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Abstract

We study Yang-Baxter deformations of the flat space string that result in exactly solvable

models, finding the Nappi-Witten model and its higher dimensional generalizations. We then

consider the spectra of these models obtained by canonical quantization in light-cone gauge,

and match them with an integrability-based Bethe ansatz approach. By considering a gener-

alized light-cone gauge we can describe the model by a nontrivially Drinfel’d twisted S matrix,

explicitly verifying the twisted structure expected for such deformations. Next, the reformu-

lation of the Nappi-Witten model as a Yang-Baxter deformation shows that Yang-Baxter

models can have more symmetries than suggested by the r matrix defining the deformation.

We discuss these enhanced symmetries in more detail for some trivial and nontrivial examples.

Finally, we observe that there are nonunimodular but Weyl-invariant Yang-Baxter models of

a type not previously considered.
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1 Introduction

Integrable sigma models have played an important role in developing our detailed understand-

ing of the AdS/CFT correspondence. With the development of Yang-Baxter deformations of

superstring sigma models, the scope of integrability now extends to a large variety of deformed

string theories with reduced symmetry, of direct relevance to the gauge/gravity correspondence.

2



Importantly, Yang-Baxter sigma models provide a setting to test existing as well as novel holo-

graphic dualities, while keeping access to the powerful tools of integrability. However, while

most new types of deformations of e.g. the AdS5 superstring are well understood at the classical

level, their quantum integrable structure remains largely to be unveiled. In this paper we will

study simple Yang-Baxter deformations of the flat space string, amenable to direct canonical

quantization, which thereby provide a small but exact window into the quantum structure of

Yang-Baxter sigma models.

The famous AdS5 superstring appearing in the canonical example of AdS/CFT as the dual

of maximally supersymmetric Yang-Mills theory, is described by a rather involved sigma model

[1, 2]. Due to its nontrivial Ramond-Ramond background it cannot be directly approached

via conventional CFT methods, and due to its complicated interaction terms, it also cannot

be straightforwardly canonically quantized in light-cone gauge. Nevertheless, we now have a

fantastic understanding of the spectrum of this string, building on its integrability [3]. Namely,

under the assumption that integrability persists at the quantum level, the spectrum of the AdS5

string can be described in terms of factorized scattering and the (thermodynamic) Bethe ansatz

and quantum spectral curve, see e.g. the reviews [2,4,5]. Other observables such as Wilson loops

and higher point functions can also be approached using integrability, see e.g. the recent [6, 7]

and references therein.

Yang-Baxter deformations1 of strings [10–14] give rise to a landscape of models with reduced

symmetry and a variety of underlying algebraic structures. The deformation may even break the

Weyl invariance of the string [15–17], but this is avoided if the r matrix defining a given Yang-

Baxter deformation is unimodular [18]. In terms of quantum integrability, inhomogeneous Yang-

Baxter deformations (q deformations) of the superstring can be tackled by the same light-cone

gauge and exact S matrix methods as the undeformed string [19–23]. Homogeneous deformations

on the other hand, come in a variety of types corresponding to different Drinfel’d twists [24–

26]. In this setting, only abelian deformations based on Cartan generators fit directly with the

undeformed approach, with the associated Drinfel’d twists naturally adapted to the undeformed

light-cone gauge S matrix, as verified at tree level in [27]. While currently lacking an exact

quantum description, other homogeneous deformations of the AdS string can however be studied

at the semiclassical level through their classical spectral curve [28, 29], and may in the future

prove accessible through the alternate light-cone gauge fixings recently studied in [30] at the

undeformed level. In terms of AdS/CFT, homogeneous Yang-Baxter deformations of AdS strings

are conjectured to be dual to twist-noncommutative deformations of the dual gauge theory

[25, 26], and recently there has been significant progress on the explicit construction of such

noncommutative deformations of 4D maximally supersymmetric Yang-Mills theory in particular

[31,32].

The first aim of this paper is to explicitly verify the Drinfel’d twisted structure of homogeneous

deformations, by studying them in the simplified setting of the flat space string and looking for

models that can be explicitly quantized in light-cone gauge. Concretely, we will look at the

Yang-Baxter deformed flat space string constructed in [33], and find a class of r matrices that

results in a plane wave background, resulting in a quadratic model in light-cone gauge. Our

1Yang-Baxter sigma models as deformations of principal chiral models were originally introduced in [8] and

their integrability shown in [9].
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findings suggest that there is only one such class of Yang-Baxter models, equivalent to strings on

the Nappi-Witten background and its higher dimensional generalizations. Focusing on the four

dimensional case, we explicitly quantize the model in light-cone gauge, and match the resulting

expression with a factorized scattering approach. By working in a generalized light-cone gauge,

the expected effect of the deformation is an overall momentum shift combined with a particular

Drinfel’d twist, and we show how these two effects combine to match the spectrum obtained

through canonical quantization, verifying the Drinfel’d twisted structure of this model at the

quantum level.

The second part of the paper starts from the observation that the Nappi-Witten model has

more symmetries than naively expected from the Yang-Baxter perspective. The ten dimen-

sional iso(1, 3) symmetry of R1,3 gets broken to a three dimensional abelian algebra, while from

the Nappi-Witten perspective as a Wess-Zumino-Witten (WZW) model based on the centrally

extended two dimensional Euclidean algebra, it is clear that the model should have a seven di-

mensional symmetry algebra. In other words, this particular Yang-Baxter deformation gives us

an example where the background has enhanced symmetries, compared to those suggested by the

r matrix defining the deformation.2 We discuss this mismatch in general terms, but do not have

a conclusive criterion determining which Yang-Baxter deformations admit such enhanced sym-

metries. As further examples, we discuss higher dimensional Nappi-Witten type backgrounds,

focussing on the six dimensional case in particular, and provide an overview of enhanced sym-

metries in all abelian rank two Yang-Baxter deformations of R1,3. Finally, we observe that,

somewhat unexpectedly, also Weyl invariance can be enhanced, by discussing how flat space

admits at least one non-unimodular deformation which is clearly Weyl invariant.

This paper is organized as follows. We start with a brief recap of the construction of Yang-

Baxter sigma models in section 2. In section 3 we discuss the class of plane wave Yang-Baxter

models whose spectra we study in section 4, illustrating their exact Drinfel’d twisted structure.

Then in section 5 we discuss the alternate formulation of our plane wave models as Nappi-Witten

type models, which leads us to the notion of enhanced symmetries which we discuss in section

6. We conclude with a number of open questions for further study, and give several appendices

with technical details.

2 Yang-Baxter sigma models

Symmetric space sigma models and their Yang-Baxter deformations are an interesting class of

two dimensional integrable models. In this section we will recall the general construction of the

Yang-Baxter coset sigma model, and in the process fix our conventions. Our field theory lives

on a two dimensional worldsheet denoted Σ and the undeformed target space is a coset space

M = G/H. The groups G and H have Lie algebras g and g(0) respectively, where g is required

2A simpler example of this is the r = p1 ∧ p2 deformation of flat space, i.e. a TsT transformation in two

Cartesian directions. This deformation does not actually change the geometry, and the resulting model is clearly

maximally symmetric despite the apparent deformation. Our Nappi-Witten example as well as other cases we

discuss, have a richer structure.
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to have a grading corresponding to a symmetric space, namely

g = g(0) ⊕ g(1), (2.1)

[g(0), g(0)] ⊂ g(0), [g(0), g(1)] ⊂ g(1), [g(1), g(1)] ⊂ g(0). (2.2)

To construct an action we need a nondegenerate symmetric bilinear form on g, ⟨·|·⟩, which needs

to be grade compatible

⟨X|PY ⟩ = ⟨PX|PY ⟩ , (2.3)

where P : g → g(1) is the projector onto the grade one subspace of g, and AdH invariant

⟨X|Y ⟩ =
〈
h−1Xh

∣∣h−1Y h
〉
, ∀h ∈ H. (2.4)

Our worldsheet is parameterized by coordinates σ0 = τ, σ1 = σ, its cotangent space T ∗Σ is

spanned by {dσα}, and we denote the worldsheet metric by hαβ. The Yang-Baxter deformed

symmetric space sigma model action is now written in terms of the Maurer-Cartan one form

A = −g−1dg as

S[g] =
1

2

∫
Σ
⟨A|⋆PDA⟩ , (2.5)

where the wedge product is implicitly included in the inner product, and the deformation operator

D is defined as

D =
1

1 + ηRgP⋆
, Rg(X) = rij

〈
g−1Tig

∣∣X〉 g−1Tjg, (2.6)

where {Ti} forms some basis for g and ⋆ denotes the Hodge dual. We will frequently refer to

the R operator above in the form of its associated r matrix r = rijTi ∧ Tj ∈ Λ2(g), where

a ∧ b = (a⊗ b− b⊗ a)/2.

