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1 Introduction

Fractons [1, 2] are novel, at this point theoretical, quasiparticles with the distinctive feature
of having only limited mobility [3–5]. Their underlying (exotic) dipole symmetry falls into
the broader class of generalized symmetries [6, 7] that challenge, and hence improve, our
understanding of quantum field theories.

One puzzling aspect is their coupling to spacetime [8, 9]. While the matter fields [10]
can be coupled to generic Aristotelian geometry [11, 12] the gauge theory [13, 14] that
mediates the forces puts restrictions on the admissible spacetimes [9, 11, 12]. The reason for
the restriction lies in the tension between general Aristotelian covariance and dipole gauge
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symmetries. In Cartesian coordinates the latter gauge transformations with parameter Λ
act on the gauge fields ϕ and symmetric tensor Aij as

δΛϕ = ∂tΛ δΛAij = −∂i∂jΛ , (1.1)

where i, j are spatial indices. They couple to matter via ρδϕ + J ijδAij , which leads to the
conservation equation

∂tρ + ∂i∂jJ ij = 0 , (1.2)

which is at the heart of many of the interesting properties of this theory. It implies
for example the conservation of the electric charge Q =

∫
ρdx and the dipole moment

D⃗ =
∫

x⃗ρdx and that isolated monopoles cannot move. These relations also show that this
theory is nonlorentzian and that generalizing it to generic curved spacetimes is nontrivial.

In this work we will show that it is possible to couple fracton gauge fields consistently
to a particular Aristotelian theory of gravity.1 We circumvent the earlier no-go results by
providing another gauge theory, which derives from gauging the fracton/dipole algebra in
a spirit similar to the gauging of spacetime symmetry algebras to obtain Einstein gravity
in the first order formulation (see, e.g., [21, 22]).2 In 2 + 1 dimensions this leads to a
fracton/dipole Chern–Simons (CS) theory [26].3 One of our main results is to translate this
theory into second order formulation (see Section 3 for the definition of all expressions)

S[ϕ, Aµν , τµ, hµν ] =
∫

d3xe(−µϕhµνRµν + 2µKµρAνσ(hµνhρσ − hµρhνσ)

+µH

2 ερσκτκ(∂ρτσ − ∂στρ)
)

.
(1.3)

This action provides a coupling of fracton gauge fields (ϕ, Aµν) to the Aristotelian geometry
given by (τµ, hµν) and can be generalized to generic spacetime dimension. Since the
gauge fields act as Lagrange multipliers for the geometry, it exhibits similarities to JT
gravity [31, 32] and BF models.

This coupling possesses the remarkable property that the action remains invariant
under the following generalization of dipole gauge transformations to curved spacetimes,
without requiring additional restrictions on the geometry

δϕ = nµ∂µΛ̄ δAµν = −P ρ
(µP σ

ν)∇ρ∂σΛ̄ , (1.4)

where P ρ
µ = hµνhνρ = δρ

µ −nρτµ is the spatial projector and nµ is the vector dual to the clock
form τµ, i.e., nµτµ = 1 and nµhµν = 0. This implies a generalization of dipole conservation,
i.e., ∂µ(eJµ) = 0 where e is the integration measure (analog of

√
−g in a relativistic setup)

and where Jµ is the current

Jµ = ρnµ + ∇ν

(
P µ

ρ P ν
σ Jρσ

)
, (1.5)

1For complementary approaches, see, e.g., [15–20].
2The gauging of these symmetries and their relation to Aristotelian geometry has also been discussed in

the context of hydrodynamics [23–25].
3The existence of this CS theory already follows from the correspondence of the fracton and Carroll

symmetries [11, 27, 28] and the fact that theories with Carroll symmetry allow for a CS formulation [29, 30].
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where for simplicity we have assumed that the Aristotelian metric-compatible affine connec-
tion ∇µ has no torsion. These are the curved generalizations of (1.1) and (1.2) (without
linearization or further restrictions on the geometry). Hence dipole gauge invariance puts
no restrictions on the geometry (in any dimension).

Following [11, 12] we show how we can couple the (2 + 1)-dimensional theory to matter
theories [10] (Section 3.5) and how we can add a cosmological constant term. In 2 + 1
dimensions we also construct a solution to the nonlinear equations and derive for negative
and vanishing cosmological constant the conserved charges. The geometry is spherically
symmetric and has nonzero electric charge and energy and we therefore interpret it as a
monopole. For negative Λ we also discuss the asymptotic symmetries which are given by an
infinite dimensional enhancement of the fracton algebra (cf., [33, 34]).

This work is structured as follows. In Section 2 we introduce the fracton Chern–Simons
theory, i.e., the first order formulation, with and without cosmological constant term. In
Section 3 we discuss the underlying Aristotelian geometry and translate to second order
formulation, which we use to generalize the action to generic dimensions (Section 3.4). In
2 + 1 dimensions we show that we can couple the theory to matter fields (Section 3.5).
In Section 4 we find static circularly symmetric solutions, interpret them as monopoles
and discuss their charges and asymptotic symmetries. We close by mentioning various
interesting generalizations (Section 5). We have delegated technical aspects concerning
the Aristotelian connection to Appendix A, its curvature to Appendix B and Lie algebraic
considerations to Appendix C.

2 Fracton Chern–Simons theory in 2 + 1 spacetime dimensions

In this section we introduce a Chern–Simons theory based on the fracton algebra, with and
without cosmological constant.

