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Abstract

Vertex corrections from the transversal particle-hole channel, so-called π-tons, are gene-
ric in models for strongly correlated electron systems and can lead to a displaced Drude
peak (DDP). Here, we derive the analytical expression for these π-tons, and how they
affect the optical conductivity as a function of correlation length ξ, fermion lifetime τ,
temperature T , and coupling strength to spin or charge fluctuations g . In particular,
for T → Tc, the critical temperature for antiferromagnetic or charge ordering, the dc
vertex correction is algebraic σdc

VERT ∝ ξ ∼ (T − Tc)−ν in one dimension and logarithmic
σdc

VERT ∝ lnξ ∼ ν ln(T − Tc) in two dimensions. Here, ν is the critical exponent for
the correlation length. If we have the exponential scaling ξ ∼ e1/T of an ideal two-
dimensional system, the DDP becomes more pronounced with increasing T but fades
away at low temperatures where only a broadening of the Drude peak remains, as it is
observed experimentally. Further, we find the maximum of the DPP to be given by the
inverse lifetime: ωDDP ∼ 1/τ. These characteristic dependencies can guide experiments
to evidence π-tons in actual materials.
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1 Introduction23

The phenomenon of a displaced Drude peak (DDP) in metallic systems, characterized by a24

maximum in the optical absorption at a finite frequency (unlike in normal metals where the25

maximum occurs at zero frequency), has been observed over the past few decades across a26

diverse range of compounds including cuprates, transition metal oxides, organic conductors,27

and Kagome metals [1–23]. Despite the variety of these materials, a universal experimental28

feature is that the DDP frequency is an increasing function of temperature, ωDDP ∼ Tα, with29

the coefficient α in the range 0 < α < 3/2 [24]. This striking universal temperature depen-30

dence immediately raises an important question: Is there a microscopic mechanism common31

to all these materials that gives rise to a displaced Drude peak? In addressing this question,32

it is important to note the key similarities that these materials share: they are predominantly33

strongly correlated electron systems, many showing effectively two-dimensional (2D) physics34

and hosting strong spin and/or charge fluctuations.35

Although several theories have been proposed in the past decade to explain the mecha-36

nism behind the Drude peak displacement on a broader level [24–27], our understanding of37

the phenomenon remains relatively limited. For example, Ref. [25] explains it in terms of the38

hydrodynamics of short-range quantum critical fluctuations of incommensurate density wave39

order. Another established scenario involves the transient localization mechanism [27], which40

originates from quantum localization corrections due to slow phononic fluctuations [24] or41

charge fluctuations mediated by long-range Coulomb interaction coexisting with lattice frus-42

tration [26] in low-dimensional systems. More recently, however, a novel mechanism involving43

π-ton vertex contributions [28–31] has been identified as another potential cause of the Drude44

peak displacement [32].45

The significance of π-ton vertex contributions in shaping the optical spectrum of 2D cor-46

related electron systems was first emphasized in Refs. [28–30] for a variety of different mod-47

els of strongly correlated electron systems. These works provide a comprehensive analysis48

of different vertex contributions in correlated electron systems based on the two-particle re-49

ducibility, which was possible due to recent methodological advances in using the parquet50

equations [33–35]within the dynamical vertex approximation (DΓA) [36–38] and the parquet51

approximation [33]. In particular, it was observed that the dominant vertex contributions in52

prototypical models of strongly correlated electrons originate from the transversal particle-hole53

(ph) channel. Despite the negligibly small transfer momentum of the photon, these vertex con-54

tributions can pick up bosonic fluctuations at an arbitrary wave vector, and in particular strong55
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antiferromagnetic (AFM) or charge density wave fluctuations at k− k′ ≈ (π,π, ...) associated56

with correlated systems, thus the name π-tons [29]. The aforementioned vertex contributions57

from quantum localization, in contrast, emerge from the particle-particle (pp) channel.58

Shortly after the numerical papers [28–30], π-tons were investigated in the simplified ran-59

dom phase approximation (RPA) [31,32,39,40]. These studies sought to better understand the60

behavior of π-ton vertex contributions in the weakly correlated regime of the Hubbard model61

across a broader temperature range, particularly near the paramagnetic-to-antiferromagnetic62

transition boundary. While it was first reported in Ref. [31] that the RPA π-ton vertex contri-63

butions are small compared to the bubble contribution in the 2D case, in Refs. [39, 40] their64

nonnegligible contributions were recognized in one-dimensional (1D) systems until finally it65

was realized in Ref. [32] that they may lead to the DDP. Specifically, it was shown that, in the66

1D case close to the paramagnetic-to-antiferromagnetic transition, the coupling of strong AFM67

fluctuations via the RPA π-ton vertex contributions to low-energy quasiparticle excitations68

shifts the Drude peak to a finite frequency [32]. Similar qualitative features were observed69

in the 2D case, but the magnitude of the π-ton vertex contributions was orders of magnitude70

smaller than in 1D, resulting in only a broadening of the Drude peak. It is important to note,71

however, that the study in Ref. [32]was purely numerical, and achieving convergence of theπ-72

ton vertex contributions in the 2D case near the transition boundary proved to be a formidable73

task.74

Building on these findings, in this paper, we further investigate the impact of π-tons in75

2D systems with strong AFM fluctuations by conducting an analytical evaluation of the π-ton76

vertex contributions and by leveraging the cuba package [41] for adaptive integration. The77

analytical approach allows us to examine π-ton vertex contributions arbitrarily close to the78

transition boundary, while the improved adaptive integration (compared to Ref. [32]) enables79

us to benchmark our analytical results over a broader temperature range. To accomplish this,80

we are taking only the basic ingredients required to obtain the DDP via π-tons as noted in81

Ref. [32]: (i) low-energy fermionic quasiparticle excitations described by Green’s function [42]82

G(k, iνm) =
1

iνm − ϵk +
i

2τsgnνm

, (1)

and (ii) AFM fluctuations resembling the Ornstein-Zernike form [43–45]83

χOZ(q, iωm)∼
A

ξ−2 + (q−Q)2 +λ |ωm|
, (2)

with Q = (π,π, ...). In the following, we adopt the notation Ge/h(k, iνm) ≡
1

iνm−ϵk±
i

2τ
, associ-84

ated with the propagation of an electron and a hole with νn > 0 and νn < 0, respectively. Fur-85

thermore, we assume a D-dimensional half-filled hypercubic lattice with N sites and only the86

nearest-neighbor hoppings t, for which the electron dispersion equals ϵk = −2t
∑D

i=1 cos(ki).87

We set t ≡ 1 as the unit of energy, as well as ħh ≡ 1, kB ≡ 1, electric charge e ≡ 1, and lattice88

constant a ≡ 1. For the fermion lifetime τ, we assume the quadratic-in-temperature Fermi89

liquid form [42] τ−1 ∼ a+ bT2, where the constant term may originate from impurity or some90

other source of scattering.91

With G(k, iνm) fully specified, we can further evaluate the Lindhard function and with it92

the RPA π-ton vertex function, assuming a Hubbard repulsion U ≤ 2 between fermions [31].93

