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Abstract

Starting from holography for IIB string theory on AdS3×N with NS-NS flux,
the TsT/T T̄ correspondence is a conjecture that a TsT transformation on the
string theory side is holographically dual to the single-trace version of the T T̄
deformation on the field theory side. More precisely, the long string sector of
string theory on the TsT-transformed background corresponds to the symmet-
ric product theory whose seed theory is the T T̄ -deformed CFT2. In this paper,
we study the asymptotic symmetry of the string theory in the bulk. We find a
state-dependent, non-local field redefinition under which the worldsheet equa-
tions of motion, stress tensor, as well as the symplectic form of string theory
after the TsT transformation are mapped to those before the TsT transfor-
mation. The asymptotic symmetry in the auxiliary AdS basis is generated
by two commuting Virasoro generators, while in the TsT transformed basis is
non-linear and non-local. Our result from string theory analysis is compatible
with that of the T T̄ deformed CFT2.
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1 Introduction21

The TsT/T T̄ correspondence [1,2] is a tractable toy model of holographic duality beyond22

the AdS/CFT correspondence constructed in string theory. The duality can be constructed23

by deforming an example of the AdS3/CFT2 correspondence from both sides. Before the24

deformation, the bulk theory is IIB string theory on AdS3×N7 supported by NS-NS flux25

with electric charge N and magnetic charge k. The background admits a weakly coupled26

string worldsheet description via the WZW model, the spectrum of which contains a short27

string sector with discrete representation and a long string sector with a continuum [3].28

For superstring theory with k = 1 or bosonic string with k = 3, the short string sector29

disappears and the continuum is truncated so that the full spectrum is still discrete. In30

this case, the holographic dual theory is given by the symmetric product CFT denoted by31

MN/SN [4, 5].1 For generic values of k, the spectrum of the long string sector can still32

be matched with a symmetric product of Liouville CFT [7], whereas the full holographic33

theory requires a marginal deformation in order to incorporate the short string sector34

[8–10]. The TsT/T T̄ correspondence [2, 11–13] deforms the aforementioned example of35

AdS3/CFT2 correspondence by a TsT transformation in the bulk string theory, and a36

single-trace T T̄ deformation on the dual CFT2 side.37

On the boundary side, the single-trace T T̄ deformation [1] of a symmetric product38

CFT MN/SN is also a symmetric product MN
TT̄

/SN , where the seed theory MT T̄ is the39

usual T T̄ deformation [14–16] of the seed CFT M. So far it is not clear how to define a40

single-trace T T̄ deformation in the full spacetime CFT at a generic value of k, although41

the existence of such a deformation is expected. On the bulk side, the holographic dual is42

related to strings on some linear dilaton background, which can be described by a current-43

current deformation of the WZW model [17], and more generally by the TsT-transformed44

backgrounds [2]. TsT transformations are solution-generating techniques in supergravity,45

which can be used to generate new string backgrounds that are not asymptotically AdS46

or locally AdS. In higher dimensions, TsT transformations have been shown to be holo-47

graphically dual to non-commutative, dipole, or β deformations [18, 19]. The connection48

between TsT transformations and solvable irrelevant deformations of CFT2 was first ob-49

served in the example of warped AdS3 spacetime and single-trace JT̄ deformation [11],50

generalized to the O(d, d) deformations [12,13], and systematically studied in [2, 20].51

The TsT/T T̄ correspondence provides a tractable model of flat holography in three52

spacetime dimensions with linear dilaton. The spectrum of the long string sector can be53

shown to match that of the single-trace T T̄ deformed CFT, both in the untwisted sector54

[1, 2] and in the twisted sector [21]. A family of solutions containing both the black hole55

solutions and the smooth solution dual to the NS-NS ground state have been constructed,56

1See also [6] for an interpretation of the holographic dual theory as a grand canonical ensemble of free
symmetric product CFTs. In this paper, we mainly focus on the string worldsheet theory and the different
interpretations of the holographic dual do not affect subsequent discussions.
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where the entropy and the gravitational charges of black holes can be reproduced by57

the single-trace T T̄ deformed CFTs [2, 20], see also [22–25]. The partition function from58

string theory calculation [26] and from field theory calculation [21] are compatible with59

each other. See also [27] for interesting discussions of S-duality and UV completion of the60

theory by studying the partition sum. Due to the irrelevant nature of the T T̄ deformation,61

the calculation of the correlation functions has been challenging, with perturbative results62

in [28–32], and a non-perturbative flow equation and Callan-Symanzik equation in [33,34].63

More recently, progress on non-perturbative calculations of the correlation functions in64

momentum space has been made both from the string theory side [35] and from the field65

theory side [36], the results of which are compatible in the high momentum limit. With66

a certain choice of normalization, two-point functions in the momentum space can be67

obtained from the CFT ones by a momentum-dependent shift of the conformal weights.68

This strongly suggests the possibility of finding underlying Virasoro symmetries, albeit69

non-local, in both the bulk and the boundary in the TsT/T T̄ correspondence. This has70

been shown to be indeed the case in the single-trace T T̄ deformed CFT2 [37], a result71

which is based on previous work on double trace T T̄ deformations [38]. In the bulk, we72

expect to find the asymptotic symmetry to have the same structure, which is the main73

focus of this paper.74

In this paper, we further explore the TsT/T T̄ correspondence by studying the asymp-75

totic symmetries of the bulk string theory after the TsT transformation. The notion of76

asymptotic symmetry is crucial for a rigorous definition of conserved quantities such as77

energy in a theory of gravity. It also plays an important role in the bottom-up approach of78

holographic duality. The coincidence between the asymptotic symmetry on AdS3 space-79

time [39] and the conformal group in two dimensions indicates the potential existence of80

the AdS3/CFT2 correspondence. The discovery of BMS group [40–43] in asymptotically81

flat spacetime has also fostered the recent development of celestial holography, reviews of82

which can be found in e.g. [44–46]. Assuming the asymptotic Killing vectors found from83

the analysis of Einstein gravity, generators of the asymptotic symmetry for AdS3 space-84

time can be written as vertex operators on the worldsheet theory [47–49]. In [50], it is85

further observed that the boundary conditions imposed on the spacetime fields can be in-86

terpreted as falloff conditions on the worldsheet equations of motion and constraints. This87

provides a way of directly finding the asymptotic symmetries from the worldsheet theory.88

In this paper, we apply this method to the TsT/T T̄ correspondence. A useful feature of89

TsT transformation is that a non-local field redefinition can map both the equations and90

the stress tensor after the transformation to those before [19]. This map, however, does91

not preserve the boundary conditions of the worldsheet fields. In section 4, we will further92

introduce a state-dependent nonlocal rescaling to restore the correct boundary conditions.93

Under the combined non-local field redefinition (53) with some specific integration con-94

stants (65), the equations of motion, stress tensor, boundary conditions, as well as the95

symplectic form of the string theory after the TsT transformation are mapped to those96

before the TsT deformation, the latter of which is referred to as the auxiliary AdS string97

theory. There will then be two natural sets of variables: those in the TsT transformed98

theory and those in the auxiliary AdS string theory. The asymptotic symmetry in the99

auxiliary AdS basis is generated by two commuting Virasoro generators, while in the TsT100

transformed basis is non-linear and non-local. The result in this paper is consistent with101

the correlation functions [35, 36], symmetries of the T T̄ deformation [38], as well as the102

perturbative analysis of asymptotic symmetry in supergravity [51].103

The layout of this paper is as follows: in section 2 we review the basic setup of the104

TsT/T T̄ correspondence, in section 3 we review asymptotic symmetries for string theory105

on AdS3, in section 4 we discuss the nonlocal map which relates string theories before and106
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after the TsT transformation, and in section 5 we discuss asymptotic symmetries for the107

TsT transformed string theory.108

2 The TsT/T T̄ correspondence109

The long-string sector of string theory on the TsT transformed AdS3 background shares110

many similar features with the single-trace T T̄ deformation of the boundary CFT2.
2 Here111

we will briefly review the key ingredients of the holographic dictionary, mostly following112

the conventions of [2, 35].113

The TsT transformations can be defined for any string theory background with two114

U(1) isometries [18]. Let us denote the undeformed U(1)×U(1) directions as (x̃1, x̃2̄). TsT115

means that we first perform T-duality along the x̃1 circle, then shift x̃2̄ to x2̄ by mixing116

with x1, namely x̃2̄ = x2̄ − 2λx1/k, and finally carry out T-duality along x1 again. For117

nonzero λ this leads to new supergravity backgrounds with new U(1)× U(1) coordinates118

(x1, x2), due to the nontrivial shift sandwiched between the two T-dualities. Crucially, it119

has been observed that the TsT transformation can be realized on the worldsheet by a120

current-current deformation parametrized by λ:121

∂Sλ

∂λ
= − 1

πk

∫
j ∧ j̄, (1)

where j and j̄ are worldsheet current 1-forms associated with the two U(1) symmetries122

of translation in the target space, and k is the number of NS5 branes generating the123

undeformed AdS3 background. Note that j and j̄ on the right-hand side are U(1) currents124

of the deformed theory at parameter λ, and thus (1) should be understood as a differential125

equation for the flow of worldsheet action. The deformation is expected to preserve these126

two U(1) symmetries along the flow, and to be exactly marginal on the worldsheet. We127

will now focus on type IIB string theory on AdS3 with pure NS-NS flux, which features128

two U(1) null directions, here denoted as (ũ, ṽ). These are also the coordinates of the129

dual CFT2. Let us now restrict to the long string sector in this background, the spectrum130

of which coincides with a symmetric orbifold MN/SN , where M is the seed CFT which131

contains a Liouville part [7]. For the a-th copy in the symmetric product, the boundary132

symmetry currents corresponding to the (ũ, ṽ) shift symmetries are133

Ja = T a
xidx

i = T a
xxdx+ T a

xx̄dx̄,

J̄a = T a
x̄idx

i = T a
x̄xdx+ T a

x̄x̄dx̄.
(2)

It would be natural to assume that the TsT transformed AdS3, generated by the current-134

current deformation as in (1), would correspond to some deformation with a similar struc-135

ture on the boundary CFT2. Indeed, the worldsheet deformation (1) corresponds to a136

deformation summing over each seed theory M of the symmetric orbifold:137

∂Sµ

∂µ
= − 1

π

N∑
a=1

∫
Ja ∧ J̄a. (3)

The integrand Ja ∧ J̄a is proportional to the stress tensor determinant detT a
ij , so this is138

precisely the T T̄ deformation [14–16] on the a-th seed theory. The full deformation is139

