A Large-N Approach to Magnetic Impurities in Superconductors
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Quantum spin impurities coupled to superconductors are under intense investigation for their
relevance to fundamental research as well as the prospects to engineer novel quantum phases of
matter. Here we develop a large- N mean-field theory of a strongly coupled spin—% quantum impurity
in a conventional s-wave superconductor. The approach is benchmarked against Wilson’s numerical
renormalization group (NRG). While the large-N method is not applicable in the weak-coupling
regime where the Kondo temperature Tk is smaller than the superconducting gap A, it performs
very well in the strong coupling regime where Tx 2 A, thus allowing us to obtain a reasonably
accurate description of experimentally relevant quantities. The latter includes the energy of the
Yu-Shiba-Rusinov subgap states, their spectral weight, as well as the local density of continuum
states. The method provides a reliable analytical tool that complements other perturbative and
non-perturbative methods, and can be extended to more complex impurity models for which NRG

may not be easily applicable.
I. INTRODUCTION

Magnetic impurities adsorbed on the surface of super-
conductors are a unique platform to study the compe-
tition between superconductivity and magnetism at the
atomic scale [I] 2]. Low-temperature scanning-tunneling
microscopy (STM) techniques allow to address spectral
and real-space properties of adsorbate-surface nanostruc-
tures with unprecedented precision. The differential con-
ductance measured using STM near the impurity reveals
the presence of Yu-Shiba-Rusinov (YSR) states, which
emerge due to the disruption of the superconducting
state introduced by the local exchange field of the impu-
rity. These states were originally predicted in the seminal
work of Yu [3], Shiba [4], and Rusinov [5], who assumed
that the quasi-particle scattering with the magnetic im-
purity can be treated as a classical local magnetic field.
YSR states appear as resonances in the differential con-
ductance, symmetrically located around the Fermi level
at energies within the superconducting gap A, and are
spatially localized around the impurity [6]. As a conse-
quence of the interplay between quantum fluctuations,
Kondo screening, single-ion anisotropy, etc., YSR states
can display a very complex behavior, as revealed in recent
experimental STM works [THI4].

From a theoretical perspective, a full quantum treat-
ment of the complex behavior of a magnetic impurity in a
superconductor leads to a many-body problem in which
Kondo and pairing correlations compete with each other
[1, I5HI9]. For the case of a quantum spin-% impurity
coupled to a s-wave superconductor via a weak exchange
coupling J, pairing correlations favor a doublet ground

state in which the quantum impurity effectively decou-
ples from the superconductor. On the other hand, for
sufficiently large J, and hence large Kondo temperature
Tk, a Kondo singlet with a fully screened impurity spin is
favored. Using a generalization of Wilson’s [20] numerical
renormalization group (NRG) [2IH23] and more recently,
the density-matrix renormalization group (DMRG) [24]
techniques, the doublet-singlet quantum phase transition
has been shown to occur for Tk ~ A, where A is the
pairing gap. This transition is evidenced in the spectral
properties by the energy crossing of the two symmetri-
cally located YSR levels, which can be directly seen in
the STM differential conductance signal [10] [25].

The “classical” approach of YSR, which is often uncrit-
ically employed to deal with magnetic impurities in su-
perconductors, nonetheless successfully captures several
important features of the full quantum problem, such as
the level-crossing transition. However, this approach also
suffers from a number of drawbacks, beginning with the
prediction that the level crossing takes place for an un-
reasonably large value of J. Furthermore, it also assigns
definite spin quantum number to the YSR excitations [3-
5], which is particularly inaccurate in the strong coupling
regime. These drawbacks stem from the complete neglect
of quantum fluctuations of the local magnetic moment.
Recently, quantum fluctuation effects have been studied
within a “single-site” approximation [26] 27], which, by a
rather severe truncation of the Hilbert space, renders the
problem tractable using modest numerics and, in some
cases, even analytical methods. However, the results of
this kind of approach can be at best regarded as qualita-
tive.



In this article, motivated by the theoretical challenges
described above, we investigate a large-IN approach to
an SU(N) extension of the impurity problem in a super-
conductor. The same approach correctly captures the
formation of the Kondo singlet in normal metals [28-30],
and here we show it is surprisingly accurate in describing
the competition between the latter and superconduct-
ing pairing correlations for a spin-1/2 impurity in the
strong coupling regime. It is worth noticing that other
large-N approaches have been also deployed to tackle
this problem [31I, B2]. In particular, in Ref. [31I] a
diagrammatic approach called “non-crossing approxima-
tion” (NCA) was applied to a large-N generalization of
the problem described by the Anderson model with in-
finite onsite Coulomb repulsion. Within the NCA, the
resulting set of self-consistent integral equations are nu-
merically solved, which allows to access the spectral prop-
erties. However, besides being technically challenging, it
is also known that in normal metals the NCA fails to
correctly describe Kondo correlations at T < Tx [33].

In Ref. [32] the saddle-point approximation was ap-
plied to a generalization of the impurity model with
SU(N)-symmetry. By computing the free energy as a
function of the impurity magnetization, it was shown
that this method always yields a Kondo singlet as the
ground state in any parameter regime and therefore it
does not capture the level-crossing transition. Specifi-
cally, in Ref. [32] an N-orbital model with SU(N)-orbital
symmetry that keeps intact the SU(2)-spin symmetry of
the original model is studied. In contrast, here we study a
model that is mathematically equivalent to a Kondo im-
purity in a superconductor by extending its SU(2)-spin
symmetry to SU(N), and we show that the transition
to the Kondo singlet can be captured within the saddle-
point approximation. However, this saddle-point can-
not describe the spectral properties in the weak coupling
regime where the magnetic moment remains unscreened.
Nevertheless, in the strong coupling regime, we show by
carefully comparing our results to those obtained using
NRG for the SU(2)-symmetric model that the spectral
properties are fairly well described. In particular, we
find the saddle-point approximation reproduces well both
the location of the transition and position of the YSR in
the Kondo screened phase. These results are encouraging
and indicate that the present large-IN approach may be a
framework that is both conceptually and technically sim-
ple and capable of describing the strong coupling regime.
Indeed, its technical complexity is just a bit higher than
the large spin-S “classical approximation” pioneered by
Yu, Shiba, and Rusinov [3H5], as the mean-field Hamil-
tonian is quadratic and the mean-field parameters must
be obtained by solving a set of nonlinear self-consistent
equations. The availability of this well-tested approach
opens the possibility of using it to compute both spec-
tral and real-space properties of complex systems such as
magnetic chains or lattices of various geometries [34] [35]
as well as superconducting hetero-structures [36] in the
strong coupling regime. For the latter, NRG or simi-

larly accurate but numerically-intensive numerical meth-
ods may not be easily applicable.

