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Abstract

Quantum entanglement plays a crucial role not only in understanding Hermitian many-
body systems but also in offering valuable insights into non-Hermitian quantum sys-
tems. In this paper, we analytically investigate the entanglement Hamiltonian and en-
tanglement energy spectrum of a non-Hermitian spin ladder using perturbation theory
in the biorthogonal basis. Specifically, we examine the entanglement properties between
coupled non-Hermitian quantum spin chains. In the strong coupling limit (Jrung ≫ 1),
first-order perturbation theory reveals that the entanglement Hamiltonian closely re-
sembles the single-chain Hamiltonian with renormalized coupling strengths, allowing
for the definition of an ad hoc temperature. Our findings provide new insights into
quantum entanglement in non-Hermitian systems and offer a foundation for developing
novel algorithms, such as applying finite-temperature Density Matrix Renormalization
Group (DMRG) to non-Hermitian quantum systems.
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1 Introduction1

Quantum entanglement is a foundational concept that significantly enhances our understand-2

ing of many-body physics by elucidating quantum correlations between subsystems. The en-3

tanglement reveals concealed connections beyond classical physics. [1, 2] Suppose the total4

Hamiltonian H = HA + HB + HAB is written as summation of the subsystem Hamiltonians5

HA and HB, and their interaction HAB. To further analyze the ground-state entanglement6

properties, the reduced density matrix ρA = TrB|ψ0〉〈ψ0| usually becomes an essential tool,7

where |ψ0〉 is the normalized ground-state of the total Hamiltonian H , and the partial trace8

is performed on tracing the degrees of freedom of subsystem B. One common measure for9

quantifying entanglement between the subsystem A and B is the von Neumann entanglement10

entropy, defined by Svon = −
∑

iωi lnωi , where ωi is the ith eigenvalue of ρA. For exam-11

ple, in gapless systems where the low-energy theory is described by conformal field theory,12

the ground-state entanglement entropy exhibits a logarithmic scaling behavior with respect to13

subsystem size. This scaling allows for extraction of the central charge, a key parameter in14

the conformal field theory, which serves as an indicator of the phase transition’s universality15

class. [3,4]. For gapped systems, the ground-state entanglement entropy follows an area law,16

meaning it is proportional to the size of subsystem’s boundary.17

1

mailto:yctzeng@nycu.edu.tw


SciPost Physics Core Submission

The entanglement energy spectrum provides a detailed view of the quantum correlations18

between subsystems, with the entanglement entropy serving as a condensed summary of the19

information contained within this spectrum. The entanglement energy ξi is the ith energy20

eigenvalue of a hypothetical Hamiltonian, called entanglement Hamiltonian HE , which is de-21

fined by regarding the reduced density matrix as a thermal density matrix of the entangle-22

ment Hamiltonian at unity temperature, ρA = e−HE/Z. Where Z is the partition function23

that ensures Tr[ρA] = 1. Although the exact form of HE is generally unknown, its eigen-24

values can be obtained by taking logarithm on the eigenvalues of the reduced density matrix,25

ξi = − lnωi−ln Z. The entanglement energy spectrum provides deep insights into topological26

systems and can be considered as a kind of ‘fingerprint’ of these systems. [5] This ‘fingerprint’27

means that even when the entire system is divided into two halves, a topological system gen-28

erates a gapless edge state, and this signature can be observed in the low-energy portion of the29

entanglement energy spectrum. [5–8] For example in the 2-dimensional topological systems,30

such as the fractional quantum Hall systems, the low-energy portion of momentum-resolved31

entanglement spectrum presents the same state counting with the low-energy spectrum of the32

edge Hamiltonian. This relationship is known as the renowned Li-Haldane conjecture [9] or33

the edge-entanglement spectrum correspondence. [8]34

Interesting phenomena related to the entanglement Hamiltonian HE can also arise when35

the subsystem B is considered as an ancilla system copied from the subsystem A, and intro-36

ducing strong enough interaction HAB to create a nearly maximally entangled state between A37

and B. [10–12] For example, in an antiferromagnetic spin ladder where the rung coupling is38

much stronger than the leg coupling, the ground-state forms multiple rung-singlets, resulting39

in a nearly maximally entangled state between the two legs. [13–21] In contrast to the Li-40

Haldane conjecture in topological systems, the entire entanglement spectrum has some simi-41

larity to the energy spectrum of subsystem A. Remarkably, under carefully selected parameters,42

the entanglement Hamiltonian HE ≈ βHA can be proportional to the Hamiltonian of subsys-43

tem A by a constantβ . In other words, the finite temperature properties of an isolated system A44

can be approximated by the reduced density matrix ρA obtained from the ground-state of an45

enlarged system at zero temperature,46

ρA ≈
1

Z
exp[−βHA], (1)

where β is the inverse temperature as a function of system parameters. This development47

allows the finite-temperature Density Matrix Renormalization Group (DMRG) based on ma-48

trix product states to evolve into a robust numerical method for finite-temperature strongly49

correlated systems. [10]50

In this paper, we show that Eq. (1) remains valid for non-Hermitian Hamiltonians. This51

implies that the ancilla trick used in finite-temperature algorithms [10–12] is also expected to52

be effective for non-Hermitian quantum systems. In the next section, we briefly introduce non-53