2As the string theory in the bulk also contains the short string sector, the dual field theory is not a
symmetric product theory even before the deformation. Nevertheless we expect that the full theory of
the deformed CFT, although not been precisely defined so far, still share some similar features of the
single-trace T T̄ deformation.
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obtained by summing over the index a = 1, · · · , N , which leads to the single-trace T T̄140

deformation on the dual field theory side.141

A crucial evidence for the TsT/T T̄ correspondence is the agreement of the deformed142

spectrum on a cylinder of radius R:143

E(µ) = −wR

2µ

[
1−

√
1 +

4µ

wR
E(0) +

4µ2

w2R4
J(0)2

]
, J(µ) = J(0), (4)

where w labels the w-twisted sector of the symmetric orbifold at the boundary, which144

corresponds to the winding number of a long string in the bulk. The deformed spectrum in145

the twisted sector can be independently obtained from the field theory side with the single-146

trace T T̄ deformation [21], and from the string theory side with worldsheet analysis [2,17],147

if we identify the parameters:148

λ = ℓ−2
s µ, ℓ = R. (5)

The fact that the deformed spectrum is solvable suggests strongly that the deformed149

theory is constrained by additional symmetries. Field theoretic and supergravity analysis150

of symmetries in T T̄ -deformed CFTs have been previously discussed in e.g. [37,38,51–53].151

In this paper we will attack the problem from the perspective of worldsheet string theory152

(1).153

3 Asymptotic symmetry from the worldsheet theory154

In this section, we explain the strategy of studying asymptotic symmetry from the string155

worldsheet proposed in [50], and review the relevant results on string theory on AdS3×N156

with NS-NS flux.157

3.1 Asymptotic symmetry from the worldsheet theory158

In a usual quantum field theory without gravity, translational symmetry and Lorentzian159

invariance are continuous global symmetries, which according to Noether’s theorem are160

generated by conserved charges. In a theory containing gravity, gravitational charges can161

be similarly defined using the Noether procedure after specifying the boundary condi-162

tions [54], under which diffeomorphisms are classified into three types: large, small, and163

forbidden. Forbidden diffeomorphisms violate the boundary conditions and hence are not164

allowed. Small diffeomorphisms fall off fast near the boundary and are trivial gauge redun-165

dancies. The most interesting ones are large diffeomorphisms which preserve the boundary166

conditions but have a non-trivial effect at the boundary. Due to the boundary conditions,167

large diffeomorphisms are no longer gauge redundancies, but instead symmetry transfor-168

mations that map states to states in the Hilbert space. The asymptotic symmetry group169

is formed by these large diffeomorphisms.170

For Einstein gravity with negative cosmological constant in three dimensions, Brown171

and Henneaux [39] found consistent boundary conditions under which the asymptotic172

group is generated by left and right-moving Virasoro generators. To describe IIB string173

theory on AdS3 ×N with NS-NS flux, the three-dimensional gravity has to also include a174

dilaton and a Kalb-Ramond 2-form field. Under the boundary conditions [50], it is found175

that Virasoro generators are accompanied by a large gauge transformation of the 2-form176

field. Nevertheless, the resulting conserved charges and the asymptotic group remain the177

same as in pure Einstein gravity.178

Now let us consider asymptotic symmetries on the string worldsheet. In the WZW179

model which describes the three-dimensional part of IIB string theory on AdS3 ×N with180
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NS-NS flux, vertex operators [47,48,55] on the worldsheet have been written down as the181

Virasoro generators in the target spacetime. It is shown in [50] that the asymptotic Killing182

vectors can be directly worked out by requiring that the worldsheet equations of motion183

and constraints are satisfied near the asymptotic boundary in the target spacetime. Sym-184

metry generators on the worldsheet are then interpreted as Noether charges. Asymptotic185

symmetries on the string worldsheet for flat spacetime have been discussed in [50,56–58].186

In the following, we explain the main steps of finding the asymptotic symmetries on the187

worldsheet in [50].188

The asymptotic Killing vectors189

Consider the bosonic part of worldsheet action of string theory in the conformal gauge190

with target spacetime metric Gµν and Kalb-Ramond field Bµν ,191

S =
1

4πα′

∫
d2σMµν∂X

µ∂̄Xν , Mµν = Gµν +Bµν . (6)

Given a specific background Mµν , a spacetime diffeomorphism192

δξX
µ = ξµ (7)

is an asymptotic symmetry if the worldsheet equations of motion and stress tensor are193

preserved near the boundary3194

δξ

(
∂̄(Mµλ∂X

µ) + ∂(Mλν ∂̄X
ν)− ∂λMµν∂X

µ∂̄Xν
)
→ 0,

δξTws → 0, δξT̄ws → 0.
(8)

These conditions will in principle enable us to solve for the asymptotic Killing vectors ξ.195

The generators of the asymptotic symmetry can be written down either in the Lagrangian196

formalism or in the Hamiltonian formalism.197

Charges in the Lagrangian formalism198

To derive the Noether charge in the Lagrangian formalism, we note that the variation199

of the action under a diffeomorphism ϵ(z, z̄) ξµ and background gauge transformation200

δϵΛBµν = ∂µ(ϵΛν)− ∂ν(ϵΛµ) is given by201

δϵξ,ϵΛS =
1

2π

∫
d2z
(
ϵV + ∂ϵ jz̄ + ∂̄ϵ jz

)
,

jz =
1

α′ (ξ
νMµν − Λµ)∂X

µ, jz̄ =
1

α′ (ξ
µMµν + Λν)∂̄X

ν ,

V =
1

α′

(
LξMµν + ∂µΛν − ∂νΛµ

)
∂Xµ∂̄Xν ,

(9)

which after using the equations of motion satisfies the divergence law202

∂̄jz + ∂jz̄ = V. (10)

If we can find Λµ so that the vertex V vanishes on-shell at the boundary, the Noether203

charge is then given by204

J =
1

2π

(∮
dzjz −

∮
dz̄jz̄

)
. (11)

In [50], it is shown that spacetime Virasoro generators in the SL(2,R) WZW model and205

BMS3 generators in string theory on three-dimensional flat space can both be derived206

using this procedure. In particular, the large gauge transformation is necessary for the207

vertex to vanish asymptotically.208

3The falloff should be further specified in explicit examples.
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Charges in the Hamiltonian formalism209

Now let us consider charges in the Hamiltonian formalism in a phase space parameterized210

by qI ∈ {xµ, pµ, µ = 1, · · · d}, with the canonical symplectic structure211

ω =
1

2
ωIJδq

I ∧ δqJ (12)

where ωIJ are independent of qI , xµ are the coordinates of the target spacetime and pµ212

are the momenta. Suppose a translation in the phase space along δξq
I ≡ ξI is generated213

by the charge Hξ, then for an arbitrary functional P of qI , we have214

δξP ≡ ξI
δP

δqI
= {P, Hξ} = ωIJ δP

δqI
δHξ

δqJ
, (13)

where ωIJ is the inverse of ωIJ . The above equation implies the relation215

ξI = ωIJ δHξ

δqJ
, (14)

which further allows us to derive the infinitesimal charge defined near a point in the phase216

space as217

δHξ ≡
δHξ

δqI
δqI = −ξKωKJδq

J . (15)

For a consistent choice of the tangent vector ξI in the phase space satisfying (14), the218

infinitesimal charge δHξ is a closed 1-form in the phase space and thus should be integrable.219

Therefore charge integrability can be used as a consistent condition for ξI .220

For the purpose of discussing asymptotic symmetries on the worldsheet theory, we can221

determine the phase space vector ξI from its components in the spacetime coordinates222

ξµ = δξx
µ, µ = 1, · · · d, following the procedure proposed in [50]. For a given spacetime223

diffeomorphism ξµ = {xµ, Hξ}, we can determine the variation of the momentum by224

requiring the following conditions225

δξH = {H,Hξ} → 0,

{ξI , H} − {{qI , H}, Hξ} = {qI , {Hξ, H}} → 0, qI ∈ {xµ, pν},
(16)

where the arrow denotes the limit as it approaches the asymptotic boundary. Explicit226

falloff conditions will be further specified in different examples. The first condition in227

(16) indicates that the Hamiltonian is preserved by the transformation generated by Hξ228

in the asymptotic region, or equivalently the charge Hξ is asymptotically preserved. The229

second equation in (16) is a combination of the Jacobi identity and the charge conservation230

condition, and the physical meaning is that the transformation Hξ is compatible with the231

Hamiltonian evolution and thus preserves the equations of motion asymptotically.232

Solving the equations (16) for the vector ξI , and plugging the solutions into (15), we233

get the infinitesimal charge that generates transformation ξI in the phase space, which if234

integrable, can be further integrated to obtain the finite charge Hξ. In [50], this procedure235

has been used to derive the charges that generate asymptotic symmetries of the SL(2,R)236

WZW model and string theory on three-dimensional flat spacetime. In this paper, we237

will further carry out the analysis of the string worldsheet theory obtained from the TsT238

transformation of the WZW model.239
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3.2 IIB string theory on AdS3 ×N240

The three dimensional part of IIB string theory on asymptotically AdS3 ×N background241

with NS-NS background can be described by the SL(2,R) WZW model, a theory that242

has been studied extensively in the literature. The spectrum [3, 59, 60] contains both the243

long string sector and the short string sector. For superstring with NS5-brane charge244

k = 1, or bosonic string with k = 3, it has been demonstrated that the holographic dual245

is given by a symmetric product CFT [5]. For generic k, while the long string sector can246

still be holographically described by a symmetric product CFT [7], the symmetric product247

structure is necessarily broken [8–10] in order to include the short string sector.248

We are interested in the asymptotic symmetry. For that purpose, it is convenient249

to consider cylindrical boundaries, a setup where Brown-Henneaux boundary conditions250

[39] were imposed in pure Einstein gravity. The phase space is usually described by the251