The rest of this article is organized as follows: In Sec.[[]]
we introduce the theoretical model, discuss its extension
to SU(NV) symmetry, and derive the saddle-point equa-
tions in the N — oo limit. In Sec. [[I} we compare to
NRG the results of our large N approach for the position
of the YSR excitations, their spectral weight, and the
spectral density of continuum states. Finally, in Sec. [[V]
we provide our conclusions. The Appendices contain im-
portant details and some generalizations of the calcula-
tions and methods.

II. MODEL AND SU(N) GENERALIZATION

We start with the following model of a spin—% magnetic
impurity coupled to a conventional s-wave superconduc-
tor:

H = Hc + Himp7 (1)

He=>"&ud}, jdio + A [dxpd gy +Hel, (2)
k,o k

Himp = JS - S0, (3)

where H. describes the superconductor electronic de-
grees of freedom, represented by the operators d;fc,g (di.o)
which create (destroy) an electron with lattice wave vec-
tor k and spin o =71, . The band dispersion & = €, —pu is
referred to the chemical potential . The pairing poten-
tial oc A describes, within the BCS mean-field approx-
imation, the superconducting correlations between the
electrons. The term Hiy,p is the Kondo (or s-d) exchange
coupling between the superconductor and the local mag-
netic moment of the impurity described by the SU(2) spin
operator S = (5%, 5Y,5%). The local electron spin opera-
tor at the origin is defined as sg = % ZUJ, d(T)ng'aa’do,a/,

with do» =D alky,,/\/ﬁ7 where Q is the system volume
and o = (0%,0Y,0%) the vector of spin Pauli matrices.
We shall further assume the coupling to the impurity
contains no scattering potential. This is a reasonable as-
sumption if the density of states of the host in the normal
state (i.e. for A = 0) and the hybridization of the mag-
netic impurity level are well approximated by constants
over wide energy range (typically larger than the charac-
teristic energy scales of the magnetic impurity), as it is
often the case for many kinds of metals and magnetic im-
purities. Under such conditions (referred to below as the
“wide band” limit) particle-hole symmetry is realized. As
discussed below, this additional symmetry plays an im-
portant role in the extension of the above Hamiltonian
to a fully SU(NNV)-symmetric model.

While not necessary for the large-N method, we can
simplify the theoretical treatment and subsequent calcu-
lations by assuming an isotropic metal (i.e., the jellium
model) and exploit the spherical symmetry. Expanding
the Bloch waves k in a spherical waves, it can be shown



that the magnetic impurity couples only to the s-wave
scattering channel, and therefore the spatial dimension-
ality of the problem effectively reduces to the radial coor-
dinate [30,[33]. A phenomenological model representing
this effective one-dimensional problem corresponds to a
semi-infinite tight-binding chain with the impurity spin
S coupled to the leftmost site at 7 = 0. This deriva-
tion is similar in spirit, albeit not strictly equivalent,
to the Wilson chain implemented in the NRG method
[20, 21, B3], B7]. Note that this “Wilson-like” chain is
just a toy-model Hamiltonian that captures the main fea-
tures of the generic bulk Hamiltonian Eq. , with the
advantage of being much more tractable and amenable
for analytical calculations. However, we stress that this
simplification is not essential and does not change our re-
sults qualitatively. The original bandstructure in Eq.
can be used whenever necessary, as long as it is particle-
hole symmetric.

The simplified one-dimensional model therefore reads:

H = He + Himp, (4)

He = Z Z [_t d;-‘rl,a’dj,a' +Adjqd;y +He.|, (5)
j=0 o

Himp = JS - s0, (6)

where the operators d; 5, d;o represent, respectively, an-
nihilation and creation operators at the site j = 0,1, 2, ...

of the chain with spin projection o, and obey usual anti-
disod} 5} = 8i305.01. The pa-
rameters t and A are, respectively, the effective hopping
amplitude and the BCS pairing potential.

The theoretical model described above exhibits full
SU(2)-spin rotation symmetry. The first step in our theo-
retical approach is to generalize the spin symmetry group
from SU(2) to SU(N), where the spin index o =1, | is re-
placed by the index a = 1,..., N. Here N can take any
arbitrary integer value. This allows to define the model
in the N — +o0o limit, where a static mean-field the-
ory becomes exact (i.e., saddle-point approximation, see
Sec. with 1/N being a small parameter that controls
the magnitude of fluctuations [28] 30, [38].

In the normal metal case, the generalization from
SU(2) to SU(N) symmetry, apart from a rescaling of the
Kondo exchange coupling, is rather straightforward [28-
30]. The resulting large-N approach provides a rea-
sonably good description of the Kondo resonance and
some of the low-energy properties of strong-coupling fixed
point Hamiltonian of the Kondo model [28, [30} 39]. How-
ever, in the superconducting case a naive generaliza-
tion of the BCS pairing potential in H. (cf. Eq.
to eg. Ha = Azj Ziﬂzl [djad;s +H.c] yields a
SU(N > 2) symmetry-breaking perturbation [40]. Phys-
ically, in an N-component Fermi gas the generaliza-
tion of the (spin-singlet) Cooper pairs are N-particle
bound states [41]. Therefore, the generalization of the
BCS pairing potential is an N-fermion interaction of the

commutation relations {

3

form H]AV = Ay Zj fovl,...,aNzl €ar--aydja; * djay +
H.c., where €4,0,--ay is the N-component fully anti-
symmetric (Levi-Civita) symbol. For N > 2, HY is
clearly not quadratic and thus, in general, the resulting
Hamilonian does not describe an exactly solvable “mean-
field” theory. A way out of this conundrum is to exploit
the particle-hole symmetry of the impurity problem in
the wide-band limit and map the BCS pairing Hamil-
tonian to a band insulator by means of the Bogoliubov
transformation described in Appendix[A]for a general bi-
partite lattice. The bipartite lattice realizes the particle-
hole symmetry on a lattice and thus the transformation
turns the BCS pairing potential into a staggered lat-
tice potential that leaves the form of the spin operators
unchanged. For the one-dimensional model introduced
above in Eq. @, the transformation takes the form (see
e.g. Ref. [21]):