We then seek the paramagnetic-to-antiferromagnetic transition temperature Tc by identify-94

ing the temperature at which the vertex function (proportional to magnetic susceptibility)95

diverges. Finally, for temperatures T > Tc , we can fit the vertex function calculated in RPA96

to the Ornstein-Zernike form for obtaining the temperature dependence of the parameters ξ,97

A, and λ, giving us all the necessary quantities to evaluate π-ton vertex contributions to the98

optical conductivity. This whole procedure for U = 2 in the 1D case and for U = 1.9 in the99
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2D case with τ−1 = 0.1547 + 1.637 T2 has been already carried out in Refs. [32] and [31],100

respectively. Here, we instead use these fitted temperature dependencies and substitute them101

in the analytical expression for π-tons to (i) perform benchmark calculations against numeri-102

cal results, and (ii) investigate scenarios with the Drude peak displacement in 2D. Please note103

that while our present consideration specifically considers AFM fluctuations in the π-ton ver-104

tex contributions, these fluctuations can actually be of any origin, e.g., also stem from charge105

fluctuations, provided they are well described by the Ornstein-Zernike form in Eq. (2).106

The paper is structured as follows: In Sec. 2.1, we recall the evaluation of the Drude optical107

conductivity from the bubble contribution, prior to the evaluation of the π-ton vertex contri-108

butions in Sec. 2.2. In Sec. 3, we first discuss general qualitative features of the analytically109

obtained π-ton vertex contributions, after which in Sec. 3.1 we benchmark our analytical re-110

sults with the results of the adaptive integration in 1D and 2D. We present our key findings on111

the potential pathways to the DDP in the presence of π-tons in 2D systems in Sec. 3.2. Lastly,112

we compare the π-ton vertex contributions to the (quantum) localization vertex contributions113

in Sec. 3.3, before concluding our findings in Sec. 4.114

2 Analytical evaluation of the optical conductivity115

2.1 Bubble contribution116

Since similar concepts will be applied in calculating the π-ton vertex contributions, we first117

recall the textbook derivation [42] of the Drude optical conductivity [46,47] from the bubble118

(BUB) contribution to the current-current correlation function. In terms of the fermion Green’s119

functions G(k, iνm), fermion velocity vk =
∂ ϵk
∂ k [48], and temperature T (β−1), the latter can120

be expressed in the long-wavelength limit q→ 0 as [31]121

χBUB(iωn) = −
2
βN

∑

iνm

∑

k

v2
k G(k, iνm)G(k, iνm + iωn) . (3)

where we consider ωn ≥ 0. This implies ωn > −νm > 0, since otherwise two electrons or two122

holes would be created by an incident photon. In particular, G(k, iνm)≡ Gh(k, iνm) describes123

the propagation of a hole, while G(k, iνm + iωn) ≡ Ge(k, iνm + iωn) the propagation of an124

electron, see the left-hand side of Fig. 1.125

Fermions in the vicinity of the Fermi surface (FS) contribute the most to the current fluctu-126

ations. For that reason, we replace the momentum summation in Eq. (3) by an energy integral127

in which the fermion density of states g is approximated by a constant, i.e., the value at the128

Fermi level g(ϵF ) [42]129

1
N

∑

k

v2
k uk =

∫ +∞

−∞
v2(ϵ)g(ϵ)u(ϵ)dϵ ≈ g(ϵF )




v2
�

FS

∫ +∞

−∞
u(ϵ)dϵ , (4)

with



v2
�

FS being the fermion velocity averaged over the Fermi surface, holding for an arbitrary130

function uk. This further gives, see Appendix A for details on the integral evaluation:131
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χBUB(iωn) = −
2
β

g(ϵF )



v2
�

FS

∑

ωn>−νm>0

∫ +∞

−∞
dϵ

�

1

iωn + iνm − ϵ +
i

2τ

��

1

iνm − ϵ −
i

2τ

�

= −
2
β

g(ϵF )



v2
�

FS

2πi

iωn +
i
τ

∑

ωn>−νm>0

1= −2g(ϵF )



v2
�

FS

1

iωn +
i
τ

i
2πn
β

= −2g(ϵF )



v2
�

FS

iωn

iωn +
i
τ

,

(5)

where we note that the sum over νm in the second row gave the index n of the Matsubara132

frequency ωn. Analytic continuation, iωn→ω+ i0+, now readily yields133

χBUB(ω) = −2g(ϵF )



v2
�

FS

ω

ω+ i
τ

, and ImχBUB(ω) = 2g(ϵF )



v2
�

FS τ
ω

1+ω2τ2
. (6)

Since the optical conductivity is given in terms of the current-current correlation function on134

the real frequency axis as σ(ω) = Imχ(ω)
ω [31], we recover the Drude result135

σBUB(ω) =
σdc

BUB

1+ω2τ2
, (7)

where we have identified σdc
BUB ≡ 2g(ϵF )



v2
�

FS τ. For the practical purposes of this paper,136

we obtain σdc
BUB by performing adaptive integration of the bubble contribution on the real137

frequency axis, as outlined in Ref. [31].138

2.2 π-ton vertex contributions139

The total vertex (VERT) contribution to the current-current correlation function reads140

χV ERT (q, iωn) = −
2

(βN)2
∑

iνm,iνm′

∑

k,k′
vk,qvk′,−qG(k, iνm)G(k+ q, iνm + iωn)

× G(k′, iνm′)G(k
′ + q, iνm′ + iωn)Fd(k,k′,q, iνm, iνm′ , iωn) ,

(8)

whose evaluation requires knowledge of the full density component of the two-particle vertex141

Fd(k,k′,q, iνm, iνm′ , iωn) [35,49]. Assuming the predominance of the π-ton vertex contribu-142

tions, it is, however, reasonable to approximate the entire density component using only the143

ph contribution Fd(k,k′,q, iνm, iνm′ , iωn)≈ Fd,ph(k,k′,q, iνm, iνm′ , iωn).144

Within the RPA framework, the vertex function Fd,ph(k,k′,q, iνm, iνm′ , iωn) can be fur-145

ther simplified, as the RPA π-ton vertex function depends only on a single transfer momen-146

tum/energy, Fd,ph(k,k′,q, iνm, iνm′ , iωn)≡ Fph(k
′−k, iνm′−νm) [31,32,39,40]. Further, close147

to the paramagnetic-to-antiferromagnetic phase transition, the π-ton vertex function can be148

well approximated with the Ornstein-Zernike form [31,32]149

Fph(k
′ − k, iνm′ − iνm)≈ FOZ(k

′ − k, iνm′ − iνm) =
A

ξ−2 + (k′ − k−Q)2 +λ |νm′ − νm|
, (9)

with Q= (π,π, ...) corresponding to the strong AFM fluctuations. Here, ξ is the AFM correla-150

tion length, λ represents the damping of AFM fluctuations, while A∼ g2 contains the coupling151

strength g of fermions to AFM fluctuations. Considering the momentum and frequency charac-152

teristics of FOZ, it is evident that the π-ton contributions are most significant when the energy153
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Fig. 1: Sketch of the dominant π-ton process for the case with weakly interacting
fermions on a half-filled square lattice. The yellow wiggled line denotes the incom-
ing (and outgoing) photon with the transfer momentum q ≈ 0, which excites an
electron-hole pair represented by the full and empty black circles, respectively. The
excited hole (electron) with wave vector k (k+q) is scattered via antiferromagnetic
fluctuations with wave vector Q = (π,π) (black arrows) across the Fermi surface
(black dashed line) forming a second electron-hole pair that eventually recombines
to emit the outgoing photon. The full (empty) white circles show the equivalent
eightfold symmetric electron-like (hole-like) states. The red (blue) color region de-
notes hole-like (electron-like) states.