The equations of motion of this model can be written in terms of the deformed current I = DA

as

d ⋆ PI − [I, ⋆PI] = 0, (2.7)

where the commutator of forms includes an implicit wedge product as well, i.e. [A,B] = A ∧
B + B ∧ A = ϵαβ[Aα, Bβ]dτ ∧ dσ. The deformed current I is flat on-shell provided that the R

operator is antisymmetric, i.e. rij = −rji, and solves the CYBE

⟨[RgX,RgY ]|Z⟩+ ⟨[RgZ,RgX]|Y ⟩+ ⟨[RgY,RgZ]|X⟩ = 0, X, Y, Z ∈ g. (2.8)

In this case we can find a Lax connection with the following ansatz

L(z) = I + ℓ1(z)PI + ℓ2(z) ⋆ PI, (2.9)

where in the semi-simple setting ℓ1 and ℓ2 have to satisfy ℓ22 − ℓ21 − 2ℓ1 = 0 with ℓ2 ̸= 0. Beyond

the semi-simple setting, solutions to the inhomogeneous CYBE need to be treated on a case by

case basis. Moreover, homogeneous deformations of flat space have more freedom, allowing us to

set ℓ1 = 0, keeping ℓ2 itself as the spectral parameter. For further details we refer to e.g. [34,33].
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2.1 Coordinate representation

Introducing a coordinate system on the coset space in the form of a coset representative allows

us to write the action in Polyakov form

S[x] =
1

2

∫
Σ
d2σ
(√

hhαβ − ϵαβ
)
(Gµν +Bµν) ∂αx

µ∂βx
ν , (2.10)

where h = | dethαβ| and

G+B =
(
g−1 + ηr

)−1
, (2.11)

r denotes the matrix in the Killing vector representation – rµν = rijχµ
i χ

ν
j , with χi the Killing

vector associated to the generator Ti – and g denotes the undeformed metric gµν = ⟨Ti|PTj⟩Ai
µA

j
ν

defined through the components of the Maurer-Cartan form A = Ai
µTidx

µ. For light-cone gauge

fixing it is convenient to present the action in first order formalism,

S[x, p] =
1

2

∫
Σ
d2σ

(
pµẋ

µ +
h01

h00
pµx

′µ − 1

2
√
hh00

C

)
, (2.12)

C = Gµν
(
pµ +Bµρx

′ρ) (pν +Bνλx
′λ
)
+Gµνx

′µx′ν , (2.13)

see for example [2]. Using (2.11), for Yang-Baxter deformations the expression for C takes a

simple form in terms of the undeformed metric and r matrix,

C = gµνpµpν + gµν
(
x′µ + ηrµρpρ

) (
x′ν + ηrνλpλ

)
. (2.14)

3 Plane wave Yang-Baxter deformations

An important category of gravitational backgrounds are so called gravitational pp-waves. They

are given by a metric of the form

ds2 = K(x+, x⃗)(dx+)2 − 2dx+(dx− +Ai(x
+, x⃗)dxi) + gijdx

idxj (3.1)

together with a possibly nontrivial B field Bµνdx
µ ∧ dxν . For the choice of gij = gij(x

+),

Ai = 1
2Aij(x

+)xj , Bi+ = 1
2bij(x

+)xj , they provide a well-known class of string backgrounds,

with one loop Weyl invariance requiring

∂i∂
iK =

1

2

(
AijA

ij − bijb
ij
)
. (3.2)

It is also well known that if K is quadratic in the xi these backgrounds lead to exactly solvable

sigma models, as they become quadratic in the transverse fields upon fixing a light-cone gauge. In

AdS/CFT in particular, an important role is played by gravitational waves with K =
∑n

i=1(xi)
2,

A = 0, gij = δij .
3 Motivated by their exact solvability and relevance in AdS/CFT, we would like

to understand whether such exactly solvable plane wave backgrounds can arise as Yang-Baxter

deformations of the flat space string. In Appendix A we discuss the constraints on the r matrix

to obtain a quadratic Hamiltonian, and more specifically particular plane wave backgrounds,

starting from flat space.

3In the case of AdS3 it is possible to support this background by a nontrivial NSNS flux, cf. eqn. (3.2), while

in other cases the role of the NSNS form is taken over by the RR forms.

6



3.1 Plane wave Yang-Baxter deformations

Focusing on the simplest case with K quadratic, A = 0, and no explicit x+ dependence (no time

dependence in light-cone gauge), this means that we are looking for a metric of the form

ds2 = ωijx
ixj(dx+)2 − 2dx+dx− + dxidx

i, (3.3)

where gij has been brought to canonical δij form as is always possible in this case. Compared to

the Yang-Baxter background, if we want to get this type of background on the nose,4 as discussed

in Appendix A.1 we are looking for Yang-Baxter deformations with only r−i(x⃗) nonzero, and at

most linear in the transverse fields r−i = cijx
j . Explicitly finding all r matrices satisfying this

constraint, solving the classical Yang-Baxter equation, and giving a Weyl-invariant sigma model,

is a nontrivial question. In four dimensions, we fortunately have a classification of r matrices

available [35], and the only r matrix with at most nonzero r−i and linear coordinate dependence

is

r = p− ∧m23. (3.4)

Here and below the pµ denote the translation generators of the Poincaré algebra, with Killing

vector representation ∂µ, and mµν the Lorentz generators with Killing vector representation

xµ∂ν − xν∂µ. We included non-unimodular r matrices in this analysis, because unimodularity is

not strictly required for Weyl invariance as we will come back to in section 6.6.

In higher dimensions the general problem quickly becomes practically untractable, but by

brute force evaluation of the background constraints and the CYBE we were able to show that

for r matrices of up to rank 6 (three independent wedge terms) in iso(1, 9) there are no new

solutions, except the obvious multi-parameter generalization of the r matrix (3.4)

r = p− ∧ (αm23 + βm45 + . . .), (3.5)

i.e. r = p− ∧ c with c an arbitrary element of the Cartan subalgebra of the transverse rotational

SO(d− 1) symmetry in arbitrary dimension d.

The background associated to r matrix (3.4) is

ds2 = −η2(x22 + x23)(dx
+)2 − 2dx+dx− + dxidx

i,

B = η
(
x3dx2 − x2dx3

)
∧ dx+,

(3.6)

while its higher dimensional counterpart associated to the r matrix (3.5) is

ds2 = −
n∑

i=1

η2i (x
2
2i + x22i+1)(dx

+)2 − 2dx+dx− + dxidx
i,

B =

n∑
i=1

ηi
(
x2i+1dx2i − x2idx2i+1

)
∧ dx+.

(3.7)

The background (3.6) is a particularly well-known plane wave background, corresponding to the

Nappi-Witten model [36], as we will come back to in detail later.