Hermitian quantum mechanics and describe the non-Hermitian Hamiltonian for the spin-1/254

ladder.55

2 non-Hermitian Hamiltonian56

Non-Hermitian systems have become an important multidisciplinary field of study, [22–24]57

spanning photonics, [25] condensed matter physics, [26, 27] and quantum information sci-58

ence. [28–36] Unlike traditional quantum systems, which are governed by Hermitian Hamil-59

tonians that ensure real eigenvalues and physically observable energy levels, non-Hermitian60

systems are described by Hamiltonians that do not necessarily satisfy this condition. This leads61
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Figure 1: Schematic representation of the non-Hermitian spin-1/2 ladder with nonre-
ciprocal couplings. All parameters are real and positive. The shaded region indicates
the part of the system on which the partial trace is performed.

to complex eigenvalues and unique physical phenomena, e.g. exceptional points [37–42] and62

non-Hermitian skin effect. [43–45] An exceptional point (EP) in non-Hermitian systems oc-63

curs when two or more eigenvalues and their corresponding eigenvectors coalesce, rendering64

the Hamiltonian non-diagonalizable. This leads to unique phenomena, such as enhanced sen-65

sitivity to external changes [25] and a negative divergence in real part of fidelity susceptibil-66

ity [39–41] or quantum metric, [46–48]which measures how ground state changes under per-67

turbations. The non-Hermitian skin effect arises in systems with nonreciprocal coupling. [43]68

This nonreciprocity means that particles or excitations have different probabilities of hopping69

forward versus backward. As a result, even in the absence of an external field or disorder,70

the system can exhibit an accumulation of states at one end under open boundary condition,71

leading to the Hermitian bulk – non-Hermitian boundary correspondence. [49]72

Mathematically, nonreciprocal coupling is often introduced into a system’s Hamiltonian73

through asymmetric hopping terms. [26,27] For instance, in a one-dimensional lattice model,74

the hopping amplitude from site j to site j +1 might differ from the amplitude from site j +175

to site j . This asymmetry results in a complex band structure with eigenvalues that can form76

loops in the complex plane, leading to the skin effect. [49] In this paper, we study the following77

non-Hermitian Hamiltonian H = HA + HB + HAB for spin-1/2 ladder with the nonreciprocal78

coupling.79

HA = Jleg

N
∑

j=1

�

1

2

�

eΨS+j ,AS−j+1,A + e−ΨS−j ,AS+j+1,A

�

+∆Sz
j ,ASz

j+1,A

�

, (2a)

HB = Jleg

N
∑

j=1

�

1

2

�

eΨS+j ,BS−j+1,B + e−ΨS−j ,BS+j+1,B

�

+∆Sz
j ,BSz

j+1,B

�

, (2b)

HAB = Jrung

N
∑

j=1

�

1

2

�

eΦS+j ,AS−j ,B + e−ΦS−j ,AS+j ,B
�

+∆Sz
j ,ASz

j ,B

�

, (2c)

where N denotes the number of rungs, and Φ and Ψ are real parameters that control the80

nonreciprocal coupling between the legs and within each leg, respectively. Jrung and Jleg rep-81

resent the coupling strengths between the legs and within the legs. Lastly, ∆ denotes the82

XXZ anisotropy strength. Periodic boundary conditions are assumed. In the Hermitian limit,83

Φ = Ψ = 0, the ground-state phase diagram has been studied in the literature. [50] We will84

mainly focus on the entanglement Hamiltonian in the rung-singlet phase. The schematic rep-85

resentation of the non-Hermitian spin-1/2 ladder is shown in Fig. 1.86

Due to the non-Hermitian nature of the system, where H† ̸= H , the time evolution of87

the wavefunctions is driven by both H and H† simultaneously. This results in the follow-88

ing time evolution equations:
∂

∂ t |ϕ
R(t )〉=−iH |ϕR(t )〉, and

∂

∂ t |ϕ
L(t )〉=−iH†|ϕL(t )〉. Note89

that }h ≡ 1 is set. Consequently, in analogy to standard linear algebra, the eigenvectors of90

a non-Hermitian Hamiltonian are generalized into biorthogonal left and right eigenvectors,91
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satisfying the following eigenvalue equations: H†|ψL
n〉 = E∗n|ψ