Bañados metrics in the Fefferman-Graham gauge and contains the global AdS3 and BTZ252

black holes. In particular, the string background with a non-rotating BTZ background253

with zero mass can be written in the string frame by254

ds̃2 = ℓ2
{
dϕ̃2 + exp(2ϕ̃) dũ dṽ

}
, (ũ, ṽ) ∼ (ũ+ 2π, ṽ + 2π),

B̃µν = −ℓ2

2
exp(2ϕ̃) dũ ∧ dṽ,

e2Φ̃ =
k

N
e−2ϕ0 , k = ℓ2/ℓ2s,

(17)

where we have omitted the internal spacetime, and used the lightcone coordinates ũ := φ̃+t̃255

and ṽ := φ̃ − t̃. The magnetic charge k = ℓ2/ℓ2s specifies how large the curvature scale256

is compared to the string scale. A small value of k indicates strong stringy effects. N257

is the electric charge, which is assumed to be large. Using the plane coordinate on the258

worldsheet with z := exp(i(σ− iτ)) and z̄ := exp(−i(σ+ iτ)), the string worldsheet theory259

on (17) can be written in the conformal gauge as260

S̃ =
1

4πα′

∫
d2zM̃µν∂x̃

µ∂̄x̃ν =
k

2π

∫
d2z

{
∂ϕ̃∂̄ϕ̃+ exp(2ϕ̃)∂̄ũ∂ṽ

}
(18)

where d2z = dz dz̄. The stress tensor is261

Tws = −k ∂ϕ∂ϕ− k exp(2ϕ) ∂u∂v. (19)

At the quantum level, the level of the WZW model acquires a shift and the action reads262

[47, 61,62]263

S̃ =
1

2π

∫
dz2

{
(k − 2)∂ϕ̃∂̄ϕ̃+ k exp(2ϕ̃)∂̄ũ∂ṽ − 1

4
ϕ̃Rws

}
(20)

whereRws is the worldsheet curvature which vanishes on a flat worldsheet metric. Through-264

out this paper, we only focus on flat worldsheets where the last term in (20) does not play265

a role except for deriving the stress tensor, the latter of which is given by266

T̃ws = −(k − 2) ∂ϕ̃∂ϕ̃− k exp(2ϕ̃)∂ũ∂ṽ − ∂2ϕ̃. (21)

The background (17) is invariant under translations along u and v, which are generated267

by the Noether currents on the worldsheet,268

j̃0 = k exp(2ϕ̃) ∂ṽ, ˜̄j0 = k exp(2ϕ̃) ∂̄ũ , (22)
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with Noether charges269

J̃0 := − 1

2π

∮
dzj̃0(z),

˜̄J0 := − 1

2π

∮
dz̄˜̄j0(z̄). (23)

The worldsheet equations of motion can be written as270

(k − 2) ∂∂̄ϕ̃− k exp(2ϕ̃) ∂̄ũ∂ṽ = 0

∂̄j̃0 = ∂˜̄j0 = 0
(24)

where the second line is just the conservation law for the two U(1) currents (22). The271

OPEs in the large ϕ limit is given by,272

ϕ̃(z, z̄)ϕ̃(w, w̄) ∼ − 1

2(k − 2)
log |z − w|2,

j̃0(z)ũ(w) ∼ − 1

z − w
, ˜̄j0(z̄)ṽ(w̄) ∼ − 1

z̄ − w̄
.

(25)

Asymptotic symmetries for strings on AdS3273

As explained in [50] and summarized in section 3.1, asymptotic Killing vectors can be274

determined by requiring the variation of the worldsheet equation of motion to vanish up275

to specific orders at the boundary. For massless BTZ, we impose the following boundary276

conditions on the equations of motion,277

(k − 2) ∂∂̄ξϕ − 2k ξϕ exp(2ϕ̃) ∂̄ũ∂ṽ − k exp(2ϕ̃) ∂̄ξu∂ṽ − k exp(2ϕ̃) ∂̄ũ∂ξv = O(exp(−4ϕ̃)),

∂̄
(
exp(2ϕ̃) ∂ξv + 2ξϕ exp(2ϕ̃) ∂ṽ

)
= O(exp(−2ϕ̃)),

∂
(
exp(2ϕ̃) ∂̄ξu + 2ξϕ exp(2ϕ̃) ∂̄ũ

)
= O(exp(−2ϕ̃)). (26)

In addition, we note that finiteness of the currents (22) implies that u is asymptotically278

chiral and v is anti-chiral. To preserve this property, we need to impose the chirality279

condition on the asymptotic Killing vector,280

∂̄ξ̃u = O(exp(−2ϕ̃)), ∂ξ̃v = O(exp(−2ϕ̃)). (27)

Solving the asymptotic on-shell condition and chirality condition, we obtain the Brown-281

Henneaux asymptotic Killing vectors [39]282

ξ̃ = ξ̃u∂ũ + ξ̃v∂ṽ + ξ̃ϕ∂ϕ̃ (28)

where283

ξ̃u = f(ũ)− k − 2

2k
exp(−2ϕ̃)f̄ ′′(ṽ) +O(exp(−4ϕ̃)),

ξ̃v = f̄(ṽ)− k − 2

2k
exp(−2ϕ̃)f ′′(ũ) +O(exp(−4ϕ̃)),

ξ̃ϕ = −1

2
f ′(ũ)− 1

2
f̄ ′(ṽ) +O(exp(−2ϕ̃)).

(29)

The above procedure can also be carried out for all the Bañados metrics. In the Ferfferman-284

Graham gauge, we will obtain the same asymptotic on-shell condition (26) and chirality285

conditions (27). As a consequence, we will find the same asymptotic Killing vectors (29).286

The Noether charges that generate the above asymptotic symmetry transformation can287

be written down using (9), where the gauge parameter can be determined by requiring288

9
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the vertex to vanish. For AdS3, the Noether current for the symmetry parameterized by289

f(ũ) is given by290

j̃z = kf(ũ) exp(2ϕ̃) ∂ṽ − (k − 2)f ′(ũ) ∂ϕ̃, j̃z̄ = −k − 2

2
f ′′(ũ) ∂̄ũ,

˜̄jz̄ = kf̄(ṽ) exp(2ϕ̃) ∂̄ũ− (k − 2)f̄ ′(ṽ) ∂̄ϕ̃, ˜̄jz = −k − 2

2
f̄ ′′(ṽ) ∂ṽ,

(30)

and the Noether charges are given by291

J̃f =
1

2π

(∮
dz j̃z −

∮
dz̄ j̃z̄

)
, ˜̄Jf̄ =

1

2π

(
−
∮

dz̄ ˜̄jz̄ +

∮
dz ˜̄jz

)
. (31)

For completeness, we have kept the anti-chiral component j̃z̄, which is necessary to gen-292

erate the e−2ϕf ′′(ũ) term in (28). As this term is subleading, the current generating the293

transformation parameterized by f(ũ) is chiral near the asymptotic boundary.294

The asymptotic Killing vectors (28) have to preserve the periodic identification295

(ũ, ṽ) ∼ (ũ + 2π, ṽ + 2π), which restricts f(ũ) to be a periodic function of ũ. One can296

expand the periodic functions in Fourier modes297

f̃n = − exp(inũ), ˜̄fn = exp(−inṽ), (32)

The charges J̃n ≡ J̃f̃n form left and right-moving Virasoro algebras298 [
J̃n, J̃m

]
= (n−m) J̃n+m +

c

12
n3δn,−m[

˜̄Jn,
˜̄Jm

]
= (n−m) ˜̄Jn+m +

c̄

12
n3δn,−m[

J̃n,
˜̄Jm

]
= 0

(33)

where the central charges depend on the worldsheet topology and are given by299

c = c̄ = 6kI, I =
1

2π

∮
dz ∂ũ. (34)

Using the OPE (25), we obtain the following OPE between the spacetime Virasoro current300

and the worldsheet stress tensor301

T̃ws(z) j̃z(w) =
j̃z(w)

(z − w)2
+

∂j̃z(w)

z − w
+ · · · (35)

This means that the left-moving spacetime Virasoro currents are worldsheet primary op-302

erators with conformal weight (1, 0), and similarly the right-moving Virasoro currents303

have weights (0, 1). Performing the contour integral, we find that the spacetime Virasoro304

transformations leave the worldsheet stress tensor invariant asymptotically,305

[J̃m, Tws] = [ ˜̄Jm, Tws] = 0, (36)

and thus are indeed asymptotic symmetries in the sense that they map physical states306

among themselves.307

4 TsT transformation and the nonlocal map308

In this section, we describe TsT transformations and discuss a non-local field redefinition309

that maps string theories before and after the TsT transformation. We show that such310

a field redefinition can be understood as a canonical transformation of the worldsheet311

symplectic structure.312

10
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4.1 TsT transformation on the string worldsheet313

Starting from type IIB string theory on the AdS3 background (17), we perform a TsT314

deformation by T-duality along ũ, shifting ṽ → ṽ− 2λ
k ũ and T-duality along ũ again. The315

TsT-transformed combination Mµν = Gµν + Bµν can be obtained from the undeformed316

one by a relation [2, 18],317

M = M̃
(
I +

2λ

ℓ2
ΓM̃

)−1
, Φ = Φ̃ +

1

4
log

detGµν

det G̃µν

, (37)

where Γµν = δuµδ
v
ν − δvµδ

u
ν is a totally antisymmetric tensor along the u and v directions.318

This follows directly from the Buscher rules [63] of T-dualities. This leads to the new319

background:320

ds2 = ℓ2
{
dϕ2 +

exp(2ϕ)

1 + 2λ exp(2ϕ)
du dv

}
,

B = −ℓ2

2

exp(2ϕ)

1 + 2λ exp(ϕ)
du ∧ dv,

e2Φ =
k

N

1

1 + 2λ exp(2ϕ)
e−2ϕ0 .

(38)

The string theory defined on this background is given by321

S =
k

2π

∫
d2z

{
∂ϕ∂̄ϕ+

exp(2ϕ)

1 + 2λ exp(2ϕ)
∂̄u∂v

}
. (39)

The quantum action can be obtained by a TsT transformation from (20) and is given by322

S =
1

2π

∫
d2z{(k − 2) ∂ϕ∂̄ϕ+

k exp(2ϕ)

1 + 2λ exp(2ϕ)
∂̄u∂v − 1

4
ϕRws}. (40)

In the classical limit with k → ∞, the action (40) reduces to the classical one (39). We323

are interested in the massless BTZ background whose conformal boundary is a cylinder324

with the following identification,325

(u, v) ∼ (u+ 2π, v + 2π). (41)

The equations of motion from the action (40) are326

(k − 2) ∂∂̄ϕ =
k exp(2ϕ)

(1 + 2λ exp(2ϕ))2
∂̄u∂v

∂̄j0 = 0, ∂j̄0 = 0

(42)

where327

j0 = k
exp(2ϕ)

1 + 2λ exp(2ϕ)
∂v, j̄0 = k

exp(2ϕ)

1 + 2λ exp(2ϕ)
∂̄u, (43)

are the worldsheet Noether currents generating translations along the target space coor-328

dinates u and v. It is not difficult to see that the action (40) is an explicit solution of the329

worldsheet differential equation (1) where the currents are given by (43). The zero mode330

charges of these currents are left and right moving energies in spacetime,331

J0 := − 1

2π

∮
t
dσj0(σ) = − 1

2π

∮
dzj0(z), J̄0 := − 1

2π

∮
t
dσj̄0(σ) = − 1

2π

∮
dz̄j̄0(z̄). (44)

Solutions to the equations of motion have to satisfy the boundary condition332

u(σ + 2π) = u(σ) + 2πw, v(σ + 2π) = v(σ) + 2πw, w ∈ Z, (45)
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where w is the winding around the boundary circle (41). Physical states also need to333

satisfy the Virasoro constraints, where the worldsheet stress tensor is given by334

T = −
{
(k − 2)∂ϕ∂ϕ+

k exp(2ϕ)

1 + 2λ exp(2ϕ)
∂u∂v + ∂2ϕ

}
,

T̄ = −
{
(k − 2)∂̄ϕ∂̄ϕ+

k exp(2ϕ)

1 + 2λ exp(2ϕ)
∂̄u∂̄v + ∂̄2ϕ

}
.