4Considering this question up to diffeomorphisms instead, is impractical to answer at the purely geometric

level. Answering it algebraically through constraints such as preserving a null Killing vector in the Yang-Baxter

model context (via symmetries of the r matrix) seems promising a priori, but we will later see that Yang-Baxter

backgrounds may have more symmetries than suggested by the r matrix, meaning such an approach would not

automatically be exhaustive either.
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4 Exact spectra and Drinfel’d twists

We would now like to discuss the exact solvability of strings on the background (3.6), and ex-

plain the resulting spectrum in terms of integrability, in particular in terms of Drinfel’d twists

expected to arise in homogeneous Yang-Baxter models. We will focus on the four dimensional

part of the model that is actually deformed, dropping the standard contributions from unde-

formed transverse directions. The spectra for the higher dimensional models of eqs. (3.7) follow

analogously.

4.1 Canonical quantization

In this section we aim to find the energy spectrum of the flat space deformation associated

to r = p− ∧ m23 with background (3.6), or equivalently, the Nappi-Witten model. This spec-

trum has been previously determined in [37], here we independently derive it in convenient

conventions for comparison to an integrability-based approach. We will use a coordinate system

xµ = (x+, x−, x, x) where x = 1√
2

(
x2 + ix3

)
and x = 1√

2

(
x2 − ix3

)
, related by complex conju-

gation for reality. The light-cone gauge worldsheet Hamiltonian is given by (A.2) and comes out

to be

Hws = pp̄+ x′x̄′ + η2xx− iη
(
xx′ − xx′

)
, (4.1)

with η as the deformation parameter. The equations of motion separate into

ẍ− x′′ + η2x− 2iηx′ = 0, (4.2)

and the complex conjugate equation for x̄. Since the classical EOM are linear we can find periodic

solutions x(τ, σ) = x(τ, σ + 2πR) with the ansatz

x(τ, σ) =
∞∑

n=−∞

(
a+n e

iωnτ + a−n e
−iωnτ

)
einσ/R, (4.3)

x(τ, σ) =
∞∑

n=−∞

(
a+n e

−iωnτ + a−n e
iωnτ

)
e−inσ/R, (4.4)

with a±n = (a±n )
∗
and ωn = n/R+η. The Virasoro constraint pµx

′µ = 0 yields the level matching

constraint by imposing that x− should also be periodic, taking the form∫ 2πR

0

(
ẋx′ + ẋx′

)
dσ = 0. (4.5)

Plugging in the mode expansion we find

∞∑
n=−∞

ωnn
(
a+n a

+
n − a−n a

−
n

)
= 0. (4.6)

Similarly we can find the worldsheet energy in terms of oscillators

Hws =

∫ 2πR

0
Hwsdσ = 4πR

∞∑
n=−∞

ω2
n

(
a+n a

+
n + a−n a

−
n

)
. (4.7)

8



In order to canonically quantize we need the Poisson brackets of the oscillators, which are induced

by the canonical brackets {
p(τ, σ), x(τ, σ′)

}
= δ(σ − σ′), (4.8){

p(τ, σ), x(τ, σ′)
}
= δ(σ − σ′). (4.9)

The nonvanishing brackets are {
a±n , a

±
n′
}
= ± δnn′

4πiωnR
. (4.10)

We can now canonically quantize with these brackets, worldsheet energy and level matching

condition as carried out in Appendix B. Up to a normal ordering constant, the energy spectrum

is given by

E{N,N̄} =

∞∑
n=−∞

∣∣∣ n
R

+ η
∣∣∣ (Nn + Ñn

)
(4.11)

where {Nn, Ñn} are all non-negative integers subject to the level matching condition

∞∑
n=−∞

n
(
Nn − Ñn

)
= 0. (4.12)

This spectrum matches the result from [37] up to the normal ordering constant which can be

found there. Interestingly, for sufficiently small deformations, −1 ≤ ηR ≤ 1, as shown in

Appendix C the possible energy levels are given by

E(k, ℓ) =
2k

R
+ ℓ|η|, (4.13)

labeled by integers k ≥ 0 and ℓ ≥ −2k.

4.2 Spectrum from Bethe ansatz

We want to use the above results on the spectrum to perform a check of the typical integrability-

based approach to Yang-Baxter models, relying on exact S matrices and the Bethe ansatz. We

expect a general homogeneous deformation to enter an undeformed model through a Drinfel’d

twist associated to the r matrix defining the deformation. However, the deformation we are

considering is special, and at first glance appears too simple to see this structure. Namely,

a p− ∧ m23 deformation takes the undeformed model, and simply shifts the momentum in its

description uniformly by a term proportional to the m23 charge of the relevant particle [27]:

p → p ± η, as e.g. in ωn of the previous section. Since in the standard light-cone gauge, the

undeformed worldsheet theory is free, we start from a trivial S matrix, and our deformed model

is simply described by trivial Bethe equations for the two types of excitations associated to the

x and x̄ fields of our gauge fixed model of section 4.1. I.e. we have

e2πiRpk = 1, e2πiRp̄n = 1, ∀k, n. (4.14)

while the effect of the deformation is entirely contained in the shifted dispersion relations ω(p) =

|p− η| and ω(p̄) = |p̄+ η|. These equations are now solved by the usual

2πRpk = 2πnk, (4.15)

2πRp̄k = 2πn̄k, (4.16)
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with nk, n̄k ∈ Z, giving a worldsheet energy

Hw.s. =
M∑
k=1

ω(pk) +
M∑
k̄=1

ω(p̄k̄) =
M∑
k=1

∣∣∣nk

R
− η
∣∣∣+ M∑

k̄=1

∣∣∣ n̄k̄

R
+ η
∣∣∣ . (4.17)

The level matching condition remains undeformed

L =

M∑
k=1

pk +

M∑
k̄=1

p̄k̄ =

M∑
k=1

nk

R
+

M∑
k̄=1

n̄k̄

R
= 0. (4.18)

To match the spectrum obtained from canonical quantization (4.11), we rewrite the sums using

M∑
k=1

f(nk) =

∞∑
n=−∞

f(n)An,

M∑
k̄=1

f(n̄k̄) =

∞∑
n=−∞

f(n)Bn, (4.19)

which can always be done for nk, n̄k̄ ∈ Z and An, Bn ∈ N0. With these, the energy and level

matching condition become

Hw.s. =
∞∑

n=−∞

∣∣∣ n
R

− η
∣∣∣An +

∞∑
n=−∞

∣∣∣ n
R

+ η
∣∣∣Bn, (4.20)

L =
∞∑

n=−∞

n

R
(An +Bn) = 0. (4.21)

Now we simply identify An = N−n, Bn = Ñn, to match the result from canonical quantization

of the previous subsection.5 Next, we would like to change perspectives slightly, in order to

manifest the Drinfel’d twisted structure that does appear in this model.

4.3 Drinfel’d twisted S matrix

We can manifest more of the structure of our deformation by changing our gauge. Let us

introduce generalized light cone coordinates [2] of the form

x̂+ = x+ +
1

2
αx−, x̂− = x−, (4.22)

with conjugate momenta

p̂+ = p+, p̂− = p− − αp+. (4.23)

Instead of our previous gauge choice x+ = τ, p− = 1, we now fix

x̂+ = τ, p̂− = 1, (4.24)

5In our canonical quantization discussion we did not determine the normal ordering constant. In the present

integrability-based approach, this constant would follow by including wrappping corrections through the (mirror)

thermodynamic Bethe ansatz (TBA), instead of the asymptotic Bethe ansatz that we used. While the theory is

free so that there are no interaction kernels in the TBA, there are still nontrivial but simple wrapping corrections,

which for our simple type of theory lead to a constant shift in the spectrum, see [38] section 4 and Appendix E

for a closely related discussion. We thank A. Sfondrini for discussions on this point.
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which gives

Hws = −P+,

∫ 2πR(α)

0
p̂−dσ = 2πR(α) = P− − αP+, (4.25)

with P± =
∫ 2πR
0 p±dσ. α labels a space of different gauge choices, which should each give

the same physical spectrum. For α = 0 we are back at the standard light-cone gauge, where

the undeformed worldsheet Hamiltonian is quadratic and the S matrix is trivial. The effect of

nonzero α on the S matrix is well known [39,2], see also [40], and in this case means6

S(pk, pj ;α) = eiα(pjωk−pkωj), (4.26)

where we have collected the momenta of both types of excitations in a set {pk} with a single

label k. This α dependence is consistent with the Bethe ansatz equations

e2πiR(α)pk
∏
j ̸=k

S(pk, pj ;α) = 1, ∀k, (4.27)

reducing to the α-independent7

ei2πRpk = 1, ∀k, (4.28)

where R = R(0) = P−/(2π).

