat ≫ φ̂
(1)
b (t)≫∆φ̂b(t) t ≫ 1 . (12)

If we replace δφ̂b(t) for δφ̂(t) (which is correct at order O(1/ta+1)) and neglect ∆φ̂b(t)167

(which is correct to order 1/t2a according to Fig. 1) we obtain:168

δφ̂(t) = δφ̂(0)b (t) + φ̂
(1)
b (t), (13)

where both terms in the RHS can be expressed in terms of δφ̂(t) to obtain a closed equation.169

Let’s discuss φ̂(0)b . The zero-switch cavity persistence is given exactly by:170

φ̂
(0)
b (t) = 3 p φ̂(t)2(1− φ̂(t)) + p φ̂(t)3, (14)

to be compared with the corresponding BP expression:171

φ̂plat = 3 p φ̂2
plat(1− φ̂plat) + p φ̂3

plat . (15)

In particular, close to the critical probability pc = 8/9, i.e. for small δp ≡ p − pc , we have on172

the time-scale τβ of the β-regime:173

δφ̂
(0)
b (t) = δφ̂(t) +

27
32
δp−

4
3
δφ̂2(t) + . . . (16)

Note that the linear term δφ̂(t) cancels with the LHS of Eq. (13) and thus we have to study174

the equation at the next order, where φ̂(1)b (t) = O(1/t2 a) contributes. On the other hand at175

this order it is still correct to neglect ∆φ̂b(t) = O(1/t3 a).176

Let’s discuss the second summand of Eq. (13), φ̂(1)b (t). According to the definition of177

φ̂
(1)
b (t)we have one neighbor that remains negative up to a time t ′, another one that is negative178

between time t ′′ and t with 0< t ′′ < t ′, and a third one that is negative at all times less than179

t. The probability that a cavity site flips between time t ′ and t ′+d t ′ is given by −(dφ̂/d t ′)d t ′.180

The total probability that one site is negative between time t ′′ and t with 0 < t ′′ < t ′ can be181
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z f pc φplat λ a b

4 2 0.888889 0.65625 2/3 0.340356 0.69661
5 2 0.949219 0.855967 5/8 0.355765 0.768048
5 3 0.724842 0.413229 0.715095 0.32053 0.615707
6 2 0.970904 0.922852 3/5 0.364399 0.812034
6 3 0.834884 0.657417 0.690587 0.330849 0.656427
6 4 0.602788 0.294163 0.734359 0.311953 0.583922
7 2 0.981146 0.95232 7/12 0.369929 0.841922
7 3 0.88713 0.775028 0.672474 0.338095 0.686806
7 4 0.730978 0.522658 0.719926 0.318419 0.607721
7 5 0.513688 0.226228 0.744684 0.307169 0.566936

Table 1: Dynamical parameters of the FA model on the Bethe lattice with connectivity
z and facilitation f .

computed invoking the reversibility of the dynamics: it is equal to the probability that starting182

at equilibrium at time t, and moving backward in time the site is negative up to time t − t ′183

but not up to time t, leading to a factor φ̂(t − t ′) − φ̂(t). As already discussed we have to184

subtract φ̂(t) because the case t ′ = 0 (and then t ′′ = 0) leads to a contribution which is already185

taken into account by the diagram with one dashed leg in Eq. (4). At this point integrating186

over t ′, multiplying by a factor six counting all possible switching couples of neighbors, by the187

probability p of initialising the cavity spin in the negative state, and by the probability φ̂(t)188

that the third neighbor remains negative at all times less than t we obtain:189

φ̂
(1)
b (t) = −6 p φ̂(t)

∫ t

0

dφ̂
d t ′
(t ′) (φ̂(t − t ′)− φ̂(t)) d t ′ . (17)

Note that to write Eq. (17) the local tree-like structure of the Bethe lattice is again crucial,190

allowing the contributions coming from the unconditioned neighbors of the cavity spin to be191

considered independent. At this point substituting Eqs. (16) and (17) into Eq. (13), we find192

that up to second order in δφ̂(t) the cavity persistence satisfies the following closed equation:193

