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Abstract

The interplay between dissipation and correlation can lead to novel emergent phenom-
ena in open systems. Here we investigate “steady-state topological order” defined by the
robust topological degeneracy of steady states, which is a generalization of the ground-
state topological degeneracy of closed systems. Specifically, we construct two represen-
tative Liouvillians using engineered dissipation, and exactly solve the steady states with
topological degeneracy. We find that while the steady-state topological degeneracy is
fragile under noise in two dimensions, it is stable in three dimensions, where a genuine
many-body phase with topological degeneracy is realized. We identify universal features
of steady-state topological physics such as the deconfined emergent gauge field and slow
relaxation dynamics of topological defects. The transition from a topologically ordered
phase to a trivial phase is also investigated via numerical simulation. Our work high-
lights the essential difference between ground-state topological order in closed systems
and steady-state topological order in open systems.
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1 Introduction

Topological order is one of the most fascinating quantum phases beyond the Landau paradigm
[1–5]. A crucial feature that characterizes the topologically ordered phase is the topological
degeneracy [2], which is robust against any local perturbation, thus providing potential use
for fault-tolerant quantum computation [6]. One interesting question is how to generalize
the notion of topological order when the system is coupled to an external bath. There are at
least two motivations for this question. First, all physical systems are inevitably coupled to
the surrounding environment. It is crucial to understand whether the robustness of topolog-
ical order is guaranteed when the effect of the dissipation/noise is taken into account [7, 8].
Second, new phenomena and new physics can arise from the interplay between topology and
dissipation/noise in open quantum systems [9–29], which may deepen our understanding of
topological physics.

The simplest case is to couple the system to a thermal bath at a finite temperature. In
this case, the system will finally relax to thermal equilibrium ρ = 1

Z e−βH . Topological order
in finite temperature has been diagnosed from various perspectives [8, 30–35]. In this paper
we aim to consider systems coupled to more general Markovian environments, described by
the Lindblad equation: dρ

d t = L[ρ] = i[ρ, H] +∑α(LαρL†
α −

1
2{L

†
αLα,ρ}), where L is called

the Liouvillian superoperator, H is the Hamiltonian, and Lα is the jump operator for channel
α. Systems under such dynamics would finally relax to a steady state, whose properties are
usually of primary interest in the study of Lindblad systems. Specifically, the emergence of
non-trivial many-body physics in steady states such as quantum phases and phase transitions,
has been extensively explored in recent years [36–43]. The goal of this paper is to explore the
possibility of non-trivial topologically ordered phase in these systems.

To this end, we propose two models with engineered dissipation, such that the degener-
acy of steady states depends on the topology of the underlying lattice. As a generalization of
ground-state topological order, we adopt the steady-state topological degeneracy as the defin-
ing characteristic of “steady-state topological order” (SSTO). We show that in three dimensions
(3d) the topological degeneracy is stable against local perturbations to the Liouvillian, and
thus a robust non-equilibrium phase with SSTO is realized. Furthermore, we diagnose more
universal features of SSTO, such as the deconfined gauge field and the algebraically divergent
(with respect to system size) relaxation time.
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2 Models with topological degeneracy

To realize the topological degeneracy of steady states, we construct two exactly solvable, purely
dissipative (H = 0) lattice models defined on a d-torus, with the following jump operators:

Model 1: Lm,l = σ
x
l P( ∑

p∣l∈∂ p

Bp), Lz,l =
√
κσz

l , Lv =
√
λAv ,

Model 2: Lm,l = σ
x
l P( ∑

p∣l∈∂ p

Bp), Le,l = σ
z
l P(∑

v∈∂ l
Av),

(1)

where on each link l lives a spin-1
2 degree of freedom σl = ±1. Here Av ≡ ∏l ∣v∈∂ l σ

x
l ,

Bp ≡ ∏l∈∂ pσ
z
l , and P(x) is a (generalized) projection operator satisfying P(x ≤ 0) > 0 and

P(x > 0) = 0. Clearly, the two models are inspired by the toric code model HT C = −∑v Av−∑p Bp,
whose ground states are 2d -fold degenerate on a d-torus [6]. The 2d ground states are locally
indistinguishable but lie in different topological sectors. Hereafter we will focus on case d = 3,
where the ground states can be viewed as an equal weight superposition of closed-membrane
configurations [44], and different topological sectors differ by the parity of non-contractible
membranes created by Vi j∈{x y,yz,xz} = ∏l∈ξi j

σx
l , where ξi j is the i j-plane on the dual lat-

tice [31, 45]. Note that a model similar to Model 2 was proposed to realize passive quantum
error correction in [14].
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Figure 1: The effects of dissipators Le,l , Lm,l . (a) Av and Bp. (b) links with σx
l = −1

are colored blue; e defects living on the end of the blue string are represented by
red dots. Applying Le,l∗ on link l∗ in this case moves one e defect to its neighboring
site. (c) links with σz

l = −1 are colored green; m defects living on plaquettes are
represented by orange dots, and they form loops (orange thick lines) on the dual
lattice. Applying Lm,l∗ on link l∗ in this case would shrink the loop defect.

We now illustrate the effect of Le,l and Lm,l . The lower indices e, m refer to the two types of
topological defects in toric code models, corresponding to vertices with Av = −1 and plaquettes
with Bp = −1 respectively. In 3d, the former are point-like, while the latter form loops (bound-
aries of open membranes) on the dual lattice. The effect of Le,l is to move one e particle to the
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adjacent vertex or annihilate them in pairs if both ends are occupied by e particles. The role
of Lm,l is more transparent when viewed on the dual lattice: they can deform/expulse the m
loops in a way that the loop length is always non-increasing [46]. As we will discuss later, this
non-increasing feature turns out to be crucial for the stability of topological degeneracy. With
this understanding, we can solve the steady states of Model 1 with the following reasoning:
the Lm,l terms lead to a state free of m defects –the closed membrane states; the dephasing
term Lz,l , would damp out all off-diagonal elements and lead to a diagonal ρ; finally the Lv

term would create an equal-weight mixture of closed membrane states:

ρ
{µi}

ss = Vµ1
x y Vµ2

xz Vµ3
yz ∑
{v}

(∏
v

Av ∣ ⇑⟩⟨⇑ ∣∏
v

Av) Vµ1
x y Vµ2

xz Vµ3
yz , (2)

where ∣ ⇑⟩ ≡ ⊗l ∣ ↑⟩l . One can check that they indeed satisfy L[ρss] = 0. These states are
locally indistinguishable but belong to 8 distinct topological sectors labeled by µ1,µ2,µ3 with
µi = 0, 1. On a topologically trivial manifold, such as a 3-sphere, there would be no degeneracy.
Hence, the 8-fold degeneracy is indeed a faithful counterpart of topological degeneracy in
dissipative systems.