(46)

4.2 TsT as a field redefinition335

As was explained in [2,19], the worldsheet equations of motion and the stress tensor before336

and after the TsT transformation are related by the following field redefinition337

ϕ̂ = ϕ,

∂û = ∂u, ∂̄û = ∂̄u− 2λ

k
j̄0,

∂v̂ = ∂v − 2λ

k
j0, ∂̄v̂ = ∂̄v.

(47)

Let us define fields338

η(z) ≡
∫ z

dz′ j0(z
′) + η0, η̄(z̄) ≡

∫ z̄

dz̄′ j̄0(z̄
′) + η̄0 (48)

where η0, η̄0 are integration constants that may potentially depend on the state and will339

be discussed in detail momentarily. Then the field redefinition (47) can be written as340

û = u− 2λ

k
η̄, v̂ = v − 2λ

k
η. (49)

Under the above field redefinition, the U(1) currents (43) after the TsT transformation341

become those on AdS3 (22) with the tilded variables replaced by the hatted variables,342

j0(x
µ) = ĵ0(x̂

µ) = k exp(2ϕ̂)∂v̂, j̄0(x
µ) = ¯̂j0(x̂

µ) = k exp(2ϕ̂)∂̄û (50)

so that the equations of motion (42) after the TsT transformation are equivalent to those343

on the original AdS3 ×N background,344

(k − 2)∂∂̄ϕ̂ = k exp(2ϕ̂)∂̄û∂v̂, ∂̄ĵ0 = ∂¯̂j0 = 0. (51)

However, the boundary condition (45) implies that the hatted variables now satisfy the345

twisted boundary conditions,346

û(σ + 2π) = û(σ) + 2πwRu, Ru = 1 +
2λ

wk
J̄0,

v̂(σ + 2π) = v̂(σ) + 2πwRv, Rv = 1 +
2λ

wk
J0.

(52)

where J0 and J̄0 are the charges (44) which generate translations along u and v, respec-347

tively. The twisted boundary condition in û can be realized by a spectral flow trans-348

formation, using which the spectrum before and after the TsT transformation can be349

related [2, 11].4 Note that the additional constants in the field redefinition (49) do not350

4The field redefinition (49) and the twisted boundary condition (52) are reminiscent of the state-
dependent coordinate transformations in double-trace T T̄ deformed CFTs [53,64,65].
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affect the boundary conditions (52). To discuss the symmetries, it is more convenient to351

introduce the following new variables, collectively denoted by X̂, to absorb the twisted352

boundary conditions by a field-dependent rescaling transformation in the target spacetime,353

Φ̂ = ϕ+
1

2
log(RuRv),

Û =
û

Ru
=
(
u− 2λ

k
η̄
) 1

Ru
,

V̂ =
v̂

Rv
=
(
v − 2λ

k
η
) 1

Rv
,

(53)

such that the X̂ variables satisfy periodic boundary conditions,354

Û(σ + 2π) = Û(σ) + 2πw, V̂ (σ + 2π) = V̂ (σ) + 2πw . (54)

Note that the new spacetime coordinates X̂ are only defined in a fixed winding sector. We355

restrict all subsequent discussions within this sector in the current paper. It is straight-356

forward to see that the equations of motion (42) for the TsT coordinates xµ ∈ {u, v, ϕ}357

can be written in terms of the new variables X̂µ ∈ {Û , V̂ , Φ̂}, the latter of which takes a358

similar form as the equations of motion of the tilded variables, i.e.359

ke2Φ̂∂̄Û∂V̂ − (k − 2) ∂∂̄Φ̂ = 0, ∂̄j0 = ∂j̄0 = 0, (55)

where the chiral current j0 and anti-chiral current j̄0 are analogous to (22),360

j0 ≡ k exp(2Φ̂) ∂V̂ = j0Ru,

j̄0 ≡ k exp(2Φ̂) ∂̄Û = j̄0Rv.
(56)

The conservation law in (55) then allows us to define the conserved charges361

J0 ≡ − 1

2π

∮
dzj0 = J0Ru,

J̄0 ≡ − 1

2π

∮
dz̄j̄0 = J̄0Rv,

(57)

where we have also worked out the relation between these charges and the two global U(1)362

charges (44). Compared to the discussion in the WZW model, it is natural to guess that363

the charge J0 generates a translation of the non-local coordinate Û . As will be shown364

later, this is indeed true if we carefully choose the zero modes that appear in the field365

redefinition (53).366

We have seen that the variables X̂ satisfy the same equations of motion and boundary367

conditions as variables x̃ which are coordinates of AdS3. Moreover, the stress tensor (46)368

can also be written in terms of the X̂ variables, which does not explicitly depend on λ369

and takes a similar form as the WZW model,370

T = −
{
(k − 2)∂Φ̂∂Φ̂ + kexp(2Φ̂)∂Û∂V̂ + ∂2Φ̂

}
T̄ = −

{
(k − 2)∂̄Φ̂∂̄Φ̂ + k exp(2Φ̂)∂̄Û ∂̄V̂ + ∂̄2Φ̂

} (58)

This also implies that the worldsheet Hamiltonian is similar to that of string theory on371

AdS3. To reproduce the equations of motion (55) and the stress tensor (58), the action372

for X̂µ is given by (20) with the tilded variables x̃µ replaced by the upper-case hatted373

variables X̂µ,374

Ŝ =
1

2π

∫
d2z

{
(k − 2) ∂Φ̂∂̄Φ̂ + k exp(2Φ̂)∂̄Û∂V̂ − 1

4
Φ̂Rws

}
. (59)
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In the following, we will show that by choosing the integration constants in (48) care-375

fully, the symplectic form and the OPEs of the TsT string theory (40) expressed in the376

X̂µ variable indeed agree with those from the auxiliary AdS3 string theory (59). This377

suggests that the aforementioned two theories are equivalent even at the quantum level.378

Consequently, all the rich results of the AdS3 string theory can in principle be mapped to379

the TsT string theory. For instance, the meaning of (56) and (57) is clear: they are the380

Noether currents and charges generating the translational symmetry in Û and V̂ .381

4.3 TsT as a canonical transformation382

In the previous subsection, we have shown that under the field redefinition (53) the TsT383

string theory (40) and the auxiliary AdS3 string theory (59) have the same equations of384

motion and constraints, and hence have the same classical solutions. To fully make use of385

the map, we still need to establish the equivalence between the two theories at the quantum386

level. In the following, we will first specify the integration constants of (48) so that the387

symplectic structure of the TsT string theory (40) in terms of X̂µ agree with that from the388

auxiliary AdS3 string theory (59). Then we will show that the path integral in terms of389

the phase space variables are equivalent with the said choice of integration constants, and390

therefore the two apparently different actions (40) and (59) can be obtained by integrating391

out different choices of momenta.392

To do so, let us put the theory on the cylinder and consider the conjugate momenta393

in both theories394

pµ ≡ 2π
δS

δ(∂txµ)
, pX̂µ ≡ 2π

δŜ

δ(∂tX̂µ)
(60)

where S and Ŝ are the Lorentzian version of the TsT string action (40) and auxiliary395

AdS3 worldsheet action (59), respectively. Note that we have absorbed a factor of 2π in396

the above definition for convenience. The momenta are given by397

pu = j0, pv = −j̄0,

pÛ = j0 = Rupu, pV̂ = −j̄0 = Rvpv,

pΦ̂ = (k − 2) ∂tϕ = pϕ,

(61)

where we have used the relation (53) and (56). As discussed earlier, using the non-local398

map (53), the stress tensor in the TsT string theory agrees with that in the auxiliary AdS3399

string theory in terms of the phase space variables. In particular, the Hamiltonian can be400

rewritten in terms of the canonical variables as401

H =
1

2π

∫
dσ

{
p2ϕ

2(k − 2)
+

k − 2

2
(∂σϕ)

2 + pu∂σu− pv∂σv +
2 (1 + 2λ exp(2ϕ))

k exp(2ϕ)
pupv

}

=
1

2π

∫
dσ

{
p2
Φ̂

2(k − 2)
+

k − 2

2
(∂σΦ̂)

2 + pÛ∂σÛ − pV̂ ∂σV̂ +
2

k
e−2Φ̂pÛpV̂

}
= Ĥ,

(62)
where Ĥ denotes the Hamiltonian derived directly from the auxiliary AdS3 worldsheet402

action (59). Note that the equivalence between the two Hamiltonians does not depend403

on the choice of integration constants in the field redefinition (53). These integration404

constants, however, will affect the symplectic form and Poisson brackets if they depend405

on the states. In terms of the canonical momenta, the symplectic form in the two theories406

can be written as407

ω =
1

2π

∮
dσ(δxµ ∧ δpµ), Ω̂ =

1

2π

∮
dσ
(
δX̂µ ∧ δpX̂µ

)
. (63)
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In order to make the TsT string theory (40) and the auxiliary AdS3 string theory (59)408

equivalent in a fixed w sector, we need to require that the symplectic forms (63) agree409

with each other upon the field redefinition (53), i.e.410

ω = Ω̂. (64)

Matching the symplectic form enables us to use the tools in the auxiliary AdS3 theory to411

study the TsT string theory. It will be interesting to further understand if there are deeper412

reasons behind this mapping, which we leave to future study. The above requirement is413

satisfied if the integration constants are chosen as 5
414

η0Ru =

∮
dσ

2πw
h[Û − wπ, X̂], η̄0Rv = −

∮
dσ

2πw
h̄[V̂ − wπ, X̂], (65)

where we have defined the functionals415

h[F, X̂] ≡ F (Û) pÛ − 1

2
F ′(Û) ((k − 2) ∂σΦ̂ + pΦ̂)−

k − 2

2k
e−2Φ̂F ′′(Û) pV̂ ,

h̄[F̄ , X̂] ≡ F̄ (V̂ ) pV̂ − 1

2
F̄ ′(V̂ ) (−(k − 2) ∂σΦ̂ + pΦ̂)−

k − 2

2k
e−2Φ̂F̄ ′′(V̂ ) pÛ .