L
n〉 and H |ψR

n〉 = En|ψR
n〉, with92

the biorthonormal condition: 〈ψL
n|ψ

R
m〉=δnm . [24] In non-Hermitian quantum mechanics, ob-93

servables are defined through the expectation value 〈ψL|O|ψR〉, involving both left and right94

eigenvectors. This biorthogonal framework naturally extends to the definition of the reduced95

density matrix in a bipartite system. For a system divided into subsystems A and B, the reduced96

density matrix (RDM) of the ground-state for subsystem A is defined as97

ρA = TrB|ψR
0〉〈ψ

L
0|. (3)

Note that Tr[ρA] = 1, since 〈ψL
0|ψ

R
0〉 = 1.98

This biorthogonal definition of the RDM immediately raises a key issue: the RDM itself99

becomes non-Hermitian, meaning that its eigenvalues, ωi , are generally complex. Even when100

the total Hamiltonian has PT symmetry and the ground-state energy is real [22], the eigenval-101

ues of the RDM in typical cases remain complex. As a result, appropriate definitions of generic102

entanglement entropy of both von Neumann type and Rényi type have been proposed by Tu,103

Tzeng and Chang to account for these complex eigenvalues. [28]104

STTC = −
∑

i

ωi ln |ωi |,

S(n)TTC =
1

1− n
ln

�

∑

i

ωi |ωi |n−1

� (4)

These entropies Eq.(4) effectively capture the negative central charge in non-Hermitian critical105

systems through the logarithmic scaling. [28,29]106

The entanglement Hamiltonian HE defined by ρA = e−HE/Z is also non-Hermitian, and107

the entanglement energy ξi is complex in general. The real part of the entanglement en-108

ergy can be obtained directly as Re[ξi] = − ln |ωi | − ln Z, and the entanglement entropy109

Eq. (4) can be seen as the expectation value of the real part of the entanglement energy,110

STTC =
∑

iωiRe[ξi]+ lnZ.1 However, the imaginary part of the entanglement energy cannot111

be easily determined, as the logarithmic function becomes multi-valued. To gain further insight112

into this complexity, in the following section, we directly derive the entanglement Hamiltonian113

of the non-Hermitian spin-1/2 ladder using perturbation theory for the rung-singlet phase,114

where the ground state is adiabatically connected to the limit case of Jrung≫ 1.115

3 Entanglement Hamiltonian116

3.1 Perturbation Theory117

The non-Hermitian spin-1/2 ladder Hamiltonian is given by Eq.(2). In the limit of Jrung≫ 1,118

the interaction between legs A and B at each rung j defines the unperturbed Hamiltonian119

H0 = HAB =
∑N

j=1 h j
0, where120

h j
0 = Jrung

�

1

2

�

eΦS+j ,AS−j ,B + e−ΦS−j ,AS+j ,B
�

+∆Sz
j ,ASz

j ,B

�

, (5)

1In PT-symmetric non-Hermitian systems, if the bipartition does not break the PT symmetry, the reduced density
matrix remains PT-symmetric, meaning that its eigenvalues ωi are either real or come in complex conjugate pairs.
Consequently, the partition function Z is real.
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and the Hamiltonians of the legs A and B, H1 = HA+HB, are treated as perturbation. The left121

and right eigenvectors of the single-rung Hamiltonian Eq.(5) are122

|s x
j 〉 =

1
p

2

�

eσ(x )Φ |↑〉 j ,A |↓〉 j ,B− |↓〉 j ,A |↑〉 j ,B
�

, (6a)

|t+x
j 〉 = |t

+
j 〉 =|↑〉 j ,A |↑〉 j ,B, (6b)

|t 0x
j 〉 =

1
p

2

�

eσ(x )Φ |↑〉 j ,A |↓〉 j ,B+ |↓〉 j ,A |↑〉 j ,B
�

, (6c)

|t−x
j 〉 = |t

−
j 〉 =|↓〉 j ,A |↓〉 j ,B, (6d)

where x = L, R labels the ‘left’ and ‘right’, respectively, and123

σ(x ) =

¨

+1, if x = R,

−1, if x = L.
(7)

Let |ψL(0)
0 〉 and |ψR(0)

0 〉 denote the left and right ground states of the unperturbed Hamiltonian124

H0, with the corresponding ground state energy E(0)0 = −NJrung(
1
2 +

∆

4 ). Here, we assume125

∆ > −1. The ground state is a product of singlet states on each rung,126

|ψx (0)
0 〉 =

⊗

j

|s x
j 〉, (8)

Using first-order perturbation theory, the corrected ground state can be written as,127

|ψx
0 〉 ≈ |ψ

x (0)
0 〉+ |ψ

x (1)
0 〉, (9)

where the left and right first-order correction terms are,128

〈ψL(1)
0 | =

N
∑

j=1

∑

n ̸=0

〈ψL(0)
0 |H1|ψ

jR(0)
n 〉

E(0)0 − E(0)n

〈ψ j L(0)
n |

=
Jleg

4Jrung

N
∑

j=1

�

2e−Φe−Ψ

1+∆
...〈t+j |〈t

−
j+1|...+

2e−ΦeΨ

1+∆
...〈t−j |〈t

+
j+1|...−∆...〈t 0L

j |〈t
0L
j+1|...