The 8 steady states in the above construction are all diagonal mixed states of different
closed-membrane configurations, signaling an absence of quantum coherence. We can instead
design models with steady-state coherences [47], by expulsing e defects as well as m defects,
which motivates the two jump operators in Model 2. In this case, the ground states of HT C ,
i.e., ∣ψ{µi}⟩ = Vµ1

x y Vµ2
xz Vµ3

yz ∏v
1+Av

2 ∣ ⇑⟩, are dark states of both Lm,l and Le,l . From them we can
build the steady states ({µi} = {µ

′
i}) and steady-state coherences ({µi} ≠ {µ

′
i}):

ρ
{µi},{µ′i}
ss = ∣ψ{µi}⟩⟨ψ{µ′i}∣. (3)

They span a 64-dim subspace. The degeneracy is squared due to coherences between different
topological sectors.

The topological degeneracy discussed above is contributed from all defect-free states. A
more careful analysis would reveal a large number of additional steady states with non-contractible
loop defects. However, as we analyze in detail in D, this large degeneracy is merely acciden-
tal, and is immediately lifted once the Liouvillian is slightly tuned away from the given form.
Therefore, we will neglect these states in the following discussion.

3 Robustness of topological degeneracy

Now an important issue is whether the topological degeneracy of steady states is robust. Only
if it is robust can we identify a non-trivial topological phase. For instance, the 2d versions
of both models also have topological degeneracy, with different steady states distinguished
by the parity of non-contractible loops winding around the two cycles of the torus. However,
intriguingly, we find that the topological degeneracy is fragile in 2d, while it is robust under
weak local perturbations in higher dimensions, in accordance with previous studies on the
thermal stability (fragility) of topological order [7, 8, 30, 31, 48]. This is in sharp contrast to
the ground-state topological order in closed systems where topological degeneracy is usually
immune to local perturbations.

To make a better comparison with the ground state topological order, we first vectorize
the density matrices in a double Hilbert space, ρ = ∑mnρmn∣m⟩⟨n∣→ ∑mn ∣ρ⟫ = ρmn∣m⟩⊗ ∣n⟩.
Correspondingly, the Liouvillian superoperator is mapped to an operator:

L =∑
α

Lα ⊗ L∗α −
1
2

L†
αLα ⊗ I −

1
2

I ⊗ LT
α L∗α. (4)
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Denote the exactly solvable Liouvillians defined in Eq. 1 as L0. The degenerate steady
states ∣ss0,R

α ⟫ are right eigenstates of L0 with zero eigenvalues. For later convenience, we
also define the left steady states ∣ss0,L

α ⟫ as left eigenstates of L0, L†
0∣ss

0,L
µ ⟫ ≡ 0. Now we add

some weak local perturbation L0 → L0 + δL . Then we can perform the standard degenerate
perturbation theory to get the effective Liouvillian in the steady state subspace S0 of L0.

Leff = P ∑
n∈N
δL(Q

1
λI −QL0Q

QδL)nP, (5)

where P ≡ ∑µ ∣ss
0,R
µ ⟫⟪ss

0,L
µ ∣ ≡ I − Q is the projection onto S0. λ is to be self-consistently

determined by the eigen equation Leff∣λ⟫ = λ∣λ⟫.
First, recall the reason for the stability of ground state topological degeneracy in closed

systems: (a) The degenerate ground states lie in different topological classes, non-zero off-
diagonal elements of the effective Hamiltonian only arise at extremely high order perturba-
tion; (b) the degenerate ground states are locally indistinguishable, so the diagonal terms are
all identical. Together, they lead to the conclusion that the energy-splitting under local per-
turbation must be exponentially small. This argument fails here because the left and right
steady states are different, due to the non-Hermiticity of L0. Although the degenerate (right)
steady states ∣ss0,R

µ ⟫, ∣ss
0,R
ν ⟫ (µ ≠ ν) lie in different topological classes, that does not guarantee

the vanishing of ⟪ss0,L
µ ∣O∣ss

0,R
ν ⟫ for local operators O. This subtlety leads to the fragility of

topological degeneracy in two dimensions. In B we show that the degeneracy is immediately
lifted at first order. That is the reason why we focus on three dimensions, which is the lowest
dimension where robust topological degeneracy is possible.

From the above analysis, it becomes clear that to realize robust topological degeneracy,
configurations contained in ∣ss0,R

µ ⟫ and ∣ss0,L
ν ⟫ (µ ≠ ν) are also required to differ in a highly

non-local way. This is generally not easy to achieve, but our Model 1 in three (and higher)
dimensions is designed to ensure that. Consequently, the 8-fold topological degeneracy will
not be lifted to any finite-order perturbation, and weak local perturbations only causes an
exponentially small level splitting between the topologically degenerate steady statess. More
details are provided in D.

The notable disparity between the behaviors in two dimensions and three dimensions can
be understood through a more intuitive perspective. In two dimensions, both types of topo-
logical defects are point-like. Starting from a defect-free state in a given sector, defects can
be created in pairs under local perturbation, and then they can move randomly under the
Lindblad dynamics and may relatively wind around a nontrivial cycle along the torus, causing
mixing between topological sectors. The loss of topological memory indicates the absence of
topological degeneracy. However, in three dimensions, although small loop defects may also
be created by perturbation, they tend to shrink under the dynamics due to L0. Under weak
perturbations, the loop defects are therefore suppressed to small lengths and low densities.
As a result, the topological memory, and consequently the topological degeneracy, remains
robust.

Finally, for three-dimensional Model 2, the fate of point-like e defects under perturbation is
similar to the two-dimensional case. As a result, the degree of topological degeneracy would be
immediately reduced from 64 to 8 under weak perturbations, with the steady-state coherences
destroyed but the remaining 8-fold topological degeneracy unharmed 1. We explain in more
detail how the degeneracy are lifted from 64 to 8 in E.

The robustness of the 8-fold topological degeneracy in both models allows us to identify
the steady states as a non-equilibrium topological phase, which exhibits SSTO. In the rest of

1Although in 3d the steady state coherences are fragile, our construction can be straightforwardly generalized
to 4d where both types of defects are loop-like, and then robust topological quantum memory and long-range
entanglement can be realized [7]
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this paper, we attempt to identify more universal features as characteristics of SSTO and try to
understand the nature of the phase transition to a trivial phase. Since the two models share
the same universal features, we will focus the discussion on Model 1 for simplicity.

4 Deconfined dissipative gauge theory

One typical feature of topological order in Hamiltonian systems is the presence of emergent de-
confined gauge fields [49–51]. For example, the toric code model realizes a deconfined phase
of Z2 gauge theory, and the transition to a trivial phase can be viewed as a deconfinement-
confinement transition [52,53]. Here we show that similar physics also exists in SSTO. First,
notice that for both models, L0 is invariant under the gauge transformation generated by Av:
Lα → Av LαAv . The novelty in our dissipative models is that the gauge theory emerges dynam-
ically. The initial states can be any configuration and are generally not gauge invariant, i.e.,
ρ ≠ AvρAv . However, it turns out the gauge non-invariant modes would decay quickly under
the relaxation dynamics. Hence, the long-time dynamics can be described by a pure gauge
theory where states are gauge invariant. This feature enables us to investigate the transition
from the topologically ordered phase to the trivial phase from the perspective of Z2 gauge
theory.