(66)

The first argument in h[F, X̂] specifies the symmetry parameter, and the second argument416

specifies the coordinate system. For instance, the expression for h[f, x̃] is the same as (66)417

with F (Û) replaced by f(ũ) and X̂ = (Û , V̂ , Φ̂) replaced by x̃ = (ũ, ṽ, ϕ̃). Using the418

relation between the X̂ and x̂ variables, we have the following relation419

h[F (Û), X̂] = h[F (û/Ru), x̂]Ru ≡
(
F pu − 1

2
∂ûF ((k − 2)∂σϕ̂+ pϕ)−

k − 2

2k
e−2ϕ̂∂2

ûF pv

)
Ru

(67)
where in h[F, x̂] the derivative of F is taken with respect to x̂. In particular, we can also420

express the integration constants in terms of the x̂ variables as421

η0 =

∮
dσ

2πw
h[

û

Ru
− wπ, x̂], η̄0 = −

∮
dσ

2πw
h̄[

v̂

Rv
− wπ, x̂]. (68)

The zero mode here is reminiscent of the zero mode in Appendix A of [51], where a bulk422

analysis of the asymptotic symmetry for the double-trace T T̄ holography can be found.423

The zero mode in [51] is a special choice to ensure charge integrability, a condition that424

can be satisfied by other choices as well. On the other hand, the zero modes in this paper425

are completely fixed by identifying the worldsheet symplectic structure before and after426

the deformation.427

Canonical quantization428

We have shown that the field redefinition (53) with the choice of the integration constants429

(65) preserves the canonical symplectic form, which further implies the equivalence of the430

Poisson brackets431

{xµ(σ), pν(σ′)} = 2πδµν (σ − σ′), {X̂µ(σ), pX̂ν (σ
′)} = 2πδµν δ(σ − σ′). (69)

As a consistent check, it is straightforward to verify that the Poisson brackets (69) and the432

Hamiltonian (62) indeed produce the equation of motion (55) in terms of the X̂µ variables.433

In fact, the equivalence between the string theory (40) after the TsT transformation and434

5Here Û and V̂ are not periodic functions of σ and the range of the integration is taken to be [0, 2π]
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auxiliary AdS3 string theory (59) can be preserved at the quantum level. This can be435

shown in the canonical quantization. Consider the mode expansion on the constant time436

slice for the X̂ variables,437

Û(σ) = wσ +
∑
n∈Z

Ûne
−inσ, V̂ (σ) = wσ +

∑
n∈Z

V̂ne
−inσ, Φ̂(σ) =

∑
n∈Z

Φ̂ne
−inσ

pX̂µ(σ) =
∑
n∈Z

pX̂µ,ne
−inσ, X̂µ ∈ {Û , V̂ , Φ̂}

(70)

and similarly for the xµ variables. To perform canonical quantization, we simply replace438

the canonical Poisson brackets by commutators with the relation [, ] = ih̄{, }. For the X̂439

variables, the Poisson brackets (69) leads to the commutators440

[X̂µ
n , pX̂ν ,m] = iδµν δn,−m, m, n ∈ Z (71)

where we have set h̄ = 1 for simplicity. The field redefinition (53) and the integration441

constants (65) have to be defined in the sense of normal ordering with442

: pÛ ,nÛ−n : =

{
pÛ ,nÛ−n, n < 0

Û−npÛ ,n, n ≥ 0
(72)

and similarly for pV̂ and V̂ . Using these conditions, one can verify that the canonical443

commutation relations (71) indeed become444

[xµn, pν,m] = iδµν δn,−m, m, n ∈ Z (73)

which is the canonical quantization of the Poisson brackets for the TsT strings.445

The OPEs446

We can also proceed with a radial quantization on the plane. In the asymptotic region447

with ϕ → ∞, the OPEs from the action (40) can be written as448

u(z)j0(w) ∼
1

z − w
, v(z̄)j̄0(w̄) ∼

1

z̄ − w̄
,

∂v(z, z̄)u(w) ∼ − 2λ

k(z − w)
, ∂̄u(z, z̄)v(w, w̄) ∼ − 2λ

k(z̄ − w̄)
,

ϕ(z, z̄)ϕ(w, w̄) ∼ − 1

2(k − 2)
log |z − w|2,

(74)

where we have ignored terms of order e−2ϕ in the last two lines. With the choice of449

integration constants (65), we have shown that the commutation relation of the TsT450

string theory (73) is equivalent to that of the auxiliary AdS3 string theory (71). In order451

to find the OPE in the X̂µ variables, it is important to specify the order of operators in the452

field redefinition. In the following, we keep the order as written in (56) and (53), namely453

put the rescaling factor R−1
u behind û, j0, and similarly for V̂ and j̄0. Performing the454

mode expansion on the Euclidean plane with the commutation relations (71) and normal455

ordering prescription (72), one can get456

Φ̂(z, z̄)Φ̂(w, w̄) = : Φ̂(z, z̄)Φ̂(w, w̄) :− 1

2(k − 2)
log |z − w|2,

Û(z)j0(w) = : Û(z)j0(w) : +
1

z − w
, V̂ (z̄)j̄0(w̄) = : V̂ (z̄)j̄0(w̄) : +

1

z̄ − w̄
.

(75)

16



SciPost Physics Submission

Therefore the OPEs obtained using the field redefinition (53) indeed agree with that from457

the auxiliary AdS3 string theory (59),458

Φ̂(z, z̄)Φ̂(w, w̄) ∼ − 1

2(k − 2)
log |z − w|2,

Û(z)j0(w) ∼
1

z − w
, V̂ (z̄)j̄0(w̄) ∼

1

z̄ − w̄
,

Û(z)V̂ (w) ∼ 0.

(76)

Path integral and local Lagrangian459

Now we provide a formal derivation of the local Lagrangian in terms of the X̂ coordinates,460

which we have assumed to be the auxiliary AdS3 string action (59). Note that if we461

directly plug the field redefinition (53) into the action (40), the resulting expression is not462

(59), but with some extra term. In the path integral, the field redefinition also brings a463

complicated Jacobian for the measure. This makes it difficult to discuss the relationship464

of the two theories in the Lagrangian version of the path integral. Instead, let us consider465

the Hamiltonian version of the path integral in the sector with a fixed winding number w466

ZTsT ≡
∫ ∏

µ

DxµDpxµ exp [iS[x, p]] (77)

where S[x, p] is the action (40) written in terms of the phase space variables467

S[x, p] =

∫
dt

∮
dσ

(
1

2π
pxµ ẋµ −H(xµ, pxµ)

)
. (78)

Firstly, as xµ, pxµ and X̂, pX̂µ are related by a canonical transformation, the measure of468

the path integral is kept invariant, namely,6469 ∏
µ

DxµDpxµ ≡
∏
µ

∏
n∈Z

dxµndpxµ,−n = ω∧∞ = Ω̂∧∞ =
∏
µ

DX̂µDpX̂µ . (79)

This can be viewed as an infinite-dimensional version of the Liouville volume theorem470

for the canonical transformation driven by λ. Secondly, we have shown in (62) that if471

written in terms of the X̂ coordinates, the Hamiltonian is just that of AdS3 string theory.472

Finally, let us focus on the Legendre transformation part of the action (78). Using the473

field redefinition, we find by direct calculation that the difference is only a total derivative,474

1

2π

∫
dt

∮
dσ
(
pxµ ẋµ − pX̂µ

˙̂
Xµ
)
=

∫
dt

d

dt
B(t) (80)

where B is located at the boundary of the worldsheet and takes the following form475

B(t) =
2λ

k

(
η0J̄0 − η̄0J0 −

1

2

∮
dσ

2π
pu(σ)

∫ σ

0
dσ′pv(σ

′) +
1

2

∮
dσ

2π
pv(σ)

∫ σ

0
dσ′pu(σ

′)

)
.

(81)
Define an operator476

U(t) = e−iB(t), (82)

then the path integral of the TsT string theory can be written as477

ZTsT =

∫ ∏
µ

DX̂µDpX̂µ U
−1
∞ eiŜ[X̂,pX̂ ] U−∞ (83)

6The volume form of a 2m dimensional phase space is given by ω∧m = ω ∧ · · · ∧ ω (m times), where ω
is the symplectic 2-form. Here we have m → ∞.
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where the operator U acts on the past and future boundaries but will not affect the478

evolution in the middle. After integrating out pX̂µ in the path integral, we find that479

the action in X̂µ coordinate is indeed (59) up to terms that act on the past and future480

boundaries.7 When the worldsheet manifold is topologically a cylinder, the operators481

U±∞ should be understood as possible dressings of vertex operators inserted at past and482

future infinity, which will play an important role in the calculation of two-point functions.483

It is interesting to work out the effect of this dressing more explicitly and furthermore484

generalize our discussion to generic genus and vertices insertion in general backgrounds.485

We leave these for future studies.486

To summarize, the worldsheet theory (40) on the TsT background can be described by487

the auxiliary AdS3 string theory (59), at least on flat wordsheet. Using the field redefinition488

(53), the worldsheet currents, equations of motion, and the stress tensor can all be mapped489

to each other. With the choice of the integration constants (65), the symplectic form and490

furthermore the OPEs in the two theories are shown to be equivalent to each other. This491

suggests a shortcut for studying the TsT transformed string theory: we can map quantities492

in AdS3 discussed in sec. 3.2 to the TsT transformed theory using the transformation (53).493

We will use this method to study the asymptotic symmetries in the next section.494

5 Asymptotic symmetry for strings on TsT deformed AdS3495

In this section, we study the asymptotic symmetry for string theory on TsT deformed496

background (40). On the string worldsheet, asymptotic Killing vectors generate target497

spacetime diffeomorphisms that preserve the worldsheet equations of motion and stress498

tensor near the asymptotic boundary. As the nonlocal field redefinition (53) preserves all499

these asymptotic data, the asymptotic symmetry in the TsT transformed theory can also500

be obtained from that in the auxiliary AdS3 string theory (59). In section 5.1, we discuss501

the asymptotic symmetries by applying the idea of [50] directly to the TsT deformed502

background (40), and show that the asymptotic boundary conditions can be solved by503

using the non-local map (53). In section 5.2 we discuss the asymptotic symmetry in terms504

of the X̂µ variables, and then in section 5.3 we discuss how the symmetry acts on the505

original target space coordinates xµ. We end this section with some comments on the506

Kac-Moody algebra due to the existence of the internal spacetime.507

5.1 Asymptotic symmetries from boundary conditions508

For the TsT deformed background, the equations of motion are given in (42), and the two509

conserved currents of the u, v translation are in (43). As in the case of strings on AdS3,510

we impose the boundary that these currents are finite asymptotically511

∂̄ξu

1 + 2λ exp(2ϕ)
− 4λ exp(2ϕ)ξϕ∂̄u

(1 + 2λ exp(2ϕ))2
∼ O(exp(−2ϕ)),

∂ξv

1 + 2λ exp(2ϕ)
− 4λ exp(2ϕ)ξϕ∂v

(1 + 2λ exp(2ϕ))2
∼ O(exp(−2ϕ)).