1
C2jt = (dojr +d,,) (7)
1
C2l = 75 (dgj 1 dzm) ; (8)
coiins = — (d —dl (9)
j+1,1 5 2j+1,1 2j+1,1 )
-1
oLl = 75 (d£j+m + d2j+1,¢) : (10)

While this transformation preserves the form of the term
Hinp in Eq. (@, the transformed Hamiltonian of the host
in terms of the c-operators becomes:

o0
H. = —tz Z (c}H’ch,U + H.c.)

o j=0

+ Zi (=1)7 A ,¢0- (11)

o j3=0

Note that the transformed H, lacks particle-hole symme-
try in the c-operator basis (i.e. it is not invariant under
Cjo — (—1)%}76). This is not a problem for the gen-
eralization of the model to SU(N) required below, and
nevertheless the original particle-hole symmetry in the
d-fermion basis can be recovered by undoing the trans-

formation.

Moreover, since in Eq. the BCS pairing potential
becomes a potential that couples to the total occupation
of c-fermions at each lattice site, it is automatically a
scalar under SU(2)-spin rotations and therefore admits a
straightforward generalization to SU(NN) upon replacing
the summation over ¢ =1,| by one over « = 1,..., N.
The full Hamiltonian generalized with SU(NV)-symmetry



reads

3 [t (s 11e) + A1 ]

a=

ZN: (fdeoa) (cg,ﬂfﬁ) c (12)

a,B=1

i
M2

<.
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=)
—
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where, in addition to rescaling J — J/N, we have rep-
resented the SU(N) generalization of the impurity spin
operators in terms of pseudo-fermion f-operators (see
Appendix [B)), which are subject to a constraint given
in Eq. (B3). In the above expression : ... : stands for
normal ordering of the product of fermion operators rep-
resented by the ellipsis (...). Writing the Kondo cou-
pling in this form generates a scattering potential, which
can be dropped because it induces a phase shift. The
latter is of no physical consequence since it does not de-
pend on the mean-field variational parameters to be in-
troduced below [30]. From here on, we shall closely fol-
low the derivation for the normal metal case [30] and use
the path-integral formulation of this problem. Thus, we
carry out a Hubbard—Stratonovich transformation of the
interaction with the magnetic impurity:

J X
N Y (facoa) (Copfs)

a,f=1

N
= [V (facoa) + V (Goafa)] + Ng (13)

where V and V are decoupling U(1) bosonic fields which
can be expressed as V = |V|e!®. The partition function
of the system written as follows:

/DVVA/D¢¢ S v.val (1)

where we have used the compact notation ¥ = ({c¢}, {f})
to represent the Grassmann variables inside the path-
integral. The Euclidean action in the exponent of the
integrand is defined as:

N B
S['J)awvvamA] = Z/ de_aana
a=170
N
Z Z / dr Ckuaa Ck,v,a
a=1kv==+

+ [ dr H[y,9,V,V, 7], (15)

O\m

W ?/JaV V )‘ Z [ Z ek,uék,u,ack,y,a +Af_afa

k=%

+ (Vf_OéCO.,a + Véo,afa) ]

+N ('VJP - Aq) . (16)

In the above expressions we have introduced the eigen-
modes of the clean insulator which obey the relation
[He, Chva] = €k,uChp,a, With quantum number v repre-
senting the valence (v = —1) or conduction (v = +1)
band of the effective insulator. In addition, we have in-
troduced the Lagrange multiplier A\ in order to inforce
Eq. by projecting the f-fermion occupation onto
the physical sector ¢ = Q/N = 1/2 [28] [30].

The interior integral in Eq. . defines the effective
action Seg [V V, )\} through the relation:

o= Sert[V,VA] /D [1[),1/,] 6*3[1541”‘7"“], (17)

Since the action S [1/;, P, V,V, /\] is extensive in NV, in the
limit N — oo the effective action S.g is dominated by
the saddle point, which can be found by extremizing the
effective action:

N
N
;)icf) :%Z(fafo)* =0. (19)

[e%

In the next section we analyze in detail these saddle-point
equations.

A. Analysis of the large-N extrema

We shall solve the problem in the radial gauge where
fa(m) — €D f (1), V(r) = ?OV(r), A1) —
A — i0;¢(7), absorbing the U(1) phase fluctuations of
V in a (now dynamical) variable A(r) [30]. Next, we
focus on the static limit of all the bosonic fields, and
the Hamiltonian H [7,[_1, P, V,V, /\] in Eq. reduces to
H [1/_),1/),\7,\/,)\] — Hyp, where Hyp is a straightfor-
ward mean-field Hamiltonian:

N
HMF - Z [ Z €k7uakvl’1ack7’/7a + /\fafa

k=%
2
() o

which allows to regard the system as an insulator with a
resonant level f, with effective on-site energy A, and cou-
pled to the insulating host via a hybridization parameter

a=1

+V (faco,a + EO,afa)




V. The free-energy of this effective model, defined from
Zyp = e PIVE [see Eq. ], can be computed [30] and

reads:
G- (’Ll/n)] + N <|‘3| q) .

(21)

In this expression we have defined the fermionic Mat-
subara Green’s function matrix G~1(iv,) = [iv,, — Hur),
with v, = m(2n + 1)/5. Since we are only interested in
the local physics at the impurity site, we subtract the
contribution of H,

FMF = —%ZTIII’I[

iVp

AFyr = Fyr — F©,
e
:——ZTrln[ gff w n)] —|—N<|J|—/\q>,
” (22)

where G ¢ (i1, is the f-electron Matsubara Green’s func-
tion [42]

@w%z/wwwwmum»
1

= . (23)
ivp — o — V260 (ivy,)

Here T, is the imaginary-time ordering operator, and

gﬁg)(z) is the Green’s function of the clean insulator at
site j = 0, whose expression for the semi-infinite one-
dimensional tight-binding chain can be analytically ob-
tained, e.g. using the recursion method [43]:

z+ A s+ A\ 1z+A
G2 () = 5 i\/( 2t2) pi-a @

where the sign must be chosen such that for Im[z] > 0,
Im {gﬁi’) (z)} < 0. In the above expression, employing the

the SU(N) symmetry, we have dropped the index a.