Now we focus on Model 1 for a more concrete discussion. To investigate the transition we
consider the bit flip perturbation, δL[⋅] = Lx ,l ⋅ L

†
x ,l −

1
2{L

†
x ,l Lx ,l , ⋅}, with the jump operator

Lx ,l =
√

hσx
l . We note that the set of all diagonal matrices in the σz basis forms an invariant

subspace of L0. Because of the dephasing term Lz,l , the long-time dynamics is governed by
the evolution in the subspace of diagonal matrices: ρ = ∑m p(m)∣m⟩⟨m∣. Then the long-time
Lindblad dynamics is reduced to a classical Markov dynamics:

d
d t

p(m) = ∑
n≠m
Γmnp(n) − Γnmp(m),

Γ =∑
l
(σx

l − 1)P2
(∑

l∈∂ p
Bp) + h(σx

l − 1).
(6)

The gauge invariance is now manifest: [Av , Γ ] = 0, and Gauss’s law AvρAv = ρ is already
imposed.

We wonder if there exists a deconfinement-confinement transition in this non-equilibrium
context. Therefore, we examine the expectation value of the Wilson loop operator in the steady
state ρss,

⟨Wγ⟩ ≡ tr(Wγρss), Wγ =∏
l∈γ
σz

l , (7)

where γ is a closed loop. Since the limiting cases h = 0 and h = ∞ can be solved exactly,
we calculate ⟨Wγ⟩ via perturbation expansion in small/large h limit [54], and find that ⟨Wγ⟩

satisfies the perimeter/area law, respectively:

⟨Wγ⟩ ∼ exp (−2hPγ) for h→ 0,

⟨Wγ⟩ ∼ exp(−
1
2

Aγ ln h) for h→∞,
(8)

where Pγ, Aγ is the perimeter of γ and the area of the minimal surface enclosed by γ. There-
fore, under weak perturbations, the system is in a deconfined phase, which can serve as an-
other evidence of non-trivial topological order. We anticipate that the system will experience a
deconfinement-confinement transition at a critical value of hc , triggered by the proliferation of
m defects. This transition is expected to coincide with the breaking of the topological degen-
eracy. The above prediction is verified by numerical simulation of the corresponding Markov
dynamics (Eq. 6). The results are shown in Fig. 2.
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Figure 2: Calculation of the Wilson loop on a 32 × 32 × 32 lattice. Semi-log plots of
the expectation value of Wilson loops versus the perimeter of the Wilson loop γ (a)
and the minimal area encircled by γ (b) are shown. Clearly, there is a deconfinement-
confinement transition at 0.010 < hc < 0.011.

5 Slow relaxation

In the above we focus on the steady-state characteristics of the dissipative topological order.
Now we discuss the long-time relaxation dynamics before the system reaches the steady state,
which is also important for characterizing a non-equilibrium phase. The long-time dynamics
is determined by the low-lying Liouvillian spectrum, so we can extract important features like
the Liouvillian gap by investigating it. Here the Liouvillian gap is defined as the spectral gap be-
tween the topologically degenerate steady states and the rest: ∆ = minn∉steady-state subspace{Re(−λn)}.
We find that for Liouvillians with topological degeneracy, the relaxation time diverges in the
thermodynamic limit. This can be understood rather intuitively: The relaxation dynamics can
be viewed as the shrinking-expulsion process of loop defects, and such process must take an
algebraically long time for large size of the loop defects.

From the above, we expect that the Liouvillian is gapless for h < hc . However, for h > hc

all long-range correlations are destroyed by the proliferation of m defects, and the relaxation
process should be insensitive to the system size. For example, a large membrane would be
immediately torn apart into pieces. In this case, the Liouvillian spectrum should be gapped.
To verify this picture, we calculate the evolution of the total length of loop defects for various
values of h, starting from random initial states. The results are shown in Fig. 3 (c). In the
long time limit, the density of m defects decays exponentially for h > hc , signaling a finite
Liouvillian gap which determines the decay rate, while for h < hc the density of m defects decay
algebraically, which is the typical behavior for systems with a vanishing Liouvillian gap [55].
All these results are consistent with the above picture.

Recall that in closed systems topological order is defined with an energy gap separating the
degenerate ground states and excitations. In our dissipative models, although the Liouvillian
gap vanishes, it is algebraically small with respect to the system size, while the splitting within
the topologically degenerate subspace is exponentially small. Thus, the topological degeneracy
is still well-defined. Moreover, the gapless Liouvillian spectrum seems to be an inevitable
consequence of topological degeneracy, and thus is a universal feature of SSTO. This reveals
a sharp distinction between topological order in open systems and closed systems. We give a
heuristic argument below.

In closed systems with ground state topological degeneracy, we learn that there would be
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Figure 3: Evolution of the density of m defects ∆Dm(t) on a 32 × 32 × 32 lattice,
defined as the number of plaquettes with Bp = −1 divided by the total number of
plaquettes, with the density in steady state subtracted. Results are obtained by av-
eraging over 96000 trajectories under random initial states. Clearly, ∆Dm(t) decays
algebraically (exponentially) for h < hc (h > hc).

topological excitations (defects) on top of the ground states [5]. They are defined as excita-
tions that cannot be created or destroyed by local operators. In open systems, we anticipate
that the system will likewise reach the topologically degenerate steady states through the ex-
pulsion of topological defects. However, since such topological defects cannot be eliminated
locally, the expulsion process takes a long time for large systems, as we have already seen for
loop defects in 3d in the previous discussion. As another example, we can consider point-like
defects, e.g., the e defects in our two models. Since they cannot disappear individually, they
are only able to migrate to the vicinity of other point-like defects, where they subsequently un-
dergo annihilation. The time this process takes also diverges when the distance between the
defects is large. Due to the particular role of topological defects, the relaxation time generally
diverges in the thermodynamic limit, which typically indicates the vanishing of the Liouvillian
gap in the presence of translation symmetry 2. Here the gapless mode of Liouvillian is con-
tributed by highly non-local excitations, with extensively large m defects. To further support
the correspondence between topological degeneracy and gapless spectrum, we analyze the
2d version of Model 1 in G and find that the Liouvillian is gapless for h = 0, when there is
topological degeneracy, and gapped otherwise.

6 Discussion

Through two concrete models, we show how robust topological order can arise in open quan-
tum systems with dissipations. Our results highlight the differences between ground-state and
steady-state topological orders. Notably, whereas the ground-state topological degeneracy oc-
curs in both two and three dimensions, its steady-state counterpart is robust only in three (and
higher) dimensions. Interesting open questions include generalizing our construction to real-
ize other types of topological phases, such as non-Abelian topological order, fracton topological
order, etc, in open systems.