(84)

7In [66] it was also noticed that the partition function on the plane does not change under the ja ∧ jb

deformation.
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and the variation of equations of motion is of the same order as in (26)512

∂

(
exp(2ϕ) ∂̄ξu

1 + 2λ exp(2ϕ)
+

2 exp(2ϕ) ξϕ∂̄u

(1 + 2λ exp(2ϕ))2

)
∼ O(exp(−2ϕ)),

∂̄

(
exp(2ϕ) ∂ξv

1 + 2λ exp(2ϕ)
+

2 exp(2ϕ) ξϕ∂v

(1 + 2λ exp(2ϕ))2

)
∼ O(exp(−2ϕ)), (85)

∂∂̄ξϕ − 2k exp(2ϕ)(1− 2λ exp(2ϕ)) ξϕ∂̄u∂v

(k − 2)(1 + 2λ exp(2ϕ))3
− k exp(2ϕ)

k − 2

∂̄ξu∂v + ∂ξv∂̄u

(1 + 2λ exp(2ϕ))2
∼ O(exp(−4ϕ)).

The asymptotic symmetries determined by the above boundary conditions can be easily513

solved by introducing the non-local coordinates as in (47). More explicitly, we have514

∂̄û =
∂̄u

1 + 2λ exp(2ϕ)
, ∂v̂ =

∂v

1 + 2λ exp(2ϕ)
, ϕ̂ = ϕ. (86)

The above relation is preserved by the relation between the variations,515

∂̄ξu = ∂̄ξû + 2λ
(
exp(2ϕ̂)∂̄ξû + 2ξϕ̂ exp(2ϕ̂)∂̄û

)
,

∂ξv = ∂ξv̂ + 2λ
(
exp(2ϕ̂)∂ξv̂ + 2ξϕ̂ exp(2ϕ̂)∂v̂

)
,

ξϕ̂ = ξϕ.

(87)

Using the x̂ coordinates, the conditions (84) and (85) are similar to (27) and (26). Thus516

the asymptotic Killing vectors can be solved as517

ξû = f(û)− k − 2

2k
exp(−2ϕ)f̄ ′′(v̂) +O(exp(−4ϕ)),

ξv̂ = f̄(v̂)− k − 2

2k
exp(−2ϕ)f ′′(û) +O(exp(−4ϕ)),

ξϕ̂ = −1

2
f ′(û)− 1

2
f̄ ′(v̂) +O(exp(−2ϕ)).

(88)

There are two subtleties here. First, while the non-local coordinate transformation we518

have explicitly used in this section is not sensitive to the choice of the zero modes, the519

resulting asymptotic Killing vectors (88) depend on the non-local coordinates themselves520

and hence on the zero modes. Second, the windings of û and v̂ are not integer multiples of521

2π, as can be seen from (52). Thus the functions f(û) and f̄(v̂) are not periodic functions522

of û and v̂. One way to proceed is to introduce a linear term in f(û) to take into account523

the non-trivial boundary condition, an approach similar to the one taken in [51]. On524

the other hand, as we have already introduced the X̂ coordinates which satisfy standard525

boundary conditions (53), it is more convenient to work in these variables. By varying the526

map (53), we obtain the relation between the variations527

ξû = (1 +
2λ

wk
J̄0) ξ

Û +
2λ

wk
ÛδJ̄0,

ξv̂ = (1 +
2λ

wk
J̄0) ξ

V̂ +
2λ

wk
V̂ δJ0,

ξϕ̂ = ξΦ̂ − 1

2

2λ
wkδJ0

1 + 2λ
wkJ0

− 1

2

2λ
wkδJ̄0

1 + 2λ
wk J̄0

.

(89)

Using these relations, it can be directly shown that the conditions (84) and (85) in terms of528

{Û , V̂ , Φ̂} are in the same form of (27) and (26). As a result, the solution to the asymptotic529

Killing vector is identical to (88) with {û, v̂, ϕ̂} replaced by {Û , V̂ , Φ̂}. This enables us to530

proceed with asymptotic Killing vectors in terms of the auxiliary AdS3 variable X̂, which531

we discuss in detail in the following.532
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5.2 The asymptotic symmetry in the X̂µ variables533

As explained in detail in the previous section, the equations of motion (42) after the TsT534

transformation is equivalent to (55) in terms of X̂µ which is the same as the equations of535

motion for strings on AdS3 (24). From the field redefinition (53), the asymptotic region536

with large ϕ implies large Φ̂ as well. Then the discussion of the asymptotic symmetry in537

the X̂µ variables are completely parallel to that of AdS3 as summarized in section 3.2,538

with x̃µ replaced by X̂µ. By imposing the asymptotic equations of motion similar to (26),539

the asymptotic Killing vectors can be expressed in terms of two arbitrary functions F (Û)540

and F̄ (V̂ ) as,541

ΞF = F (Û)∂Û − k − 2

2k
exp(−2Φ̂)F ′′(Û)∂V̂ − 1

2
F ′(Û)∂Φ̂

Ξ̄F̄ = F̄ (V̂ )∂V̂ − k − 2

2k
exp(−2Φ̂)F̄ ′′(V̂ )∂Û − 1

2
F̄ ′(Û)∂Φ̂

(90)

where prime denotes derivative with respect to its argument, and we have omitted the542

subleading terms. To preserve the periodic boundary conditions (54), the functions543

F (Û), F̄ (V̂ ) should be periodic functions of their respective arguments and thus can be544

decomposed into Fourier modes545

Fm(Û) = − exp(imÛ), F̄m(V̂ ) = exp(−imV̂ ). (91)

As the vectors Ξ only depend on the target spacetime coordinates with state-independent546

boundary conditions, the commutator between two vectors is simply given by the Lie547

bracket. Then the generators Ξm ≡ ΞFm and Ξ̄m ≡ Ξ̄F̄m
form left and right moving Witt548

algebra under Lie bracket,549

[Ξn,Ξm] = i(n−m)Ξn+m,

[Ξ̄n, Ξ̄m] = i(n−m)Ξ̄n+m,

[Ξn, Ξ̄m] = 0.

(92)

Now let’s calculate the conserved charge corresponding to the symmetry vector ΞF and550

ξF in the Hamiltonian formalism. In the following, we focus on the left moving part551

parameterized by F (Û), whereas discussions on the right moving part are similar. As552

outlined in section 3.1, at each point on the worldsheet we consider the six-dimensional553

phase space with coordinates {Û , V̂ , Φ̂, pÛ , pV̂ , pΦ̂}. Let ζ
I denote the tangent vector in554

the phase space, whose three-dimensional part is given by the asymptotic Killing vector555

(90), namely,556

ζµ ≡ {X̂µ, JF } = Ξµ
F (93)

where JF generates the transformation (90) on the target spacetime coordinates X̂µ via557

the Poisson bracket. The components of ζ in the directions of the momenta are determined558

by the conditions (16) which in this case are given by559

{JF , H} ∼ O(e−2Φ̂),

{ζI , H} − {{Q̂I , H}, JF } ∼ O(e−2Φ̂).
(94)

The meaning of the above two equations is that the symmetry transformation preserves560

the worldsheet Hamiltonian and equations of motion in the asymptotic region. The specific561

fall-off condition on the right hand side corresponds to Brown-Henneaux boundary condi-562

tions in the auxilliary AdS3 theory as discussed in [50]. The solution to these equations563
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is564

ζ
pÛ
F = −h[F ′(Û), X̂],

ζ
pV̂
F = 0,

ζpΦF = −k

2

(
∂σÛ +

2

k
e−2Φ̂pV̂

)
F ′′(Û).

(95)

where the functional h is defined in (66) which we reproduce here for convenience,565

h[F, X̂] ≡ F (Û)pÛ − 1

2
F ′(Û)((k − 2)∂σΦ̂ + pΦ̂)−

k − 2

2k
e−2Φ̂F ′′(Û)pV̂ ,

h̄[F̄ , X̂] ≡ F̄ (V̂ )pV̂ − 1

2
F̄ ′(V̂ )(−(k − 2)∂σΦ̂ + pΦ̂)−

k − 2

2k
e−2Φ̂F̄ ′′(V̂ )pÛ .

(96)

Plugging the variations (93) and (95) into (15), we can obtain the infinitesimal charge566

δJF =
1

2π

∫
dσ δh[F (Û), X̂], (97)

which is integrable and the resulting finite charge is given by567

JF =
1

2π

∫
dσ h[F (Û), X̂]. (98)

Under the mode expansion (91), it is straight forward to verify that the charges Jm ≡ JFm568

satisfy the Virasoro algebra via the Poisson bracket (69), namely569

{Jn,Jm} = −i(n−m)Jn+m − in3 c

12
δn,−m

{J̄n, J̄m} = −i(n−m)J̄n+m − in3 c

12
δn,−m

{Jn, J̄m} = 0

(99)

where the central term is c = 6(k − 2)w ∼ 6kw in the classical limit. Note that the zero570

mode charges J0, J̄0 generate translations in Û and V̂ , respectively.571

5.3 The asymptotic symmetry for the TsT strings572

So far the asymptotic charges (98) have been constructed so that they correspond to573

the asymptotic Killing vectors (90) in the X̂ variables. As shown in the last section,574

the auxiliary AdS3 string theory is equivalent to the string theory on the linear dilaton575

background (40) under the field redefinition (53). As the transformations (90) preserve576

the worldsheet equations of motion and stress tensor asymptotically in the former theory,577

they preserve those in the later theory as well. Therefore the charges (98) also generate578

asymptotic symmetries in the TsT string theory (40). Now let us consider the action579

of these charges on xµ which is the physical target spacetime coordinates after the TsT580

transformation.581

Using the Poisson brackets (69) and the field redefinition (53), it is straightforward to582

work out the Poisson brackets between the charges and the x̂ coordinates, which can be583

written as584

{û,JF } = fF (û)−
k − 2

2k
exp(−2ϕ̂)f̄′′

F (v̂)

{v̂,JF } = f̄F (v̂)−
k − 2

2k
exp(−2ϕ)f′′

F (û)

{ϕ,JF } = −1

2
f′
F (û)−

1

2
f̄′
F (v̂)

(100)
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where the function fF (û) is given by585

fF (û) = (F (Û) + û wF )Ru, f̄F (v̂) = v̂ w̄FRu,

wF = {Ru, JF }R−2
u = − J̄0JF ′

1 + 2λ
wkJ0 +

2λ
wk J̄0

(
2λ

wkRu

)2

, w̄F =
JF ′

1 + 2λ
wkJ0 +

2λ
wk J̄0

2λ

wkRu
.