0=
27
32
δp−

4
3
δφ̂2(t)− 4

∫ t

0

dφ̂
d t ′
(t ′) (φ̂(t − t ′)− φ̂(t)) d t ′, (18)

where δp = p−pc . Integrating by parts, Eq. (18) can be rewritten exactly as the MCT equation194

(Eq. (2)) with195

σ =
27
128

δp , λ=
2
3
→ a = 0.340356. (19)

The computation can be extended rather easily to generic ( f , z) values. In table 1 we display196

the results up to z = 7 while the complete formula is given in App. A. As we can see from197

Fig. 2, the predicted values compare well with the numerical data. The small discrepancies can198

be rationalized recalling that power-laws typically have power-laws corrections, and a more199

careful procedure is to study the effective exponent ae f f ≡ −d lnδφ/d ln t, that converges to200

the actual exponent at large times (small values of δφ).201
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Figure 2: Parametric plot of the relative shift of the effective exponent ae f f (see the
text) with respect to the analytical prediction a vs. the shift from the plateau. From
top to bottom: z = 6 f = 4, z = 5 f = 3 and z = 4 f = 2. Each point is obtained by
performing numerical simulations at different sizes (4× 106 ≤ N ≤ 32× 106), and
then extrapolating to infinite volume. The dashed lines are guides for the eye. Inset:
distance of the persistence from the plateau value vs t. From bottom to top z = 6
f = 4, z = 5 f = 3 and z = 4 f = 2. The continuous lines correspond to Cz, f t−az, f ,
where the az, f ’s are predicted analytically (see Table 1), and C6,4 ≈ 0.42, C5,3 ≈ 0.62
and C4,2 ≈ 1.15.

z=3 f=2

z=4 f=3

z=5 f=4

10 50 100 500 1000 5000 104
1.×10-4

5.×10-4
0.001

0.005

0.010

0.050

0.100

t

ϕ
(t
)

Figure 3: From top to bottom: persistence function φ(t) for z = 3,4, 5 and f = z−1
(continuous models). The points represent numerical simulations (N = 16 × 106).
The dashed lines represent the analytical prediction z/2 (t/t0)−2a. The microscopic
time-scale t0, which for z = 3,4, 5 is t0 = 1.05,0.148, 0.0502, is the unique parame-
ter fitted from the data, while δ and a are computed analytically (see the text) .
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3 Continuous transitions, random pinning and mixed facilitation202

3.1 Fredrickson-Andersen models with continuous transitions203

If f = z−1 the BP transition occurs at pc = 1/(z−1) and it is continuous, i.e. φplat is a contin-204

uous function of p at pc . This means thatφplat = φ̂plat = 0 at the transition. One finds that for205

all values of the connectivity (see App. A), φ̂(t) decays as t−a with λ= 1/2 → a = 0.395263206

for all z. However, at variance with the discontinuous case, in which δφ(t)∝ δφ̂(t), φ(t)207

is quadratic in φ̂(t) and thus its dynamic exponent is doubled: φ(t) ≈ z φ̂2(t)/2 ∝ 1/t2a. In208

Fig. 3 we show the persistence for connectivity three, four and five, confirming the prediction209

that the exponent does not depend on the connectivity.210

3.2 A3 singularity in random pinning211

In [31, 37] Random Pinning (RP) has been considered. RP imposes a further dynamical con-212

straint: once the initial configuration is generated with a given value of p, a fraction c of spins213

drawn at random is not allowed to move. In the z = 4, f = 2 case, one finds a tricritical214

point at c = 1/5 and p = 5/6, where the transition becomes continuous, and the persistence is215

expected to decay logarithmically to a plateau value φplat = 3/8. The transition is indeed an216

instance of an A3 singularity [6,38,39] that has attracted considerable interest in a number of217

contexts including attractive liquids [40, 41], confined liquids [42, 43] and randomly pinned218

liquids [44, 45]. Following the same steps leading to Eq. (18) we find that in this case (see219

the App. C) the deviation from φplat at the tricritical point is described asymptotically by:220