2Notably, in systems without translation invariance, such as lattice models with open boundary or disorder, there
are counterexamples where the relaxation time is divergent even if the Liouvillian is gapped, e.g., see [56,57].
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A Model 1 & 2 in 2d

In this appendix, we analyze the two-dimensional version of Model 1 & 2 in the main text.
First, recall that in the 2d toric code model, there are two types of underlying loop structures,
i.e., Z loops on the original lattice and X loops on the dual lattice. The ground state is an
equal-weight superposition of loop configurations, and is 4-fold degenerate on a 2-torus:

∣ψ{µi}⟩ = Vµ1
x Vµ2

y ∏
v

1 + Av

2
∣ ⇑⟩,

Wx(y) = ∏
l∈γ̃x(y)

σx
l , µ1,2 = 0, 1.

(9)

Here we work in the σz basis, and ∣ ⇑⟩ ≡ ⊗l ∣ ↑⟩, so different ground states are distinguished
by the parity µ,ν of non-contractible loops γ̃x ,y on the dual lattice, circling around the torus.
Correspondingly, e and m defects live on the end of these two types of strings, respectively,
so both of them are point-like defects in 2d. The effect of the dissipator Le,l and Lm,l are
illustrated in Fig. 4. Analogous to the analysis of the 3d case in Section 2, we can exactly solve
the steady states of both models on a 2-torus. For Model 1, all steady states are diagonal and
the degeneracy is 4:

ρ
{µi}

ss = Vµ1
x Vµ2

y ∑
{v}

(∏
v

Av ∣ ⇑⟩⟨⇑ ∣∏
v

Av) Vµ1
x Vµ2

y . (10)

For Model 2, steady states and steady-state coherences can be constructed from ∣ψµi ⟩, spanning
a 16-dim steady state subspace:

ρ
{µi},{µ′i}
ss = ∣ψ{µi}⟩⟨ψ{µ′i}∣. (11)

Generically, the degeneracy on a genus-g manifold is 4g and 42g for the two models, respec-
tively. We note that a similar model to Model 2 in 2d has been studied in [11].

B Fragility of topological degeneracy in 2d

As mentioned in Section 3, the topological degeneracy of steady states is not guaranteed to be
robust, due to the complication that the left and right steady states are different in general. Al-
though our model is designed such that the 8-fold topological degeneracy is robust in 3d, here
we show that in 2d, the topological degeneracy of both models is fragile under perturbation.

We analyze Model 1 first. Parallel to the discussion in the main text, we can reduce the
problem to a classical Markov dynamics, with the generator:

Γ = Γ 0
+ δΓ =∑

l
(σx

l − 1)P( ∑
p∣l∈∂ p

Bp) + λ∑
v
(Av − 1) +∑

l
h(σx

l − 1). (12)

9
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Figure 4: An illustration of the effects of dissipators Le,l , Lm,l in 2d. (a) links with
σx

l = −1 are colored blue; e defects living on the end of the blue string are represented
by red dots. Applying Le,l∗ on link l∗ in this case moves one e defect to its neighboring
site. (b) links withσz

l = −1 are colored green; m defects living on plaquettes (vertices
on the dual lattice) are represented by orange dots. Applying Lm,l∗ on link l∗ in this
case would move one m defect to its neighboring plaquette.

The last term δΓ = ∑l h(σx
l − 1) is treated as perturbation, and we need to find out whether

the topological degeneracy persists to a finite small h. First, we’d like to perform the degen-
erate perturbation theory. To simplify the notation, we first vectorize the density matrices
ρ = p(m)∣m⟩⟨m∣ → ∣ρ⟩ = p(m)∣m⟩. Since we only need to consider diagonal density matri-
ces (in the σz basis) for this model, we don’t need to double the Hilbert space here. In this
way the master equation can be written as d

d t ∣ρ⟩ = Γ ∣ρ⟩, and the right and left steady states
∣ssR,L⟩ correspond to right and left zero-energy ground states of the fictitious non-Hermitian
“Hamiltonian" −Γ . Then we can obtain the effective generator in the degenerate subspace
under perturbation by simply rewriting Eq. 5 in the main text.

Γeff = P ∑
n∈N
δΓ (Q

1
λI −QΓ 0Q

QδΓ )nP, (13)

where P ≡ ∑µ ∣ss
0,R
µ ⟩⟨ss

0,L
µ ∣ ≡ I − Q is the projection onto S0. λ is to be self-consistently de-

termined by the eigen equation Γeff∣λ⟩ = λ∣λ⟩. To evaluate the expansion, we need both the
expression of left and right steady states of the unperturbed generator Γ 0.

∣ss0,R
µ ⟩ = Vµ1

x Vµ2
y ∏

v

1 + Av

2
∣0⟩,

∣ss0,L
µ′ ⟩ =

1
N

lim
t→∞

eΓ
†
0 t
∣ss0,R
µ′ ⟩

=
1
2

Vµ
′
1

x Vµ
′
2

y ∏
v
(1 + Av)

⎛

⎝
∣0⟩ + ∑

{m2}
α2({m2})∣{m2}⟩ + ∑

{m2}
α4({m4})∣{m4}⟩ +⋯

⎞

⎠
,

(14)
with the orthonormal condition ⟨ss0,L

µ′ ∣ss
0,R
µ ⟩ = δµ1µ

′
1
δµ2µ

′
2
. Here {m2k} refers to configurations

with 2k m-defects. The last line follows from the fact that Γ 0† can move m defects or create
them in pairs. Thus non-zero off-diagonal elements of the effective generator PΓeffP arise
even at first order, i.e., ⟨ss0,L

µ′ ∣δΓ ∣ss
0,R
µ ⟩ ≠ 0 for µ ≠ µ′. In Ref. [58] we give a more quantitative

analysis, where it is shown that the magnitude of the off-diagonal term is ∼ hL2/ log L. Hence,
the 4-fold degeneracy is immediately lifted for any finite h, and the steady state is unique.
Physically this is due to the proliferation of m defects under perturbation.

Actually, under this specific form of δΓ , the steady state can be exactly solved:

∣ssR
⟩ =∑

k
(

h
1 + h

)

k

∏
i=x ,y

1 + Vi

2
∑
{r}
∣m2k({r})⟩. (15)

10
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Here ∣m2k({r})⟩ denotes states with 2k m defects with positions {r} = (r1, r2,⋯, r2k), and the
weight of each configuration only depends on the number of m defects. One can easily check
that ∣ssR⟩ satisfies the detailed balance condition Γmnp(n) = Γnmp(m) for any pair of n, m. In-
deed, the corresponding diagonal density matrix is just the Gibbs state ρss = exp (−∑p Bp/T),
with the effective temperature T = 4

ln 1+h
h

. The property ofρss has been thoroughly investigated

in the study of Ising gauge theory, where it is found that in 2d the Wilson loop expectation
value always satisfies an area law. This further confirms the absence of robust topological
order in 2d.