transfer is approximately zero, i.e., νm′−νm ≈ 0, and the momentum transfer is close to Q, i.e.,154

k′− k≈ Q. Thus, it is convenient to rewrite Eq. (8) with a change of variables k′ = k+Q+ q̃,155

yielding156

χV ERT (iωn) = −
2

(βN)2
∑

iνm,iνm′

∑

k,q̃

vkvk+Q+q̃G(k, iνm)G(k, iνm + iωn)

× G(k+Q+ q̃, iνm′)G(k+Q+ q̃, iνm′ + iωn)FOZ(Q+ q̃, iνm′ − iνm) ,

(10)

where we again focus only on the long-wavelength limit q→ 0.157

Analogously as for the bubble contribution, we evaluate in the following χV ERT (iωn) only158

for non-negative Matsubara frequencies ωn ≥ 0. This implies again ωn > −νm > 0, as159

well as G(k, iνm) ≡ Gh(k, iνm), and G(k, iνm + iωn) ≡ Ge(k, iνm + iωn). To determine the160

causality properties of the remaining two Green’s functions in Eq. (10), we utilize the particle161

conservation law. With the initial assumption of ωn ≥ 0, the only way to comply with the162

particle conservation law is to restrict νm′ to ωn > −νm′ > 0, which automatically imposes163

G(k+Q+ q̃, iνm′)≡ Gh(k+Q+ q̃, iνm′), G(k+Q+ q̃, iνm′ + iωn)≡ Ge(k+Q+ q̃, iνm′ + iωn).164

Following the visual representation of a dominant π-ton process depicted in Fig. 1, we note165

that these latter constraints on the Green’s functions are feasible due to the finite scattering166

rate τ−1 which smears the fermion states around the Fermi surface. This ensures that the167

scattered hole (electron) is within reach of the hole-like (electron-like) states. Otherwise, the168

entire contribution would vanish at finite frequencies, similar to how the Drude contribution169

collapses to a delta function at zero frequency when there are no momentum relaxation pro-170

cesses.171
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In order to proceed, we note that the q̃ dependence in Green’s functions is weak in compar-172

ison with the q̃ dependence of the vertex function in Eq. (9), so we keep it only in the vertex173

function peaked at |q̃| ≈ 0, decoupling thus the two momentum summations. Furthermore,174

for analogous reasons, we set νm′ = νm in Green’s functions while retaining for now the full175

dependence on νm and νm′ in the vertex function. For the π-ton vertex contributions to the176

current-current correlation function, we thus have for ξ≫ 1177

χV ERT (iωn) = −
2
β2

∑

ωn>−νm,−νm′>0

1
N

∑

k

vkvk+QGh(k, iνm)G
e(k, iνm + iωn)

× Gh(k+Q, iνm)G
e(k+Q, iνm + iωn)

1
N

∑

q̃

FOZ(Q+ q̃, iνm′ − iνm) .
(11)

Lastly, we use the eightfold symmetry depicted in Fig. 1 to set Gh(k+Q, iνm)→ Gh(k, iνm),178

Ge(k+Q, iνm + iωn) → Ge(k, iνm + iωn), and importantly vk+Q → −vk in Eq. (11), leading179

finally to180

χV ERT (iωn) =
2
β2

∑

ωn>−νm>0

1
N

∑

k

v2
k

�

Gh(k, iνm)
�2
[Ge(k, iνm + iωn)]

2

×
∑

ωn>−νm′>0

1
N

∑

q̃

FOZ(Q+ q̃, iνm′ − iνm) .
(12)

Just as with the bubble contribution, we use the fact that the dominant contributions to181

the current fluctuations come from the states at the Fermi level, allowing us to again replace182

the summation over k with an energy integral. Using further the assumed form of the Green’s183

function in Eq. (1), this yields184

1
N

∑

k

v2
k

�

Gh(k, iνm)
�2
[Ge(k, iνm + iωn)]

2

≈ g(ϵF )



v2
�

FS

∫ +∞

−∞
dϵ

�

1

iνm − ϵ −
i

2τ

�2 �
1

iνm + iωn − ϵ +
i

2τ

�2

.

(13)

This integral over ϵ can be readily evaluated in the complex plane, as outlined in Appendix A,185

resulting in186

∫ +∞

−∞
dϵ

�

1

iνm − ϵ −
i

2τ

�2 �
1

iνm + iωn − ϵ +
i

2τ

�2

= −4πi
1
�

iωn +
i
τ

�3 , (14)

which indicates that the νm dependence in the Green’s functions has again been lost, appearing187

only in the vertex function, giving188

χV ERT (iωn) = −
8πi
β2

g(ϵF )



v2
�

FS

1
�

iωn +
i
τ

�3

∑

ωn>−νm,−νm′>0

1
N

∑

q̃

FOZ(Q+ q̃, iνm′ − iνm) .

(15)

What remains is to evaluate the summations over the Ornstein-Zernike vertex function189
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m m′
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q
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102
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S O
Z
(q
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=

10
0]

(b) = 38, = 22
A = 0.5, = 0.21

Fig. 2: (a) Total (dark blue line), diagonal m= m′ (light blue line), and non-diagonal
m ̸= m′ (light green line) Matsubara frequency summation contributions over the
Ornstein-Zernike vertex function, Eq. (16), at q̃ = 0 for different numbers of the
largest negative Matsubara frequencies νm and ν′m taken in the sums. The black
dashed-dotted line represents the diagonal contribution equal to nAξ2, while the
black dashed line represents the upper bound on the non-diagonal contribution of
nc Aβ
λ with c ≈ 1.113 for considered n values. (b) Momentum dependence of the

diagonal, m = m′ (light blue), and non-diagonal, m ̸= m′ (light green), Matsub-
ara frequency summation contributions over the Ornstein-Zernike vertex function,
summed over n = 100 largest negative Matsubara frequencies νm and ν′m. The in-
verse temperature is β = 22, while the Ornstein-Zernike parameters read ξ = 38,
A= 0.5, and λ= 0.21 [32].