0= µ g3(t) − g2(t) +
d
d t

∫ t

0

g(t ′) g(t − t ′) d t ′ (20)

with µ = 2/3, leading to [38]: g(t) ≈ 4ζ(2)µ−1 ln−2(t/t0) at large times (ζ(x) is the Rie-221

mann Zeta function). In Fig. 4 we plot the effective exponent parametrically, together with i)222

the leading term, ii) the correction 24ζ(3)µ−1 ln−3(t/t0) ln ln(t/t0) from Eq. (20) [38] and223

iii) the solution of a well known Schematic F12 Mode-Coupling-Theory model with parame-224

ters tuned to have the predicted asymptotic behavior, see App. E. As expected the effective225

exponent converges to zero at large times. The parametric expression allows to eliminate the226

dependence on the unknown timescale t0.227

3.3 Mixed facilitation models228

Models with mixed facilitation display complex phase diagrams also characterized by higher-229

order singularities [36, 47]. In particular we considered a z = 4 Bethe lattice in which a230

fraction c of the spins has facilitation three while the remaining 1− c fraction has facilitation231

two. In the (c, p) plane there is a line of continuous transitions pc = 1/(3c) for c > ct r ic = 1/2232

where we find λ = 1/(2 c). In Fig. 5 we display numerical data for the persistence together233

with the corresponding analytical predictions, again with excellent agreement.234

4 From the persistence to the correlation235

The theory presented so far deals with the time evolution of the persistence φ(t). As we said236

before, this is a standard observable in numerical simulations and most importantly allows237

to establish the deep quantitative connection between the FA model and bootstrap percola-238

tion. Another important observable, often studied in the literature, is the spin-spin correlation239

9



SciPost Physics Submission

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.00

0.05

0.10

0.15

0.20

δϕ


ef
f

10 100 1000 104 105 106
0.05

0.10

0.20

0.50

t

δ
ϕ

Figure 4: Effective exponent vs. δφ at the A3 singularity of random pinning, see
text. Starting from the top left the first two continuous lines are the leading (red)
and subleading (green) approximate solutions of Eq. (20). The third line (orange)
is the solution of the F12 model [46]. The points, interpolated by the dashed line,
are numerical data, obtained by averaging over 200 samples of size N = 16× 106.
Inset: distance of the persistence from the plateau value φplat = 3/8 as a function
of t. Dashed line: numerical data, continuous line: solution of the F12 model. The
unknown timescale t0 is fitted from the data.
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Figure 5: Persistence function φ(t) of the mixed model f = 2,3 on a Bethe lattice
with z = 4. From top to bottom c = 0.7,0.8, 0.9,1 (see the text). The points represent
numerical simulations (N = 16 × 106). The dashed lines represent the analytical
prediction 2 (t/t0)−2a. In this case a, t0 depend on c. The time-scale t0, which for
c = 0.7,0.8, 0.9,1 is t0 = 0.44, 0.28,0.19,0.145, is the unique parameter fitted from
the data, while a is computed analytically (see the text) .
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Figure 6: Critical behavior of the correlation in FA with f = 2 and z = 4 compared
with the persistence φ(t) of the blocked-down spin, and the total persistence φ tot(t)
of all blocked spins. From bottom to top: Aδφ(t) (blue dots), A′δφ tot(t) (green
dots), δC(t)≡ C(t)−qEA (orange dots), and a reference curve∝ t−a (dashed line),
with a = 0.340356. The prefactor A′ = 1 − qso f t(Tc) ≈ 0.548 is obtained by com-
paring the square-root behavior of qEA(T ) close to Tc (that is computed analytically
using the techniques presented in [33]) with that of the plateau value ofφ tot(T ) (see
Eq. (23)), that can be easily found using the analogy with bootstrap percolation. The
prefactor of δφ(t) is A= A′ 143/128≈ 0.612. Numerical data are obtained on a sys-
tem with size N = 9× 106.
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↑
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Figure 7: Example of correlations between soft spins in the case z = 4, f = 2. Dashed
circles represent permanently blocked spins. In order for s1 and s2 to be soft spins, at
least one of them should be in the positive state, because if they were both negative
they would be permanently blocked.