Next, we’re going to show that the topological degeneracy of Model 2 is also fragile. We
consider the following two types of perturbation:

Lx ,l =
√

hxσ
x
l ,

Lz,l =
√

hzσ
z
l .

(16)

This model is also exactly solvable based on the following reasoning: 1. The action on m
defects is identical to that in Model 1. 2. The action on e defects is of the same form as the
action on e defects (identical in the case hx = hz). 3. The Liouvillian superoperator has an
invariant subspace

A = {ρ =∑
mn
ρmn∣m⟩⟨n∣ ∣ ∣m⟩, ∣n⟩ contain the same e and m defect configuration}.

We can seek steady states within this subspace. 4. Although e, m defects have nontrivial mutual
statistics in Hamiltonian systems, any phase factor from braiding would cancel out under the
Lindblad dynamics in A. Therefore, the dynamics of e/m particles are completely independent.

The key message gained from the above analysis is that this model can be viewed as a
double version of Model 1 (in terms of the dynamics of defects), so we expect the topological
degeneracy to be completely lifted when both hx and hz are nonzero. We can directly get the
exact steady state by generalizing the results of model 1: ρss = exp (−∑p Bp/Tm −∑v Av/Te)

with Tm(e) =
4

ln
1+hx(z)

hx(z)

. This is just the thermal state of the toric code model. It is known that it

has no topological order under finite temperature in 2d, consistent with our expectations.
Neither of the models we construct exhibits robust topological degeneracy in 2d. We give

a more intuitive argument below. First, note that both types of topological defects in 2d are
point-like, and the topologically degenerate steady states in the ideal models are reached via
the expulsion of these defects. However, once some weak noise/perturbation is present, de-
fects can be created in pairs, and there is nothing preventing them from relatively winding
around a large circle of the torus. Hence, even a single pair of defects can erase the mem-
ory of the initial topological sector. We believe this picture is generically true for 2d Lindblad
systems.

C Accidental degeneracy in 3d

The topological degeneracy of both models in 3d is from the multiple defect-free states on
3-torus. From the view on the dual lattice, this means only closed-membrane configuration
remains. In this appendix we explain that for the particular form of the two models, there are
a large number additional steady states.

In fact, Lm,l also allows some states with m defects as its dark states, with the requirement
that the m defects form non-contractible flat loops. That follows from the strong constraint
that the length of loop defects is non-increasing, and for these flat loop defects, any local move
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of the defect would increase the defect length. Thus there is an exponentially large number
of additional steady states with the remaining m defects forming non-contractible flat loops.
For later convenience, we will call these steady states type B states and the defect-free steady
states type A. See Fig. 5 for an illustration of these two types of steady states. From the above

(a)

𝒙

𝒚

𝒛

𝒙

𝒚

𝒛

Type A Type B 

(b)

Figure 5: (a) A typical configuration of type A states, where there are no defects and
all membranes are closed. Here we show an example with a large non-contractible
membrane in the x y plane. (b) A typical configuration of type B states, where m
defects (orange solid line) form flat non-contractible loops.

analysis, we can see that the existence of type B states in the steady-state subspace heavily
relies on the strong constraint of the dynamics and should be merely metastable. Once the
constraint is released under perturbation, we expect such metastable states would eventually
evolve into the type A steady states and the large degeneracy will be lifted, as will be verified
in the next appendix.

D Degenerate perturbation theory of Model 1 in 3d

In this appendix we apply the degenerate perturbation analysis to Model 1 in 3d. Firstly, we
aim to understand the robustness of topological degeneracy in 3d, so we focus we first focus
on the effective Liouvillian PALeffPA in the subspace spanned by type A steady states (subspace
with topological degeneracy), where PA is the projection to this subspace. The subtlety of
applying the degenerate perturbation theory to Liouvillians arises from the disparity of left
and right eigenstates, which causes fragility of topological degeneracy in 2d. As pointed out
in Section 3, to realize robust topological degeneracy, we require,

⟪ss0,L
µ ∣O∣ss

0,R
ν ⟫ = 0, ∀ local operators O acting on the double Hilbert space. (17)

We show below this is indeed the case for Model 1.
Notice that ∣ss0,L

µ ⟫ = limt→∞ eL
†
0 t ∣ss0,R

µ ⟩. That is, the left steady states can be obtained
by evolving the right steady states under the adjoint Liouvillian L†

0. Contrary to L0, L†
0 de-

form/create the loop defects in a way that the defect length never decreases. Starting from the
topological sector µ, loop defects can be created and grow larger, but this process cannot lead
to or even get close to a defect-free state in another topological sector due to the constraint.
In other words, one cannot grow a large non-contractible membrane without shrinking the
boundary of the membrane. Therefore, the condition Eq. 17 is satisfied. Consequently, all off-
diagonal terms in PALeffPA vanish in any finite order perturbation and are thus exponentially
small. Also, the diagonal terms in PALeffPA are identical, which follows from the fact that the

12
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8 type A states are locally indistinguishable. These facts tell us that the 8-fold topological de-
generacy of type A states cannot be lifted by any finite order perturbation, with exponentially
small splitting under weak local perturbations.

Next, to understand the fate of type B states, we give a more elaborate analysis of the full
effective Liouvillian:

Leff = (
PALeffPA PALeffPB

PBLeffPA PBLeffPB
) . (18)

Similar to the above discussion, we find all elements of PBΓeffPA are also exponentially small,
which further confirm the stability of topological degeneracy. On the contrary, for the remain-
ing two blocks, nonzero elements arise even at the first order. This result reflects that a type B
configuration is easy to turn into a type A configuration or other type B configurations under
perturbation, while a type A configuration will stay in the same topological sector under small
perturbation. Therefore, the additional degeneracy contributed by type B states is easily lifted,
in agreement with our intuition that type B configurations are metastable. Consequently, only
the 8-fold topological degeneracy is robust. In F we further study the lifetime of type B states
through numerical simulations.

We must point out that Leff cannot really determine the long-time dynamics, because the
steady state subspace of Γ 0 is not well separated from the rest states due to the absence of
a Liouvillian gap. Then there may be concerns that the whole argument break down. Since
in Hamiltonian systems, the perturbation expansion of the effective Hamiltonian is normally
controlled by h/∆ with ∆ the energy gap, it obviously fails when ∆ → 0. However, as we
will see in G, the low-lying Liouvillian spectrum is contributed by highly non-local excitations,
with extensively large m defects, which only arise in extremely high-order perturbation terms.
Thus the perturbation expansion is well-controlled at any finite order. We believe the above
argument does give qualitatively correct results. The above argument reveals another key
difference between steady-state topological order (SSTO) and ground-state topological order:
the robust topological degeneracy is not protected by a Liouvillian gap but by the extensiveness
of gapless modes.