SOZ =
1
N

∑

q̃

∑

ωn>−νm,−νm′>0

FOZ(Q+ q̃, iνm′ − iνm)

=
1
N

∑

q̃

∑

ωn>−νm,−νm′>0

A
ξ−2 + q̃2 +λ |νm′ − νm|

.
(16)

We begin by addressing the Matsubara frequency sums. For this purpose, we separate the190

diagonal, m = m′, and the non-diagonal, m ̸= m′, contributions, where for the diagonal con-191

tribution Sm=m′
OZ = n

N

∑

q̃
A

ξ−2+q̃2 trivially follows. Here, n is the number of negative Matsubara192

frequencies νm included in the sum where |νm|<ωn.193

To tackle the non-diagonal contribution, in Fig. 2(a) we plot the Ornstein-Zernike ver-194

tex function summed over the Matsubara frequencies νm and ν′m for different numbers n of195

the largest negative Matsubara frequencies included in the sums for q̃ = 0. Specifically, we196

present the total contribution (dark blue line), the diagonal m = m′ (light blue line), and the197

non-diagonal m ̸= m′ contribution (light green line) for the inverse temperature β = 22 and198

Ornstein-Zernike parameters ξ = 38, A = 0.5, and λ = 0.21 [32]. For this set of parameters199

and the considered values of n, we observe that the total sum is predominantly determined by200

the diagonal contribution. Interestingly, however, we empirically find that in the case ξ≫ 1201

the non-diagonal contribution is bounded by nc Aβ
λ with c ≈ 1.113, see Fig. 2(b), for the con-202

sidered n values. This bound is approached for q̃ = 0 already when n ∼ 103 as indicated203

in Fig. 2(a). The latter observation suggests that as n →∞, the non-diagonal contribution204

may eventually surpass the diagonal term. Nevertheless, it is important to recall that the Mat-205

subara frequency sums are limited by ωn > −νm,−νm > 0, which restricts n to finite values.206

Considering the condition ξ≫ 1, which holds close to the paramagnetic-to-antiferromagnetic207
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transition boundary, we can then roughly estimate the relative importance of the diagonal and208

non-diagonal contributions by comparing Sm=m′
OZ /n = Aξ2 and Sm ̸=m′

OZ /na ≈ Aβ/λ. In particu-209

lar, providing that ξ≫
Ç

β
λ roughly holds, we can approximate the total Matsubara frequency210

sums by considering only the diagonal contribution. Assuming the weak temperature depen-211

dence of λ [31, 32], this translates to the correlation length growing faster than β
1
2 = T−

1
2 .212

In all the subsequent cases this condition will indeed be met, so we keep only the diagonal213

contribution in Eq. (16), i.e., SOZ ≈ Sm=m′
OZ .214

Let us finish the discussion about the Matsubara frequency sums by recalling again that215

they are restricted by ωn > −νm,−ν′m > 0. This implies that in the evaluation of χV ERT (iωn)216

for a given ωn, n in Sm=m′
OZ is the index of the corresponding bosonic Matsubara frequency,217

iωn = i 2πn
β , analogously as was the case for the bubble contribution. Taking that into account,218

we then have219

χV ERT (iωn)≈ −
4g(ϵF )



v2
�

FS

β

i 2πn
β
�

iωn +
i
τ

�3

Sm=m′
OZ

n
= −

4g(ϵF )



v2
�

FS

β

iωn
�

iωn +
i
τ

�3 sm=m′
OZ ,

(17)

where we have introduced sm=m′
OZ ≡ Sm=m′

OZ
n = 1

N

∑

q̃
A

ξ−2+q̃2 . Analytic continuation, iωn→ω+iη,220

now gives221

χV ERT (ω) = −
4g(ϵF )



v2
�

FS

β

ω
�

ω+ i
τ

�3 sm=m′
OZ , (18)

and correspondingly222

ImχV ERT (ω) = 2
2g(ϵF )



v2
�

FS τ

β
τ2

�

3ω2τ2 − 1
�

ω

(1+ω2τ2)3
sm=m′
OZ , (19)

so we get for the optical conductivity σ(ω) = Imχ(ω)
ω223

σV ERT (ω) = −2
σdc

BUB

β
τ2 1− 3ω2τ2

(1+ω2τ2)3
sm=m′
OZ . (20)

In Appendix B, we evaluate the summation over the momentum q̃ in sm=m′
OZ for the 1D and 2D224

cases. This yields the π-ton vertex contributions to the optical conductivity225

σV ERT (ω) = −A Tτ2σdc
BUB

1− 3ω2τ2

(1+ω2τ2)3

¨

ξ/π in 1D ,

ln(πξ)/π3 in 2D ,
(21)

which is the main result of our paper.226

3 Discussion227

To help us keep track of upcoming discussions, it is convenient to introduce228
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σdc
V ERT ≡ −A Tτ2σdc

BUB

¨

ξ/π , in 1D

ln(πξ)/π3 , in 2D
< 0 , (22)

keeping in mind that ξ ≫ 1. This σdc
V ERT gives the dc value of the π-ton vertex contribu-229

tions, which is negative and thus suppresses the Drude conductivity at small frequencies. For230

large frequencies, on the other hand, 3ω2τ2 in the numerator of Eq. (21) becomes large, and231

correspondingly σV ERT (ω) is positive and asymptotically decays to zero as232

lim
ω→∞

σV ERT (ω) =
3
ω4τ4

�

�σdc
V ERT

�

� . (23)

This further implies that the sign of the π-ton vertex contributions changes at the zero of233

Eq. (21), σV ERT (ω0) = 0, which is given solely by the fermion lifetime, ω0 =
1p
3
τ−1. Addi-234

tionally, the maximum of σV ERT (ω) is at the frequency ωMAX = τ−1, with the value of the235

maximum σV ERT (ωMAX ) =
1
4

�

�σdc
V ERT

�

� independent of dimension.236

Such shape of the π-ton vertex contributions together with the Drude contribution may237

result in the DDP in the total optical conductivity, σTOT (ω) = σBUB(ω) +σV ERT (ω). Given238

that we have closed-form analytical expressions for both contributions, we can determine the239

criterion for the DDP appearance, as well as the DDP frequency and height. The details of these240

calculations can be found in Appendix C, while here we just highlight the final expression for241

the DDP frequency242

ωDDP =
1
τ

√

√

√

√

√

√

√

3

�

�σdc
V ERT

�

�

σdc
BUB

�

3

�

�σdc
V ERT

�

�

σdc
BUB

+ 4

�

−

�

1+ 3

�

�σdc
V ERT

�

�

σdc
BUB

�

. (24)

