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The possibility of an unconventional form of high temperature superconductivity in flat band
(FB) material does not cease to challenge our understanding of the physics in correlated systems.
Recently, it has been argued that the coherence length in FB compounds could be decomposed
into a conventional part of BCS type and a geometric contribution which characterises the FB
eigenstates, the quantum metric. Here, we propose to address this issue in various FB systems and
discuss whether the extracted characteristic lengthscales such as the size of the Cooper pairs obey
this conjecture. It is found that the relevant lengthscales are less than one lattice spacing, weakly
sensitive to the strength of the electron-electron interaction, and more importantly disconnected
from the quantum metric.

INTRODUCTION

Over the past ten years we are witnessing a rapidly
growing interest for the physics in dispersion-less bands
[1–8]. In flat band (FB) compounds, because the width
of these bands is extremely narrow, the Coulomb energy
is left as the unique relevant energy scale. This places
naturally these systems in the class of highly correlated
materials and opens the access to exotic and unexpec-
ted physical phenomena and quantum phases. Undenia-
bly, one of the most striking feature is the possibility
of high critical temperature superconductivity (SC) in
compounds where the Fermi velocity vanishes [9–18]. In
contrast to conventional superconductivity, this uncon-
ventional form of superconductivity is of inter-band na-
ture. In other words, the superfluid weight is controlled
by the off-diagonal matrix elements (in terms of band in-
dex) of the current operator, and the diagonal contribu-
tion (conventional contribution) vanishes or is negligible.
The superconductivity in FBs is characterised by a geo-
metrical quantity known as the quantum metric (QM).
The QM is connected to the real part of the quantum
geometric tensor [19, 20] and its square root provides a
measure of the typical spread of the FB Bloch eigens-
tates. So far, the unique experimental realisation of such
an unusual form of superconductivity is very likely the
one that has been observed in twisted bilayer of graphene
(Moiré) in the vicinity of magic angles [8, 21–26].
It is well known that in conventional BCS systems where
the superconductivity is of intra-band nature [27, 28], the
coherence length ξc is given by ξBCS = ℏvF

∆ where vF and
∆ are respectively the Fermi velocity and superconduc-
ting gap or pairing amplitude. We recall that ξc measures
the size of the Cooper pair in real space. Since, in the
BCS regime (weak coupling) the superconductivity gap
is exponentially small, ξc is often extremely large, hence
Cooper pairs are highly overlapping with each other.
On the other hand, in the strong coupling regime the
Cooper pairs can be assimilated to tightly bound non-
overlapping composite bosons which at low temperature
leads to the well known Bose Einstein condensation phe-

nomenon (BEC)[29, 30].
A natural question arises : what about the case of FB
superconductors ? Recently, it has been argued that the
coherence length in these systems has two contributions,
the first is of conventional type and the other is pu-
rely geometric in nature [31, 32]. More precisely, it is
claimed that the coherence length can be expressed as
ξc =

√
ξ2BCS + ⟨g⟩ where ⟨g⟩ is the average of the QM.

Hence, if the band is rigorously flat the first term va-
nishes.

The purpose of the present study is to address this
issue in several FB lattices and discuss our findings in
connection with these predictions and with the existing
literature. More precisely, we propose to consider four
different systems, three of them are one dimensional and
the last one is two dimensional : the stub lattice, the saw-
tooth chain, the Creutz ladder and the χ−lattice. These
models and their respective dispersions (in the non in-
teracting case) are depicted in Fig.1. Notice that the χ-
Lattice has been originally introduced in Ref. [33]. Ho-
wever, since no specific name has been attributed to this
peculiar model,”χ−lattice" has been chosen. In this sys-
tem, the range of the extended hoppings is controlled by
a single parameter (χ) as it will become more explicit
in the next paragraph. The choice of these four different
systems is motivated by several intentions. It allows to
estimate the impact of (i) the bipartite character of the
lattice, (ii) the tunability of the quantum metric, (iii) the
absence of dispersive bands in the spectrum, (iv) and last
the lattice dimension.

THEORY AND METHODS

Electrons are described by the attractive Hubbard mo-
del which reads,

Ĥ =
∑

iλ,jη,σ

tληij ĉ†iλ,σ ĉjη,σ − µN̂ − |U |
∑
iλ

n̂iλ,↑n̂iλ,↓, (1)

where ĉ†iλ,σ creates an electron of spin σ at site riλ, i being
the cell index and λ the orbital index ranging from 1 to
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Figure 1. Schematic representation of (a) the stub lattice, (b) the sawtooth chain, (c) the Creutz ladder and (d) the
two-dimensionnal χ-lattice. Their respective dispersions, in the non interacting case, are depicted in the panels having a grey
background. The hoppings and the on-site Hubbard attractive interaction term are depicted in the figure. In the case of the
χ-Lattice (two orbitals A and B per site) the hoppings are long range (see main text).

norb. N̂ =
∑

iλ,σ n̂iλ,σ, µ is the chemical potential and |U |
is the strength of the on-site attractive electron-electron
interaction. The hoppings are very short ranged in the
stub lattice, the sawtooth chain and the Creutz ladder as
depicted in Fig.1. On the other hand, in the χ-Lattice the
situation differs, the hoppings are long-ranged, restricted
to (A,B)-pairs, and given by tAB

ij = − t
Nc

∑
k e

ik.reiγk

where γk = χ(cos(kxa) + cos(kya)), r = rj − ri, and Nc

being the number of unit cells. The parameter χ controls
both the range of the hoppings and the QM which is
given by ⟨g⟩ = χ2a2/8 [34].

In this work, we treat the interaction term within the
Bogoliubov de Gennes (BdG) approach which consists in
the following decoupling scheme,

n̂iλ,↑n̂iλ,↓
BdG≃ ⟨n̂iλ,↓⟩n̂iλ,↑ + ⟨n̂iλ,↑⟩n̂iλ,↓

+
∆iλ

|U |
ĉ†iλ,↑ĉ

†
iλ,↓ +

∆∗
iλ

|U |
ĉiλ,↓ĉiλ,↑,

(2)

where the self-consistent parameters ⟨n̂iλ,σ⟩ and ∆λ =
−|U |⟨ĉiλ↓ĉiλ↑⟩ are respectively the orbital dependent oc-
cupations and pairings. ⟨. . .⟩ corresponds to the grand
canonical average. Notice, that the total carrier density
is defined as n = Ne/Nc, where Ne is the total number
of electrons, hence n varies from 0 to 2norb.