In order to compare the large-N and the NRG ap-
proaches, we set the density of the states of the host at
the Fermi energy for A = 0 to the same value in both
methods. Recalling that the constant density of states
used in NRG is pg = 1/2D (with D the band width used
in the NRG calculations), we require:

1 1 1
——Im G0 (s wt A =0)| == (25
P Gee (2 > w ) w=0 wt 2D (25)
where wt = w + 0T (0T denoting a positive infinitesi-
mal).
For illustration purposes, in Fig. [l| we show the un-
perturbed local density of states (LDOS) at site j = 0 in

the chain, pgo) (w) = —%Im [géﬂ) (cu"’)}7 both in the nor-
mal case A = 0 (black dashed line) and superconducting
case A > 0 (continuous red line). In this latter case, we

20
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=
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nw/4D
FIG. 1. (Color online). Local density of states at site j = 0

in the tight-binding chain without impurity for the normal
metal case A = 0 (black dashed line), and for the effective
insulator case (red line) with A = 0.05D /7. Here po = 1/2D
and p{” (w) = —1Im [gﬁ? (w‘L)]7 where wt = w + 0%, 0T
being a positive infinitesimal.

can see the presence of a gap 2A in the single-particle
excitation spectrum. We note the asymmetry of the plot
in the case A > 0, due to the breaking of the particle-
hole symmetry by the staggered potential in Eq.
As mentioned in the preceding section, the particle-hole
symmetry of the original model can be restored undoing
the transformation in Egs. (7)-(10), and expressing the
LDOS in terms of the original d— fermions

Using Eq. . the extrema equations ) and (| .
become,

o =V + ;gff ivn) GO (ivy) | =0,
(26)
OAF;
8/\MF =—q+ 5 ngf (ivy) = 0. (27)

ZIJn

Note that V' = 0 and A = 0 always correspond to ex-
trema, which describes a decoupled f-level from the host,
or in the language of the original model, an unscreened
impurity [I, 2]. At T = 0, the Matsubara sums above
can be evaluated by contour integration on the complex
plane. Thus, we obtain the following expressions (assum-

ing V #£0):

% - i/o dw Im [Q(ES) (wh) Gyy (w+)} =0, (28)

O—OO
- dwmgy @] -0 (29)

For every pair of microscopic parameters J, A in the
Hamiltonian of Eq. , the above expressions define a
system of nonlinear coupled equations which yield the
extrema of the large-N effective action where V = V),
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FIG. 2. (Color online). Impurity free energy near a phys-
ical (saddle-point) solution of Eqgs. and for J =
0.47D,A = 0.01D/n. The red points are the location of the
solutions Vp, Ao. (a) Contour plot of the impurity free energy.
The physical solution is a saddle point of the free energy. Pan-
els (b) and (c) are the free-energy as a function of A and |V|?
with fixing |[V|* = |Vo|? and X = Xo, respectively.

A = Ao. In practice, we have solved these equations using
a numerical implementation of the Newton-Raphson al-
gorithm. Thus, although we are interested in the T'= 0
case, for reasons of numerical stability we have used a
small but finite absolute temperature 7" = A/200. This
smoothens the non-analyticity introduced by the YSR
state near w = 0 at T' = 0 due to the sharpness of the
Fermi-Dirac occupation of the f-level, which results in
numerical instabilities (see Appendix [C| for details).

In contrast to the normal metal case, a distinct aspect
of this problem is the existence of a gap in the excitation
spectrum of the host. This feature drastically changes
the low-energy properties of the system, and allows for
the existence of a finite value of the exchange coupling
J = J* > 0 for which Egs. and are solved by
Vo = 0 and A\g = 0. Imposing the condition V' = 0 in Eq.

0.20
J=Je
saddle—point solutions
0.15
V=Vp, 1=

2 0.10
S

0.05} JoJ

20=0,V,=0
0.00} .--

FIG. 3. (Color online) Plot of V, as a function of the exchange
parameter J, derived by solving the conditions for extrema of
the large-N effective action and . The blue dot corre-
sponds to J* (see Eq. . The blue dashed curve are extrema
that correspond to local maxima of the large-IN effective ac-
tion. The continuous red curve corresponds to true saddle
point solutions. J¢, is the minimum value of the Kondo cou-
pling for which the saddle point solutions exist.

, and recalling that ¢ = 1/2, we find:

1 O

5= / dw 5(w — Xo), (30)
— 00

whose only possible solution is A\g = 0. Hence, J* is

obtained by setting V = V5 = 0 and A = Ay = 0 in

Eq. , which yields:

110
J* o /_ oo
For J > J*, solutions with V; # 0 and Ay # 0 can
be found to the above extrema conditions, Egs. and
. However, for J* < J < Jg, the extrema correspond
to local maxima of the free energy. Here J, is defined
as the minimum value of the Kondo exchange for which
Vo and \g are true saddle-points of the free energy (as
e.g. shown Fig. . The latter is a defining feature of a
physical ground-state solution, which in the present case
corresponds to the Kondo screened phase. The situation
is summarized in Fig. [3] which illustrates that J* is con-
nected to J., > J* by a string of local maxima (dashed
blue curve) and the extrema conditions only settle onto
true saddle-pointd with V' =V # 0 (and A = A\g # 0, not
shown) for J > J., (continuous red curve). Thus, regard-
ing Vi, Ag the transition is discontinuous, which agrees
with the fact that for the original SU(2)-symmetric sys-
tem it is a level crossing transition [44]. In hindsight, the
evolution of the extrema from local maxima to saddle-
points can be seen as the consequence of the necessity of
the system to undergo a discontinuous phase transition
between the unscreened phase (Vp = 0) and the Kondo
screened phase (Vp # 0) with the parameter V; as a con-
tinuous function of J.

dw Im (31)

wt

o w}



III. RESULTS
A. Intra-gap YSR excitations

After solving the equations for the extrema and ob-
taining the set of physical saddle-point solutions Vj, Ag,
we next focus on the calculation of observable properties.
One such quantity is the local density of states (LDOS),
which can be measured from the differential conductance
signal of a STM. Returning for a while to the SU(2)-
symmetric system, we recall the definition of the LDOS:

pa (w) = —%Im [Z Yad.o (w+)1 : (32)

where the propagator G4, (2) corresponds to the prop-
agator of the original d-fermions. Using the Bogoliubov
transformation Egs. @ to 7 we obtain the relation

Z Gad,o (2) =

where G..., (2) is the hole propagator computed from the
analytical continuation to complex frequency z of

% Z [gcc,g (Z) + _C';CC,,, (z)] , (33)

o

_ B .
Gocor (i) = / dre™ T (Toch (P)eoq(0)).  (34)

By SU(2) symmetry, the Green’s functions at both sides
are independent of spin, which means the spin index can
be dropped. Thus, we arrive at the relation:

gdd (Z) = % [gcc (Z) + gcc (Z)} )
— 300 =G (2], (3)

where we have used the property Guq (2) = —Gaa (—2).
Furthermore, from the equations of motion of the c-
fermions, the exact electron propagator can be expressed
as [45):

Gee (2) =G () + G2 () T() G2 (), (36)

where T (z) is the T-matrix, which can be obtained from
the following expression:

B )
To (iv) = — / dreT (T,0,(r)0L(0),  (37)

where O, = % [c0,—eS™7 + 0cp,057].