C(t) ≡ N−1
∑N

i si(0)si(t). For ( f , z) values corresponding to discontinuous transitions, nu-240

merical simulations show that C(t) displays the same critical behavior of φ(t): decreasing241

the temperature towards Tc it develops a two-step relaxation and below Tc it approaches at242

infinite times a plateau value qEA, in analogy with spin-glass models. We note that while φplat243

can be easily computed by means of the analogy with bootstrap percolation, the overlap qEA244

obeys more complex iterative equations that we have obtained and solved recently [33]. Thus245

some questions naturally arise: can we obtain dynamical equations for C(t) as well? Are the246

dynamical exponents the same? Numerical simulations (see Fig. 6) confirm indeed that this247

is the case, i.e. we have at the critical temperature248

C(t)− qEA∝
1
ta

(21)

with the same exponent a obtained for the persistence. In the following we will give a simple249

argument to rationalize this finding. Below the critical temperature, the ergodicity is broken,250

and the configuration space of the system divides into an exponential number of equilibrium251

states, each corresponding to an extensive cluster of spins that are blocked forever (their lo-252

cal magnetization is mi = ±1), while the remaining “soft” spins have local magnetization253

−1 < mi < 1 [33]. An important observation is that despite the total measure of the problem254

is factorized, the measure conditioned to one of the equilibrium states is not, since the pres-255

ence of a blocked cluster induces correlations between the soft spins. This can be visualized256

by the example in Fig. 7. Therefore the magnetization mi of a soft spin conditioned to one of257

the equilibrium states is in general different from (1−2p), that is the magnetization computed258

according to the factorized measure. In analogy with Spin-Glass models one can define the259

Spin-glass susceptibility260

χSG =
1
N

∑

i

|〈sis j〉 − 〈si〉〈s j〉|2, (22)

that measures the fluctuations of the soft spins inside a given states. Now it turns out that, at261

variance with spin-glass models, the spin-glass susceptibility remains finite at the critical point.262

This was observed numerically in [30] and confirmed analytically in [33]. This apparently263

marginal feature is essential in the following. To make the argument let us sit at T = T−c264

where the blocked cluster has just appeared. As long as φ(t) has not reached φplat there are265

spins that have not moved yet but will move at later times. Clearly these sites make C(t)266

different from qEA because their local magnetisation has remained blocked to ±1 instead of267

taking its equilibrium value mi . The spins that have moved instead thermalize rapidly to the268

equilibrium value precisely because the soft spins are not critical, as implied by the fact that269

χSG remains finite T = Tc . In other words the magnetization of a spin that unblocks reaches270

rapidly its asymptotic value, even if we are at the critical point. It follows that the only thing271

that determines the deviations of C(t) from qEA is the fact that there is a number of spins272
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that should be soft but have not yet moved and thus the critical behavior of the overlap is fully273

controlled by that of the persistence.274

We emphasize again that in order to make the argument it is essential that the fluctuations275

of the overlap inside a state are not critical and thus as soon as a spin unblocks it quickly reaches276

equilibrium. In the opposite case we would have seen an additional dynamical slowing down277

and a slower relaxation of C(t) compared to that of φ(t).278

The argument extends to temperatures close to Tc either in the liquid or glassy phase, and279

implies that on the time-scale τβ of the β-regime the following relationship holds:280