E Fragility of steady state coherences in 3d

The robust topological degeneracy of Model 1 in 3d indicates a classical topological memory:
starting from one topological sector, the system would stay in the same sector for an exponen-
tially long time, which can be viewed as an example of classical bits. However, starting from
some coherent superposition of states in different topological sectors, the coherence would
be washed out and only the relative weight is preserved. On the contrary, in Model 2 phase
coherences can be preserved, since all pure states within the ground state subspace of HT C

are steady states of Model 2. Unfortunately, the steady-state coherences would be destroyed
under generic perturbations, as is pointed out in Section 3.

To illustrate this point, first, we note that there are two underlying structures in the 3d toric
code model: the ground state can be viewed as either a condensate of closed membranes on
the dual lattice or of closed loops on the original lattice. m, e are the corresponding defects of
the two structures, respectively. While in our previous discussion, we choose a representation
where the former structure is manifest, it turns out to be helpful to switch to the alternative
representation to understand the effect of perturbation. That is, we can write the ground states
of HT C as:

∣ψ{µ̃i}⟩ =W µ̃1
x W µ̃2

y W µ̃3
z ∏

p

1 + Bp

2
∣⇒⟩, (19)
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where ∣ ⇒⟩ ≡ ⊗l ∣ →⟩l and W is the non-contractible loop operator introduced in Eq. 9. In
this representation different topological sectors are distinguished by the parity of the non-
contractible loops created by Wx ,y,z and any superposition of the above states are steady states
of Model 2. In other words, in the double Hilbert space, the type A steady state subspace of
L0 is spanned by ∣ss0,R

µ̃,ν̃⟫ = ∣ψ{µ̃i}⟩⊗ ∣ψ{ν̃i}⟩.
Now we add the perturbation terms in Eq. 16 and see whether the topological degeneracy

is robust or not. Lx ,l is the noise term causing fluctuation of m defects while Lz,l causes
fluctuation of e defects. As is illustrated in Model 1, the former doesn’t lead to the proliferation
of m defects unless hx exceeds some finite threshold. However, the dynamics of e defects is
similar to that in 2d, so using the same argument in B, we can conclude that under any finite hz ,
the creation and random motion of e defects would cause mixing between sectors with different
{µ̃}. That means ⟪ss0,L

µ̃′,ν̃′ ∣δL∣ss
0,R
µ̃,ν̃⟫ is in general nonzero. Then the 64-fold degeneracy would

be lifted even at first-order perturbation.
In the case hx = 0, the model is exactly solvable with 8 steady states:

ρ
{µi}
ss = Vµ1

x y Vµ2
xz Vµ3

yz

⎧⎪⎪
⎨
⎪⎪⎩

∑
k
(

hz

1 + hz
)

k

∏
i=x ,y,z

1 +Wi

2
∑
{r}
∣e2k({r})⟩⟨e2k({r})∣ ∏

i=x ,y,z

1 +Wi

2

⎫⎪⎪
⎬
⎪⎪⎭

Vµ1
x y Vµ2

xz Vµ3
yz .

(20)
Here ∣e2k({r})⟩ denotes states with 2k e defects with positions {r} = (r1, r2,⋯, r2k). One can
verify that Wz,y,xρss = ρssWz,y,x = (−1)µ1,2,3ρss, which means the bra and ket in the density
matrix always lie in the same topological sector {µ} in the membrane picture. This tells us the
coherence between different sectors is lost because of the creation and moving of e defects.
Then under any finite hz , we can at most realize three classical bits that store the topological
information, and all qualitative properties of steady states are identical to those of Model 1.
Actually, the above steady states are exactly reduced to Eq. 2 in the main text in the limit
hz → ∞. Then we can deduce from the analysis of Model 1 that the effect of small hx is to
create a low density of small m defects, but cannot lead to a proliferation of them, so the 8-
fold topological degeneracy is preserved. Just as in Model 1, a classical topological order is
realized.

From the above discussion, we learn that the dimension ddef of the topological defects plays
a crucial role in topological order in open quantum systems, only when ddef ≥ 1 is the corre-
sponding topological information robust against noise. To realize robust quantum topological
order, we need to generalize Model 2 to 4d where both types of defects are loop-like. Then ro-
bust topologically degenerate steady states and steady-state coherences can be realized, with
the dimension of steady state subspace = (24)2 = 256.

F Lifetime of type B states

In D we argue that the type B states are metastable and would finally evolve into the type
A states under generic perturbations. Clearly, this requires the non-contractible loop defects
to merge into contractible ones, and such process takes a very long time when the distance
between non-contractible loops is large. Then it is crucial to check that these states do not
have an exponentially long lifetime, because only then are they well-separated from the 8-
dimensional topologically degenerate subspace. Otherwise the topological degeneracy would
be ill-defined.

To investigate the lifetime of the metastable states, we numerically simulate the dynamics
for several parameters in the topologically ordered phase, with a membrane on the half x y
plane in the initial state (See Fig. 5(a)). As depicted in Fig. 6 it turns out the lifetime (prac-
tically defined as the average time when the number of non-contractible loops drops to zero)
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Figure 6: The lifetime of the type B configuration scales as a power law with system
size. The results are obtained by averaging over 1000 trajectories for each parameter.
Data obtained from numerical simulation is represented by “*" and dashed lines are
obtained from linear fitting of the log-log plot. We use α to denote the fitted slope,
so lifetime τ∝ Lα.

diverges algebraically with the system size: τlife time ∝ Lα, with α ≈ 4 for h well below the
critical point. Moreover, even for contractible loop defects, the shrinking-expulsion process
also takes an algebraically long time when the size of the defect is large. The slow relaxation
of large defects is expected to contribute to the low-lying Liouvillian spectrum above the 8-fold
degenerate steady states, with an algebraically small Liouvillian gap.

G More on the connection between slow relaxation dynamics and
topological degeneracy

In Section 5 we point out that when the steady states are topologically degenerate, the relax-
ation time to reach the steady state subspace would diverge in the thermodynamic limit. We
regard the slow relaxation dynamics as a universal feature of SSTO, and we also give a heuris-
tic argument based on the nature of topological defects. In this appendix, we provide more
evidence to substantiate our assertion, by a more quantitative analysis of Model 1 in both 2d
and 3d.