Up to this point, the above derivation is formally exact.
Let us turn to the equation for the c-fermion Green’s
function within the saddle-point approximation, which
can be also obtained by the equations-of-motion method
and reads:

Gee (2) = G2 (2) + G2 (2) [ViGrs (2)] G2 (2. (38)

Comparing the exact expression Eq. , and Eq. ,
we see that within the saddle-point approximation, i.e. to
leading order in 1/N, T, (2) ~ Vi#Gsy (2). This relation
is also expected from the pseudo-fermion spin represen-
tation of the impurity spin in Eq.. Indeed, replacing
the operator Jcp,—,S~7 in the above definition of O,
by Jeo,—o ST = Jeoo (f1f5) = J{coafi)fs = —Vofs
where the saddle-point Eq. has been used, and
therefore we obtain the same result, namely 7, (z) =~
Vi#Gsy (2) as above. Comparing to the NRG results for
the SU(2)-symmetric system we can assess the magni-
tude of the (1/N, etc.) fluctuation corrections to the
N — 400 saddle-point approximation.

Finally, using the Eqgs. and (38), the change in
the LDOS due to the impurity after subtracting the back-
ground (i.e., the contribution of the bare c—fermion prop-
agator) can be obtained and yields the following expres-
sion:

Apa (w) = Ape (W) + Ape (—w) (39)

where:
Ape (w) = —%Im [VO2 {gﬁg) (w"')rgff (w+)] . (40)

Note that particle-hole symmetry of the original model,
Eq. @, has been restored in Eq..
In addition, from Eq. 7 and since the c-fermion

Green’s function G (2) has no singularities inside the
gap, the intra-gap YSR states must emerge from the poles
of the retarded Green’s function Gy (w™) in the region
—A < w < A. Therefore, from Eq. , we obtain the
equation for the energy of the ingap YSR states

Eysr — Ao — Vi Re [gég) (EYSR)} =0. (41)

In Fig. [4f(a), we show the position of the YSR states de-
rived from Eq. , and from the NRG method. In the
case of the NRG, the position of Eygg is extracted from
the position of the YSR peaks in the spectral functions
(see e.g. Fig. [pl and Appendix [E| for more details about
the calculation of the spectral functions within the NRG
method). In order to compare our results with the exper-
iment and with other theoretical approaches, we plot the
position of the YSR states as a function of the dimen-
sionless ratio T /A. To this end , we define the Kondo
temperature (in kg = 1 units) Tk as the half-width at
half-maximum (HWHM) of the spectral functions in the
normal state following Ref. [45]. In this regard, it is im-
portant to recall that the expression for the Kondo tem-
perature T = De~'/7ro  which is frequently used in
the literature, is only valid in the weak-coupling regime
where poJ < 1 [46], and it is not valid in the strong
coupling regime of interest to us here. Plotting physical
quantities in terms of the ratio Tk /A is relevant to ex-
periments, in which Tk can be directly extracted from
the width of the Kondo resonance in the STM differen-
tial conductance. This choice also allows us to compare
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FIG. 4. (Color online) (a) Position of the YSR peaks (absolute value) as a function of the Kondo temperature obtained

from the NRG method (black dots) and the large-N mean-field theory (red dots) as a function of Tx /A, computed for
parameters A = 0.001D for NRG and A = 0.01D/7 for large-N calculations. The point where the YSR level crosses the Fermi
energy Er = 0 corresponds to the critical point indicating the doublet-singlet transition. (b) Spectral weights of YSR peaks,
Wysr = Wy(Eysr) + W, (Eysr)(c.f. Eq. (D5)), at strong coupling obtained from NRG (black dots) and large-N theory (red
dots). (c) Comparison of the critical points T /A vs A from both methods. The linear behavior in both methods expresses the
universality and robustness of the transition. While NRG yields T¢ ~ 0.92A, which is consistent with previous work [21], [37],

the saddle-point approximation overestimates this dependence.

results from different theoretical approaches, for which
the details of the density of states and other observables,
may be different, but the ratio Tk /A is the same. Indeed,
this is the case for the comparison between the NRG and
large-N results reported below.

Within the large-N approach, we have computed the
Kondo temperature Tk by first solving the saddle-point
equations, and for the normal system (i.e. for
A = 0), and then extracted the HWHM from p; (w) =
—Im Gfs (wt) /m, where Eq. is used (this last step
is required as the line-shape of the Kondo peak is not
Lorentzian because the density of states for A = 0 is not
constant, see dashed curve in Fig. .

As discussed above, our large-N approach is able to
describe the phase transition from the unscreened to the
Kondo screened phase (see Figs. 4| (a,c)). Intuitively
speaking, this transition occurs when the coupling to the
impurity (corresponding to the energy scale Tk ) is of
the same order as the pairing gap A, and therefore the
exchange interaction is able to break the Cooper pairs,
allowing the impurity to bind (an odd number of) quasi-
particles that collectively screen the impurity spin. Note
that the saddle-point approximation overestimates the
transition point and yields T5f /A ~ 1.55, which is higher
than the NRG result of T /A ~ 0.92. In the NRG the
transition occurs at the point where singlet and doublet
ground states cross, while, within the large-N approach,
it occurs where the first physical (i.e. true saddle-point of
the free energy) solution appears. Since the large-IN ap-
proach is an intrinsically variational method, we believe
that this overestimation is rooted at the overestimation of
the singlet ground-state energy, which is directly related
to the energy of the YSR in the screened phase. By the
variational principle, the minimization with respect to V'
under the constraint imposed by A yields a saddle-point
free energy which must be larger than, or equal to, the
actual ground-state energy. Since the transition corre-

sponds to a singlet-doublet level crossing, near the tran-
sition point quantum fluctuations contribute to lower the
actual ground state energy. In the saddle-point approx-
imation, however, such fluctuations are neglected and
lead to an overestimation of the singlet ground state en-
ergy. On the other hand, the positions of the YSR peaks
from the large-N theory converge to the NRG result at
Tk 2 10A since in that case fluctuations are suppressed
by the strong Kondo coupling. The same tendency is ob-
served in the spectral weight shown in Fig. b), where
the discrepancies between the two approaches become is
smaller for Tk 2 10A.