Before we discuss our calculations, we propose to pro-
vide some arguments that justify that our approach is
meaningful. We first start with the shortcomings. It is
well established that the BdG Hamiltonian being quadra-
tic, it is inappropriate to calculate reliably two particles
correlation functions (CFs) such as the pairing-pairing
correlation function fP (ri − rj) = ⟨Π̂†

i Π̂j⟩ where the on-
site pairing operator (s-wave) Π̂†

i = ĉ†i↑ĉ
†
i↓

. In the case
of the attractive Hubbard model in two dimensional sys-
tems, one expects the correlation function fP (r) to decay
algebraically with a T -dependent power for T < TBKT ,
and exponentially when T > TBKT , where TBKT is

the Berezinskii-Kosterlitz-Thouless transition tempera-
ture [35–37]. On the other hand, the one-particle CF of
the form fσsp(ri − rj) = ⟨ĉ†iσ ĉjσ⟩ always decays exponen-
tially in the superconducting phase. Mean Field theory
such as the BdG approach can not describe the change
of behaviour of fP (r) across the BKT transition, since
through Wick’s theorem two-particles CFs reduce to pro-
ducts of one-particle CFs only. However, in FB systems,
one expects the single particle CFs to be well captured
within the BdG theory. For instance, it has been shown,
that the local occupations, the pairings and the superfluid
weight calculated by the numerically unbiased DMRG
are in excellent agreement with the mean field values in
the Creutz ladder and in the sawtooth chain [12, 38]. It
should be emphasised that the agreement found concerns
both the weak and the strong coupling regime. In what
follows it will be shown that it is as well the case for
correlations functions.

To study the characteristic lengthscales in the super-
conductivity phase at T = 0, we define the normal and
anomalous CFs,

Gλη(r) = ⟨ĉ†iλ,σ ĉjη,σ⟩, (3)
Kλη(r) = ⟨ĉiλ,↑ĉjη,↓⟩, (4)

where the index i (respectively j) refers to the unit cell
position ri (respectively rj), λ (resp. η) labels the or-
bitals, and r = rj − ri. Here, the spin index σ =↑, ↓
is irrelevant, the superconductivity phase being non ma-
gnetic. The CF Kλη is particularly of interest since it
allows the extraction of the Cooper pair size. Indeed, in
the case of a single one dimensional dispersive band pro-
blem (conventional SC) it can be shown analytically that
Kλλ(r) ≃ 1√

|r|
e−|r|/ξBCS for |r| → ∞ as addressed in the

next paragraph.



3

0.001 0.01 0.1 1

1

10

10²

10³

Analytical expression
Numerical data

��
���
��a

A
A

(K
)

�avg

BCS BEC

0 2 4 6 8

|U| / t

0.001

0.01

0.1

1

�
av

g

Figure 2. ξ
(K)
AA as a function of the averaged pairing ∆avg

in the quarter filled sawtooth chain. The red thick line is the
BCS formula ℏvF

∆avg
where ℏvF = 2at. The first inset (top

right) shows the correspondence between |U | and ∆avg and
the other one illustrates the density of states for |U | = 0, with
EF = −2t for the quarter filling. The BCS regime corresponds
to ξ

(K)
AA ≫ a and BEC to ξ

(K)
AA ≤ a.

RESULTS AND DISCUSSIONS

Coherence length in dispersive bands

Before we discuss in details the case where the Fermi
energy coincides with that of the FB, it is interesting to
analyse the situation where it is located inside the dis-
persive bands. To illustrate this scenario, we consider the
quarter filled sawtooth chain. This density corresponds to
the half-filling of the lower dispersive band.

In Fig.2, ξ(K)
AA is plotted as a function of the averaged

pairing ∆avg in the quarter filled sawtooth chain where
∆avg = 1

2 (∆A + ∆B) (A and B sites are inequivalent).
This characteristic lengthscale is obtained from a fit of
the form 1√

|r|
e−|r|/ξ(K)

AA of the long distance behaviour

of the anomalous CF KAA(r). The BCS-like expression
(red thick line in the figure) is defined as ℏvF

∆avg
. Here

the Fermi velocity vF = 2a t
ℏ sin(kFa) where kFa = π

2
for the quarter filled sawtooth chain. It is striking to see
that the excellent agreement found between the nume-
rical data and the BCS expression is not restricted to
the weak coupling regime (∆avg ≪ t). Indeed, remarka-
bly the agreement is obtained for values of the average
pairing that varies over four decades (see inset of Fig.2),
which corresponds to |U |/t that varies from 1 to 8.

The case of half-filled bipartite lattices

We consider the specific case of half-filled bipartite lat-
tices where the number of orbitals in one sublattice is
larger than that of the other, implying that at least one
FB is located at E = 0. We propose to demonstrate the
following remarkable property, valid for any |U|,

Gλλ(r) =
1

2
δ(r). (5)

In a recent study [39] it has been shown that the Bogoliu-
bov quasi-particle (QP) eigenstates present an interesting
symmetry in half-filled systems. If A (resp. B) denotes
the first (resp. second) sublattice which contain ΛA (resp.
ΛB) orbitals per unit cell, the QP eigenstates can be sub-
divided in two families S+ and S− defined in what fol-
lows. First, a generic QP eigenstate (in momentum space)
has the form |Ψ⟩ = (|Ψ↑⟩, |Ψ↓⟩)t where the first ΛA (resp.
next ΛB) rows of |Ψσ⟩ are the components on sublat-
tice A (resp. B). This eigenstate belongs to the subspace
S+ (resp. S−) if |Ψ↓⟩ = M̂ |Ψ↑⟩ (resp. |Ψ↓⟩ = −M̂ |Ψ↑⟩)
where the matrix M̂ = diag(1̂ΛA ,−1̂ΛB). Additionally,
for any finite |U |, it has been shown in Ref. [39] that
the subset S− (respectively S+) consists exactly in ΛB
(respectively ΛA) eigenstates of positive or zero energy
and ΛA (respectively ΛB) eigenstates of strictly negative
energy.

Now, start with the definition Gλλ(r) =
1
Nc

∑
k e

ik.r⟨Ôλk,↑⟩ where , Ôλk,↑ = c†kλ,↑ckλ,↑. At
T = 0, its grand canonical average is given by,

⟨Ôλk,↑⟩ =
∑
m

⟨Ψ<
mk|Ôλk,↑|Ψ<

mk⟩, (6)

where |Ψ<
mk⟩ are the QP eigenstates of the BdG Hamil-

tonian of negative energy, m being band index. Using the
closure relation,

∑
m,s=<,> |Ψs

mk⟩⟨Ψs
mk| = 1, where the

sum runs over QP eigenstates with positive (s =>) and
negative energy (s =<) and the symmetry mentioned
above one can show that,∑

m

⟨Ψ<
mk|Ôλk,↑|Ψ<

mk⟩ =
∑
m

⟨Ψ>
mk|Ôλk,↑|Ψ>

mk⟩, (7)

which combined with Eq.6 leads to ⟨Ôλk,↑⟩ = 1
2 and de-

monstrates Eq.5.
It is interesting to remark that our proof can be straight-
forwardly extended to the case of disordered systems that
preserve the bipartite character of the lattice, such as the
presence of vacancies or bond disorder.

The Stub lattice

The stub lattice is bipartite and offers the possibility
to tune the QM without changing the of the nature of
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Figure 3. (a) KCC as a function of r in the stub lattice for
several values of |U |/t (1, 2.5 and 5). (b) ξ

(K)
CC as a function of

|U |. The (dark-green) horizontal line depicts the square root
of the quantum metric ⟨g⟩. The inset shows ξ

(K)
CC for |U | ≫ t.