C(t)− qEA = A(φ(t)−φplat) T ≈ Tc , t = O(τβ), (23)

where A is a constant that depends on ( f , z) but not on the temperature. Indeed consider281

the total persistence φ tot(t), which measures the fraction of spins (both up and down) that282

have remained unchanged since the initialization. The total persistence has the same critical283

behavior of φ(t). In particular, following the arguments of section 2, one finds that:284

φ tot(t)−φ tot
plat ≈

143
128

�

φ(t)−φplat

�

T ≈ Tc , t = O(τβ), (24)

where φ tot
plat = 2757/4096 can be easily computed using the analogy with BP. If spins rapidly285

thermalize after moving for the first time, then for T ≈ Tc and t = O(τβ):286

C(t) = φ tot(t) + qso f t(Tc)(1−φ tot(t)), (25)

since the self-overlap of blocked spins is equal to one. In Eq. (25) we introduced the av-287

erage overlap qso f t(Tc) of the soft spins at the critical temperature Tc . Therefore, subtract-288

ing the plateau values in (25), we find that Eq. (23) holds with A = A′ 143/128, where289

A′ = 1 − qso f t(Tc). Note that qso f t(T ) is regular at Tc , at variance with qEA(T ), that has a290

square-root singularity. The square-root singularity however is only determined by the fact291

that the fraction of soft spin has a square-root singularity:292

qEA(T )≈ qEA(Tc) + (1− qso f t(Tc))(φ
tot
plat(T )−φ

tot
plat(Tc)) (26)

The quantity qso f t(Tc) can be computed by the techniques of [33], comparing the square-root293

behavior of qEA(T ) with that of φ tot
plat(T ).294

In conclusion we have shown that the critical behavior of δC(t)≡ C(t)−qEA is determined295

solely by the critical parameter δφ(t) ≡ φ(t) − φplat because δC(t) is a linear function of296

δφ(t) with prefactor A = A′ 143/128, where A′ = 1− qso f t(Tc). See Fig. 6 for a comparison297

between δC(t), δφ(t) and δφ tot(t)≡ φ tot(t)−φ tot
plat .298

5 Conclusions299

We have shown that the persistence of the FA model on the Bethe lattice obeys the critical300

equation of MCT, i.e. Eq. (2). We note that this provides one of the most simple derivations301

of this equation, being obtained by simple probabilistic arguments. The theory has been ex-302

tended and validated in a variety of contexts. The possible extension to models with conserved303

dynamics, notably the Kob-Andersen model [48–50] is left for future work. It is remarkable304

that the exact asymptotic equation is obtained solely from the assumption that ∆φb(t) (and305

∆φ̂b(t)) is negligible at large times according to the hierarchy observed numerically. We are306

currently investigating the origin of this hierarchy whose understanding should eventually307

allow to compute systematically the corrections O(t−2 a), O(t−3 a), . . . , to the leading t−a be-308

havior. Note in particular that from Fig. 1, ∆φb(t) seems to decay as t−3a.309
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Equation (2) is ubiquitous in glass theory: it has previously been found in the context310

of supercooled liquids according to MCT [6], mean-field Spin-Glass models with one step of311

Replica-Symmetry-Breaking [51, 52] and supercooled liquids in the limit of infinite dimen-312

sions [26]. We note that, both in spin-glasses and supercooled liquids in infinite dimensions,313

criticality is associated to the divergence of the static susceptibility inside the glassy states.314

Instead we have seen in sec. (4) that Eq. (2) holds in KCMs even if the states are not critical,315

implying that in general criticality in the statics is not a necessary condition for criticality in316

dynamics.317
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A The General Case ( f , z)321

In this section we derive the closed equation for the persistence, extending the argument pre-322

sented in Sec. 2 to generic ( f , z). The critical probability and the plateau value can be expressed323

in terms of the function:324

F(P, k, fb)≡
k
∑

i= fb

�

k
i

�

P i(1− P)k−i , (A.1)

where we set k ≡ z−1. The parameter P is the cavity probability of the BP cluster, namely the325

probability that a spin (cavity spin) is blocked if one of its neighbors (the root) is conditioned326

in the down state, and it obeys the equation:327

P = p F(P, k, fb), (A.2)

where fb ≡ k + 1− f is the number of neighbors that must be blocked in the negative state328