Another feature shown in Fig. [d]is the lack of physi-
cal solutions within the large- N saddle-point approach in
the region Tx < T§. This is a reflection of the failure to
describe the unscreened phase within this approach. In
fact, in this regime the only solution to Egs. and
is Vo = A9 = 0, which describes an f-level decoupled from
the host. For N = 2 and V = 0, the mean-field Hamil-
tonian, Eq. has a doubly degenerate ground state
corresponding to the two possible spin orientations of the
f-fermion. This state is adiabatically connected with the
J = 0 ground state of the original system. However,
the spectrum of mean-field Hamiltonian does not con-
tain ingap states. We speculate that this is feature will
be cured if fluctuations were taken into account. While
this is an evident drawback of the present approach, we
note that it performs increasingly well as Tk /A becomes
large into the strong coupling regime, thus providing a
reliable analytical tool which can complement other (e.g.
perturbative) approaches.

Finally, we stress that, while Figs. [f{a) and (b) have
been obtained for the particular choices of A/D = 0.001
in the case of NRG (A/D = 0.01/x for the large-N ap-
proach), our results are robust and do not depend on

the specific values of parameters. To show this and to
benchmark the large-N method, in Fig. c) we show the



transition point 77 as a function of A. The linear depen-
dence is an indication of the robustness of the method,
and the different slope of the two lines reflects the over-
estimation of the singlet ground state energy within the
saddle-point approximation, which has been discussed
above.

B. Spectral function at the impurity site
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FIG. 5. (Color online) Spectral function A(w) = At(w) +
A, (w) obtained from NRG (black solid curves) and the large-
N theory (red dashed curves) for (a) Tx = 1.7702A, (b)
Tk = 3.4708A, (¢) Tk = 11.39A and (d) Tk = 17.09A. Here
po = 1/2D. The finite width of YSR peaks for the large-IN
approach is due to a finite broadening parameter § = 1076 D.
Here A = 1073 D for NRG and A = 10~ 2 D/~ for the large-N
calculations.

Besides the position of the transition and energy of
the YSR states, another experimentally relevant quantity
that can be obtained using the large-IN approach is the
spectral function at the impurity site, which is formally
related to the T-matrix by means of the expression:

Ay (@) = — T[Ty (), (42)

™

where 7, (2) is the T-matrix given in Eq. (37).

In Fig. [5| we show the spectral functions derived from
both the NRG method and the large-N approach. Both
approaches are remarkable good agreement, particularly
in the region where Tk /A 2 10. The position of the
YSR peaks follow the curves shown in Fig. a), showing
a discrepancy for Tk /A near the critical point, but the
agreement becomes quantitatively accurate in the strong-

coupling regime. This is also illustrated by the result of
spectral weights in Fig. b).

IV. CONCLUSIONS

We have studied a spin—é quantum impurity coupled to
a conventional superconductor using a large- N approach
in the saddle-point approximation. This is a problem of
both fundamental and practical interest, which is under
active research in condensed-matter physics for its impli-
cations for engineering and controlling exotic quantum
states of matter and their excitations [47H49).

In normal metals, the large-N method in the saddle-
point approximation is a well-established and reliable ap-
proach for the description of Kondo impurities at low
temperatures [30} [33]. Here we have shown how to ex-
tend this approach to superconductors by generalizing
the SU(2)-spin symmetry of the Hamiltonian to SU(NV).
The first step in this generalization requires mapping the
problem to a magnetic impurity in an insulating host.
This circumvents the problem of the pairing potential
breaking the SU(N) symmetry of a Hamiltonian. The
resulting model has been analyzed in the large-N limit
using the saddle-point approximation. We have shown
that this approach is capable of describing the transi-
tion to the Kondo screened phase, but unlike the normal
metal case, the transition happens for a finite value of
the Kondo coupling J, or more precisely, a finite value
of the ratio of the Kondo temperature Tk to the su-
perconducting gap A. In the strong coupling regime
(iie. Tx/A 2 1), we have computed spectral proper-
ties such as the position of the YSR ingap states, their
spectral weight, as well as the spectral function of the
continuum states. However, near the transition point,
Tk ~ A, the saddle-point approximation overestimates
the Kondo-singlet ground state energy due to the neglect
of finite IV corrections.

In the weak coupling region Tx < T§ the saddle-
point approximation is not accurate, as the magnetic
impurity effectively decouples from the superconductor.
This is described by solutions of the free-energy extrema
equations that correspond to a doublet ground state (for
N = 2) emerging from an impurity level that is not hy-
bridized with its host. However, this mean-field Hamil-
tonian is unable to describe the ingap YSR states as well
as other spectral properties in the weak coupling regime.
This is obviously a drawback of the method, which may
be traced back to the static nature of the saddle-point
approximation, that neglects quantum fluctuations. We
speculate that accounting for fluctuation effects, which
appear at higher orders in 1/N, should provide a more
accurate description of the unscreened phase in the weak
coupling regime.

Nevertheless, despite the failure to accurately describe
the weak coupling regime, in the strong-coupling regime
where T 2 10A, the large N approach yields results
that show a remarkable agreement with NRG for the en-
ergy of YSR states as well as in the spectral function
at the impurity site. We believe this is due to the sup-
pression of quantum fluctuations caused by the Kondo
screening of impurity as the system moves into the strong



coupling regime. This suppression helps to stabilize the
Kondo singlet as the ground state of the system, away
from the competition with BCS pairing correlations that
takes place for T ~ A.