The Drude peak will be displaced to the finite frequencyωDDP when there exists a real solution243

of Eq. (24), which is given by the criterion 6
�

�σdc
V ERT

�

� > σdc
BUB. In the case when the π-ton244

contributions become particularly strong, 6
�

�σdc
V ERT

�

�≫ σdc
BUB, Eq. (24) indicates that the DDP245

frequency would be determined solely by the fermion lifetimeωDDP ≈ τ−1, giving for the DDP246

height σTOT (ωDDP) = σdc
BUB −

1
4

�

�σdc
V ERT

�

�. Note, however, that
�

�σdc
V ERT

�

� > σdc
BUB can give an247

unphysical negative dc conductivity, so the criterion for the applicability of our results and the248

appearance of the DDP can be put into the inequality σdc
BUB/6<
�

�σdc
V ERT

�

�< σdc
BUB.249

Finally, we would especially like to emphasize that theπ-ton vertex contributions in Eq. (21)250

comply with the optical sum rule following from the Ward identities [50,51]. Namely, with the251

Green’s function given in Eq. (1), the full optical spectral weight is entirely given by the bubble252

contribution. By integrating theπ-ton vertex contributions in Eq. (21) over frequencies it read-253

ily follows that the corresponding optical spectral weight vanishes, i.e.,
∫∞

0 dωσV ERT (ω) = 0.254

Thus, such contributions may only shift, but not add any additional optical spectral weight.255

3.1 Comparison of analytical and adaptive integration results256

Before going into the consideration of DDP caused by π-tons in the 2D case, we first bench-257

mark our analytical results against those obtained from the adaptive integration of the π-ton258

vertex contributions formulated1 on the real frequency axis in Refs. [31, 32]. In particular,259

the Ornstein-Zernike form of the vertex function is assumed, whose parameters are obtained260

within the RPA. We compare separately the dc values, σdc
V ERT , as well as the full frequency261

dependence of the π-ton vertex contributions. The two quantities are shown in Figs. 3(a,b)262

and (c,d) for the 1D case and the 2D case, respectively.263

1See Appendix A of Ref. [32] for the expressions for the π-ton vertex contributions to the current-current
correlation function on the real frequency axis.
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Fig. 3: (a,c) Analytical results [solid lines, Eq. (21)] vs adaptive integration [dashed
lines] for the vertex correction to the optical conductivity. Several temperatures are
discriminated by color. (b,d) dc value of the vertex correction as a function of temper-
ature [Eq. (22)]. Here, the temperature dependencies of the fermion lifetimes and
Ornstein-Zernike parameters have been taken from Ref. [32] in the 1D case (a,b) and
from Ref. [31] in the 2D case (c,d).

3.1.1 1D case264

For the 1D case, the parameterization of the Ornstein-Zernike vertex function within the RPA265

with the Hubbard interaction U = 2 and τ−1 = 0.1547 + 1.637 T2 as well as the adaptive266

integration of the corresponding π-ton vertex contributions has been already carried out in267

Ref. [32]. In such an approximation, the correlation length increases algebraically with T268

approaching Tc: ξ ∼ (T − Tc)−ν, where Tc ≈ 1/23 for these specific parameters. Please note269

that we assume finite τ at Tc throughout the paper. These numerical results for the frequency270

dependence of the π-ton vertex contributions and their dc values are shown as dashed lines271

for temperatures approaching the transition temperature Tc in Figs. 3(a) and (b), respectively.272

For the same set of parameters, the analytical results in Eqs. (21) and (22) are shown for273

comparison as solid lines in Fig. 3(a) and in Fig. 3(b), respectively.274

By focusing first on the dc values in Fig. 3(b), we note that our analytical results show275

excellent qualitative and quantitative agreement with the numerical results obtained by adap-276

tive integration. The two lie almost on top of each other near the transition temperature. As277

the frequency increases, both results predict a sign change of π-ton vertex contributions and278

a broad maximum at some finite frequency, see Fig. 3(a). However, both the position and279

height of the maximum differ between the two calculations, where the analytical calculations280
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show the maximum at a lower frequency with a significantly smaller value. Such discrepan-281

cies at larger frequencies are not so surprising since in the analytical evaluation we considered282

only small energy transfer processes, giving a better description of π-ton vertex contributions283

around the dc values. Overall, taking into account the number of approximations and sim-284

plifications imposed in evaluating the analytical results, the qualitative frequency behavior of285

the π-ton vertex contributions and their dc values match astonishingly well with the adaptive286

integration results in the 1D case.287

3.1.2 2D case288

Next, we compare analytical and adaptive integration results for the 2D case. As in the 1D289

case, we take for the fermion lifetime τ−1 = 0.1547+1.637 T2. At this point, we should note290

that this temperature dependence of τ stems from the fitting of the quasiparticle peak to the291

parquet DΓA results [29,31]. For this specific temperature dependence of τ, the 2D Ornstein-292

Zernike parameters within the RPA and for U = 1.9 have been fitted as thoroughly discussed293

in Ref. [31]. Here, we only briefly outline the end result (see also Appendix D)294

ξ=
0.30

T
+ 10−3 exp

0.51
T , A= 0.41+ 13T1.03 , and λ= 0.38+ 10.6T1.29 . (25)

It should be noted that the correlation length ξ in Eq. (25), although derived using the RPA with295

nominally algebraic temperature dependence of the correlation length, was fitted in Ref. [31]296

with an exponential function. This fitting resembles the ideal 2D zero temperature phase297

transition behavior according to the Mermin-Wagner theorem [52], with the exponential di-298

vergence of the correlation length as zero temperature is approached. The scenario of a finite299

Tc with the algebraic temperature dependence of the correlation length, as is the case in our300

1D modeling, is for 2D also discussed in Sec. 3.2.2.301

Integrating the π-ton vertex contributions over four momenta and two frequencies in the302

real frequency formulation [31, 32] poses significant challenges in ensuring proper conver-303

gence in the 2D case, even when using adaptive integration methods. Here, we overcome304

these challenges using the vegas method from the cuba package [41]. The results of this305

adaptive integration for the frequency dependence of the π-ton vertex contributions for sev-306

eral temperatures are shown in Fig. 3(c) with dashed lines, while their dc values with the blue307

line in Fig. 3(d). For the same 2D parameter set (τ, ξ, A, and λ), the corresponding analytical308

results are shown as full lines in Fig. 3(c) and as solid green lines Fig. 3(d).309

For the dc values, there is again an excellent qualitative agreement between the analyt-310

ical and adaptive integration results regarding the temperature dependence. Quantitatively,311

though, the analytical values are slightly larger. One possible explanation for this lies in the312

velocity factor, see Appendix B, which favors momenta in the nodal region of the Fermi sur-313

face, while the analytical evaluation assumed a constant value across the whole Fermi surface314

equal to the average fermion velocity. Similarly like in the 1D case, the discrepancies are also315

present in the high-frequency regions, where now analytical results predict slightly larger val-316

ues of the π-ton vertex contributions maxima. It is essential to highlight, however, that the317

overall magnitude of the π-ton vertex contributions agree well in both analytical and adaptive318

integration calculations. This agreement is particularly important when comparing the 1D and319

2D cases, where the analytical calculations corroborate the orders of magnitude differences in320