�

,

(10a)

|ψR(1)
0 〉 =

N
∑

j=1

∑

n ̸=0

|ψ jR(0)
n 〉
〈ψ j L(0)

n |H1|ψ
R(0)
0 〉

E(0)0 − E(0)n

=
Jleg

4Jrung

N
∑

j=1

�

2eΦeΨ

1+∆
...|t+j 〉|t

−
j+1〉...+

2eΦe−Ψ

1+∆
...|t−j 〉|t

+
j+1〉...−∆...|t 0R

j 〉|t
0R
j+1〉...

�

.

(10b)

Where, the dots represent the singlet states on each rung. |ψ j L(0)
n 〉 and |ψ jR(0)

n 〉 denote the129

excited states of the unperturbed Hamiltonian H0 = HAB, and E(0)n are the corresponding130

energies. Specifically, the excited states with non-zero contributions to the corrections are131

|ψ j(0)
1 〉 = ...|t+j 〉|t

−
j+1〉...,

|ψ j(0)
2 〉 = ...|t−j 〉|t

+
j+1〉...,

|ψ j x (0)
3 〉 = ...|t 0x

j 〉|t
0x
j+1〉...,

(11)
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where x = L, R, and the corresponding eigenenergies are132

E(0)1 = E(0)2 = Jrung

�

(1+∆)− N
�

1

2
+

1

4
∆

��

,

E(0)3 = Jrung

�

2− N
�

1

2
+

1

4
∆

��

.
(12)

The reduced density matrix ρA defined in Eq. (3) can be approximated as,133

ρA ≈ ρ
(0)
A +ρ(1)A = TrB

�

|ψR(0)
0 〉〈ψ

L(0)
0 |+ |ψ

R(1)
0 〉〈ψ

L(0)
0 |+ |ψ

R(0)
0 〉〈ψ

L(1)
0 |

�

=
1

2N

 

1−
4Jleg

Jrung(1+∆)

N
∑

j=1

�

1

2

�

eΨS+j ,AS−j+1,A + e−ΨS−j ,AS+j+1,A

�

+
1

2

�

∆+∆2�Sz
j ,ASz

j+1,A

�

!

(13)

Thus, the reduced density matrix can be written in terms of the Hamiltonian of subsys-134

tem A,135

ρA ≈
1

Z
exp[−β H̃A] =

1

Z

�

1−β H̃A +
1

2!
β2H̃2

A −
1

3!
β3H̃3

A + · · ·
�

(14)

Compare Eq. (14) with Eq. (13), we obtain the ad hoc inverse temperature136

β =
4

1+∆
1

Jrung
≪ 1, (15)

and the Hamiltonian of the subsystem A137

H̃A = Jleg

N
∑

j=1

�

1

2

�

eΨS+j ,AS−j+1,A + e−ΨS−j ,AS+j+1,A

�

+ ∆̃Sz
j ,ASz

j+1,A

�

, (16)

which is in the form of XXZ interaction with a renormalized parameter ∆̃ =
1
2(∆+∆

2). The138

partition is Z = Tr[exp(−β H̃A)] = 2N .139

3.2 Discussion140

We make some remarks regarding the derivation: For the spin ladder Eq. (2) considered in141

this paper, the renormalized anisotropy parameter remains unchanged, i.e., ∆̃ = ∆, when142

∆ = 1 or 0. In these specific cases, the entanglement Hamiltonian is exactly equal to the sub-143

system Hamiltonian, H̃A = HA. When Ψ = Φ = 0, our results are consistent with those from144

earlier studies [16], reproducing the known Hermitian case. Even when non-Hermitian cou-145

plings are introduced with non-zero Ψ and Φ, the overall behavior remains remarkably similar,146

confirming that the methods and conclusions from the Hermitian regime can be successfully147

extended to non-Hermitian systems without major deviations. In the general non-Hermitian148

case, if one wishes to ensure that H̃A = HA, a simple approach is to choose the inter-subsystem149

Hamiltonian HAB as a Hermitian and isotropic Heisenberg interaction.150

HAB = Jrung

N
∑

j=1

S⃗ j ,A · S⃗ j ,B (17)

This allows the reduced density matrix to reflect the exact form of the subsystem Hamiltonian151

without any parameter renormalization. A particularly interesting scenario arises when HA152

and HB are both Hermitian, while only the inter-subsystem coupling HAB is non-Hermitian,153

specifically with parameters Ψ = 0 and Φ ̸= 0. In this case, despite both the total Hamiltonian154

and the reduced density matrix being non-Hermitian, all the entanglement energies remain155

real. This situation is quite rare and demonstrates an unusual interplay between Hermitian156

and non-Hermitian components in the system.157
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4 Conclusion158