G.1 d=2

First, we discuss the relaxation dynamics of Model 1 in two dimensions, starting with the
Markov generator in Eq. 12. Although there is no robust topological degeneracy in 2d, we can
still gain some insight by comparing the case h = 0 (with topological degeneracy) and h ≠ 0
(with no topological degeneracy). Let’s study the h = 0 case first. We neglect the fact that m
particles can only come in pairs for a moment, and consider the dynamics of a single m particle
(alternatively, we can create two e particles with infinite separation so they don’t see each
other). Then its dynamics is simply a random walk, whose Markov generator is nothing but a
tight-binding Hamiltonian, with dispersion λk = −2 + cos(kx) + cos(ky). Hence we conclude
that the Liouvillian gap ∆ ∼ L−2 at large L. Starting from a random configuration, the m
defects will walk randomly and annihilate in pairs, in the end, all of them will be eliminated
in the steady state, and the typical relaxation time of this process is τ∝ L2.
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To see if this slow relaxation behavior is related to the topological degeneracy, we now turn
on a finite h and lift the topological degeneracy. What is the Liouvillian gap in this case? At
a time scale much longer than λ−1, configurations equivalent up to transformation generated
by Av are thoroughly mixed. Then the longtime dynamics can still be reduced to the dynamics
of e particles. That’s exactly what we do in case h = 0. To describe the long-time dynamics,
we restrict the discussion to the subspace Av = 1. This simplification is reasonable if we only
concern the spectrum of −Γ lying below λ. In this case, we get an effective non-Hermitian Z2

gauge theory, as promised in the Section 4. Analogous to the well-known duality between Z2

gauge theory and the transverse Ising model in 2d, this non-Hermitian gauge theory is also
dual to a simpler spin model on the dual lattice with Bp = −1→ ∣ ↑⟩, and Bp = +1→ ∣ ↓⟩.

−Γ → H = −∑
⟨i j⟩
(σ−i σ

−
j +
σ−i σ

+
j

2
+
σ+i σ

−
j

2
) + 2∑

i
ni − h∑

⟨i j⟩
(σx

i σ
x
j − 1), (21)

where the spin degrees of freedom are defined on the vertices of the dual lattice and ni =
1+σz

i
2 .

More strictly speaking, −Γ should be mapped to PHP if we consider the periodic boundary
condition, where P is the projector to subspace with ∏i(−σ

z
i ) = 1. That is, there can only be

an even number of up spins in the dual model. In the discussion below, we will not write the
projector P explicitly, but all the results are projected to the even parity sector implicitly. We
can directly write down the ground states of H based on Eq. 15:

∣ρ⟩ =⊗
i
(∣ ↓⟩i + β ∣ ↑⟩i), (22)

where β =
√

h
h+1 . Like all Markov generators whose steady state satisfies detailed balance, H

can be mapped to a hermitian Hamiltonian through a similarity transformation.

Hs = SHS−1, S = β−∑i ni/2. (23)

Dropping the constant term, we get

Hs = (2h + 1)
⎧⎪⎪
⎨
⎪⎪⎩

−∑
⟨i j⟩
[

1
2
(1 + η)σx

i σ
x
j +

1
2
(1 − η)σ y

i σ
y
j ] + hz∑

i
σz

i

⎫⎪⎪
⎬
⎪⎪⎭

. (24)

Here η = 2
√

h(h+1)
2h+1 and hz =

2
2h+1 . This is an anisotropic XY model with a magnetic field in z

direction, which has been well studied decades ago [59]. We find the parameters in our model
just lie on the curve η2 + (hz

2 )
2 = 1. For h ≠ 0, this model is in the gapped Ising ordered phase.

Since Hs has the same spectrum as H, there is always a finite Liouvillian gap for nonzero h.
Therefore, the threshold for a Liouvillian gap opening and topological degeneracy breaking
coincide at h = 0.

G.2 d=3

Next, we turn to the more interesting case in 3d, where there is really a topologically ordered
phase with topological degeneracy for h < hc . Here we will show that the relaxation time also
diverges algebraically in the topologically ordered phase. We have already seen in F that the
meta-stable type B states have algebraically long lifetime Lα. As pointed out in Section 5, the
shrinking dynamics of large contractible loop defects can also take a very long time. Here we
give the scaling between the relaxation time and the size of the loop defects in the simplest
but illuminating case h = 0.

Recall that for h = 0, the steady state is an equal-weight superposition of all closed-
membrane states, with no loop defect. Suppose we create a large loop defect in the initial
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state, then this loop would shrink and finally disappear to reach the steady state. The relax-
ation time of this process would obviously diverge as the initial size of the loop defects goes to
infinity. To estimate the scaling relation between the relaxation time τ and the initial size of
the loop defects R0, we’d like to make a coarse-grained description of the dynamics, where we
imagine the loop to be some smooth curve. Then how does this curve evolve and shrink? The
key observation is that the shrinking of the loop defect is driven by the curvature of the loop.
A “flat loop" would never shrink in our model, which is exactly why the meta-stable type B
states arise on a 3-torus. Second, the shrinking of the loop is blind to the sign of the curvature
K , so only the absolute value of it is relevant. See Fig. 7. If we assume the local shrinking rate
σ (defined as the change of the loop length per unit time) is some smooth function of K , then
the most general form of σ is σ = ∑n∈N+ a2nK2n. For simplicity, assume the coarse-grained
loop is a circle of radius R, then K = 1/R. We have σ ≈ a2R−2 for a large R. Then we can obtain
the evolution of R as a function of t:

dR(t)
d t

≈ −2πR(t)σ,

⇒R(t)
dR(t)

d t
≈ −2πa2,

⇒R(t) ≈
√

R2
0 − 2πa2 t. (t <

R2
0

2πa2
)

(25)

Therefore, we obtain an estimation of the relaxation time τ∝ R2
0. We expect this prediction to

hold for a loop defect of a generic shape, where R is replaced by the perimeter P of the loop.
To confirm this prediction, we perform a numerical simulation where we put a R0 × R0

square membrane in the initial states (everywhere else is free of defects), then let it evolve
according to the classical Markov generator Γ 0. By averaging over 10000 trajectories we obtain
the evolution of the expectation value of loop length, as shown in Fig. 7(b). Indeed, we find
the square of the loop length decay linearly with time, and the relaxation time τ ∝ R2

0 (Fig.
7(c)). Here τ is obtained by taking an average of the time that the loop length drops to zero
for different trajectories.

Using these results and the fact that Γ 0 (Γ 0†) keeps the loop length non-increasing (non-
decreasing), we can formally write the low-lying left and right eigenmodes of Γ 0.

∣nR
⟩ = ∑

configuration{m}
with loop length =4R0

α{m}∣{m}⟩ + (configuration with loop length < 4R0),

∣nL
⟩ = ∑

configuration{m}
with loop length =4R0

α{m}∣{m}⟩ + (configuration with loop length > 4R0),

Γ 0
∣nR
⟩ = λn∣nR

⟩, Γ 0†
∣nL
⟩ = λn∣nL

⟩.

(26)

For large R0, λn ∝ R−2
0 , so low-lying eigenmodes with λn close to zero are contributed by

highly non-local excitation modes with extensively large R0. As we have mentioned in D, such
modes only contribute to extremely high-order perturbation terms in Eq. 13.