Here, α is set to 0.5 (see Fig.1) and the carrier density is fixed
to n = 3 which corresponds to half-filling.

the compact localized eigenstates. The QM is control-
led by the A-C hopping (αt)(see Fig.1) and given by
⟨g⟩ = 1

2|α|
√
2+α2

[40]. The stub lattice has been studied in
great details in Refs. [18, 41]. Here, we restrict our study
to the case α = 0.5 and n = 3 which corresponds to a
half-filled FB with ⟨g⟩ ≃ 0.7.
First, one can already conclude from the previous sec-
tion that the conventional CFs (Gλλ) are given by Eq.5,
which is indeed what we find numerically for any |U | and
any α. Figure 3(a) depicts the anomalous CF KCC as
a function of |r| for several values of |U | which corres-
pond to weak, intermediate and strong coupling regime.
As it can be clearly seen, in all cases this CF decays
exponentially with a lengthscale ξ(K)

CC (Cooper pair size)
that reduces rapidly as |U | increases. The variation of
the extracted lengthscale ξ

(K)
CC is plotted as a function

of |U |/t in Fig.3(b). In the limit of vanishing |U |/t it is
approximately (for this value of α) 2a, then it increases
and reaches a maximum for |U |/t = 1.5 and beyond it
decreases continuously. There is no simple explanation
for the origin of this maximum, since for larger values

of α it disappears. The inset represents, its behaviour in
the large |U |/t limit. It is found that ξ(K)

CC → 0.125 a. As
it can be seen, ξ(K)

CC crosses
√
⟨g⟩ = 0.7 a at |U |/t ≈ 4

and converges to a much smaller value. The large |U |/t
behaviour, is consistent with the fact that in the BEC re-
gime, the Cooper pair size is expected to be very small.
Remark that KBB and KAA vary similarly with the same
lengthscale.

The sawtooth chain

In contrast to the stub lattice, the sawtooth chain as
illustrated in Fig.1(b), is a non bipartite lattice and does
not allow the tuning of the QM. The FB exists only when
the AB-hoppings (1st and 2nd neighbours) are −

√
2t.

The superconductivity in the stub lattice has been ad-
dressed in details in Ref. [38] using a numerically exact
method : the DMRG. It has been shown that the BdG ap-
proach reproduces accurately the exact results, for both
the pairings and the superfluid weight. In Fig.4(a), both
GAA and KAA are plotted as a function of |r|, for dif-
ferent values of |U |. Here, the electron density is set to
n = 3 which corresponds to the half-filled FB. As it
can be seen, the lengthscales associated to the decay of
GAA and KAA are almost identical both in the weak and
strong coupling regime. Additionally, the slope appears
to vary weakly. Notice that GBB and KBB behave simi-
larly. Fig.4(b) depicts the variation of ξ(K)

AA as a function
of t/|U |. The inset describes the weak coupling regime.
In this regime, ξ(K)

AA ≈ 0.735 a and almost insensitive to
|U |. As |U| increases further, ξ(K)

AA decays monotonously.
As seen in the case of the stub lattice, ξ(K)

AA crosses
√
⟨g⟩

when t/|U | ≈ 0.05 and converges towards 0.2 a. In the
sawtooth chain, it can be shown that the minimal QM
is ⟨g⟩ = 1

4
√
3
. We should mention as well that our values

of GAA(r) are consistent with the DMRG calculations of
Ref. [38].

The Creutz ladder

The Creutz ladder depicted in Fig1(c) is particularly
interesting since its dispersion consists only in FBs, lo-
cated at E = ±2t in the non-interacting case. As a
consequence of the uniform pairings, these bands remain
flat when |U | is non-zero. The superconductivity in the
Creutz ladder have been addressed exactly, within the
DMRG approach in Refs [12, 38]. As in the case of the
sawtooth chain, it has been revealed that pairings and
superfluid weight are accurately captured by the BdG
theory. The A and B sites being equivalent, we focus our
attention on |KAA| and |GAA|. In addition, we consider
the case of the quarter filled ladder (half-filled lower FB)
which corresponds to n = 1. Both CFs are plotted in
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Figure 4. (a) |GAA| and |KAA| as a function of r in the
sawtooth chain for several values of |U |. For the sake of clarity,
|GAA| and |KAA| have been multiplied by 10−2,10−4 and 10−6

for |U | = 0.5, 1 and 5 respectively. The carrier density is n = 3
(half-filled FB). DMRG data for |U | = 1 from Ref. [38] are
shown as well. (b) ξ

(K)
AA as a function of t/|U |. The horizontal

lines depicts the square root of the minimal quantum metric
⟨gmin⟩. The inset represents ξ(K)

AA as a function of |U | for small
values of |U |. The dashed red line is a linear fit for t

|U| ≤ 0.03.

Fig.5 as a function of |r| for several values of |U | ranging
from weak to strong coupling regime. As it can be seen
these two CFS behave similarly. Surprisingly, it is found
that there are only two non-vanishing values correspon-
ding respectively to |r| = 0 and a. For larger distances,
|KAA| and |GAA| are zero within the numerical accu-
racy. This is illustrated in the inset of Fig.5(b) where for
|r| = 2a the CF |GAA| drops by 16 orders of magnitude.
It is found as well that |KAA|(|r| = a) decays very ra-
pidly as |U | ≥ 1 and eventually vanishes when |U | → ∞.
Thus, the Cooper pair size varies between 1 and 0 where
0 corresponds to |U | = ∞.
In the Appendix A, we demonstrate analytically in the

Figure 5. (a) |KAA| and (b) |GAA|, rescaled by their value
at r = 0, as a function of r in the Creutz ladder for several
values of |U |. The charge density is fixed n = 1. For r ≥ 2 a,
both |KAA| and |GAA| are zero within our numerical precision.
The inset in (a) represents |KAA| in log scale. The inset in
(b) shows |GAA| as a function of |U | for r = 0 and r = a.
Diamonds are our calculations and circles are the DMRG data
of Ref. [12]

case of weak coupling that the CFs are given by,

GAA(r) = KAA(r) =
1

4
δr,0 −

i

8
δr,a +

i

8
δr,−a,

GAB(r) = KAB(r) =
1

8
(δr,a + δr,−a).

(8)

We point out the fact that the analytic expression found
for GAA(r) is consistent with the exact results obtained
from DMRG calculations [12]. Indeed, it has been found
(see Fig.10 in this manuscript) that for r ≥ 2a, GAA ≤
10−12.

The χ-Lattice

The χ-Lattice is a two dimensional system in which
both electronic bands are dispersion-less and located at
E = ±t. As mentioned earlier this system has been intro-
duced originally in Ref. [33]. The superconductivity has
been addressed within the Quantum Monte Carlo me-
thod in Ref. [34] and within a mean field approach in
Ref. [32]. We recall that the dimensionless parameter χ
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Figure 6. (a) and (b) |GAA| and |KAA| as a function of r
(along the x−direction) in the χ-Lattice for several values of
χ. (c) same as in (a) and (b) for the off-diagonal correlation
functions |GAB | and |KAB |. The carrier density is n = 1 and
the Hubbard parameter |U | = 1.

controls both the range of the hoppings and the value
of the QM. Here, we focus on the quarter filled system
which corresponds to a charge density n = 1. As it is the
case in the Creutz ladder, the orbitals A and B are equi-
valent, pairings are identical on both sites. In addition,
because the long range hoppings connects A to B sites
only, this lattice is bipartite as well.