The entanglement Hamiltonian, whose eigenvalue spectrum is known as the entanglement en-159

ergy spectrum [5], plays a crucial role in revealing quantum correlations between subsystems160

in many-body systems. Understanding its analytical form is essential for gaining deeper in-161

sights into the nature of quantum entanglement and for facilitating entanglement Hamiltonian162

tomography [51]. However, obtaining the entanglement Hamiltonian is often challenging, es-163

pecially in non-Hermitian systems, where it can be complex and non-Hermitian itself. While164

studies on non-interacting systems, such as the non-Hermitian Su-Schrieffer-Heeger (SSH)165

model [32,52], have made progress in deriving the entanglement Hamiltonian, the challenge166

is even more pronounced in interacting systems, where many-body effects add significant com-167

plexity. Although the real part of the entanglement energy can be derived from the eigenvalues168

of the reduced density matrix, capturing the full entanglement Hamiltonian remains crucial169

for exploring the deeper properties of quantum many-body systems.170

In this paper, we explore the entanglement Hamiltonian of a non-Hermitian spin ladder171

system using perturbation theory, providing an analytical approach to this difficult problem.172

Remarkably, we find that the entanglement Hamiltonian in the non-Hermitian case can be173

approximated by the Hamiltonian of subsystem A, indicating that the thermal density ma-174

trix of an isolated non-Hermitian system A in equilibrium can be derived by the partial trace175

of an enlarged system. This suggests that the ancilla trick applied for developing finite-176

temperature Density Matrix Renormalization Group (DMRG) method [10], can be extended177

to non-Hermitian many-body systems as well. Our work offers new insights into the study of178

quantum entanglement in non-Hermitian systems, potentially facilitating the development of179

advanced numerical algorithms for investigating their finite-temperature behavior.180

Although non-Hermitian systems exhibit many phenomena absent in Hermitian systems,181

such as exceptional points (EP) and the non-Hermitian skin effect, many features of Hermitian182

systems persist in non-Hermitian counterparts when appropriately generalized. For instance,183

the entanglement entropy in critical systems still follows a logarithmic scaling [28,29], fidelity184

susceptibility diverges near phase transitions or EPs [39, 40], and machine learning methods185

can be transferred from Hermitian to non-Hermitian systems [53]. In our work on entangle-186

ment Hamiltonians, we extend the Hermitian case to non-Hermitian systems and find that, for187

nearly maximally entangled states, the results remain consistent with the Hermitian case.188

Acknowledgements189

YCT is grateful to Chia-Yi Ju, Po-Yao Chang and Gunnar Möller for many invaluable discus-190

sions. We thank to National Center for High-performance Computing (NCHC) of National191

Applied Research Laboratories (NARLabs) in Taiwan for providing computational and storage192

resources.193

Funding information YCT is grateful to the supports from National Science and Technology194

Council (NSTC) of Taiwan under grant No. 113-2112-M-A49-015-MY3.195

References196

[1] L. Amico, R. Fazio, A. Osterloh and V. Vedral, Entanglement in many-body systems, Rev.197

Mod. Phys. 80, 517 (2008), doi:10.1103/RevModPhys.80.517.198

7

https://doi.org/10.1103/RevModPhys.80.517


SciPost Physics Core Submission

[2] N. Laflorencie, Quantum entanglement in condensed matter systems, Physics Reports 646,199

1 (2016), doi:10.1016/j.physrep.2016.06.008.200

[3] P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.:201

Theo. Exp. 2004(06), P06002 (2004), doi:10.1088/1742-5468/2004/06/P06002.202

[4] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A:203

Math. Theo. 42(50), 504005 (2009), doi:10.1088/1751-8113/42/50/504005.204

[5] H. Li and F. D. M. Haldane, Entanglement spectrum as a generalization of entanglement205

entropy: Identification of topological order in non-Abelian fractional quantum Hall effect206

states, Phys. Rev. Lett. 101, 010504 (2008), doi:10.1103/PhysRevLett.101.010504.207

[6] A. Chandran, M. Hermanns, N. Regnault and B. A. Bernevig, Bulk-edge208

correspondence in entanglement spectra, Phys. Rev. B 84, 205136 (2011),209

doi:10.1103/PhysRevB.84.205136.210

[7] X.-L. Qi, H. Katsura and A. W. W. Ludwig, General relationship between the entanglement211

spectrum and the edge state spectrum of topological quantum states, Phys. Rev. Lett. 108,212

196402 (2012), doi:10.1103/PhysRevLett.108.196402.213

[8] W. W. Ho, L. Cincio, H. Moradi, D. Gaiotto and G. Vidal, Edge-entanglement spectrum214

correspondence in a nonchiral topological phase and Kramers-Wannier duality, Phys. Rev.215