One major limitation of the present large-N approach
is the requirement that the models to be studied must
exhibit particle-hole symmetry. Accounting for particle-
hole symmetry breaking perturbations is desirable in or-
der to provide a quantitative description of experimental
systems. However, we must regard the present approach
as a computationally affordable method (akin to the clas-
sical approach of YSR [3] /5, 50]) to obtain valuable (semi-
)analytical insights into the real-space and spectral prop-
erties of strongly coupled magnetic impurities in systems
for which other, sophisticated numerical tools such as
NRG, DMRG, or quantum Monte Carlo may not be eas-
ily applicable. This is indeed the case of multiple impu-
rity systems, impurity lattices of various dimensionalities
(especially chains [34] [35]), superconductor-normal het-
erostructures [25], [36] as well as impurities in supercon-
ducting hosts with complex (but particle-hole) symmetric
band structures. Such systems certainly provide an ex-
citing playground for further exploration of the complex
phenomena related to quantum magnetic impurities in
superconductors.
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Appendix A: From BCS to Band Insulator on a
Bipartite Lattice

In this Appendix we discuss the Bogoliubov transfor-
mation allowing for the SU(N)-symmetric extension of
the impurity model in a more general framework. The
purpose is to illustrate how the BCS Hamiltonian can be
mapped to an insulator model in a more general class of
tight-biding Hamiltonians on bipartite lattices than the
one dimensional chain described by H. in Eq. @
particular, we emphasize that, as long as the full system
(i.e. host + impurity) exhibits particle-hole symmetry,
the transformation can be used for systems of arbitrary
dimensionality.

Let us consider the following BCS pairing Hamiltonian
on a bipartite lattice, that is, a lattice consisting of two
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interpenetrating lattices A and B:

H. = Hy+ Ha, (A1)

HO = — Z [dzRadBR/g + HC:| s (A2)
(R,R),0

Ha =AY Y [dyrtdpr, +Hel. (A3)
R p=A,B

This (mean-field) BCS pairing Hamiltonian can be
mapped to one describing a band insulator where a gap
o A is opened by a staggered lattice potential. This is
achieved by means of the following Bogoliubov transfor-
mation:

1

CARt = 7 (dART + dARJ ) (A4)
Lo

CAR.L:72<dART_dARi>7 (A5)
1

CBR?t 7 (dBRT dBRJ ) (A6)
-1

CBR\ \ﬁ (dBRT +dBRJ,> (A7)

For the 1D chain with nearest neighbor hopping that was
considered in Sec. [T} the A sublattice corresponds to the
even sites where AR — 2j, j being an integer and the
B sublattice to the odd sites where BR — 25 + 1. The
inverse of the transformation reads:

1

dART = ﬁ (CART + CARJ,) (AS)
1

dary = ﬁ (CART CARL) ) (A9)
1

dBRT = ﬁ (CBRT CBRi) 5 (AlO)
—1

dBR¢ \/i (CBRT+CBR~L) (All)

Let us first consider the transformation of the hopping
term in Eq. (A3). To see that it is left invariant, we
consider the sum of the following two contributions:

(R,R)

t
o R (T ——
(R,R')

- {CTBR’J, + CBR’T} {C;RT — CARJ }

= —t Z [CLRTCBR/T + CTBR/iCARJr:| . (A12)
(R,R)

The other contribution to the hopping term can be shown
to remain unchanged (in terms of the ¢’s) in a similar
fashion.



Next we take up the BCS pairing term:

A ldartdar, +Hel
R
=5 2 {[eane + o] [ - cam] 1)
R

- 1
_ 1 T T
= 7AZ {CARTCARTJrcAIucARl — 2] .
R

However, the paring potential on the B sublattice yields
a potential term with the opposite sign:

AZ[dBRTdBR¢+H-C-]
R
A i t
= -5 Z { [CBRT — CBRJ {CBRJ, + CBRT} + H.C.}
R
1
—aY {cgmcm TN - 2] .
R

Adding the different contributions yields the following
transformed Hamiltonian:

H! = H} + HA, (A13)
Hy=—t Z |:CT4R{TCBR/O' + 3} ) (Al4)
(R,R'),0
H/A =-A Z |:CT4RO'CARU - CTBRUCBRU:| : (A15)
R0

As pointed out at the beginning of this Appendix, this
Hamiltonian describes a band insulator with a gap oc A.
Furthermore, what makes it interesting from the point of
view of this work is that, whilst the BCS pairing poten-
tial cannot be generalized from SU(2) to SU(N) with-
out breaking this symmetry group, H' admits a fully
SU(N) symmetric generalization. Another important
point to stress is that from the superconductor to the
insulator the mapping is possible as long as the initial
model is particle-hole symmetric. Adding any particle-
hole symmetry-breaking perturbation to H in Eq.[A3]will
generate pairing potential terms in terms of the ¢’s. On
the other hand, any term that is expressed in terms of
local spin operators, e.g. S;FR = d;RTd,ﬂu (p=A,Bwil
take the same form:

Sir = d,TARTdARi
= o o] [ ]
9 |“AR? R 1 AR?

= CTL&RTCARi (A16)
- T
and Syp = [SXR]

1[g+ = 1 — L | T
5 [Shr:Sar] =3 [CARTCART —CARJ,CARL}, etc.

CTAR,LCART7 and S:ZR =
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Appendix B: SU(N) pseudo-fermion representation
of the impurity spin

As a reminder, we recall that the SU (N) (i.e., special
unitary) group is the group of N x N unitary matrices
with determinant 1. The SU(N) algebra is generated by
N2 generators S“? which are represented as traceless her-
mitian matrices (i.e., tr {Saﬂ} = 0), and which satisfy
the commutation relation [38]

[S28,87°] = 63,5% — §asS™. (B1)

The operator N = Zfl\’:l

[N 75041 = 0, which implies that the number of inde-

pendent generators is actually N2 — 1. In particular,
note that for N = 2, we recover the usual algebra of
the SU(2) group, with the three independent generators
St =812, 87 = 521 8% = 1 (S — 522) of the impurity
spin.

We next introduce a representation of the SU(N) gen-
erators S*% in terms of (pseudo-)fermionic operators f,,

S satisfies the property

5% = fifs — adap, (B2)
which are subject to the occupation constraint
N
> fifa=aN. (B3)
a=1

Here ¢ is the f-electron filling factor controlling the total
pseudo-fermion conserved charge @Q = g¢N = 1, and set-
ting the population of the f electrons in different physical
situations. In our case, where the physical situation cor-
responds to a SU(2) model, ¢ must be chosen as ¢ = 1/2.
However, it takes the more generic value ¢ = 1/N;, where
N; =25 +1 is the degeneracy of a multiplet of the total
angular momentum J = L 4 S in an impurity orbital.