Let us now discuss our results. First, for any value of
both |U | and χ, with high numerical accuracy we find,

4

n
Gλλ(r) =

|U |
∆
Kλλ(r) = δ(r), (9)

where λ = A,B. These features are illustrated in Fig.6 (a)
and (b). It should be emphasised that the property given
in Eq.5 concerns only the case of half-filled bipartite lat-
tices. Here, our system is quarter filled, which means that
our findings are specific to the χ-L. As a consequence, for
any |U | the Cooper pair size is zero. In the Appendix B,
we have demonstrated analytically Eq.9 in the weak cou-
pling regime.

More strikingly, we have found that the off-diagonal
correlation functions |GAB | and |KAB | exhibit an unex-
pected behaviour as it can be clearly seen in Fig.6(c).
First, one finds that |GAB | and |KAB | are very similar
for any value of χ. Furthermore, for a given χ, one can

distinguish two distinct regimes. First, for |r| ≤ χa the
CFs oscillates as |r| increases. Secondly, when |r| ≥ χa
it decays monotonously as the distance increases. Ho-
wever, any attempt to fit the tail by a function of the
form r−be−|r|/c is unsuccessful. Hence, one cannot extract
any characteristic lengthscale from these off-diagonal cor-
relation functions. In the Appendix B, we have calcu-
lated analytically the GAB and KAB as a function of
r in the limit of small values |U |. It is shown that
GAB(r) = KAB(r) = 1

4Nc

∑
k e

ik.re−iγk . This means that
for this specific lattice the off-diagonal CFs coincides up
to a coefficient with the (A,B) hoppings in real-space. In
addition, in the limit of large |r| along the x-direction, it
is shown that,

GAB(r) ∝ (−i)nxJ0(χ)
1√
2πnx

enx.ln(
eχ
2nx

), (10)

where r = (nxa, 0) and J0 is the Bessel function of the
first kind and order 0. This clarifies why we could not ex-
tract a typical lengthscale from the numerical data plot-
ted in Fig.6(c).

Connection with recent studies

In this paragraph, we would like to discuss the connec-
tion between our findings and recent studies [31, 32]. It
is claimed in these articles, that the coherence length in
quasi FBs can be expressed as, ξc =

√
ξ2BCS + ⟨g⟩ where

⟨g⟩ is the average of the quantum metric (minimal). The
BCS contribution vanishes when the band is rigorously
flat. In Ref. [32], the authors have illustrated their point
by considering the χ−Lattice. Based on the fact that
the coherence length is extracted from the long distance
decay of Kλλ our findings clearly contradicts their pre-
diction. Indeed, in the specific case of the χ−Lattice we
have found that for any |U | and any χ, thus any QM,
the size of the Cooper pair is always zero. What is the
origin of this contradiction ? In Ref. [32], the authors
have treated the electron-electron correlation at the mean
field level, similar to ours. However, their decoupling of
the Hubbard term is performed in momentum space ins-
tead of real space as done within the BdG approach. Ad-
ditionally, the authors have performed a projection of
the fermionic operators onto the lowest FB which is, in
their work, the key step so that the QM can emerge. In
contrast, in our BdG approach we perform no projection
and treat essentially the electron-electron correlation at
the same level, thus it is striking that our results differ
from those of Ref. [32]. To extract the coherence length,
the authors consider the pair-pair correlation function of
the form, Cλη(r) = ⟨ĉ†iλ↑ĉ

†
iη↓ĉ0η↓ĉ0λ↑⟩, which within mean

field theory leads to,

Cλη(r)
MF−−→ Gλλ(r)Gηη(r) + |Kλη(0)|2. (11)
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This result clearly differs from that found in Ref. [32] and
highlight the absence of the emergence of the quantum
metric. Furthermore, as shown in Appendix C, projection
onto flat bands is not in question ; the real problem seems
to be an error in the calculation procedure (decoupling
of correlation functions).

CONCLUSION

To conclude, we have investigated the normal and ano-
malous correlations functions in various flat band systems
and extracted the associated characteristic lengthscales.
It is found in this study that the size of the Cooper pairs
is comparable to the lattice spacing, both in the weak
and strong coupling regime. Independently of how ex-
tended the hoppings are, it is revealed as well that the
normal correlation functions reduce to a Dirac function
in the case of half-filled bipartite lattices. In contrast with
a recent claim, our findings indicate that the coherence
length as extracted from the decay of the anomalous cor-
relation function appears to be disconnected from the
quantum metric (

√
⟨g⟩). We have provided some argu-

ments that may clarify the origin of the disagreement bet-
ween our results and these recent studies. It is interesting
to remark that besides the disagreement quoted above,
the values of the coherence length found for the sawtooth
chain and for the Stub lattice are comparable to

√
⟨g⟩.

Finally, we believe that this study could as well motivate
new reflections on the concept of coherence length in flat
band systems and perhaps on alternative ways of defining
this characteristic lengthscale of the Cooper pairs from a
theoretical point of view.
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APPENDIX A : THE CORRELATION
FUNCTIONS IN THE CREUTZ LADDER

In this appendix we propose to derive analytically the
correlations functions G and K as defined in the main text
in the quarter filled Creutz ladder. We focus our attention
on small values of |U |. We restrict our calculation to T =
0. The BdG Hamiltonian reads,

ĤBdG =
∑
k

Ψ̂†
k

(
ĥ↑k ∆1̂2×2

∆∗1̂2×2 −ĥ↓∗-k

)
Ψ̂k, (A.1)

where we have introduced the Nambu spinor Ψ̂†
k =

(ĉAk↑, ĉBk↑, ĉA−k↓, ĉB−k↓)
t and the block matrix,

ĥ↑k =

(
−2t sin(ka)− µ̃ −2t cos(ka)
−2t cos(ka) 2t sin(ka)− µ̃

)
, (A.2)

where we have introduced µ̃ = µ+ |U |
4 n. Because of time

reversal symmetry ĥ↓∗-k = ĥ↑k. Notice as well that the
pairing ∆, uniform because A and B sites are equiva-
lent, can be taken real. Here, the total carrier density
n = 2nA = 2nB is set to 1.

First, we consider the case |U | = 0 for which the che-
mical potential µ = µ0 = −2 t. The quasi-particle (QP)
eigenvalues are E1,4 = ±4 t, and E2,3 = 0 which is dou-
bly degenerate. The corresponding QP eigenstates are of
the form, |Ψi⟩ = (|ψ↑

i ⟩, |ψ
↓
i ⟩)t, where i = 1, .., 4.