(besides the root) for the cavity spin to be blocked in the negative state. At the critical temper-329

ature the above equation develops a solution with P ̸= 0. In the discontinuous case P jumps330

from zero to a finite value at Pc . The finite value can be determined by the equation331

�

F(Pc , k, fb)− Pc
dF(P, k, fb)

dP

�

�

�

�

P=Pc

�

P− fb
c = 0 . (A.3)

Note that the above equation is a polynomial of degree k− fb, and thus it is linear for f = 2,332

and quadratic for f = 3. The critical probability is given by:333

pc = Pc /F(Pc , k, fb) , (A.4)

while the plateau value is given by:334

φplat = pc F(Pc , k+ 1, fb + 1) . (A.5)

For f = z − 1 we have fb = 1, and the lowest power of P in the function F is one, implying a335

continuous transition (φplat = φ̂plat = 0) with336

pc = 1
Á�

dF(P, k, 1)
dP

�

�

�

P=0

�

=
1
k

. (A.6)
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At this point, in order to compute the dynamical equation we have to study φ̂(1)b (t) (see the337

main text) at the second order in δφ̂. Consider the cavity spin. We are interested in the338

case in which: fb − 2 neighbors (beside the root) are always blocked down up to time t, one339

neighbor is blocked down from 0 to t ′ < t, another neighbor is blocked down from t ′′ < t ′ to340

t. Following the same arguments of the case (4, 2), at the second order in δφ̂ we have:341

φ̂
(1)
b (t) = p Ck, fb

P fb−1
c (1− Pc)

k− fb−1

∫ t

0

�

−
dφ̂
d t ′
(t ′)

�

�

φ̂(t − t ′)− φ̂(t)
�

d t ′, (A.7)

where the combinatorial factor342

Ck, fb
=
�

k
fb − 1

�

(k− fb + 1)(k− fb) (A.8)

counts all possible couples of neighbours such that one of them is blocked down from 0 to343

t ′ < t, and the other is blocked down from t ′′ < t ′ to t. Thus the closed equation for δφ̂(t)344

becomes:345

0= F(Pc , k, fb)δp+ p
1
2

d2F(P, k, fb)
dP2

�

�

�

P=Pc

δφ̂2(t)+

+ p Ck, fb
P fb−1

c (1− Pc)
k− fb−1

∫ t

0

�

−
dφ̂
d t ′
(t ′)

�

�

φ̂(t − t ′)− φ̂(t)
�

d t ′. (A.9)

At this point integrating by part, we can write Eq. (A.9) in the MCT form [6]:346

σ = −λδφ̂2(t) +
d
d t

∫ t

0

δφ̂(t ′)δφ̂(t − t ′) d t ′, (A.10)

finding the two parameters σ and λ:347

σ =
F(Pc , k, fb)

pc Ck, fb
P fb−1

c (1− Pc)k− fb−1
δp (A.11)

348

λ= 1+

1
2

d2F(P,k, fb)
dP2

�

�

�

P=Pc

Ck, fb
P fb−1

c (1− Pc)k− fb−1
. (A.12)

In particular for f = 2 we have λ = 1+k
2 k . In the continuous case Eqs. (A.11) and (A.12)349

becomes350

σ =
1

k− 1
δp, λ=

1
2

, (A.13)

however, as already discussed, at variance with the discontinuous case, φ(t) is quadratic in351