Appendix C: Finding the saddle point

In this Appendix we provide details on the calculation
of the saddle-point Eqgs. and . First, to solve
Eq. , we compute the sum over Matsubara frequen-
cies turning into the following integral in a contour C' on
the complex frequency z plane:

G (ivy)
T v — [VIPGE (iv) — A
(0)
1 cc -
2mi Joo 2 — V269 (2) — A1+ eP2
o [e%S) (0) 0t
T J-oo z— |V |2Gee’ (2 +40F) — A

The contour C = Cy + C_ is made of C, which con-
sists of the upper semi-circle and the straight segment



—004+i01t — 0o+:0T and C_, which consists of the lower
semi-circle and the segment co —i0t — —oco—40T. In the
above expression and in what follows np(z) = 1/(1+€%%)
denotes the Fermi-Dirac distribution and 0% a positive
infinitesimal. The choice of C' avoids the branch cut
along the real z axis. The integrals along the upper
and lower semi-circles in C'y vanish when their radius
is taken to infinity. Therefore, the contour integral over
C only receives contributions from the straight segments
—00 +i0T — 0o + 40T and co — i0T — —o0 — i0T.
The Matsubara sum in Eq. can be calculated in
the same fashion:
1
Z (0)
i Wn = [VI[2Gee’ (ivn) — A
1 1 -8
27 Jo ety pg® ) A1+ er

(C3)

(C4)
—otz
where 2 —&+— in the denominator appears in the discrete
version of the coherent-state path integral to ensure con-
vergence of the functional integral [30].
The above Matsubara sums yield the following equa-
tions for self-consistency at finite temperature:

S\ V) =0, (C5)
So (A [VIP) =0, (C6)
where,
Si(A V]2 =
o0 [ (0) +
l/ dz Im (2 £ 10T)nr (2) - =, (C7)
T J 2 VPGP +i0t) =]
Sa(\ VIP) =
l/ dz Im o nr(2) +q.
T J—o0 _71 < |V|QQCC (z+1i0%) — A
(C8)

We solve Egs. (C7) and (C8) using Newton-Raphson

method. To this end, we need to calculate the Hessian
matrix of the free energy, i.e.

OS1(A, |V| ) Oy S ()\,|V|2)
TNV = (aislu Vi) ailzsimvm)' (C9)

Starting from initial values, (A1, |V1|?), we update them
according to the following equation:

ANt ) _ [ An
[Varsal? [Vn[?
Sl()\N, VN|2)>

=77 0w ) (e B
(C10)

where s > 0 is a numerical parameter used to control the
stability of the convergence.

B nr(z)
/ dzlm | O, 1 ’
%+ |V|QQCC (Z + ZO+) — A
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Appendix D: Definitions of spectral weight

The spectral weights are defined from the Lehmann
representation of the T-matrix in Eq. ([{2),

Ap(w) = ;Im [’7}(er)] , (D1)

-1 ¢ PPn 4 ePPr [(m|Oy|n)

= [; Z o 15,5, | P2
-1 Wa;mn

= Womnd(w — B, + Eny), (D4)

= Wo(e)d(w —e). (D5)

where |m) and E,, are the eigenstates and the corre-
sponding eigenvalues. Z = Y. e PFm is the partition
function. The spectral weight WNRG is computed from
the matrix elements of O, between the NRG eigenstates
using the full-density-matrix scheme [51]. For the large-N
theory, the spectral weights are calculated from,

WhareeN(e) = lim Re[(z — €)T5(2)].

z—et

(D6)

Appendix E: Numerical Renormalization Group

Following Wilson [20], a logarithmic discretization of
the tridiagonalized version of the Hamiltonian in Eq.
is carried out. We used the adaptive scheme in Ref. [52]
with discretization parameter A = 2 for a constant den-
sity of states pg = 1/2D of the normal state (i.e. for
A = 0). This results in the following Hamiltonian for a
Wilson chain of L sites:

L—-1
H=3"t;[fioflr+ Friraf)s]
j=0

+ A Syt + gl 47850, (B1)

where the hopping amplitude ¢; decays exponentially as
~ A77/2_ In order to make the numerical computation
more efficient, we use the method described in the main
text and in Appendix[A]and apply the Bogoliubov trans-
formation given in Egs. , to map the host Hamil-
tonian to an insulator Hamiltonian [37]:

H— Z{ Z(JHGCWHC)

A(—l)JQZJ} +JS - s(0). (E2)

The NRG is performed using the conserved U(1) quan-
tum numbers @z and SU(2) spin quantum numbers



S., 82, where
L—1
Qz = Z Qzj= Z s +nj =1, (E3)
i 7=0
L—1
§=8"r+ 3 5, (E4)
j=0

We set the temperature T < A as an effective zero-
temperature limit. The truncation of states happens at
an energy scale w 2 10w; = 10A(*=9)/2 and we retain at
least 1024 states in each iteration. Due to the presence
of gap, the NRG computation is stopped at iterations of
energy scale ~ 1075 A < A[53]. The spectral weights,
W, (€), are defined using the T-matrix [45] derived from
the commutator O, = [dos, Himp). We note that do, is
the operator in the original d-fermion basis. The spectral
weight is defined from the Lehmann representation(c.f.
Eq. ) using the NRG eigenstates. We make use of
the full-density-matrix scheme [51] to obtain the spectral
weights and broaden the data using a hybrid kernel. The
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spectral function, A, (w), reads
As(w) = Z W, (€) [O(e — A)IG(w, €, a)

+O(A - ¢)G(w,€,b)], (E5)

where the functions IG(w, €, a) and G(w, €,b) are defined
as follows:

1G(w,€,a)

_0wd [ (el =il
aw??Ep[ (5 )

e—w\’

(9] e
Inside the BCS gap, the spectral peaks are broaden using
a Gaussian kernel of width b = A/1000. Outside the gap,
the peaks of the continuum part of the single-particle
spectrum are broadened using a Log-Gaussian kernel
with a rather narrow broadening parameter, a = 0.05,
on a logarithmic mesh binning ~ 500 points per decade
with respect to the gap. Furthermore, the spectral func-

tions are averaged with 64 twist parameters [54] taken
from the interval [1/64,1].

, (E6)

b/

G(w,€,b) = Exp
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