More precisely they are given by, |Ψ0
1⟩ = (0, |ϕ+0 ⟩)t,

|Ψ0
2⟩ = (|ϕ−0 ⟩, 0)t, |Ψ0

3⟩ = (0, |ϕ−0 ⟩)t, and |Ψ0
4⟩ =

(|ϕ+0 ⟩, 0)t, where,

|ϕ±0 ⟩ =
1√
2

1√
1± sin(ka)

(
− cos(ka)
sin(ka)± 1

)
. (A.3)

When the Hubbard term is switched on, we apply
a pertubation theory for degenerate pair eigenstates
(|Ψ0

2⟩, |Ψ0
3⟩) that leads to, E± = ±

√
(δµ̃)2 +∆2 where

δµ̃ = µ̃− µ0. The corresponding QP eigenstates are,

|Ψ±⟩ =
1√
N±

(
∆|Ψ0

2⟩+ (δµ̃±
√
(δµ̃)2 +∆2)|Ψ0

3⟩
)
, (A.4)

where N± = 2
(
δµ̃2 +∆2 ± δµ̃

√
(δµ̃)2 +∆2

)
.

Using the self-consistent equations for the carrier density
which for each spin sector is 1/4 and the gap equation
one finds in the limit of small |U |,

δµ̃ = 0 + o(|U |2), (A.5)

∆ =
|U |
4

+ o(|U |2). (A.6)

Thus, the QP eigenstates take the simple form |Ψ±⟩ =
1√
2
(|Ψ0

2⟩ ± |Ψ0
3⟩), their respective energy being E± =

∓ 1
4 |U |.

Using the expressions of |ϕ±0 ⟩ as given in Eq.A.3, one
finds, ⟨c†Ak,↑cAk,↑⟩ = ⟨c†Ak,↑c

†
Ak,↓⟩ =

1
4 (1 + sin(k)). After

a trivial Fourier transform, we finally end up with,

GAA(r) = KAA(r) =
1

4
δr,0 −

i

8
δr,a +

i

8
δr,−a. (A.7)

In addition for the off-diagonal CFs it is found that,

GAB(r) = KAB(r) =
1

8
(δr,a + δr,−a). (A.8)

These results explain the data plotted in Fig. 5 of the
present manuscript. We recall that our proof is restricted
to |U | ≤ t.
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APPENDIX B : THE CORRELATION
FUNCTIONS IN THE χ-LATTICE

In this appendix, our purpose is to derive analytically
the correlation functions G and K in the quarter filled
χ−Lattice. The BdG calculations are performed for small
values of the Hubbard parameter |U | at T = 0 K. The
BdG Hamiltonian has the same form as that given in
Eq.A.1 of the Appendix A, with ĥ↑k now given by,

ĥ↑k =

(
−µ− |U |

4 n −te−iγk

−teiγk −µ− |U |
4 n

)
, (B.1)

where γk = χ(cos(kxa) + cos(kya)).
Notice that the χ−Lattice is both bipartite and time re-
versal symmetric as well which implies ĥ↓∗-k = ĥ↑k.
To calculate the QP eigenstates, we use the same notation
as those of Appendix A. At |U | = 0, the quasi-particle
(QP) eigenstates are located at E1,4 = ±2 t, and E2,3 = 0
which is doubly degenerate, the chemical potential being
µ = µ0 = − t. The one particle eigenstates read,

|ϕ±0 ⟩ =
1√
2

(
∓e−i

γk
2

ei
γk
2

)
. (B.2)

The equations (A.4), (A.5) and (A.6) of Appendix A
are valid as well in the case of the χ-Lattice at quarter
filling. Thus one straightforwardly gets, ⟨ĉ†Ak,↑ĉAk,↑⟩ =
1
4 , ⟨ĉ†Ak,↑ĉBk,↑⟩ = 1

4e
−iγk , ⟨ĉ†Ak,↑ĉ

†
A−k,↓⟩ = 1

4 and
⟨ĉ†Ak,↑ĉ

†
B−k,↓⟩ =

1
4e

−iγk . It follows that,

GAA(r) = KAA(r) =
1

4
δr,0, (B.3)

and the off-diagonal CFs are,

GAB(r) = KAB(r) =
1

4
fAB(r), (B.4)

where, we have introduced fAB(r) = 1
Nc

∑
k e

ik.re−iγk .
Thus, GAB(r) and KAB(r) coincide, up to a constant,
with the (A,B) hoppings. We now propose to calculate
the analytic expression of fAB(r) for both |r|/a ≤ χ and
|r|/a≫ χ.
Let us write r = (nx, ny), fAB(r) can be rewritten as the
following product,

fAB(r) = Inx
(−iχ) · Iny

(−iχ), (B.5)

where In(iχ) = 1
2π

∫ +π

−π
einθeiχ cos(θ) is the modified Bes-

sel function of the first kind and order n. We can now
rely on the properties of the Bessel functions such as
In(−iχ) = (−i)nJn(χ) which leads to,

fAB(r) = (−i)nx+nyJnx
(χ) · Jny

(χ). (B.6)

In the regime where |r| ≤ χa one can expand the Bessel
function [42],

Jn(χ) ≃
√

2

πχ
cos
(
χ− n

π

2
− π

4

)
, (B.7)

and similarly for Jm(χ). This clearly explains the pre-
sence of the oscillations observed in Fig. 6 of the manus-
cript.
In the opposite limit, more precisely for χ ≪√
|nx|+ |ny|, one has,

Jn(χ) ≃
1

Γ(n+ 1)

(χ
2

)n
. (B.8)

According to the well known Stirling formula, for n≫ 1
one can write Γ(n + 1) ≃ 1√

2πn
(ne )

n. Thus, along the
x−direction for instance, it implies the following result,

fAB(r) = (−i)nx
J0(χ)√
2πnx

enx ln ( eχ
2nx

). (B.9)

This equation explains (i) the rapid decay observed in
Fig. 6 of our manuscript and (ii) the impossibility to ex-
tract a characteristic lengthscale from the decay at large
distance of the off-diagonal correlation functions.

APPENDIX C : POSSIBLE ORIGIN OF THE
DISAGREEMENT WITH REF. [32]

In this appendix our goal is to point out the possible
origin of the disagreement between our findings and those
of Ref. [32]. In this study the coherence length is extrac-
ted from the exponential decay of,

C(ri, rj) =
∑
αβ

⟨ciα,↑ciβ,↓c†jβ,↓c
†
jα,↑⟩. (C.1)

From Eq. (C.1), the authors have perform the projection
of the fermionic operators (c†kλ,σ) onto the the flat band
operators (c̄†k,σ) and then evaluate the expectation value
⟨. . .⟩ with Wick’s theorem. The projection reads c†kλ,σ →
uλk,σ c̄

†
k,σ, where uλk,σ is the flat band eigenstate. Then,

they define Λk,p =
∑

λ uλk,↑uλ−p,↓ and use the time-
reversal symmetry that reads : uλ−p,↓ = u∗λp,↑ = u∗λp.
The authors find,

C(ri, rj) =
1

Nc

r−independent︷ ︸︸ ︷∑
kk′

⟨c̄k,↑c̄−k,↓⟩⟨c̄†−k′,↓c̄
†
k′,↑⟩ (C.2)

+
1

Nc

∑
kq

e−iq·(ri−rj)|Λk+q,k|2⟨c̄k+q,↑c̄
†
k+q,↑⟩⟨c̄−k,↓c̄

†
−k,↓⟩.