(101)
The above transformation in the x̂ variables is formally a left-moving conformal trans-586

formation with symmetry parameter fF accompanied by a rescaling in the right-moving587

coordinates v̂. Note that the transformation (100) indeed takes the general form of (88),588

with f(û) = fF (û) when we take F̄ (V̄ ) = 0. When F̄ (V̄ ) ̸= 0, it will contribute yet589

another linear term in f(û), similar to the appearance of v̂ w̄FRu due to F (Û). To see the590

action on the TsT coordinates xµ, it is useful to note that591

{pu,JF } = −h[f′
F (û), x̂], {pv,JF } = −h̄[f̄′

F (v̂), x̂],

{pϕ,JF } = −k

2

(
∂σû+

2

k
e−2ϕpv

)
f′′
F (û).

(102)

Using the coordinate transformation (53) and the above formula, we obtain the following592

transformation593

{u,JF } = fF (û)−
k − 2

2k
exp(−2ϕ̂)f̄′′

F (v̂) +
2λ

k

∫ σ

0
dσ′h̄[f̄′

F (v̂), x̂] +
2λ

k
{η̄0,JF }

{v,JF } = f̄F (v̂)−
k − 2

2k
exp(−2ϕ)f′′

F (û)−
2λ

k

∫ σ

0
dσ′h[f′

F (û), x̂] +
2λ

k
{η0,JF }

{ϕ,JF } = −1

2
f′
F (û)−

1

2
f̄′
F (v̂)

(103)

where the Poisson brackets appearing in the first two lines are constants given by594

{η0,JF } = −
∮

dσ

2πw
h[(

û

Ru
− wπ)f′

F (û), x̂] + JF
1

wRu
,

{η̄0,JF } =

∮
dσ

2πw
h̄[(

v̂

Rv
− wπ)f̄′

F (v̂), x̂].

(104)

We note that the symmetry parameter f(û) now contains a term that is linear in the595

coordinate. One may wonder if the transformation is compatible with the boundary596

conditions (45). It turns out the shift of the third term in (103) under σ → σ + 2π597

cancels the shift from the linear part in fF , so that the variation of the coordinates598

remains periodic. More explicitly, we have599

δF u(2π)− δF u(0) = 2πwRu

(
wFRu +

2λ

wk
w̄F J̄0

)
= 0,

δF v(2π)− δF v(0) = 2πwRvRuw̄F − 2λ

k

∮
dσh[f′

F (û), x̂] = 0.
(105)

One particularly interesting transformation is the zero mode with F (Û) = F0 = 1, in600

which case we have wF = w̄F = 0, both the linear term and the non-local term vanish,601

and we find that the charge J0 shifts the coordinates u and v simultaneously,602

{xµ, J0} ∂µ = −Ru∂u +
2λ

wk
J0∂v. (106)

On the other hand, we expect to find a set of generators that include the translational603

generators J0, J̄0, which generate ∂u, ∂v respectively. The relation between J0 and J0 (57)604

then suggests that we can define the following charges,605

JF ≡ JFR
−1
u =

∮
dσ

2π
h[F (ûR−1

u ), x̂], J̄F̄ ≡ J̄F̄R
−1
v , (107)
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where we have used the relation (67). Acting on the TsT coordinates, we find606

χµ
F ≡ {xµ, JF } = {xµ,JF }R−1

u − JF
2λ

wkRu
δµv (108)

from which we learn that the zero mode charge with F = 1 indeed generates translation607

in u. The most general asymptotic charges in the target spacetime are given by608

JF,F̄ = JF + J̄F̄ (109)

and they generate the following transformations on the coordinates.609

χu ≡ {u, JF,F̄ } = fF,F̄ (û)−
k − 2

2k
exp(−2ϕ̂)f̄ ′′

F,F̄ (v̂) +
2λ

k

∫ σ

0
h̄[f̄ ′

F,F̄ (v̂), x̂] + cf̄F,F̄

χv ≡ {v, JF,F̄ } = f̄F,F̄ (v̂)−
k − 2

2k
exp(−2ϕ)f ′′

F,F̄ (û)−
2λ

k

∫ σ

0
h[f ′

F,F̄ (û), x̂] + cfF,F̄

χϕ ≡ {ϕ, JF,F̄ } = −1

2
f ′
F,F̄ (û)−

1

2
f̄ ′
F,F̄ (v̂)

(110)

where8610

fF,F̄ (û) = F (Û) + (wF + wF̄ )û,

f̄F,F̄ (v̂) = F̄ (V̂ ) + (w̄F + w̄F̄ )v̂,
(111)

and611

cf̄F,F̄
=

2λ

wk

∮
dσ

2π
h̄[(

v̂

Rv
− wπ)f̄ ′

F,F̄ (v̂), x̂],

cfF,F̄
= − 2λ

wk

∮
dσ

2π
h[(

û

Ru
− wπ)f ′

F,F̄ (û), x̂].

(112)

Acting on the momenta, we have612

χpu ≡{pu, JF,F̄ } = −h[f ′
F,F̄ (û), x̂],

χpv ≡{pv, JF,F̄ } = −h̄[f̄ ′
F,F̄ (v̂), x̂],

χpϕ ≡{pϕ, JF,F̄ } = −1

2

(
∂σû+

2

k
e−2ϕpv

)
f ′′
F,F̄ (û)−

1

2

(
−∂σv̂ +

2

k
e−2ϕpv

)
f̄ ′′
F,F̄ (v̂).

(113)
Note that the asymptotic Killing vector (110) depends on the state and is also non-local613

on the string worldsheet. It is difficult to see directly how it acts directly on the target614

spacetime coordinates. Nevertheless, we can show that these vectors are indeed asymptotic615

Killing vectors in the sense that they preserve the Hamiltonian and the equations of616

motion. Similar to (94), we find617

{JF , H} ∼ O(e−2ϕ),

{χI , H} − {{qI , H}, JF } ∼ O(e−2ϕ).
(114)

Now let us consider the algebra formed by the charges (107). Under the mode expansion618

8The asymptotic Killing vector χµ with w = 1 is similar to (A.7) in [51]. To make the comparison, we
can identify fF,F̄ , cfF,F̄

to f and cLf in [51]. In particular, both fF,F̄ and f contain a periodic part and a
linear term in the coordinates, so that the asymptotic Killing vector still preserves the periodic boundary
conditions. The charge Jm is similar to the ‘rescaled’ charges, and Jm is similar to the ‘unrescaled’ charges
in [51].
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(91), the charges Jm ≡ JFm form the following algebra via Poisson brackets,619

{Jn, Jm} = − i(n−m)Jn+m

Ru
− i

c

12

n3δn,−m

Ru
2 −

i(n−m)( 2λwk )
2J̄0JmJn

Ru(1 +
2λ
wkJ0 +

2λ
wk J̄0)

,

{J̄n, J̄m} = − i(n−m)J̄n+m

Rv
− i

c

12

n3δn,−m

R2
v

−
i(n−m)( 2λwk )

2J0J̄mJ̄n

Rv(1 +
2λ
wkJ0 +

2λ
wk J̄0)

,

{Jn, J̄m} =
i(n−m)( 2λwk )JnJ̄m

1 + 2λ
wkJ0 +

2λ
wk J̄0

.

(115)

Due to the state-dependence, the modified Lie bracket between two vectors χF and χG620

parameterized by F (Û) and G(Û) should be defined as621

[χF , χG]
µ
m.L ≡ {χµ

G, JF } − {χµ
F , JG} = {{xµ, JG}, JF } − {{xµ, JF }, JG} (116)

which can also be written as [67]622

[χF , χG]m.L = [χF , χG]Lie + δχFχG − δχGχH . (117)

Using the Jacobi identities between JF , JG and xµ623

{{xµ, JG}, JF } − {{xµ, JF }, JG} = −{xµ, {JF , JG}}, (118)

we find that the algebra formed by the asymptotic Killing vectors is given by624

[χF , χG]m.L = −χ{JF , JG}, (119)

which is isomorphic to the algebra formed by the charges (115).625

So far we have worked out the asymptotic symmetries in the target spacetime for the626

TsT string theory (40) at the classical level. The symmetry can be organized in two627

ways: the Virasoro generators (98) which generate the transformation (90) in the X̂ basis,628

and the Jm generators which form a nonlinear algebra (115) and generate field dependent629

diffeomorphism (110) in the xµ basis. The zero modes J0, J̄0 of the former algebra generate630

translations of the auxiliary coordinates Û and V̂ , whereas the zero modes J0, J̄0 generate631

translations of the physical coordinates u and v. The two sets of charges are related by a632

field-dependent rescaling (107).633

As reviewed in section 2, string theory on the TsT-transformed background (40) is634

conjectured to be holographically dual to the single-trace T T̄ deformed CFT2. For a sym-635

metric orbifold CFT MN/SN with seed CFT M, the single-trace T T̄ deformed theory636

MN
TT̄

/SN is a symmetric orbifold theory with a (double-trace) T T̄ deformed seed theory637

MT T̄ . The Virasoro algebra (99) and the non-linear algebra (115) we found from world-638

sheet analysis agree with those found from the single-trace T T̄ deformed CFT [37], the lat-639

ter of which was based on the analysis of the double-trace version of T T̄ deformation [38]640

and its holographic dual [51]. In [51], asymptotic symmetry on the TsT-transformed641

background has also been discussed by studying linearized perturbations in supergravity642

theory. The appearance of the infinite dimensional symmetry (99) or (115) is compatible643

with the results of [35], where correlation functions in momentum space is found to take644

a very simple form. Note that the string background (17) after the TsT transformation645

is asymptotically flat in the string frame with a linear dilaton, the full theory of which is646

also conjectured to be holographically dual to little string theory [1]. It will be interesting647

to understand the implications of the asymptotic symmetries (115) in little string theory648

and flat holography as well.649
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5.4 The quantum algebra650