From this new perspective, the r matrix defining our deformation looks like

r = p− ∧m23 = (p̂− + αp̂+) ∧m23. (4.29)

We still get a momentum shift from the p̂− ∧m23 term, but now also get a second contribution

from the p̂+ ∧m23 term. The latter is expected to deform the S matrix by a Drinfel’d twist of

the form

S → e−iαp̂+∧m23Se−iαp̂+∧m23 (4.30)

Note that the Drinfel’d twist is α dependent, while the momentum shift is not. Denoting the

m23 charge of the kth Bethe ansatz particle by mk, in total we then expect the worldsheet S

matrix of our model to take the form

Sdef(pk, pj ;α) = e−iαp̂+∧m23S(pk +mk, pj +mj ;α)e
−iαp̂+∧m23 , (4.31)

where in our gauge, −p̂+ reads off the worldsheet energy ω of a given particle.

We would like to verify that this S matrix matches with our previous discussion, i.e. that

precisely the expected Drinfel’d twist is required. Since the momentum shift is independent of

α, the dispersion relation is independent of α, and to get Bethe equations that are independent

of α, we need the S matrix to take the undeformed α-dependent form (4.26), except now with

6This type of S matrix is famously associated to the T T̄ deformation [41, 42], which is no surprise given the

relation between this deformation and generalized light-cone gauge fixing [43, 40]. For the flat space string this

type of S matrix was originally discussed in [44]. Independent from the deformations considered in this paper,

from a suitable perspective the T T̄ S matrix itself can also be viewed as (arising from) a Drinfel’d twist [45].
7To explicitly see this, write out the Bethe equations as ei(P−+αHws)pk ∏

j ̸=k e
iα(pjωk−pkωj) = 1. Now use

the level matching condition
∑

j pj = 0 and the expression for the total energy
∑

j ωj = Hws, to rewrite∏
j ̸=k e

iα(pjωk−pkωj) = eiα(
∑

j ̸=k pjωk−pk
∑

j ̸=k ωj) = eiα(−pkωk−pk(Hws−ωk)) = e−iαpkHws .
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a shifted dispersion relation of course. Fortunately, this is indeed exactly the case, since the

momentum shift outside the dispersion relation, and the twist conspire to exactly cancel in the

S matrix,

Sdef(pk, pj ;α) = e−
1
2
iα(ωkmj−ωjmk)S(pk +mk, pj +mj ;α)e

− 1
2
iα(ωkmj−ωjmk), (4.32)

= e
1
2
iα(ωjmk−ωkmj)eiα(pjωk+mjωk−pkωj−mkωj)e

1
2
iα(ωjmk−ωkmj), (4.33)

= eiα(pjωk−pkωj). (4.34)

In summary, the effect of the deformation is the momentum shift appearing directly in the

dispersion relation only, with the explicit momentum shift in the S matrix effectively cancelled

precisely by the expected and required Drinfel’d twist.

5 Nappi-Witten model

The background (3.6) is a particularly well-known plane wave background, corresponding to the

Nappi-Witten model [36]. From this perspective the background is associated to a WZW model

based on the non-semi-simple centrally extended two dimensional Euclidean group. This group

is generated by P1, P2, J and the central element T , with nonzero Lie brackets

[J, Pi] = ϵi
jPj , [Pi, Pj ] = ϵijT. (5.1)

The Killing form on this algebra is degenerate, but it admits an alternate symmetric invariant

bilinear form [36], with nonzero

⟨Pi|Pj⟩ = δij , ⟨J |J⟩ = b, ⟨J |T ⟩ = 1, (5.2)

where b is an arbitrary constant. In our setting it is convenient to parameterize the group element

as8

g = eηx
+Jex

iPieηx
+Je

−
(
x−

2η +ηbx+
)
T
. (5.3)

Evaluating the current A = g−1dg and substituting in the WZW action

S =
1

4π

∫
Σ
d2σ ⟨Aα|Aα⟩+ i

12π

∫
B
d3σϵαβγ

〈
[Aα, Aβ]

∣∣∣Aγ
〉
, (5.4)

where B is a three manifold with boundary the worldsheet Σ, gives a sigma model on the

background

ds2 = −η2(x22 + x23)(dx
+)2 − 2dx+dx− + dxidx

i,

B = η
(
x3dx2 − x2dx3

)
∧ dx+,

(5.5)

i.e. exactly the 4D Yang-Baxter model background (3.6), where we used the total derivative

freedom in B for a precise match. This model is conformal to all orders in α′, with central

charge c = 4 [36]. From the perspective of the WZW action (5.4) we expect the symmetry

algebra to be 7 dimensional, spanned by left and right versions of P1, P2 and J , and a shared

central element T .9 Before discussing these symmetries in more detail, let us discuss a relevant

generalization of this model.

8While the Nappi-Witten model can be readily worked out using the abstract algebra structure alone, a matrix

representation of the Nappi-Witten algebra can be useful in computer algebra applications, and we have included

one in Appendix D.
9 The Nappi-Witten model has been previously studied as a starting point for Yang-Baxter deformations

in [46], where the authors found that Yang-Baxter deformations could only change the coefficient of the B field.
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5.1 Extended Nappi-Witten models

The background (3.7) corresponding to the higher dimensional r matrix (3.5) can also be as-

sociated to a WZW model of Nappi-Witten type. We simply take the centrally extended two

dimensional Euclidean algebra, and copy its momentum sector n times, labeling them P
(k)
i ,

k = 1, . . . , n, with commutation relations10

[J, P
(a)
i ] = ηaϵijP

(a)
j , [P

(a)
i , P

(b)
j ] = ηaδ

abϵijT, (5.6)

where we have introduced n distinct constants (deformation parameters) ηa in the algebra.

Similarly to the original Nappi-Witten case, this algebra admits an invariant symmetric bilinear

form, given by 〈
P

(a)
i

∣∣∣P (b)
j

〉
= δabδij , ⟨J |J⟩ = b, ⟨J |T ⟩ = 1, (5.7)

where again b is a constant. Considering a WZW model on the corresponding simply connected

group gives a conformally invariant sigma model to all orders in α′ – as for the original Nappi-

Witten model – in d = 2n + 2 with central charge c = 2n + 2. With a group element of the

form

g = ex
+Je

∑n
k=1 x

i+2kP
(k)
i ex

+Je−
(
x−

2 +bx+
)
T , (5.8)

the corresponding background is exactly the one of eqn. (3.7), again up to a total derivative in

the B field. For the particular case of n = 2 for example, we find the 6D plane wave background

ds2 = −η21(x
2
2 + x23)(dx

+)2 − η22(x
2
4 + x25)(dx

+)2 − 2dx+dx− + dxidx
i, (5.9)

B = η1
(
x3dx2 − x2dx3

)
∧ dx+ + η2

(
x5dx4 − x4dx5

)
∧ dx+. (5.10)

For equal deformation parameters, this model appeared previously in section 2.2 of [49].

6 Enhanced symmetry in Yang-Baxter models

The Nappi-Witten model is known to be O(d, d) dual to flat space [50,51], matching our current

picture of it as an abelian Yang-Baxter deformation, i.e. a TsT transformation [52], of flat space.

More interesting from the Yang-Baxter perspective, however, is the fact that the Nappi-Witten

background has a seven dimensional isometry algebra11, while only three of the original ten

isometries of flat space survive the Yang-Baxter deformation – the r matrix only commutes with

p± and m23. It appears that Yang-Baxter models, at least for flat space with its non-semi-simple

isometry algebra, can have enhanced symmetry. In this section we will explore this in some

detail.