The key quantity is the second term which contains
|Λk+q,k|2. A quadratic expansion in the limit q → 0

yields |Λk+q,k|2
|q|→0
= 1−

∑
µν gµν(k)q

µqν+o(|q|2), where
gµν(k) is the quantum metric.
We disagree with Eq. (C.2). Starting from Eq. (C.1) and
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after the projection on the FB operators, we get instead,

C(ri, rj) =
1

Nc

∑
kk′

|Λk,k′ |2⟨c̄k′,↑c̄−k′,↓⟩⟨c̄†−k,↓c̄
†
k,↑⟩

+
1

Nc

∑
kq

e−iq·(ri−rj)⟨c̄k+q,↑c̄
†
k+q,↓⟩⟨c̄−k,↓c̄

†
−k,↑⟩.

(C.3)

The first term is a constant (r-independent) while the
second one does not depend on Λk+q,k. Thus, in contrast
to their calculation, the quantum metric does not emerge
in the correlation function. Furthermore, the projection
onto the flat bands is not in question.

∗ maxime.thumin@neel.cnrs.fr
† georges.bouzerar@neel.cnrs.fr
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Referee 1

First, we would like to thank the referee for his report and for the interesting
questions and remarks raised in his/her report. In addition, we thank the referee for
his/her very positive feedback.

Referee:
1- I encourage the authors to deepen their discussion of its connection with recent
studies. The authors relate the deviation of their results to those within the literature to
the decoupling of the Hubbard term and the projection of the operators onto the lowest
flatband. Throughout the manuscript, the authors have already justified their approach
by relating it to DMRG calculations. It would strengthen their conclusions when the
authors:(i) Be more mathematically precise about how the decoupling differs,
(ii) Discuss how the projection mechanism may account for the different findings, and
(iii) Give arguments, which approach is expected to capture the experimental results,
and give, if possible, corresponding references.

I understand that a complete answer is far beyond the scope of this first work so I would
be satisfied by a more in-depth description of the problem, related deviations seen in
other literature, and a more in-depth guidance for future research.

Answer: We agree on the fact that a complete answer goes beyond the scope of our
work.This is a key question since in our case and in the manuscript written by Hu, Chen
and Law. (Ref.32 in our manuscript), the electronic correlations are treated the same
way, thus one expects similar and even identical results. In order to find the possible
origin of the disagreement between their calculation and our findings, we have redone
the calculation given in Eq.(S15) of the third version of their manuscript
arXiv:2308.05686. In this paper it is written in their Appendix,

If we start from the first line (L1), we will correctly find the second one, Eq. (L2). However
after the introduction of the projection operator, we do not get the equation (L3), but
instead we find the following result,



Even a relabelling of the momentum variables in (L3’) will not lead to Eq. (L3). On the
other hand the mean field decoupling of Eq.(L3’) leads to,

This expression shows that the first term is a constant (r-independent) while the second
one does not depend on 𝛬(k+q,k). Thus, in contrast to their calculation, the quantum
metric will not emerge in the correlation function. We can conclude that the origin of the
problem and the disagreement with our findings is a mistake in their calculation.
We have added a third appendix (Appendix C) to clarify the origin of the disagreement
between our results and those of Hu, CHen and Law.

Referee:
2- Some parts need some more explanations and context. In particular,
(i) What do the authors precisely mean by "intraband" and "interband nature" in the
introduction?

Answer: In the case of the conventional superconductivity, which corresponds to single
band physics, the superconducting order parameter and the superfluid weight are
controlled by matrix elements of the current operator within the same band and the
inter-band elements are negligible. In this case, the non zero Fermi velocity is crucial. In
flat bands the fermi velocity vanishes, thus the intraband terms are zero, however the
matrix elements between different QP bands are non zero and control the superfluid
weight. We have added a sentence in the introduction regarding the explanation of the
term ‘interband’ nature.

Referee:
(ii) Why should we have doubts about the previous literature on the relation between the
quantum metric and coherence length in the first place?

Answer: This is related to the discussion , response to point 1. We asked ourselves
whether the metric (which is a measure of a characteristic length squared) could emerge
from the calculation of the coherence length as defined in our manuscript (ie from the
decay of the correlations functions of the form <c⸶↑(0)c⸶↓(r)>. Then, we discovered the
results of Law et al. (arxiv paper 2023) that caught our attention. So we have decided to
check their expressions and found inconsistent results. As shown in the discussion
above we can now provide an explanation to the origin of the disagreement. We believe
as well that our work and that of Law et al., should motivate further studies and push us
to ask ourselves : “what is the correct definition of the coherence length”.



Referee:
iii) Why are these four models chosen in light of potential deviations? What can the
insights of each model contribute to the big picture?

Answer:We have chosen these 4 different models because they cover a broad family of
flat band systems. As said in the manuscript this choice “allows to estimate the impact
of (i) the bipartite character of the lattice, (ii) the tunability of the quantum metric, (iii) the
absence of dispersive bands in the spectrum, (iv) and last the impact of the lattice
dimension.”

Referee:
(iv) What is the role of the BCS - BEC crossover in light of the investigated deviation
between existing and this literature?

Answer:
We are not sure we fully understand the question but we try to answer the question. To
begin with, we wanted to show in a clear way that the procedure used to extract the
coherence length is the correct one. Indeed, in the case of conventional
superconductivity (Fermi energy in the dispersive band), we recover the expected BCS
result very accurately. Furthermore, without any fitting parameter we find that our
numerical data coincide with,

Surprisingly it is found that this expression, expected to be valid only in the weak
coupling regime (BCS regime), reproduces as well accurately the numerical data in the
BEC region (strong coupling regime).

Referee:
3- The presentation requires some minor revisions:
(i) I would ask the authors to reduce the number of abbreviations to a minimum as they
are making the document less accessible in particular for those not experienced with the
particular subfield.

Answer:We thought that the use of abbreviations would not confuse the reader.
However, following the referee’s recommendation, we have removed in the modified
version of the manuscript the abbreviation “QMC” , “SC”, “SaL”, “CrL”, “StL” and “𝜒-L”.

Referee:
(ii) I encourage the authors to work on the presentation of their figures. Whereas several



of them are very clear and easily accessible such as Fig. 1 and 2, others lack a
consistent choice of labels, fonts, size, etc.

Answer:We did not completely understand what should be changed in the figures,
especially because we have spent a considerable amount of time in generating them.
However, we have modified y-labels in Fig.5a and Fig.6a: |U| |KAA| / ΔAbecomes |KAA| /
|KAA|(0), and 2 |GAA| / nA becomes |GAA| / |GAA|(0).