π-ton contributions between the two cases, as previously reported numerically in Ref. [32].321

This then carries important implications for the potential formation of the DDP in the 2D case,322

as discussed further in Sec. 3.2 below.323
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3.2 2D π-ton vertex contributions324

Because the 2Dπ-ton vertex contributions shown in Fig. 3(c) are of relatively small magnitude,325

their inclusion to the Drude optical conductivity results only in a broadening of the Drude peak.326

This is depicted in Figs. 4(a)-(c), showing the Drude contribution of the bubble term, the π-327

ton vertex contributions, and their sum for several temperatures, respectively. Unlike the 1D328

case, where the π-ton contributions continuously increase in magnitude as the temperature329

decreases [32], the 2D π-ton vertex contributions in Figs. 4(b) initially increase in magnitude330

with decreasing temperature, though not enough to produce the DDP, but eventually, these331

contributions begin to get weaker and finally saturate as zero temperature is approached. This332

is due to the distinctive characteristics of the 2D case, where the π-ton contributions depend333

logarithmically on the correlation length [ln(πξ) in Eq. (21)]. The correlation length ξ in334

turn exponentially diverges as the temperature approaches zero, ξ ∼ exp(1/T ) [Eq. (25)].335

Combining both gives a factor β , which however cancels out the factor β in the denominator336

of Eq. (21) coming from the Matsubara sums. At the same time, Eq. (25) suggests that A and λ337

go to constant as T → 0, leaving the 2D π-ton vertex contributions temperature independent338

at low temperatures, thus explaining the saturation of the π-ton contributions.339

The 2D (temperature behaviors of) Ornstein-Zernike parameters in Eq. (25) apparently340

proved not to yield large enough π-ton contributions to result in the DDP. However, since we341

have a closed analytical expression for π-tons, we can tweak the Ornstein-Zernike parameters342

in such a way as to give larger π-ton contributions and explore possible routes for the appear-343

ance of the DDP in the 2D case. Thus, we can identify scenarios where π-tons are present in344

2D systems.345

3.2.1 Scenario I: Enhanced coupling strength to antiferromagnetic fluctuations346

Since the magnitude of the π-ton contributions is directly proportional to the Ornstein-Zernike347

parameter A, the most straightforward way to increase it is by increasing the parameter A.348

Physically, this corresponds to enhancing the coupling strength g between fermions and AFM349

fluctuations. In particular, we consider the scenario where the coupling g is uniformly in-350

creased by a factor of
p

2 across all temperatures. This results in A being enhanced by a factor351

of 2, which doubles the magnitude of the π-ton vertex contributions while maintaining their352

qualitative temperature behavior as described in Sec. 3.2.353

Such enhanced π-ton vertex contributions are shown in Fig. 4(d) and the resulting total354

optical conductivity in Fig. 4(e). The Drude peaks in the total optical conductivity are now355

shifted to finite frequencies, with the DDP frequency being an increasing function of tem-356

perature, ωDDP ∝ Tα, where 0 < α < 1, as can be seen in Fig. 4(f). Interestingly, as the357

temperature decreases, the height of the DDP increases, but the overall shape of the DDP be-358

comes less distinct. This behavior is reminiscent of the experimental observations reported in359

Refs. [1–23], and contrasts with the DDP features associated with π-tons in the 1D case [32].360

In the latter case, as the transition temperature Tc is approached, the displacement of the361

Drude peak becomes increasingly pronounced. As explained in Sec. 3.2, these discrepancies362

arise due to the peculiar temperature behavior of π-tons in the 2D case: At low temperatures,363

the π-ton contributions reach a saturation point, while the Drude peak of the bubble con-364

tribution sharpens, indicating a crossover from the displaced to the broadened Drude peak365

behavior in the optical conductivity as the temperature decreases in the enhanced coupling366

strength scenario.367

3.2.2 Scenario II: Finite temperature phase transition368

In Ref. [32], it was reported that the magnitude of the 2D π-ton vertex contributions increases369

monotonically and logarithmically as the transition temperature is approached, which is in370
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Fig. 4: (a) Bubble, (b) π-ton vertex, and (c) total contribution to the optical con-
ductivity for several temperatures T for the 2D case with the fermion lifetime
τ−1 = 0.1547 + 1.637 T2 and the Ornstein-Zernike parameters in Eq. (25). (d,
e) π-ton contribution and total optical conductivity for Scenario I: twice the magni-
tude A of the π-ton vertex contributions. (g, h) π-ton contribution and total optical
conductivity for Scenario II: a finite temperature phase transition at Tc ≈ 1/19 and
a power-law divergence of the correlation length, ξ̃∼ (T − Tc)−1. (f, i) Temperature
dependence of the displaced Drude peak frequency for the latter two cases.
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sharp contrast to the behavior of the 2D π-ton contributions discussed so far in Secs. 3.2371

and 3.2.1. To this end, we note, however, that in Ref. [32], (1) the phase transition appeared372

at the finite temperature Tc ≈ 1/19, and (2) the correlation length diverged with a power-law373

dependence on temperature rather than exponentially as in Eq. (25). To mimic such a scenario,374

in the following, we modify the temperature behavior of the correlation length in Eq. (25) to375

ξ̃ = 0.30
T−Tc

+ 10−3 exp
0.51

T [we turn back to the original coupling strength with the Ornstein-376

Zernike parameter A given in Eq. (25)]. Now the power-law term in the correlation length377

outweighs the exponential term in the vicinity of Tc , causing the π-ton vertex contributions378

to diverge logarithmically with temperature according to Eq. (21) as σV ERT ∝ ln(T − Tc).379

Analogously then, as in Ref. [32], the magnitude of π-ton vertex contributions monotonically380

increases all the way down to the transition boundary as shown in Fig. 4(g).381

Similar to the enhanced coupling strength scenario, the corresponding total optical conduc-382

tivity in Fig. 4(h) also features the DDP, but with a qualitatively different temperature behavior383

compared to that in Fig. 4(e) and discussed in Sec. 3.2.1. Specifically, at high temperatures,384

the π-ton vertex contributions are small, leading only to the broadening of the Drude peak.385

As the temperature decreases, the π-ton contributions eventually become strong enough to386

displace the Drude peak, which becomes more pronounced as the temperature approaches Tc .387

Notably, Fig. 4(i) illustrates that in this scenario, starting from low temperatures, the DDP fre-388

quency initially decreases as the temperature increases, then increases within an intermediate389

temperature range, before decreasing again at higher temperatures.390

Finally, we want to emphasize that while the overall qualitative frequency behavior of the391