B 91, 125119 (2015), doi:10.1103/PhysRevB.91.125119.216

[9] T. V. Zache, C. Kokail, B. Sundar and P. Zoller, Entanglement spectroscopy and prob-217

ing the Li-Haldane conjecture in topological quantum matter, Quantum 6, 702 (2022),218

doi:10.22331/q-2022-04-27-702.219

[10] A. E. Feiguin and S. R. White, Finite-temperature density matrix renormaliza-220

tion using an enlarged Hilbert space, Phys. Rev. B 72, 220401(R) (2005),221

doi:10.1103/PhysRevB.72.220401.222

[11] F. Verstraete, J. J. García-Ripoll and J. I. Cirac, Matrix product density operators: Simu-223

lation of finite-temperature and dissipative systems, Phys. Rev. Lett. 93, 207204 (2004),224

doi:10.1103/PhysRevLett.93.207204.225

[12] M. Zwolak and G. Vidal, Mixed-state dynamics in one-dimensional quantum lattice systems:226

A time-dependent superoperator renormalization algorithm, Phys. Rev. Lett. 93, 207205227

(2004), doi:10.1103/PhysRevLett.93.207205.228

[13] D. Poilblanc, Entanglement spectra of quantum Heisenberg ladders, Phys. Rev. Lett. 105,229

077202 (2010), doi:10.1103/PhysRevLett.105.077202.230

[14] J. I. Cirac, D. Poilblanc, N. Schuch and F. Verstraete, Entanglement spectrum and bound-231

ary theories with projected entangled-pair states, Phys. Rev. B 83, 245134 (2011),232

doi:10.1103/PhysRevB.83.245134.233

[15] I. Peschel and M. Chung, On the relation between entanglement and subsystem Hamilto-234

nians, Europhysics Letters 96(5), 50006 (2011), doi:10.1209/0295-5075/96/50006.235

[16] A. M. Läuchli and J. Schliemann, Entanglement spectra of coupled s =
1
2 spin chains in a236

ladder geometry, Phys. Rev. B 85, 054403 (2012), doi:10.1103/PhysRevB.85.054403.237

8

https://doi.org/10.1016/j.physrep.2016.06.008
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1103/PhysRevLett.101.010504
https://doi.org/10.1103/PhysRevB.84.205136
https://doi.org/10.1103/PhysRevLett.108.196402
https://doi.org/10.1103/PhysRevB.91.125119
https://doi.org/10.22331/q-2022-04-27-702
https://doi.org/10.1103/PhysRevB.72.220401
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1103/PhysRevLett.93.207205
https://doi.org/10.1103/PhysRevLett.105.077202
https://doi.org/10.1103/PhysRevB.83.245134
https://doi.org/10.1209/0295-5075/96/50006
https://doi.org/10.1103/PhysRevB.85.054403


SciPost Physics Core Submission

[17] R. Lundgren, Y. Fuji, S. Furukawa and M. Oshikawa, Entanglement spectra between cou-238

pled Tomonaga-Luttinger liquids: Applications to ladder systems and topological phases,239

Phys. Rev. B 88, 245137 (2013), doi:10.1103/PhysRevB.88.245137.240

[18] S. Predin, Entanglement spectrum of the degenerative ground state of Heisenberg lad-241

ders in a time-dependent magnetic field, Europhysics Letters 119(5), 57003 (2017),242

doi:10.1209/0295-5075/119/57003.243

[19] H. Fujita, Y. O. Nakagawa, S. Sugiura and M. Oshikawa, Construction of Hamiltonians by244

supervised learning of energy and entanglement spectra, Phys. Rev. B 97, 075114 (2018),245

doi:10.1103/PhysRevB.97.075114.246

[20] W. Zhu, Z. Huang and Y.-C. He, Reconstructing entanglement Hamiltonian via entangle-247

ment eigenstates, Phys. Rev. B 99, 235109 (2019), doi:10.1103/PhysRevB.99.235109.248

[21] Z. Yan and Z. Y. Meng, Unlocking the general relationship between energy and entan-249

glement spectra via the wormhole effect, Nature Communications 14(1), 2360 (2023),250

doi:10.1038/s41467-023-37756-7.251

[22] C. M. Bender and S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT252

symmetry, Phys. Rev. Lett. 80, 5243 (1998), doi:10.1103/PhysRevLett.80.5243.253

[23] C. M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys. 70(6), 947254

(2007), doi:10.1088/0034-4885/70/6/R03.255

[24] D. C. Brody, Biorthogonal quantum mechanics, J. Phys. A: Math. Theo. 47(3), 035305256

(2013), doi:10.1088/1751-8113/47/3/035305.257

[25] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides258

and M. Khajavikhan, Enhanced sensitivity at higher-order exceptional points, Nature259

548(7666), 187 (2017), doi:10.1038/nature23280.260

[26] N. Hatano and D. R. Nelson, Vortex pinning and non-Hermitian quantum mechanics, Phys.261