This might appear to be at odds with our results showing that there is a Yang-Baxter deformation taking the

Nappi-Witten model to flat space. However, [46] considered only left Yang-Baxter deformations, while in section

6.3 we will see that the deformation we are considering mixes the left and right symmetries of the Nappi-Witten

model. It is also relevant to note that in apparent contrast to the results of [46], another group found that there

is a nontrivial inhomogeneous Yang-Baxter deformation interpolating between the Nappi-Witten model and flat

space [47]. We will come back to this point below.
10This is an example of a Nappi-Witten algebra, see [48], eqs. (B.6) and (B.7), matching directly if we choose

b = 0 in our bilinear form.
11Left and right transformations, with the central elements of the two identified.
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6.1 Noether symmetries and Killing vectors

Noether symmetries corresponds to off-shell infinitesimal symmetries of the action. For the

Lagrangian of the deformed model (2.5), L = 1
2 ⟨A|⋆PI⟩, we consider the general field transfor-

mation

g → g′ = kg = (1 + ϵ) g, ϵ ∈ g. (6.1)

While the symmetries of the undeformed model correspond to constant ϵ, in general this is not a

requirement, and will turn out not to be the case in our setting. The variation of the Lagrangian

is now

δL = −
〈
g−1dϵg

∣∣⋆PI
〉
− η

〈
PI
∣∣[RgPI, g−1ϵg]

〉
. (6.2)

To find conserved charges we need to find local ϵ such that the variation of the Lagrangian is at

most a total derivative 〈
g−1dϵg

∣∣⋆PI
〉
+ η

〈
PI
∣∣[RgPI, g−1ϵg]

〉
= dC. (6.3)

Analyzing the solution space of this equation is complicated in general, but there is a simple

class of well-known solutions corresponding to manifest symmetries of the R operator. Namely,

if we consider the action written in terms of the undeformed currents and the Rg operator,

L = 1
2

〈
A
∣∣∣⋆P 1

1+ηRgP⋆A
〉
, it is clear that constant left multiplication of g, g → kg, is a symmetry

of the action with C = 0, provided k ∈ G is a symmetry of the R operator, meaning

Rkg = Rg. (6.4)

In terms of the r matrix, see eqn. (2.6) and following text, the sugroup K ⊂ G of these

transformations is generated by the generators t which are symmetries of the r matrix, i.e.

∆(adt)(r) = (adt ⊗ 1 + 1⊗ adt)(r) = 0. (6.5)

We will refer to these symmetries as manifest symmetries of the Yang-Baxter model.12 Other

solutions of eqn. (6.3) – those not arising via manifest symmetries of the r matrix – we will refer

to as enhanced symmetries.

It is illuminating to discuss these symmetries from a geometric perspective as well. For this,

we start from the Yang-Baxter model background

G+B =
1

g−1 + ηr
. (6.6)

The full symmetry algebra of the undeformed model is geometrically realized by Killing vectors

ξ of the undeformed metric

Lξ(g) = 0, (6.7)

12Alternatively, these solve eqn. (6.3) as follows. Consider an infinitesimal version corresponding to a constant

ϵ that solves eqn. (6.5). Such ϵ now solve
〈
PI

∣∣[RgPI, g−1ϵg]
〉
= 0, i.e. (6.3) for constant ϵ and C = 0, since we

can use eqs. (6.4) and (6.5) (recall also eqn. (2.6)) to cancel the two combinations appearing in the implicit wedge

product in the bilinear form, against each other.
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where Lξ denotes the Lie derivative along ξ. Now symmetries of the r matrix as in (6.5) give

rise to Killing vectors ξt that do not just leave the metric invariant, but also the r matrix,

Lξt(r) = 0. (6.8)

By the product rule, such ξt leave the full Yang-Baxter model background invariant. If we

are looking for symmetries of a closed string sigma model, however, we only need the B field

to remain invariant up to a total derivative. In other words, the full set of symmetries of a

Yang-Baxter model is generated by those ξ for which

Lξ (G+B) = dC. (6.9)

Note that any such ξ with LξB = 0, by eqn. (6.6) leaves the undeformed metric and the r

matrix invariant, and hence corresponds to a manifest symmetry. In this language, the enhanced

symmetries are nontrivial ξ with LξB ̸= 0. They do not correspond to symmetries of the r

matrix, and, at least in general, are not among the Killing vectors of the original undeformed

background.

6.2 A trivial example

In the semi-simple setting, we are not aware of a Yang-Baxter model admitting enhanced sym-

metries, and suspect that they might not exist. In our current flat space setting however, the

plane wave of the previous section provides an explicit example with enhanced symmetry, as

we will come back to shortly. Before doing so, let us briefly discuss a trivial case, where the

appearance of enhanced symmetries is obvious. Namely, consider the simple deformation of R3

generated by r = p1 ∧ p2. The corresponding background is given by

ds2 =
1

1 + η2
(dx21 + dx22) + dx23

B = − η

1 + η2
dx1 ∧ dx2

(6.10)

This deformation is trivial when considered for a closed string sigma model, since the B field is

constant and the metric is flat. This means this background admits full three dimensional Eu-

clidean symmetry. At the same time, of the Killing vectors of the undeformed background, only

m12 = x1∂2−x2∂1 and ∂1,2,3 remain, in line with the symmetries of the r matrix. Geometrically

Lm13r = Lm13∂1 ∧ ∂2 = ∂3 ∧ ∂2 ̸= 0, (6.11)

but – using two copies of the metric g to turn this into a two form – we do have

d (g(Lm13r)g) = 0, (6.12)

and similarly for m23. Obviously, we can deform m13 and m23 to

m̃13 =
√

1 + η2
−1

x1∂3 −
√

1 + η2x3∂1

m̃23 =
√

1 + η2
−1

x2∂3 −
√

1 + η2x3∂2

(6.13)

which are Killing vectors of the deformed metric, and complete our symmetry algebra. Relevantly,

Lm̃13B = − η√
1 + η2

dx2 ∧ dx3 ̸= 0 (6.14)
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and similarly for m̃23. Of course, we could simply drop the B field here as it is constant, but in

other models this is not always the case. Eqn. (6.14) shows that even the deformed symmetry

generators m̃13 and m̃23 are not symmetries of the r matrix. Moreover, m̃13 and m̃23 are not

Killing vectors of the undeformed background.

6.3 The Nappi-Witten model and its extension

The situation for the Nappi-Witten background is more involved. The background (3.6) admits

the following seven Killing vectors

χ1 = ∂+, χ2 = ∂−, χ3 = x3∂2 − x2∂3,

χ4 = cos(ηx+)∂2 − ηx2 sin(ηx
+)∂−, χ5 = cos(ηx+)∂3 − ηx3 sin(ηx

+)∂−, (6.15)

χ6 = sin(ηx+)∂2 + ηx2 cos(ηx
+)∂−, χ7 = sin(ηx+)∂3 + ηx3 cos(ηx

+)∂−.

where the η-independent χ1, χ2, χ3 correspond to the manifest symmetries of the Yang-Baxter

model (r matrix). The other four can be viewed as deformations of p2, p3,m−2,m−3, which they

reduce to in the undeformed limit. The other three generators of iso(1, 3) of the undeformed

model are fundamentally broken. When including the B field, the Killing vector χ =
∑

i ciχi

solves (6.9) with

C = sin(ηx+)
(
c5dx

2 − c4dx
3
)
− cos(ηx+)

(
c7dx

2 − c6dx
3
)
. (6.16)

As previously noted, the seven symmetries can be understood as left and right symmetries of

the WZW action. Concretely we should identify

PL
1 = χ4 − χ7, PL

2 = χ5 + χ6, JL =
χ1 − ηχ3

2
− bχ2,

PR
1 = χ4 + χ7, PR

2 = χ5 − χ6, JR =
χ1 + ηχ3

2
− bχ2, (6.17)