π-ton vertex contributions does not depend on the peculiarities of the Ornstein-Zernike pa-392

rameters, their qualitative and quantitative temperature dependence does. These temperature393

dependencies are primarily governed by the correlation length, which allows for various sce-394

narios for the appearance of the DDP due to the π-ton contributions in the 2D case. Here we395

consider just two of them. Scenario I with a relatively strong coupling of fermions to AFM396

fluctuations and an exponential divergence of the correlation length at zero temperature. In397

this scenario, the displacement of the Drude peak appears at high temperatures and gradu-398

ally transitions to a simple broadening of the Drude peak at low temperatures with the DDP399

frequency increasing with temperature as in some experiments [1–23]. In Scenario II, with400

a finite temperature phase transition and a power-law divergence of the correlation length at401

a finite Tc , the magnitude of the π-ton vertex contributions continuously increases as Tc is402

approached. A DDP is observed in such a case, however, only close to Tc .403

3.3 π-ton vs localization vertex contributions404

Besides the displacement of the Drude peak through π-ton vertex contributions, it is well405

known that the DDP can also arise from the localization vertex corrections [24,26,27,42,53,406

54]. It is therefore fitting to wrap up with a brief discussion of the distinctions between these407

two types of vertex contributions.408

The first key difference arises from the underlying microscopic source giving rise to the ver-409

tex corrections. Specifically, the π-ton vertex contributions stem from interactions of fermions410

with a soft critical boson (cf. below), whereas the core source of localization vertex correc-411

tions is static disorder. It should be, however, emphasized that in the recent studies on tran-412

sient localization [24,26,55], the initial model Hamiltonian did not include disorder from the413

outset; instead, an effectively disordered environment was generated through fermion-boson414

interactions. The latter involves the destructive interference of the electron wave function,415

which, when classified according to the two-particle reducibility, falls into the category of416

particle-particle reducible vertex contributions. In contrast, the π-ton vertex contributions are417

reducible in the transversal particle-hole channel.418

This brings us to the second important difference: the topologies of the Feynman diagrams419
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associated with these two types of vertex corrections are distinct. This distinction further420

affects how momentum and frequency summations couple the fermion Green’s functions and421

the vertex function in the current-current correlation function. In particular, for the π-ton422

vertex contributions, the frequency behavior is determined primarily by the fermion Green’s423

functions, as follows from Eqs. (12) and (14), whereas in the case of localization, the vertex424

function governs the frequency behavior of the optical conductivity [42,53].425

Regarding the vertex function, the third important point is that in both cases, the vertex426

function resembles the form of an overdamped boson mode. In the context of localization427

physics, this boson is the diffuson with the form of the vertex function F(q, iωm) ∼
1

D|q|2+|ωm|
428

[56], whereas, in the present consideration of π-ton effects, the boson represents AFM fluc-429

tuations with F(q, iωm) ∼
1

ξ−2+|q−Q|2+λ|ωm|
. The crucial difference between these two vertex430

functions is that the π-ton vertex function possesses a mass term determined by the correlation431

length, which is absent in the case of the diffuson. Because of that mass term, the strength432

of the π-ton vertex contributions scales with the correlation length of the critical fluctuations,433

with the specific scaling behavior depending on the system dimension. In the 1D case, the434

strength of the π-ton vertex contributions scales linearly, while in the 2D case, it scales loga-435

rithmically with the correlation length. This correlation length scaling, along with the relation436

between Drude peak displacement and proximity to the phase transition, may be used in ex-437

periments to discriminate π-tons from other mechanisms, particularly localization corrections,438

leading to the DDP.439

4 Conclusion440

A displaced Drude peak originating from π-tons was recently found numerically in the weakly441

correlated metallic regime in one-dimension near the paramagnetic-to-antiferromagnetic tran-442

sition boundary [32]. Although qualitatively similar π-ton contributions have been observed443

in two dimensions, their logarithmic temperature scaling prevented unambiguous numerical444

statements.445

Here, we derive the analytical expression Eq. (21) for π-ton vertex contributions and446

Eq. (24) for the peak position of the DDP, and validate these against an improved, adaptive447

numerical integration. Our assumptions to arrive at these analytical expressions are that: we448

are at small frequencies, the correlation length is large, and—in 2D—the optical conductiv-449

ity mainly stems from nodal momenta where the velocity is largest. We find that a displaced450

Drude peak due to the π-tons may appear in 2D systems with a relatively strong coupling of451

the electrons to antiferromagnetic spin fluctuations or for a finite temperature phase transi-452

tion. In the former case, the displaced Drude peak gradually diminishes as the temperature453

decreases, while in the second scenario, the effect will be the opposite.454

With the identified characteristic dependencies of the π-ton vertex contributions in 1D455

and 2D [see Eq. (21), Eq. (24), and the Abstract], we have laid the foundations for observ-456

ing π-tons also in experiments. We find, as in some experiments, an enhancement of the457

DDP with increasing temperature if we have the ideal 2D case with an exponential scaling of458

the correlation length with 1/T and strong coupling to spin or charge fluctuations. An even459

more clear-cut proof would be to study the DDP upon approaching a finite temperature phase460

transition at Tc . In such scenarios, we predict an algebraic, σdc
V ERT ∝ ξ ∼ (T − Tc)−ν, and461

logarithmic, σdc
V ERT ∝ lnξ∼ ν ln(T − Tc), enhancement of π-tons in 1D and 2D, respectively,462

which should be contrasted with ln T dependence of localization corrections in 2D.463
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A Contour integrations468

We solve the integral469

I1 =

∫ +∞

−∞
dϵ

�

1

iωn + iνm − ϵ +
i

2τ

��

1

iνm − ϵ −
i

2τ

�

=

∫ +∞

−∞
dϵ u1(ϵ) , (A.1)

appearing in the bubble contribution to the current-current correlation function, Eq. (5), by470

performing the contour integration in the complex plane. In particular, we choose the contour471

C running from +∞ to −∞ on the real axis enclosed by the arc Γ of infinite radius in the472

lower half of the complex plane, so that we can write473

∮

C

dz u1(z) = −I1 +

∫

Γ

dz u1(z) = 2πi Res
�

u1, iνm −
i

2τ

�

. (A.2)

Note that z = iνm−
i

2τ is the only pole (of order one) in the lower half of the complex plane due474

to the constraint ωn > −νm > 0. The arc that closes the contour does not give a contribution475

because the integrand is decaying faster than 1/|z|, while the corresponding residue reads476

Res
�

u1, iνm −
i

2τ

�

= lim
z→ iνm−

i
2τ

�

z −
�

iνm −
i

2τ

��

�

1

iωn + iνm − z + i
2τ

��

1

iνm − z − i
2τ

�

= −
1

iωn +
i
τ

.

(A.3)

This yields the required integral477

I1 =
2πi

iωn +
i
τ

. (A.4)

For the evaluation of the π-ton vertex contributions, we additionally need to compute478

I2 =

∫ +∞

−∞
dϵ

�

1

iνm + iωn − ϵ +
i

2τ

�2 �
1

iνm − ϵ −
i

2τ

�2

=

∫ +∞

−∞
dϵ u2(ϵ) . (A.5)

The only difference between I1 and I2 is that in the latter the pole z = iνm −
i

2τ is of order479

two, so the corresponding residue reads480
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Res
�

u2, iνm −
i

2τ

�

= lim
z→ iνm−

i
2τ

d
dz

(

�

z −
�

iνm −
i

2τ

��2
�

1

iωn + iνm − z + i
2τ

�2 �
1

iνm − z − i
2τ

�2)

= lim
z→ iνm−

i
2τ

(−2)

�

1

iωn + iνm − z + i
2τ

�3

(−1) = 2

�

1

iωn +
i
τ

�3

.