φ̂(t) and thus its dynamic exponent is doubled: φ(t)≈ z φ̂2(t)/2∝ 1/t2a.352

B Difference Between the Persistence and the Blocked Persistence353

As discussed in the main text the persistence φ(t), the blocked persistence φb(t), and the354

zero-switch persistence φ(0)(t) all have the same critical behavior. This is easily observed in355

numerical simulations (see Fig. 9). In this section we want to discuss an argument for justifying356

this result. Let us note that in principle a spin could have been facilitated at some time in the357

past but did not switch due to a thermal fluctuation. However it is clear that the higher the358

number of times that it was facilitated, the lower the probability that it did not switch. Now359
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Figure 8: Difference between the average local persistence φ(t) and φb(t) (the
average local persistence of the sites that have never been facilitated up to time t)
in the case of z = 4 and f = 2 at the critical temperature. The dashed line is the
expectation C/ta+1∝ dφ/d t, C ≈ 180. The data correspond to the average of 80
samples of size N = 16× 106.
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Figure 9: From bottom to top: zero-blocked persistence δφ0(t) = φ0(t) − φplat ,
blocked persistence δφb(t) = φb(t)−φplat , and persistence δφ(t) = φ0(t)−φplat
for z = 4 and f = 2 at the critical point. In this case pc = 8/9, φplat = 21/32 and
a = 0.340356. The data correspond to averages over 80 samples of size N = 16×106.
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Figure 10: Phase diagram of the random pinning with z = 4, f = 2. The dashed
line corresponds to a discontinuous transition (A2 transition in the MCT terminology)
line. At the terminal point (c = 1/5, p = 5/6) the transition becomes continuous with
a logarithmic decay of the persistence (A3 MCT transition). In the inset: φplat as a
function of p at fixed value of c. From right to left the first three curves correspond to
c = 0.18, 0.19,195, and the last curve is obtained at c = 1/5, crossing the A3 point.
Note that at variance with the unpinned case here φplat is in general different from
zero also in the liquid phase.

due to the reversible nature of the dynamics, if the spin was facilitated at some distant time360

t ′ in the past with probability one, it must have been facilitated many times at later times,361

leading to a vanishing probability that it did not switch. In other words we expect that once a362

site becomes facilitated, it will switch with probability one after a finite time tsw that is short363

on the time scale of the critical dynamics. The only possibility is that the site has become364

facilitated at a time t ′ close to t, i.e. t − t ′ = O(tsw). On the other hand the number of sites365

that become facilitated between times t − tsw and t is given by366

φb(t − tsw)−φb(t)≈ −tsw
dφb(t)

d t
≪ φb(t), (B.1)

thus we expect that the difference between φ(t) and φb(t) is proportional O(1/ta+1) at large367

times, and that it can be neglected with respect to 1/ta. The argument is confirmed by the368

numerical data (see Fig. 8).369

C Random Pinning370

In the random pinning variation of the Fredrickson-Andersen model, after drawing the initial371

condition, a fraction c of sites selected at random are frozen (pinned), i.e. they are not updated372

through the dynamics. In the case z = 4, f = 2, that we studied in the main text, the cavity373

probability of being blocked down is given by:374

P = p c + p (1− c) F(P, 3, 2), (C.1)
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where the function F is defined in Eq. (A.1). In the c− p plane Eq. (C.1) determines a critical375

line (see Fig. 10), which can be computed solving the following system of equations:376

1= p (1− c)
dF(P, 3, 2)

dP
= 6 (1− c) p P (1− P),

0= F(P, 3, 2)− P
dF(P, 3, 2)

dP
+

c
1− c

= P2 (4P − 3) +
c

1− c
.

(C.2)

The plateau value of the persistence φplat is connected to the value of P through377

φplat = p c + p (1− c) F(P, 4, 3). (C.3)

For 0 ≤ c < 1/5, when p is small, Eq. (C.1) admits a solution because of the fraction of378

pinned spins, and of a small fraction of unpinned spins which are blocked due to the presence379

of neighboring spins which are pinned down. By increasing p one finds another solution380

which appears discontinuously at the transition line. From a dynamical point of view this381

singularity is analogous to that obtained at c = 0. In particular the expression for the λ382

parameter exponent is given by expression Eq. (A.12), where in this case the critical cavity383

probability Pc depends on the fraction c of pinned spins through Eq. (C.2).384

Increasing c, the jump of φplat at the critical line gets smaller and smaller and it vanishes385

for c = 1/5, p = 5/6, where the transition becomes continuous. This point is found by adding386

to system (C.2) the condition387

0=
d2F(P, 3, 2)

dP2
, (C.4)

which implies that in the equation for the dynamics, instead of quadratic term δφ2 (see388