T = −2χ2,

where the L and R superscripts denote the left and right copies of the symmetry algebra, with

shared, hence unlabeled, central element T . These combinations of Killing vectors indeed have

the expected commutation relations [Pi, Pj ] = ηϵijT and [J, Pi] = ηϵijPj , independently for the

left and right copies.13

Moving on, the six dimensional background (5.9) has the following twelve Killing vectors

χ1 = ∂+, χ2 = ∂−, χ3 = x3∂2 − x2∂3,

χ4 = cos(η1x
+)∂2 − η1x2 sin(η1x

+)∂−, χ5 = cos(η1x
+)∂3 − η1x3 sin(η1x

+)∂−,

χ6 = sin(η1x
+)∂2 + η1x2 cos(η1x

+)∂−, χ7 = sin(η1x
+)∂3 + η1x3 cos(η1x

+)∂−, (6.18)

χ8 = x5∂4 − x4∂5,

χ9 = cos(η2x
+)∂4 − η2x4 sin(η2x

+)∂−, χ10 = cos(η2x
+)∂5 − η2x5 sin(η2x

+)∂−,

χ11 = sin(η2x
+)∂4 + η2x4 cos(η2x

+)∂−, χ12 = sin(η2x
+)∂5 + η2x5 cos(η2x

+)∂−.

13Here we include the deformation parameter in the algebra, as in our discussion of the six dimensional analogue

of the Nappi-Witten model, as opposed to the original Nappi-Witten conventions we used when discussing the

four dimensional case earlier.
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From the Yang-Baxter perspective only χ1, χ2, χ3 and χ8 are manifest symmetries. From the

WZW model we expect 2d − 1 = 11 isometries since there is one central element. The corre-

sponding eleven generators correspond to the Killing vectors

P
(1)L
1 = χ4 − χ7, P

(1)L
2 = χ5 + χ6, P

(2)L
1 = χ9 − χ12, P

(2)L
2 = χ10 + χ11,

P
(1)R
1 = χ4 + χ7, P

(1)R
2 = χ5 − χ6, P

(2)R
1 = χ9 + χ12, P

(2)R
2 = χ10 − χ11,

JL =
χ1 − η1χ3 − η2χ8

2
− bχ2, JR =

χ1 + η1χ3 + η2χ8

2
− bχ2, T = −2χ2. (6.19)

This leaves us with one remaining independent Killing vector – the antisymmetric combination

η2χ3 − η1χ8 – not corresponding to a left or right G symmetry generator of the WZW model.

Moreover, in the special case of equal deformation parameters η1 = η2 the background admits a

further two Killing vectors

χ13 = x4∂2 + x5∂3 − x2∂4 − x3∂5, χ14 = x5∂2 − x4∂3 + x3∂4 − x2∂5. (6.20)

These three Killing vectors each correspond to an external automorphisms of the algebra defining

our six dimensional WZW model. Namely, the six dimensional Nappi-Witten algebra admits

two automorphisms corresponding to the independent rotations of the vectors P (1) and P (2),

generated by

P
(a)
i → ϵi

jP
(a)
j , a = 1, 2. (6.21)

These two automorphisms can be combined into the inner automorphism generated by J , and

an independent external automorphism. Of course, any automorphism of g acts simultaneously

and identically on the left and right copies of g in the symmetry algebra of the WZW model.

The above two rotations of P (1) and P (2) are now precisely generated by χ3 and χ8, which enter

in JL and JR, and leave the independent combination η2χ3 − η1χ8 which generates the external

automorphism. Next, for equal deformation parameters, the six dimensional algebra admits

two further automorphisms, rotating between the two P vectors. First, we have the external

automorphism rotating the vectors P1 and P2, generated by

P (i)
a → ϵijP

(j)
a , a = 1, 2. (6.22)

which corresponds to the action of χ13 at the Killing vector level, again acting identically on

both the left and right copies. Finally, we have the external automorphism rotating the vectors

V1 = (P
(1)
1 , P

(2)
2 ) and V2 = (P

(2)
1 , P

(1)
2 ), generated by

V i
a → ϵijV

j
a , a = 1, 2. (6.23)

We see that upon taking external automorphisms into account, the WZW perspective manifests

the full set of symmetries of the background also for this six dimensional model, as opposed to

the Yang-Baxter perspective.14 We believe the same applies to the higher dimensional versions

of this model, but have not explicitly verified this.

14Of course for equal deformation parameters the existence of the two extra Killing vectors χ13 and χ14 is also

manifest in the Yang-Baxter formulation, where they would rotate the two rotation generators appearing in the r

matrix into each other, which is a symmetry for equal deformation parameters.
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6.4 An inhomogeneous deformation of the Nappi-Witten model

At this point we would briefly like to come back to the Yang-Baxter deformations of the Nappi-

Witten model of [46] and [47], mentioned in footnote 9, as they provide another example of

enhanced symmetry. Firstly however, let us come back to the apparent contradiction between

the results of [46] and [47]. While the authors of [46] claim there is only one independent left Yang-

Baxter deformation of the Nappi-Witten model, and that this only affects the relative coefficient

of the B field, the author of [47] claims to have found an inhomogeneous left Yang-Baxter

deformation that interpolates from Nappi-Witten to flat space, given in eqn. (4.39) of section

4.5 of [47]. These results are in fact not contradictory, in the following sense. The deformed

Nappi-Witten background of [47] is actually undeformed – it is diffeomorphic to the Nappi-Witten

background. However, the Nappi-Witten model includes flat space in a particular limit, and in

that sense there is space for (trivial) Yang-Baxter deformations which nevertheless interpolate

between inequivalent models (Nappi-Witten and flat space). Concretely, in our conventions of

eqs. (3.6),15 it is clear that the Nappi-Witten model at η = 0 is actually flat space, while the

models for any other value of η are all equivalent, since any nonzero η can be removed by rescaling

x+ and x− oppositely.

From the point of view of enhanced symmetries, the fact that there are a priori nontrivial

Yang-Baxter deformations of the Nappi-Witten model [46] – i.e. ones associated to nonzero r

matrices, such as in particular the inhomogeneous P1 ∧ P2 deformation of eqs. (4.39) of [47]

– which result in a trivial deformation of the actual model but breaks the original left P1 and

P2 symmetry, means that also here we are dealing with enhanced symmetries. Like the p1 ∧ p2

deformation of flat space, these are trivial examples from a geometric point of view, but not from

the point of view of the abstract Yang-Baxter model.

6.5 Abelian deformations of flat space

We have not determined the exact conditions under which a Yang-Baxter model admits en-

hanced symmetries, or what general form the corresponding Killing vectors take. As mentioned

earlier, we are not aware of any semi-simple Yang-Baxter model admitting enhanced symmetries,

essentially leaving us with our present setting of flat space, and the Nappi-Witten model just

discussed.16 To gain some insight into the type of r matrices that allow for enhanced symme-

tries, and the form of the corresponding Killing vectors, we have checked all abelian rank two

Yang-Baxter deformations of R1,3, summarizing our results in Tables 1 and 2. In addition to

15Our coordinates and (“opposite direction”) deformation parameter are related to those of [47] as η̃ =
√
1 + 2η, u = x+, v = x− +

√
1+2η
2

(
x2
2 + x2

3

)
− b

2
x+, x =

√
2 + 2η

(
x2 cos(x

+ + ηx+)− x3 sin(x
+ + ηx+)

)
, y =

√
2 + 2η

(
x3 cos(x

+ + ηx+) + x2 sin(x
+ + ηx+)

)
, where we have denoted their deformation parameter as η̃.