(A.6)

This gives for the integral I2481

I2 = −4πi
1
�

iωn +
i
τ

�3 . (A.7)

B Momentum summation over the Ornstein-Zernike vertex func-482

tion483

We are interested in evaluating the sum484

sm=m′
OZ =

1
N

∑

q̃

A
ξ−2 + q̃2

, (B.1)

for the 1D and the 2D case. In the 1D case, we simply have, keeping in mind ξ≫ 1485

sm=m′,1D
OZ =

1
2π

∫ +π

−π
dq̃x

A
ξ−2 + q̃2

x

ξ→∞
−−−→

1
2π

2Aξ
π

2
=

Aξ
2

. (B.2)

Furthermore, by following Fig. 1 and the accompanying discussion, we note that in principle486

only q̃ which retains the scattered electron-hole pair close to the Fermi surface (accounting for487

the smearing) should contribute to the sum. In the simplest approximation, this introduces a488

correction factor given by the relative size of the Fermi surface to the whole Brillouin zone.489

In the 1D case, there are only two momenta contributing to the Fermi surface in the whole490

Brillouin zone of length 2π. Thus introducing a factor of 2/2π gives the final result491

sm=m′,1D
OZ =

Aξ
2π

. (B.3)

In the 2D case, the integrals are a little bit more involved492

sm=m′,2D
OZ =

1
(2π)2

∫ +π

−π
dq̃x

∫ +π

−π
dq̃y

A
ξ−2 + q̃2

x + q̃2
y

. (B.4)

However, for ξ≫ 1 we can approximate the integral over the Brillouin zone with the integral493

over the circle of radius π, which, importantly, contains the whole Fermi surface in the half-494

filled case. In that case, we simply have495

sm=m′,2D
OZ ≈

1
(2π)2

∫ 2π

0

dφ

∫ π

0

dq̃ q̃
A

ξ−2 + q̃2

ξ→∞
−−−→

A
2π

ln (πξ) . (B.5)
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Similar to the 1D case, we should correct this result with the ratio of the length of the Fermi496

surface to the area of the entire Brillouin zone. In the 2D case, the situation is a little bit more497

involved due to the velocity contribution v2
k ∼ sin2 kx , which favors momenta around kx ∼ ±

π
2 .498

In the simplest approximation, we can assume that four momentum points,
�

±π2 ,±π2
�

, on the499

Fermi surface give the largest contributions, introducing a correction factor of 4/(2π)2. This500

is a possible source of the difference between analytical and numerical results in Fig. 3(c,d).501

We then have in 2D502

sm=m′,2D
OZ ≈

A ln (πξ)
2π3

. (B.6)

To summarize, we obtained503

sm=m′
OZ ≈

A
2

¨

ξ/π , in 1D ,

ln(πξ)/π3 , in 2D .
(B.7)

C Displaced Drude peak frequency and height504

In order to determine the displaced Drude peak frequency, we take derivatives of Eqs. (7)505

and (21) with respect to frequency. For the bubble contribution, we have506

dσBUB(ω)
dω

= −
2ωτ2σdc

BUB

(1+ω2τ2)2
, (C.1)

while for the π-ton vertex contributions we get507

dσV ERT (ω)
dω

=
�

�σdc
V ERT

�

�

6ωτ2
�

1+ω2τ2
�3 − (3ω2τ2 − 1)6ωτ2

�

1+ω2τ2
�2

(1+ω2τ2)6

=
�

�σdc
V ERT

�

�12ωτ2
�

1+ω2τ2
�2 1−ω2τ2

(1+ω2τ2)6
.

(C.2)

By adding up the two contributions, σTOT (ω) = σBUB(ω) +σV ERT (ω), we obtain508

dσTOT (ω)
dω

=

�

�σdc
V ERT

�

�12ωτ2
�

1+ω2τ2
�2 �

1−ω2τ2
�

− 2ωτ2σdc
BUB

�

1+ω2τ2
�4

(1+ω2τ2)6
. (C.3)

The maximum is at dσTOT (ω)
dω =0 and given by the equation509

6
�

�σdc
V ERT

�

�

�

1−ω2τ2
�

−σdc
BUB

�

1+ω2τ2
�2
= 0 . (C.4)

We do not consider a trivial solution ω = 0. By introducing a = 6
�

�σdc
V ERT

�

�/σdc
BUB > 1 and510

x =ω2τ2, we may write511

x2 + (2+ a)x + (1− a) = 0 , (C.5)

whose solutions are512

x1,2 =
−(2+ a)±
p

a(a+ 8)
2

. (C.6)
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Fig. 5: Temperature dependence of the 2D Ornstein-Zernike parameters ξ, A, and λ
from Ref. [31], extracted by fitting the Ornstein-Zernike form in Eq. (9) to the RPA
π-ton vertex function.

We are interested only in positive x , so we can immediately discard the solution with the minus513

sign. For the solution with the plus sign to be positive, a > 1 needs to hold, so the criterion for514

the appearance of the displaced Drude peak reads 6
�

�σdc
V ERT

�

�> σdc
BUB. The frequency associated515

with the displaced Drude peak is then equal to516

ωDDP =
1
τ

√

√

√

√

√

√

√

3

�

�σdc
V ERT

�

�

σdc
BUB

�

3

�

�σdc
V ERT

�

�

σdc
BUB

+ 4

�

−

�

1+ 3

�

�σdc
V ERT

�

�

σdc
BUB

�

, (C.7)

which in the limit 6
�

�σdc
V ERT

�

�≫ σdc
BUB reduces to ωDDP = τ−1. In the latter case, the height of517

the displaced Drude peak equals518

σTOT (ωDDP) = σ
dc
BUB −

1
4

�

�σdc
V ERT

�

� . (C.8)

D Temperature dependence of the Ornstein-Zernike parameters519

In Fig. 5, we show the temperature dependence of the Ornstein-Zernike parameters ξ, A, and520

λ extracted in Ref. [31] by fitting the Ornstein-Zernike vertex form to the RPA π-ton vertex521

function for the case with the fermion lifetime τ−1 = 0.1547+ 1.637 T2 in the 2D case. The522

corresponding temperature dependencies respectively read523

ξ=
0.30

T
+ 10−3 exp

0.51
T , A= 0.41+ 13T1.03 , and λ= 0.38+ 10.6T1.29 . (D.1)

Note that although the correlation length is extracted from the RPA π-ton vertex function524

showing a finite transition temperature at Tc ≈ 1/19, it is fitted with an exponential function,525

resembling the true 2D exponential divergence of the correlation length as zero temperature526

is approached.527
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