Referee:
(iii) The authors might check for some typos/double-use of labels. An example of this
would be the double use of the index alpha for both the orbital label and the hopping
strength.

Answer:
We have corrected and checked the typos and double-use of labels. All the confusions
regarding α have been corrected.



Referee 2

First, we would like to thank the referee for his report and for the interesting
questions and remarks raised. We would like to apologize if we repeat some
arguments sometimes because several criticisms are connected or strongly
overlapping with each other.

Referee:
1- This work is overall well written and the numerical data and the derivations of the
analytical results seem sound in my opinion. On the other hand, there are some clear
flaws in the way the results are interpreted leading to the conclusion by the authors that
the relation between coherence length and quantum metric is not valid. While I cannot
express myself on the validity of this relation, the arguments proposed by the authors
are in my opinion not solid enough to conclude that the coherence length is
disconnected from the quantum metric.

Answer:
First, we would like to thank the referee for pointing out that “This work is overall well
written and the numerical data and the derivations of the analytical results seem sound
in my opinion.” Then the referee says: “While I cannot express myself on the validity of
this relation, the arguments proposed by the authors are in my opinion not solid enough
to conclude that the coherence length is disconnected from the quantum metric.”. We
have been fully transparent in the procedure used to calculate the coherence length. We
have defined the anomalous Green’s function:

that is used, in the conventional case, to extract the coherence length. As a test of
validity, we have perfectly recovered the expected expression in the BCS limit and found
that it is valid as well in the BEC regime:

The agreement between the coherence length extracted from the exponential decay of
the numerically calculated correlation function and the analytic expression is excellent
for a pairing amplitude that varies over several decades (Fig.2 in the manuscript)! Based
on this result, it is natural to use the function K𝛼β to extract the coherence length which
is what is done in the present work. The referee says: “On the other hand, there are
some clear flaws in the way the results are interpreted leading to the conclusion by the
authors that the relation between coherence length and quantum metric is not valid”. We
have realized the calculations in the weak, intermediate and strong coupling regime and



as well considered different types of lattices and geometries. Our numerical results
establish unambiguously that the coherence length, as it is extracted from the decay of
the correlation function K𝛼β is disconnected from the quantum metric. Furthermore, to
demonstrate the validity of our calculations, we also compared them with the exact
results (found in the literature) and obtained using the DMRG approach. Thus we
disagree with the referee’s sentence.
Furthermore, we emphasize that we have now added in the manuscript a new appendix
(appendix C) that clarifies the possible origin of the discrepancy between our findings
and those of Law et al. The projection onto the flat band is not in question but there is a
mistake in their calculations.

Referee:
2 - The first point is that the authors should clearly state the limits of validity of the
relation between quantum metric and coherence length.

Answer:
This remark is connected to point 1. As said before we have performed our calculation
for different lattices and geometries, in the weak, intermediate and strong coupling
regime and our conclusion was systematically the same: there is no direct connection
between the extracted length scales and the quantum metric.

Referee:
3- Indeed, I do not expect the relation to hold for arbitrary values of the interaction
strength. The benchmark in this sense is the well established result that the
superfluid weight is proportional to the integral of the quantum metric over the
Brillouin zone. This result is valid only for sufficiently small values of the Hubbard
coupling U, which should be no larger the band gap separating the partially filled flat
band from other fully filled or empty bands. I would expect that the same restrictions hold
also in the case of the results of Ref. 31, 32 regarding the coherence length, although I
have not investigated the matter very carefully.

Answer:
We fully agree with the fact that the superfluid weight is proportional to the integral of the
quantum metric in the weak coupling regime (larger than the gap between the dispersive
bands and the flat band), but we disagree on the fact that this can serve as a benchmark
to anticipate the behavior of the coherence length. There is no direct connection
between the superfluid weight and the coherence length.

Referee:
4- For instance it is shown both in Fig. 3b and Fig. 4b that for large enough values of U
the coherence length, extracted from the decay of the anomalous correlation function,
becomes smaller than the lower bound given by the quantum metric derived in Ref. 31,



32. This is not surprising in my opinion as this occurs for values of U that are
comparable or larger than the band gap (the authors should check this), namely a
regime where the coherence length is not controlled by the properties of a single partially
filled band but also by other bands that are close in energy.

Answer:
We do not know if this is or not surprising, but, yes, this is indeed what is found in our
calculations, that for large U the coherence length becomes smaller that the quantum
metric.

Referee:
5- For very large values of U, a real space picture becomes more appropriate than a
momentum space picture since a strong attractive Hubbard interaction leads to the
formation of Cooper pairs in which both particles sit with high probability on the same
lattice site. In summary, the numerical evidence provided in the manuscript regarding the
stub lattice and the sawtooth lattice (Figs. 3 and 4) does not support the claim by the
authors that the coherence length is disconnected from the quantum metric since this
conclusion is drawn from the data for values of U comparable to or larger than the band
gap, that is in a regime where a simple relation between quantum metric and coherence
length is a priori not expected. The authors should carefully investigate the limits of
validity of the results derived in Refs. 31 and 32 and, based on their findings, reassess
their interpretation of the numerical data for the stub and sawtooth lattices.

Answer:
We do not completely understand this remark which seems somehow connected to the
previous one. However the results depicted in Fig.3 and 4 are corresponding to weak,
intermediate and strong coupling. As said before the data show in the limit of small U
that there is no connection between the calculated coherence length and the quantum
metric. For very large values of U one finds what one would expect: a coherence length
smaller than the lattice parameter, which is the case in both figures (3 and 4).
We have investigated various situations, uniform and non uniform pairings, long range
and short range hoppings, bipartite and non bipartite lattices, weak, intermediate and
strong coupling. In all the cases investigated, we did not find any direct relation between
the coherence length and the quantum metric (Ref.31, Ref.32).

Referee:
6 - The Creutz lattice, and also to some extent the χ-lattice, is peculiar since the
single-particle correlation functions (both normal and anomalous) become zero for
distances larger than one lattice spacing. First of all, I would like to point out that the
vanishing of single-particle correlation functions of the Creutz ladder beyond a finite
distance is not a surprising result, as stated by the authors, rather it is a straightforward
consequence of the local integrals of motion of the Creutz ladder with an Hubbard



interaction, which have been found in [M. Tovmasyan, et al. Phys. Rev. B 98, 134513
(2018)].

Answer:
The referee says “First of all, I would like to point out that the vanishing of single-particle
correlation functions of the Creutz ladder beyond a finite distance is not a surprising
result, as stated by the authors, rather it is a straightforward consequence of the local
integrals of motion of the Creutz ladder with an Hubbard interaction”. In our view, these
results are far from being trivial. In addition this remark means that the referee agrees
with the fact that it is disconnected from the quantum metric although the conditions of
large gap and uniform pairing are fulfilled! The prediction of Ref. 31 and 32 would be that
the coherence length should be identical to the quantum metric. Regarding the fact that
the referee says that this result was mentioned in “M. Tovmasyan, et al. Phys. Rev. B 98,
134513 (2018)”. We are confused because we went through the manuscript, but we
found no place where this result is pointed out. Regarding the chi-lattice the situation is
different as discussed in the manuscript and depicted in Fig.6. But, as mentioned in our
manuscript, the chi-lattice was especially studied in Ref.32 and our present results show
that we fully disagree with their conclusion since they find that the coherence length is
given by the quantum metric.