Based on this understanding, we expect that similar things also happen in other regions
of the topologically ordered phase (0 < h < hc), where the loop defects don’t proliferate in
the steady state. The shrinking process of a large open membrane would still happen slowly
(diffusively) and dominate the long-time dynamics. Indeed, we have seen in Section 5 that the
deviation of total loop length decays algebraically in the entire topologically ordered phase.
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Figure 7: (a) An example of the loop defect before coarse-graining (marked in or-
ange). The local curvature K satisfies: −K1 = K4 < 0 = K2 < K3 < K1; correspondingly,
the local shrinking rate σ satisfies: 0 = σ2 = σ3 < σ1 = σ4, so σ only depends on
the absolute value of K . (b)-(c) Relaxation dynamics at h = 0 with a R0 × R0 square
membrane in the initial state. The evolution of the square of the loop perimeter P
is shown in (b). For sufficiently large t but still t ≪ R2

0, we observe a wide range of
time that P2 drops linearly with time. The slope is nearly identical for all values of
R0, which leads to τ ∝ R2

0. In (c) we show the scaling relation between relaxation
time and R0. Indeed we find τ∝ R2

0.

H Perturbative calculation of the Wilson loop

In this appendix, we aim to calculate the Wilson loop

⟨Wγ⟩ = tr(Wγρss) =
⟨I ∣Wγ∣ss⟩
⟨I ∣ss⟩

, (27)

where ∣ss⟩ is the vectorization of the right steady states ρss and ∣I⟩ = ⊗l ∣→⟩ is the vectorization
of the identity operator, which is the left steady state. Here we perform the calculation via
perturbation expansion: ∣ss⟩ = ∑n ∣ss

(n)⟩ in the limit of small and large h, following similar
strategies as in thermal equilibrium [53].

First, we analyze the case h≪ 1 and treat the σx
l term as a perturbation. Without loss of

generality, we choose the unperturbed steady state as the one in the trivial topological sector,
that is, without the non-contractible membranes:

∣ss(0)⟩ =∏
s

1 + As

2
∣ ⇑⟩. (28)

Then we perform the perturbation expansion:

(Γ 0
+ δΓ )∑

n
∣ss(n)⟩ = 0⇒

1st order ∶ Γ 0
∣ss(1)⟩ + δΓ ∣ss(0)⟩ = 0,

2nd order ∶ Γ 0
∣ss(2)⟩ + δΓ ∣ss(1)⟩ = 0,

⋯

nth order ∶ Γ 0
∣ss(n)⟩ + δΓ ∣ss(n−1)

⟩ = 0,

⋯

(29)
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We use loop configuration (boundaries of open membranes) C on the dual lattice to represent
the solution. The (unnormalized) first-order contribution is easy to obtain:

∣ss(1)⟩ = h ∑
one 4-loop

∣C⟩. (30)

Here “n-loop" represents a loop defect of length n and the summation is over all possible speci-
fied n-loop (here n=4) configuration. At second order, the result is already rather complicated,
with the following form:

∣ss(2)⟩ = α(2) ∑
two independent 4-loops

∣C⟩ + ∑
two adjacent 4-loops

βC ∣C⟩

+ ∑
one 8-loop

γC ∣C⟩ + ∑
one 6-loop

δC ∣C⟩ + εC ∑
one 4-loop

∣C⟩.
(31)

Here by “independent" we mean loops that won’t be fused together to larger loops by applying
Γ 0. Although the full expression is difficult to obtain, we can get α(2) easily, by noting that to
second order, the weight coefficient of any two independent 4-loops in Γ 0∣ss(2)⟩ and δΓ ∣ss(1)⟩
should cancel, that is, 2h2 − 2α(2) = 0, so α(2) = h2. To nth order, the situation is similar:

∣ss(n)⟩ = hn
∑

n independent 4-loops
∣C⟩ +⋯, (32)

where “⋯ " contains terms with all other possible loop configurations with a total loop length
not larger than 4n. We know little about the weight coefficient of these terms, except that they
are of order O(hn). Fortunately, this is sufficient for us to calculate the leading contribution
to the expectation values of the Wilson loops. Denote the total number of links by N and the
length of γ by P, and consider the limit N , P →∞. We calculate the numerator in Eq. 27 first.
For each configuration Wγ = 1 (−1) if γ crosses an even (odd) number of loop defects. Our
strategy is to perform series expansion of h: ⟨I ∣Wγ∣ss⟩ = ∑n wnhn, and at each order n, we
only keep the leading order term of N and P, that is, we only keep leading order terms N aP b

with a + b = sup(a + b) = n. In this approximation, the nth-order contribution to ⟨I ∣Wγc ∣ss⟩ is
dominated by the first term in Eq. 32. Then we can write down the explicit form of it:

⟨I ∣Wγ∣ss⟩ ≈∑
n

1
n!
(N − P − P)nhn

= exp[−h(N − 2P)]. (33)

The same strategy can be applied to the calculation of the denominator:

⟨I ∣ss⟩ ≈∑
n

1
n!

N nhn
= exp[−hN]. (34)

In the end, we get a very simple result:

⟨Wγ⟩ =
⟨I ∣Wγ∣ss⟩
⟨I ∣ss⟩

= exp(−2hP). (35)

That tells us that the Wilson loop satisfies a perimeter for small h, which is known as the
criterion of a deconfined phase.

Next, we discuss the opposite limit h ≫ 1, then the other term should be regarded as the
perturbation. The unperturbed steady state is:

∣ss(0)⟩ =⊗
l
∣→⟩l . (36)

The expectation value of any Wilson loop operator in this state is 0. Denote the minimal area
of the membrane enclosed by Γ as A. Each order of perturbations can create at most two more
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plaquettes in A with ∣ ←⟩. Then at least to order (1
h)

A/2 would we get non-zero contributions
to ⟨Wγ⟩. Therefore, the expectation value can be estimated as:

⟨Wγ⟩ ∼ h−A/2
= e−

1
2 A ln h. (37)

Hence for large h, the system is in a confined phase.
The qualitative behavior of the two extreme limits is indeed verified by the numerical

simulation, as shown in Fig. 2 in the main text.

I Numerical methods

In this appendix, we briefly introduce the numerical methods we use to study Model 1. In fact,
we numerically simulate the discrete version of the Markov dynamics generated by Γ , using
the classical Monte Carlo method. For each step we randomly choose one link, say l, and flip
the spin σl with the probability:

Prob(h) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

h
1+h if the flip decreases ∑l∈∂ p Bp;
0.5+h
1+h if the flip keeps ∑l∈∂ p Bp invariant;

1 if the flip increases ∑l∈∂ p Bp.
(38)

Here the flipping process from the Av term is neglected since we only calculate gauge-invariant
observables which are not affected by such process. To calculate the steady-state expectation
value of observables, we start from some random configuration and let the system evolve a
sufficiently long time (defined as the number of steps divided by the system size) tw to reach
the steady states, then take the time average for t > tw. To calculate dynamical quantities
such as time evolution or relaxation time, we duplicate many copies of the system and take
averages over different trajectories.
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