16Left Yang-Baxter deformations of the Nappi-Witten model appear to give mainly geometrically trivial exam-

ples of enhanced symmetry, i.e. cases where the symmetry algebra is undeformed, although the r matrix suggests

otherwise. Viewed as trivial deformations of the background, or at most as a deformation of the coefficient of the

B field, they manifestly do not affect the symmetry algebra. Cases that can be viewed as “deforming” to flat space

do give rise to nontrivial enhanced symmetries of course, as we go from a seven to a ten dimensional symmetry

algebra. The latter case is just the reverse of our main discussion above, although from the Nappi-Witten perspec-

tive our particular deformation is a mixed left-right deformation rather than a purely left deformation of course.

Other left-right deformations of the Nappi-Witten model may or may not give further interesting examples, but

these would first need to be worked out along the lines of [53].
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this we checked that the Yang-Baxter models for r = m12 ∧ m34 and r = m−2 ∧ m34 in five

dimensions, have no enhanced symmetries.

r matrix Manifest symmetries Enhanced symmetries Broken symmetries

p− ∧ p+ p+, p−, p2, p3,m23,m+− m+2,m+3,m−2,m−3

p− ∧ p2 p+, p−, p2, p3,m−2,m−3 m+2,m+3,m+−,m23

p2 ∧ p3 p+, p−, p2, p3,m23,m+− m+2,m+3,m−2,m−3

p− ∧m−2 p−, p2, p3,m−2,m−3 p+,m+2,m+3,m+−,m23

p− ∧m23 p+, p−,m23 p2, p3,m−2,m−3 m+−,m+2,m+3

p2 ∧m+− p2, p3,m+− m−3,m+3,m23, p+, p−,m−2,m−3

p2 ∧m−3 p−, p2,m−3 p3,m−2 m+−,m+2,m+3, p+,m23

p1 ∧m23 p+, p−,m23 m+−,m+2,m+3, p2, p3,m−2,m−3

m+−∧m23 m+−,m23 p+, p−, p2, p3,m+2,m+3,m−2,m−3

m−2∧m−3 p−,m−2,m−3,m23 p2, p3 p+,m+−,m+2,m+3

Table 1: Overview of enhanced symmetries for abelian rank two deformations of R1,3 flat

space. The enhanced symmetries are labeled by the undeformed generators admitting a suitable

deformation to become enhanced symmetries. The broken symmetries column lists the generators

which are fundamentally broken. The r matrices are grouped by their length dimension in the

Killing vector representation. The first four cases are maximally symmetric, i.e. correspond to

undeformed flat space.

r matrix Generator label Deformed Killing vector

p− ∧m23 p2 cos(ηx+)∂2 − ηx2 sin(ηx
+)∂−

p3 cos(ηx+)∂3 − ηx3 sin(ηx
+)∂−

m−2 η−1 sin(ηx+)∂2 + x2 cos(ηx
+)∂−

m−3 η−1 sin(ηx+)∂3 + x3 cos(ηx
+)∂−

p2 ∧m−3 p3 ∂3 − η2x+ (x+∂3 + x3∂−)

m−2 x2∂− + x+∂2 +
η2

3 (x
+)3∂2

m−2∧m−3 p2 ∂2 − η2

3 (x
+)3 (x+∂2 + x2∂−)

p3 ∂3 − η2

3 (x
+)3 (x+∂3 + x3∂−)

Table 2: The Killing vectors corresponding to the enhanced symmetries of the nontrivial cases

of Table 1.

6.6 Weyl symmmetry

In the process of investigating Yang-Baxter plane wave backgrounds, and looking for enhanced

symmetries, we realized that there is another sense in which, at least in flat space, Yang-Baxter

models can have enhanced symmetry. Namely, a Yang-Baxter deformed string sigma model is

guaranteed to be one-loop Weyl invariant provided the r matrix is unimodular [18] – rij [ti, tj ] = 0

for r = rijti∧ tj – and the only exceptions to unimodularity being a necessary condition for Weyl

invariance were believed to be cases where the undeformed background g+B is degenerate [54].
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However, the Yang-Baxter deformation of flat space associated to

r = p− ∧m+− (6.24)

provides a counterexample to this. First of all, this jordanian type r matrix is manifestly nonuni-

modular. Next, when we use it to deform flat space without a B field (a nondegenerate starting

point), the resulting background is nothing but flat space with zero H flux again, which is cer-

tainly a Weyl invariant model. This example actually violates a subtle assumption underlying

the analysis of [54], that the isometries involved in the r matrix act without isotropy, which

apparently allows for a non-unimodular but Weyl-invariant model, despite the non-degeneracy

of g +B.17

Related to this, we would expect a non-unimodular r matrix to give a background that solves

the generalized supergravity equations [15, 16], which then generally would not solve the reg-

ular supergravity equations. In our case the Killing vector K appearing in the generalized

supergravity equations is presumably given by K = ∂−, the Killing vector associated to the

non-unimodularity of the r matrix: r|∧→[,] = p−.
18 Since in particular K is null, this example

satisfies the conditions for a trivial solution of generalized supergravity discussed around eqs.

(4.5) in [17], which means we are effectively dealing with a solution of the regular supergravity

equations, and hence a Weyl invariant model.19

We are not aware of other examples of non-unimodular but (manifestly) Weyl-invariant models

in the present context, beyond trivial p∧ p extensions of the r matrix (6.24).20 We have checked

that in four dimensions there are no other nonunimodular Yang-Baxter deformations which result

in undeformed flat space.

7 Conclusions and outlook

We investigated plane wave backgrounds arising from Yang-Baxter deformations of the flat space

string. For the simplest case with r = p− ∧ m23 this gives the so-called Nappi-Witten model,

whose spectrum we determined by canonical quantization in light-cone gauge, and matched with

an integrability-based approached based on a Drinfel’d twisted exact S matrix. In higher di-

mensions, it is possible to obtain analogues of the Nappi-Witten background as Yang-Baxter

sigma models, for which the derivation of the spectrum by both methods follows similarly. Be-

yond explicitly verifying the quantum Drinfel’d twisted structure of this class of homogeneous

deformations, the link of our Yang-Baxter models with Nappi-Witten type models shows that

Yang-Baxter models can have more symmetries than those suggested by the deforming r matrix.

We illustrated this notion of enhanced symmetry for a number of abelian deformations of flat

space. Finally, our investigations into plane waves and enhanced symmetries led us to realize

that, at least for the non-semi-simple flat space string, there is at least one non-unimodular

Yang-Baxter deformation which preserves Weyl invariance.

17We thank Linus Wulff for discussions on this point.
18The assumption that the isometries in the r matrix act without isotropy is also made in [55], where the relation

between K and the r matrix is given. We assume that this natural relation continues to apply here.
19We thank Riccardo Borsato for discussions on this point.
20The inhomogeneous P1 ∧ P2 Yang-Baxter deformation of the Nappi-Witten model is not unimodular, but in

this case Weyl invariance is explained by the degeneracy of g +B [47] in line with the analysis of [54].
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There are a number of open questions directly associated to our results. Firstly, it would be

interesting to study the deformed symmetry algebra of the Nappi-Witten model from the Yang-

Baxter perspective, expected to take the shape of a Drinfel’d twisted Yangian, and determine

how much of this can be explicitly seen at the quantum level. It would also be interesting to

contrast this description with the original WZW CFT perspective on this model. Next, coming to

enhanced symmetries, it would be great to determine exactly which type of Yang-Baxter models

admits enhanced symmetries, in particular whether this could also arise in semi-simple models

such as the AdS5×S5 string, and independently, to see if any enhanced symmetries present, admit

an algebraic description from the Yang-Baxter perspective. Moreover, it would be interesting to

see if the other examples of Yang-Baxter models with enhanced symmetries that we discussed,

admit an alternative formulation that manifests these symmetries, similarly to the perspective

provided by the WZW formulation in the Nappi-Witten case.21 Finally, it would be great to

strengthen the conditions for Weyl invariance of Yang-Baxter sigma models to an exact necessary

requirement.
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A Quadratic worldsheet Hamiltonian