Referee:
7- Most importantly, the compact character of the correlation functions in the Creutz
ladder implies that the coherence length, defined as the rate of the exponential decay of
the correlation functions, is always zero regardless of the interaction strength. In my
opinion, the Creutz ladder, rather then providing a counterexample to the statement that
the coherence length is controlled by the quantum metric in some regime, shows that we
should consider some other definition of the coherence length. A more appropriate
definition in my opinion is to define the square of the coherence length as the average of
the square of the distance between the two particles forming a Cooper pair. This is
consistent with the role played by the quantum metric in providing a lower bound to the
spread of Wannier functions, which is also defined as the average of the distance
squared. Most importantly, this definition would give a nonzero and
interaction-dependent value also in the case of the Creutz ladder. It might be that the
results of Ref. 31 and 32 regarding the relation between quantum metric and coherence
length refer to the latter definition, which is in my opinion more meaningful. The author
should carefully check this point before drawing any conclusion.

Answer:
Even if the Creutz ladder is special in a sense, again as discussed in the previous points
we did not consider the case of the Creutz ladder only. Part of the answer to this point is
already discussed above. Regarding, the specific remark “It might be that the results of
Ref. 31 and 32 regarding the relation between quantum metric and coherence length
refer to the latter definition”. We recall that our definition of the coherence length has



reproduced exactly the analytical BCS formula when the Fermi level was lying in a
dispersive band. Regarding the results of Ref. 32, their correlation function C(rij) can be
easily connected to ours (K𝜶𝛽& G𝜶𝛽) through Wick’s theorem.

where “(...)” corresponds to constant (rij-independant) terms coming from
anti-commutation relations. If we were using this correlation function to extract the
coherence length, our conclusions would not change.
As said above, we again stress the fact that we have added in the manuscript a new
appendix that explains the possible origin of the discrepancy between our findings and
those of Law et al.

Referee:
8 - The case of the χ-lattice also shows that a more appropriate definition of the
coherence length would be in terms of the average of the square of the interparticle
distance. Indeed, the correlation functions are either zero at large distances if the orbital
labels are equal, or they have an anomalous decay behavior if the orbital labels are
different. While the definition of the coherence length in terms of the exponential decay
length is not very useful in this case, because no good fit can be obtained in the case of
different orbitals, the definition based on the distance square is and would probably give
meaningful results. I would be interested to see how the coherence length, defined as
the average of the distance squared, behaves in the case of the χ-lattice.

Answer:
Maybe there are other ways to define the coherence length but here we have decided to
use the standard one, the one that leads in the conventional case (single band case) to
the well known BCS expression as illustrated in Fig.2:

Referee:
9- Note that the average involves also an average over all orbitals, therefore the different
behaviors with respect to the orbital choice would not matter. Also, from the fact that the
single-particle correlation functions vanish identically at any nonzero distance if the
orbital indices are the same have prompted the author to state that “As a consequence,
for any |U | the Cooper pair size is zero.” In my opinion this statement is not justified
because to evaluate the coherence length one should consider all possible orbital
choices.



Answer:
This sentence “As a consequence, for any |U| the Cooper pair size is zero.” was
mentioned regarding our findings for the χ-lattice (Fig.6) for KAA and KBB. The coherence
length is extracted from the decay of KAA and KBB. As shown KAB has a very different
behavior (Fig.6c) related directly to the decay of the hoppings. It is easy to conclude
what would happen if we consider the decay of KNEW(rij)= 𝜮𝜶β K𝜶β(r), this quantity would
have the same behavior as KAB.

Referee:
10 - In the paragraph “Connection with recent studies” the authors state that: “Based on
the fact that the coherence length is extracted from the long distance decay of Kαα our
findings clearly contradicts their prediction.” The fact that the coherence length is
extracted from the rate of the exponential decay at large distances is not obvious and
the authors should check that this is in fact the same definition used in Refs. 31 and 32.

Answer:
It is explicitly written in Ref.32 to which we compare our results: “The pairing correlator
C(r) is expected to decay exponentially [56] as a function of |r| at zero temperature for an
isotropic system. In other words, C(r) ∼ e -|r|/𝜉 and the decay length ξ is the
superconducting coherence length [57].”.

Referee:
11-As discussed above, other definitions are possible and probably more meaningful
even in special cases such as the Creutz ladder and the χ-lattice. Also, there is no valid
reason why the correlation function Kαᵦ should be neglected for α different from β. For
these reasons I do not agree with the discussion presented in this paragraph of the
manuscript. To remedy this, it would be important for the authors to gain a more in depth
understanding of the previous results of Ref. 31 and 32 in order to give a better
interpretation of their numerical results.

Answer:
We have already responded in the questions and comments raised in points (7,8,9)

Referee:
12- Whereas the manuscript is well written clear, few points require some attention:
- In the introduction it is written “The QM is connected to the real part of the quantum
geometric tensor [19, 20] and provides a measure of the typical surface associated to
the FB Bloch eigenstates”. It is unclear for me what “measure of the typical surface
associated to the FB Bloch eigenstates” means.



Answer:
First, we thank the referee for pointing out that our ”manuscript is well written and clear”.
Indeed, we agree, it is a bit confusing to say “measure of the typical surface associated
to the FB Bloch eigenstates” . We have modified this sentence in the introduction.

Referee:
13- At the beginning of the Theory and Method section: “On the other hand, the
one-particle CF of the form ... always decays exponentially both in the superconducting
phase and in the normal phase.” In the absence of a gap, that is in the normal phase,
the correlation function does not have an exponential decay behavior in general.

Answer:
We agree. To avoid any confusion, we have changed the sentence to “On the other
hand, the one-particle CF of the form ... always decays exponentially in the
superconducting phase” because here we focus on the superconducting phase only.

Referee:
14- In the section “Coherence length in dispersive bands” it is stated: “This density
corresponds to the half-filling of the lower dispersive band.” It would be useful to include
a plot of the dispersion of the sawtooth lattice (as well as the stub lattice later on) to help
the uninitiated reader understand this statement.

Answer:
Following the referee’s demand, we have modified Fig.1 that now displays the
dispersions in the 4 different lattices considered in our manuscript.

Referee:
15- In the conclusion: “It is found that the size of the Cooper pairs is less than one lattice
spacing, both in the weak and strong coupling regime.” This is a rather generic
statement, which is for sure not applicable to all of the lattices studied in the manuscript.
The authors should specify to which lattices they are referring to. The Conclusion should
be significantly expanded in light of the above considerations.

Answer:
We agree, we have changed this sentence to: “It is found in this study that the size of the
Cooper pairs is comparable to the lattice spacing, both in the weak and strong coupling
regime.” In addition, following the referee‘s recommendation and based on his
remarks/questions and our answers, we have modified and expanded our conclusion a
bit.
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