Eq. (A.9)) here there is a cube δφ3. Indeed at the continuous critical point one finds:389

0=
1
6

d3F(P, 3, 2)
dP3

�

�

�

P=Pc

δφ̂3(t) + 6 Pc

∫ t

0

�

−
dφ̂
d t ′
(t ′)

�

�

φ̂(t − t ′)− φ̂(t)
�

d t ′. (C.5)

Equation (C.5) corresponds in the MCT language to an A3 singularity which, as discussed in390

the main text, is associated with a logarithmic decay of the persistence.391

D Numerical Simulations392

The numerical simulations have been performed according to the following scheme. The first393

step is the generation of the graph. In our case we consider a Bethe lattice with fixed coordina-394

tion z. More precisely we start from an “elementary cell” C with n nodes, such that each node395

has z neighbors. After that we create M replicas, C1, . . . ,CM of the cell. In this way each site396

i has M replicas, that we denote by σa
i , where a = 1, . . . , M is the replica index. At this point397

we define a new graph. For each edge (i, j) of the cell, we generate a random permutation398

P of (1,2, . . . , M), and, for each a, we replace the edge connecting σa
i to σa

j with an edge399

connecting σa
i to σP(a)

j . Note that this procedure, the so-called M -layer construction [53],400

does not change the coordination of the nodes. In this way, as shown in [53], one obtains401

for large M an instance of Bethe lattice (the density of cycles of fixed length is vanishing for402

M →∞). The simulations discussed in the text are performed on lattices with coordination403

z = 3, 4,5, 6. The cases z = 4, 6 are obtained starting from, respectively, a square and a cubic404

cell. The cells for the cases z = 3, 5 are shown in Fig. 11 . In all cases we start from elementary405

cells which are bipartite, i.e. each node can be associated with either, say, a “black” or “white”406

label, in such a way as two nodes of the same color are not connected. As we will discuss407
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Figure 11: Example of “elementary cells”. On the left the case z = 3, on the right
z = 5. The cells have periodic boundary conditions.

shortly this is a particularly convenient choice for the dynamics. It is worth noticing that the408

M -layer construction conserves the bipartition property of the cells.409

The second step is the generation of the initial configuration. This part is trivial in KCMs410

since the probability distribution of the initial configuration is factorized on the sites of the411

lattice. After these two steps we are given an instance of the problem, that we want to evolve412

with the dynamics. We mainly used Metropolis moves (a negative mobile spin is flipped with413

probability e−β and a positive mobile spin is flipped with probability one) with a chessboard414

updating sequence (all black spins are updated sequentially and then all the white spins are415

updated sequentially). A fundamental observation [35] is that other dynamics (e.g. Glauber)416

and updating orders (e.g. random order) at large enough times produce curves which differ417

only by a constant shift in time, that in the mode-coupling equation affects only the unknown418

time-scale constant t0. As already observed in [35], the chessboard/Metropolis scheme turns419

out to be the most convenient in terms of CPU time and relaxation time of the dynamics.420

E The F12 Model421

The data shown in Fig. 4 of the main text were obtained solving numerically the following422

equation:423

ġ(t) + g(t) +

∫ t

0

dτK(t −τ) ġ(τ) = 0, (E.1)

with424

K(t) = g(t) + g2(t), g(0) = 1. (E.2)

The asymptotic behavior of the previous equation corresponds to the asymptotic behavior of425

equation (10) in the main text with µ = 1. To obtain a solution corresponding to generic µ426

one has to divide the solution of (E.1) by µ. The data shown in the main text are obtained427

using the gitHub library [46].428
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