For the undeformed model one can fix the worldsheet reparameterization gauge freedom and

avoid a square root worldsheet Hamiltonian by taking light-cone coordinates with metric

gµν =

g++ g+−

g+− 0
0

0 gij

 , (A.1)

and fixing x+ = τ, p− = 1, provided that the background is independent of x−. We take the

indices to run over µ ∈ {+,−, i}. This will still be possible for the deformed model assuming

that rµ+ = 0, in this case we find

Hws = −p+ =
1

2g+−

[
gijpipj + gij

(
x′i + ηri− + ηrii

′
pi′
)(

x′j + ηrj− + ηrjj
′
pj′
)
+ g−−

]
. (A.2)

For flat space, one can obtain a worldsheet Hamiltonian that is at most quadratic in the dynami-

cal fields, if g−− is also at most quadratic and the remaining components g+−, gij are independent

of dynamical variables. Here x+ is not considered a dynamical variable and can appear arbitrar-

ily, but would introduce world-sheet time dependence. Considering deformations of flat space in

such a coordinate system and requiring it to remain quadratic after deformation, we need that

ri− is at most linear and rij is constant. In summary, to find a quadratic worldsheet Hamiltonian

for a flat space deformation one should take Euclidean coordinates such that gij are constant

and the conditions on rµν are

rµ+ = 0,
∂rµν

∂x−
= 0,

∂rij

∂xk
= 0,

∂2rk−

∂xi∂xj
= 0. (A.3)

A.1 Plane wave r matrix conditions

We are looking for a plane wave in light cone coordinates
(
x+, x−, xi

)
. It is convenient to work

with the inverse metric where non-zero components are

G−− = f(x), G+− = −1, Gij = δij . (A.4)

For a Yang-Baxter deformation the inverse metric is given by

Gµν = gµν − η2rµµ
′
gµ′ν′r

ν′ν . (A.5)

We now find constraints on rµν , first by considering G++ = g++ = 0

G++ = g++ − η2r+µ′
gµ′ν′r

ν′+, (A.6)

r+µ′
gµ′ν′r

ν′+ = −
∑
i

(
r+i
)2

= 0, (A.7)

from this we may conclude that

r+i = 0, ∀i. (A.8)

Next we consider G+− = g+− = −1

r+µ′
gµ′ν′r

ν′− = r+−g−+r
+− + r+igijr

j− = 0, (A.9)
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using that r+i = 0 we now conclude that

r+− = 0. (A.10)

And finally we may consider Gii = gii = 1 using the results from before

riµ
′
gµ′ν′r

ν′i = −
∑
j

(
rij
)2

= 0, (A.11)

and conclude

rij = 0, ∀i, j, (A.12)

this means that the only non-zero components should be r−i = −ri−.

B Plane wave background quantization

Before we quantize and construct the Fock space, we rescale the oscillators√
4πωnR a±s

n = α±s
n , (B.1)√

4πωnR a±s
n = α±s

n . (B.2)

It is worth noting, that for negative ω the α’s look ”antihermitian”, α∗ = −α. With these

definitions the Poisson brackets, energy and level matching condition becomes

{α±
n , α

±
n′} = ±iδnn′ , (B.3)

E =
∞∑

n=−∞
ωn

(
α+
nα

+
n + α−

nα
−
n

)
, (B.4)

L =

∞∑
n=−∞

n
(
α+
nα

+
n − α−

nα
−
n

)
. (B.5)

We quantize by replacing the Poisson bracket with a commutator

[α±
n , α

±
n′ ] = ±δnn′ . (B.6)

Let ñ = ⌈n0⌉ where n0 is the solution to wn0 = 0 = n0
R + η. To construct the Fock space we

define the vacuum state as

α+
n≥ñ |0⟩ = α−

n≥ñ |0⟩ = α−
n<ñ |0⟩ = α+

n<ñ |0⟩ = 0, (B.7)

Basis elements of the Fock space can be construced as( ∞∏
n=ñ

(
α−
n

)pn (α+
n

)qn)( ñ−1∏
n=−∞

(
α+
n

)rn (α−
n

)sn) |0⟩ = |{pn; qn; rn; sn}⟩ , (B.8)

where pn, qn, rn, sn ∈ N0. The subset of physical states obey

L |ϕ⟩ = 0, (B.9)

L =

ñ−1∑
n=−∞

n
(
α+
nα

+
n − α−

nα
−
n

)
+

∞∑
n=ñ

n
(
α+
nα

+
n − α−

nα
−
n

)
(B.10)
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The normal ordered energy operator is

E =
ñ−1∑

n=−∞
ωn

(
α+
nα

+
n + α−

nα
−
n

)
+

∞∑
n=ñ

ωn

(
α+
nα

+
n + α−

nα
−
n

)
. (B.11)

Lets find the spectrum, we start by computing

E |{pn; qn; rn; sn}⟩ = E{p,q,r,s} |{pn; qn; rn; sn}⟩ , (B.12)

E{p,q,r,s} =

ñ−1∑
n=−∞

−ωn (rn + sn) +

∞∑
n=ñ

ωn (pn + qn) , (B.13)

L |{pn; qn; rn; sn}⟩ = L{p,q,r,s} |{pn; qn; rn; sn}⟩ , (B.14)

L{p,q,r,s} =
ñ−1∑

n=−∞
n (rn − sn) +

∞∑
n=ñ

n (qn − pn) . (B.15)

To write this in a more readable form we define

Nn =

qn n ≥ ñ

rn n < ñ
, Ñn =

pn n ≥ ñ

sn n < ñ
. (B.16)

Conceptually, they count left movers and right moving modes respectively. In terms of these

integers the energy and level matching condition simply becomes

E{N,N̄} =
∞∑

n=−∞

∣∣∣ n
R

+ η
∣∣∣ (Nn + Ñn

)
, (B.17)

L{N,N̄} =

∞∑
n=−∞

n
(
Nn − Ñn

)
. (B.18)

C Small deformation spectrum

The spectrum can be simply understood for small deformation parameter, we will restrict to

− 1
R ≤ η ≤ 1

R . In this regime we can rewrite
∣∣ n
R + η

∣∣ = ∣∣ nR ∣∣+ sign(n) |η|+ δ0n |η|

E =
∑
n̸=0

(∣∣∣ n
R

∣∣∣+ sign(n) |η|
)(

Nn + Ñn

)
+ |η|

(
N0 + Ñ0

)
, (C.1)

the level matching condition allows arbitrary N0, Ñ0, this means we can add any integer factor

of |η|. The minimum value of the bracket inside the sum happens at n = −1, this should come

with an even integer factor due to level matching condition. This means the possible energy

states are

E =

(
1

R
− |η|

)
2k1 + |η|k2, (C.2)

for integers k1, k2 ≥ 0 or slightly rewritten

E =
2k

R
+ |η|ℓ, (C.3)

with integers k ≥ 0 and ℓ ≥ −2k.
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D Matrix representation for the Nappi-Witten algebra

The Nappi-Witten algebra spanned by P1, P2, J, T with commutation relations

[J, Pi] = ϵi
jPj , [Pi, Pj ] = ϵijT, (D.1)

can be represented by the following matrices

P1 =


0 1 0 0

0 0 0 0

0 0 0 0

0 0 −1 0

 , P2 =


0 0 0 1

0 0 1 0

0 0 0 0

0 0 0 0

 , J =


0 0 0 0

0 0 0 −1

0 0 0 0

0 1 0 0

 , T =


0 0 2 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

(D.2)

We also provide a representation for the extended algebra (5.6) with n = 2,

P
(1)
1 =



0 η1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 −η1 0 0


, P

(1)
2 =



0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, (D.3)

P
(2)
1 =



0 0 η2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 −η2 0 0

0 0 0 0 0 0


, P

(2)
2 =



0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, (D.4)

J =



0 0 0 0 0 0

0 0 0 0 0 −1

0 0 0 0 −1 0

0 0 0 0 0 0

0 0 η22 0 0 0

0 η21 0 0 0 0


, T =



0 0 0 2 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


. (D.5)
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