We have discussed asymptotic symmetries on the string worldsheet at the classical level.651

We have also shown in the previous section that the symplectic structure and the OPEs652

in the auxiliary AdS3 string theory (59) are also equivalent to those in the TsT string653

theory (40). This allows us to proceed with quantization and consider the symmetries at654

the quantum level as well.655

At the quantum level, normal ordering is assumed in the Jm generators defined in656

(98). It is more convenient to put the worldsheet theory on the plane. Using the OPEs in657

the X̂µ variables, it is not difficult to verify that the generators Jm indeed generate the658

transformation Ξm defined in (90) in the large radius region, namely659

[X̂µ, Jm] = iΞX̂µ

m , (120)

and the commutation relations form a direct sum of two Virasoro algebras660

[Jn,Jm] = (n−m)Jn+m +
c

12
m3δn,−m[

J̄n, J̄m

]
= (n−m)J̄n+m +

c̄

12
m3δn,−m[

Jn, J̄m

]
= 0

(121)

As discussed around (36), the charges Jm commute with the worldsheet stress tensor and661

is thus physical.662

Now let us consider the Jm generators defined in (107). There is an ordering ambiguity663

of the operators at the quantum level. In the following, we always multiply powers of Ru664

and Rv to the right, namely665

Jm = JmR−1
u , J̄m = J̄mR−1

v . (122)

This prescription is purely due to technical reasons, as it makes it possible to invert the666

above relation so that we can express Jm in terms of Jm. One can also verify that these667

charges commute with the worldsheet stress tensor668

[Jm, Tws] = [Jm, T̄ws] = 0. (123)

Using the relation (57), we learn that an eigenstate of J0 and J̄0 is also an eigenstate669

of J0 and J̄0. Denote the eigenvalues of J0, J̄0 by p, p̄, and we have670

J0|p, p̄⟩ = p|p, p̄⟩, J̄0|p, p̄⟩ = p̄|p, p̄⟩
J0|p, p̄⟩ = α(p, p̄)|p, p̄⟩, J̄0|p, p̄⟩ = ᾱ(p, p̄)|p, p̄⟩

(124)

The modified eigenvalues can be read from the relation (57) which acting on the states671

becomes672

p = α+
2λ

wk
αᾱ, p̄ = ᾱ+

2λ

wk
αᾱ. (125)

The solution of the above equation is given by673

α(x, y) =
1

2
(x− y) +

wk

4λ

(
−1 +

√
1 +

4λ

wk
(x+ y) + (

2λ

wk
)2(x− y)2

)
ᾱ(x, y) = α(x, y) + y − x

(126)

where the functions α and ᾱ can be viewed as a map from eigenvalues of J0, J̄0 to those674

of J0, J̄0. The above relation is the same as single-trace T T̄ spectrum (4) if we identify675
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(p, p̄) as the undeformed eigenvalues p = 1
2(E(0)R + J(0)), and (α, ᾱ) as the deformed676

ones α = 1
2(E(µ)R+ J(µ)).677

Note that the aforementioned relation between the eigenvalues holds for all eigenstates678

of the two U(1) generators J0 and J̄0. The Virasoro algebra (121) implies that the op-679

erators Jm are ladder operators so that the state Jm|p, p̄⟩ is an eigenstate of J0, J̄0 with680

shifted eigenvalues (p−m, p̄), and furthermore also an eigenstate of J0, J̄0 with eigenval-681

ues
(
α(p−m, p̄), ᾱ(p−m, p̄)

)
. We can promote α to a functional of the operators J0 and682

J̄0, using which we find the following algebra683

[Jn, Jm] =Jn+m
(n−m)

1 + 2λ
wk J̄0

+
c
12m

3δn,−m

(1 + 2λ
wk J̄0)

2

− JmJn
2λ

wk

ᾱ(J0, J̄0)− ᾱ(J0 − n, J̄0)

1 + 2λ
wk J̄0

+ JnJm
2λ

wk

ᾱ(J0, J̄0)− ᾱ(J0 −m, J̄0)

1 + 2λ
wk J̄0

.

(127)
To derive the above relation, we have used the definition (122) and the commutators (121).684

Alternatively, we can also multiply the quantum algebra (127) by 1+ 2λ
wk ᾱ(J0, J̄0), so that685

it becomes686

[Jn, Jm] = (n−m)Jn+m +
c

12

m3δn,−m

1 + 2λ
wk J̄0

− 2λ

wk

(
JnJmᾱ(J0 −m, J̄0)− JmJnᾱ(J0 − n, J̄0)

)
.

(128)
To understand the relation between the above quantum algebra with the classical one687

(115), we need to restore h̄ and perform perturbation in h̄. Or alternatively, the clas-688

sical limit can be obtained by expanding (127) on a state with the expectation value of689

⟨J0⟩ ≫ m, ⟨J̄0⟩ ≫ m. Then we have the approximation690

ᾱ(J0, J̄0)− ᾱ(J0 −m, J̄0) ∼ m
∂ᾱ

∂J0
= −

m 2λ
wk J̄0

1 + 2λ
wkJ0 +

2λ
wk J̄0

(129)

Plugging the above relation into (127), and ignoring the ordering in JmJn, we obtain691

an expansion of the quantum algebra up to o(h̄). The result agrees with (115) if we692

replace the Poisson bracket by commutator {, } → − i
h̄ [, ] with h̄ = 1. The aforementioned693

expansion of our quantum algebra (127) also reduces to the symmetry algebra found in694

the field-theoretic analysis of double-trace and single-trace T T̄ CFT [37,38].695

Similar expressions can be obtained for the commutator between the J̄ms. For the696

mixed commutators, we have697

[Jn, J̄m] = JnJ̄m

(
1−

1 + 2λ
wk ᾱ(J0, J̄0 −m)

1 + 2λ
wk J̄0

)
− J̄mJn

(
1−

1 + 2λ
wkα(J0 − n, J̄0)

1 + 2λ
wkJ0

)
,

(130)
Or equivalently,698

JnJ̄m

(
1 + 2λ

wk ᾱ(J0, ¯J −m0)

1 + 2λ
wk J̄0

)
− J̄mJn

(
1 + 2λ

wkα(J0 − n, J̄0)

1 + 2λ
wkJ0

)
= 0. (131)

5.5 The fate of the spacetime Kac-Moody algebra699

To end this section, we now turn to the Kac-Moody algebra due to the existence of the700

internal spacetime in string theory. In the string theory on AdS3 × N background, the701

worldsheet CFT on the internal manifold N contains an affine Lie group, generated by702
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currents Ka with the following OPE703

Ka(z)Kb(w) =
k′δab/2

(z − w)2
+

ifab
c Kc

z − w
+ · · · , a, b, c = 1, · · · ,dimG (132)

where G is a compact group, k′ is the level of the affine Lie algebra ĝk′ , and fab
c is the704

structure constant. For instance, when N = S3×T 4, Ka can be taken as either the affine705 ̂su(2)k′ currents or the currents on the T 4. Our subsequent discussion is universal and does706

not depend on details of the internal manifold or the choice of the currents. As shown707

in [47], the worldsheet currents Ka can be used to construct affine Kac-Moody currents708

in the spacetime CFT. After the TsT transformation, a similar statement can be made709

to string theory on the auxiliary AdS3 spacetime together with the unaffected internal710

manifold N. Then we have the Kac-Moody algebra in the spacetime CFT generated by711

charges Ka
n,712

Ka
n =

1

2πi

∮
dzKa(z)einÛ(z), (133)

which satisfies the algebra713

[Ka
n,K

b
m] = ifab

c Kc
n+m +

nk̃

2
δabδn+m,0,

[Jn,K
a
m] = −mKa

n+m, [J̄n,K
a
m] = 0,

(134)

where k̃ = k′
∮

dz
2π∂Û is the Kac-Moody level in the spacetime CFT. Due to the redefinition714

(122), the algebra between Ka
n and the charges Jm differ from the last line of the above715

equation, and becomes716

[Jn,K
a
m] = −Ka

n+m

m

1 + 2λ
wk J̄0

+ JnK
a
m

(
1−

1 + 2λ
wk ᾱ(J0 −m, J̄0)

1 + 2λ
wk J̄0

)
,

[J̄n,K
a
m] = J̄nK

a
m

(
1−

1 + 2λ
wkα(J0 −m, J̄0)

1 + 2λ
wkJ0

)
.

(135)

The classical limit of the above algebra reduces to the following Poisson bracket717

{Jn,Ka
m} =

im

Ru

(
Ka

m+n +
( 2λwk )

2J̄0JnK
a
m

1 + 2λ
wkJ0 +

2λ
wk J̄0

)
,

{J̄n,Ka
m} = −

im 2λ
wk J̄nK

a
m

1 + 2λ
wkJ0 +

2λ
wk J̄0

.

(136)

It is interesting to note that the Kac-Moody currents also induce translations in the u, v718

directions which are coordinates on the spacetime CFT. We find the following Poisson719

brackets720

{u,Ka
n} = kan(û) +

2λ

k

∫ σ

0
h̄[∂v̂k̄

a
n(v̂), x̂] + c̄an

{v,Ka
n} = k̄an(v̂)−

2λ

k

∫ σ

0

(
h[∂ûk

a
n(û), x̂] +

nKae
inû
Ru

Ru

)
+ can

{ϕ,Ka
n} = 0

(137)

where721

kan(û) ≡ {û,Ka
n} = −

in( 2λwk )
2J̄0K

a
n

1 + 2λ
wkJ0 +

2λ
wk J̄0

û

Ru
,

k̄an(v̂) ≡ {v̂, Ka
n} =

in 2λ
wkK

a
n

1 + 2λ
wkJ0 +

2λ
wk J̄0

v̂,

(138)
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and the constants can, c̄
a
n are given by722

can = − 2λ

wk

(∮
dσ

2π
h[∂ûk

a
n(û)(

û

Ru
− wπ), x̂] +

∮
dσ

2π
Ka(σ)(

û

Ru
− wπ)

ne
inû
Ru

Ru

)
,

c̄an =
2λ

wk

∮
dσ

2π
h̄[∂v̂k̄

a
n(v̂)(

v̂

Rv
− wπ), x̂].

(139)

One can check that the transformation (137) still preserves the periodicity of u, v, despite723

the fact that it contains linear parts. It is interesting to further understand the implication724

of this novel transformation on the spacetime coordinates, which we leave for future study.725
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