Rev. B 56, 8651 (1997), doi:10.1103/PhysRevB.56.8651.262

[27] N. Hatano and D. R. Nelson, Non-Hermitian delocalization and eigenfunctions, Phys. Rev.263

B 58, 8384 (1998), doi:10.1103/PhysRevB.58.8384.264

[28] Y.-T. Tu, Y.-C. Tzeng and P.-Y. Chang, Rényi entropies and negative central265

charges in non-Hermitian quantum systems, SciPost Phys. 12, 194 (2022),266

doi:10.21468/SciPostPhys.12.6.194.267

[29] M. Fossati, F. Ares and P. Calabrese, Symmetry-resolved entanglement268

in critical non-Hermitian systems, Phys. Rev. B 107, 205153 (2023),269

doi:10.1103/PhysRevB.107.205153.270

[30] P.-Y. Chang, J.-S. You, X. Wen and S. Ryu, Entanglement spectrum and entropy in topo-271

logical non-Hermitian systems and nonunitary conformal field theory, Phys. Rev. Res. 2,272

033069 (2020), doi:10.1103/PhysRevResearch.2.033069.273

[31] C.-T. Hsieh and P.-Y. Chang, Relating non-Hermitian and Hermitian quantum systems at274

criticality, SciPost Phys. Core 6, 062 (2023), doi:10.21468/SciPostPhysCore.6.3.062.275

[32] L. Herviou, N. Regnault and J. H. Bardarson, Entanglement spectrum and symme-276

tries in non-Hermitian fermionic non-interacting models, SciPost Phys. 7, 069 (2019),277

doi:10.21468/SciPostPhys.7.5.069.278

9

https://doi.org/10.1103/PhysRevB.88.245137
https://doi.org/10.1209/0295-5075/119/57003
https://doi.org/10.1103/PhysRevB.97.075114
https://doi.org/10.1103/PhysRevB.99.235109
https://doi.org/10.1038/s41467-023-37756-7
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1088/1751-8113/47/3/035305
https://doi.org/10.1038/nature23280
https://doi.org/10.1103/PhysRevB.56.8651
https://doi.org/10.1103/PhysRevB.58.8384
https://doi.org/10.21468/SciPostPhys.12.6.194
https://doi.org/10.1103/PhysRevB.107.205153
https://doi.org/10.1103/PhysRevResearch.2.033069
https://doi.org/10.21468/SciPostPhysCore.6.3.062
https://doi.org/10.21468/SciPostPhys.7.5.069


SciPost Physics Core Submission

[33] L. Herviou, J. H. Bardarson and N. Regnault, Defining a bulk-edge correspondence for279

non-Hermitian Hamiltonians via singular-value decomposition, Phys. Rev. A 99, 052118280

(2019), doi:10.1103/PhysRevA.99.052118.281

[34] C.-Y. Ju, A. Miranowicz, G.-Y. Chen and F. Nori, Non-Hermitian Hamiltonians282

and no-go theorems in quantum information, Phys. Rev. A 100, 062118 (2019),283

doi:10.1103/PhysRevA.100.062118.284

[35] C.-Y. Ju, A. Miranowicz, F. Minganti, C.-T. Chan, G.-Y. Chen and F. Nori, Einstein’s quantum285

elevator: Hermitization of non-Hermitian Hamiltonians via a generalized vielbein formal-286

ism, Phys. Rev. Res. 4, 023070 (2022), doi:10.1103/PhysRevResearch.4.023070.287

[36] C.-Y. Ju, A. Miranowicz, Y.-N. Chen, G.-Y. Chen and F. Nori, Emergent parallel transport288

and curvature in Hermitian and non-Hermitian quantum mechanics, Quantum 8, 1277289

(2024), doi:10.22331/q-2024-03-13-1277.290

[37] M.-A. Miri and A. Alù, Exceptional points in optics and photonics, Science 363(6422),291

eaar7709 (2019), doi:10.1126/science.aar7709.292

[38] A. Li, H. Wei, M. Cotrufo, W. Chen, S. Mann, X. Ni, B. Xu, J. Chen, J. Wang, S. Fan et al.,293

Exceptional points and non-Hermitian photonics at the nanoscale, Nature Nanotechnology294

18(7), 706 (2023), doi:10.1038/s41565-023-01408-0.295

[39] Y.-C. Tzeng, C.-Y. Ju, G.-Y. Chen and W.-M. Huang, Hunting for the non-Hermitian296

exceptional points with fidelity susceptibility, Phys. Rev. Res. 3, 013015 (2021),297

doi:10.1103/PhysRevResearch.3.013015.298

[40] Y.-T. Tu, I. Jang, P.-Y. Chang and Y.-C. Tzeng, General properties of fidelity in non-Hermitian299

quantum systems with PT symmetry, Quantum 7, 960 (2023), doi:10.22331/q-2023-03-300

23-960.301

[41] R. A. Henry and M. T. Batchelor, Exceptional points in the Baxter-Fendley free parafermion302

model, SciPost Phys. 15, 016 (2023), doi:10.21468/SciPostPhys.15.1.016.303

[42] C.-Y. Ju and F.-H. Huang, Quantum state behavior at exceptional points and quantum phase304

transitions (2024), 2403.16503.305

[43] S. Yao and Z. Wang, Edge states and topological invariants of non-Hermitian systems, Phys.306

Rev. Lett. 121, 086803 (2018), doi:10.1103/PhysRevLett.121.086803.307

[44] Y.-C. Wang, J.-S. You and H.-H. Jen, A non-Hermitian optical atomic mirror, Nature308

Communications 13(1), 4598 (2022), doi:10.1038/s41467-022-32372-3.309

[45] K. Kawabata, T. Numasawa and S. Ryu, Entanglement phase transition in-310

duced by the non-Hermitian skin effect, Phys. Rev. X 13, 021007 (2023),311

doi:10.1103/PhysRevX.13.021007.312

[46] D.-J. Zhang, Q.-H. Wang and J. Gong, Quantum geometric tensor in PT-symmetric quan-313

tum mechanics, Phys. Rev. A 99, 042104 (2019), doi:10.1103/PhysRevA.99.042104.314

[47] D.-J. Zhang, Q.-H. Wang and J. Gong, Time-dependent PT-symmetric quantum315

mechanics in generic non-Hermitian systems, Phys. Rev. A 100, 062121 (2019),316

doi:10.1103/PhysRevA.100.062121.317

[48] Y.-M. R. Hu, E. A. Ostrovskaya and E. Estrecho, Generalized quantum geometric tensor318

in a non-Hermitian exciton-polariton system, Opt. Mater. Express 14(3), 664 (2024),319

doi:10.1364/OME.497010.320

10

https://doi.org/10.1103/PhysRevA.99.052118
https://doi.org/10.1103/PhysRevA.100.062118
https://doi.org/10.1103/PhysRevResearch.4.023070
https://doi.org/10.22331/q-2024-03-13-1277
https://doi.org/10.1126/science.aar7709
https://doi.org/10.1038/s41565-023-01408-0
https://doi.org/10.1103/PhysRevResearch.3.013015
https://doi.org/10.22331/q-2023-03-23-960
https://doi.org/10.22331/q-2023-03-23-960
https://doi.org/10.22331/q-2023-03-23-960
https://doi.org/10.21468/SciPostPhys.15.1.016
2403.16503
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1038/s41467-022-32372-3
https://doi.org/10.1103/PhysRevX.13.021007
https://doi.org/10.1103/PhysRevA.99.042104
https://doi.org/10.1103/PhysRevA.100.062121
https://doi.org/10.1364/OME.497010


SciPost Physics Core Submission

[49] F. Schindler, K. Gu, B. Lian and K. Kawabata, Hermitian bulk – non-Hermitian boundary321

correspondence, PRX Quantum 4, 030315 (2023), doi:10.1103/PRXQuantum.4.030315.322

[50] K. Hijii, A. Kitazawa and K. Nomura, Phase diagram of S=
1
2 two-leg XXZ spin-ladder323

systems, Phys. Rev. B 72, 014449 (2005), doi:10.1103/PhysRevB.72.014449.324

[51] C. Kokail, R. van Bijnen, A. Elben, B. Vermersch and P. Zoller, Entanglement325

Hamiltonian tomography in quantum simulation, Nature Physics 17(8), 936 (2021),326

doi:10.1038/s41567-021-01260-w.327

[52] F. Rottoli, M. Fossati and P. Calabrese, Entanglement Hamiltonian in the non-Hermitian328

SSH model, J. Stat. Mech.: Theo. Exp. 2024(6), 063102 (2024), doi:10.1088/1742-329

5468/ad4860.330

[53] S. Sayyad and J. L. Lado, Transfer learning from Hermitian to non-Hermitian quantum331

many-body physics, J. Phys.: Cond. Mat. 36(18), 185603 (2024), doi:10.1088/1361-332

648X/ad22f8.333

11

https://doi.org/10.1103/PRXQuantum.4.030315
https://doi.org/10.1103/PhysRevB.72.014449
https://doi.org/10.1038/s41567-021-01260-w
https://doi.org/10.1088/1742-5468/ad4860
https://doi.org/10.1088/1742-5468/ad4860
https://doi.org/10.1088/1742-5468/ad4860
https://doi.org/10.1088/1361-648X/ad22f8
https://doi.org/10.1088/1361-648X/ad22f8
https://doi.org/10.1088/1361-648X/ad22f8

	Introduction
	non-Hermitian Hamiltonian
	Entanglement Hamiltonian
	Perturbation Theory
	Discussion

	Conclusion
	References