2.1 Fracton algebra and its invariant metric

The fracton/dipole algebra [35] in 2 + 1 dimensions is spanned by the set of generators
⟨J, H, Pa, Q, Da⟩, which are the usual generators of symmetry of Aristotelian spacetime,
i.e. spatial rotations, time and space translations, dual to the angular momentum, energy
and linear momentum, as well as two generators of internal symmetry dual to electric and
dipole charge, respectively. The non-vanishing commutation relations are given by

[J, Pa] = ϵabPb [J, Da] = ϵabDb [Pa, Db] = δabQ , (2.1)

where a, b = 1, 2 and ϵ12 = 1. It is a nonsemisimple algebra with a nontrivial central
extension (Q) and a trivial one (H). In 2 + 1 dimensions there exist other nontrivial central
extensions, but since they do not persist for generic dimensions we will not consider them.

If we want to use the symmetries (2.1) to construct a Chern–Simons theory one
usually requires the existence of an invariant metric, that is a symmetric, ad-invariant,
non-degenerate bilinear form on the Lie algebra. The fact that this algebra is nonsemisimple
makes the existence of such an invariant metric nontrivial. In contradistinction, for
semisimple Lie algebras there is of course always the Killing form (by Cartan’s criterion).
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For the case at hand, the existence follows from the isomorphism of the Carroll and
fracton/dipole algebras [11], and the fact that the Carroll algebra has an invariant metric
in 2 + 1 dimensions [29, 30].

For the fracton algebra (2.1) the most general invariant metric is given by

⟨J, Q⟩ = µ ⟨Pa, Db⟩ = −µ ϵab ⟨H, H⟩ = µH

⟨J, J⟩ = χJ ⟨J, H⟩ = χJH (2.2)

which is non-degenerate for µ ̸= 0 ̸= µH . We will see below that since µH ≠ 0, one can
without loss of generality always set χJH equal to zero in the CS action.

2.2 Fracton/dipole CS action

With these ingredients we can write a Chern–Simons theory

SCS[A] =
∫

⟨A ∧ dA + 1
3 [A, A] ∧ A⟩ ≡

∫
LCS , (2.3)

for the Lie algebra valued one-form A, decomposed as

A = Atdt + Aidxi = τH + eaPa + ωJ + aQ + AaDa . (2.4)

The Chern–Simons action for the fracton algebra (2.1) with invariant metric (2.2) is given
by

S[τ, e, ω, a, A] =
∫

2µ
(
ω ∧ da − ϵabe

a ∧ dAb + ea ∧ Aa ∧ ω
)

+ µHτ ∧ dτ

+ χJω ∧ dω + 2χJHω ∧ dτ . (2.5)

This theory was already discussed in [26], where the term proportional to µH was mentioned,
but left implicit. Since τ is a relevant part of the Aristotelian geometry we will keep it
explicit.

Using the fact that µH was assumed to be nonzero, we can rewrite the last three terms
of the above action as

µHτ ∧ dτ + χJω ∧ dω + 2χJHω ∧ dτ = µH(τ + αω) ∧ d(τ + αω) + βω ∧ dω , (2.6)

(up to a total derivative) where α and β are given by

α = χJH/µH β = χJ − χ2
JH/µH . (2.7)

By performing a redefinition of τ , given by τ ′ = τ + αω, we can remove the term with χJH

entirely, and so without loss of generality we can set

χJH = 0 . (2.8)

For simplicity we will furthermore assume that

χJ = 0 . (2.9)
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Like every CS theory in 2 + 1 dimensions, this theory has no local propagating degrees
of freedom and, without further input, it does not depend on any (non)lorentzian metric
or geometry. In the next sections we will however interpret some of these generators in
terms of Aristotelian geometry [11, 12], e.g., we will impose additional restrictions on the
vielbeine (see (3.1)). This means we introduce additional structure, which does not change
the degrees of freedom, but the theory depends then on geometric quantities, like the
Aristotelian analog of a metric.

2.3 Equations of motion, and gauge transformations

The equations of motion are given by the usual curvature equals zero equations where the
curvature is

F = dA + 1
2 [A, A] = 0 . (2.10)

In components, if we vary the fields in the action, this amounts to

δτ : dτ = 0 (2.11a)
δea : dAa − ϵab ω ∧ Ab = 0 (2.11b)
δa : dω = 0 (2.11c)
δω : da + ea ∧ Aa = 0 (2.11d)

δAa : dea − ϵab ω ∧ eb = 0 . (2.11e)

The gauge transformations are of the form δA = dε + [A, ε] where

ε = λJ + ζH + ζaPa + ΛQ + ΛaDa . (2.12)

In components this reads

δτ = dζ (2.13a)
δea = dζa + λ ϵa

b eb − ω ϵa
b ζb (2.13b)

δω = dλ (2.13c)
δa = dΛ + ea Λa − Aa ζa (2.13d)

δAa = dΛa + λ ϵa
b Ab − ω ϵa

b Λb . (2.13e)

In Section 3 we provide a more detailed and general analysis, but let us first give some
intuition on how we can recover the dipole conservation (1.2) from the coupling to the
fields a and Aa of the CS theory. We restrict ourselves to a flat background in Cartesian
coordinates, i.e., eµ

a = δa
µ, τµ = δt

µ and ω = 0, which allows to simply replace tangent
indices a, b into spatial ones i, j. The charge and dipole gauge transformations are then
given by

δai = ∂iΛ + Λi δat = ∂tΛ δAi
j = ∂iΛj δAt

j = ∂tΛj (2.14)

and when we set Λi = −∂iΛ (which is the residual gauge transformation of the gauge choice
ai = 0) we find that at and Aij transform precisely like the gauge fields in (1.1), which
implies the dipole conservation law.
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2.4 Adding a cosmological constant

We can deform the fracton algebra (2.1) by adding curvature (“cosmological constant”) Λ,
which results in the algebra (see Appendix C for the details)

[J, Pa] = ϵabPb [J, Da] = ϵabDb [Pa, Db] = δabQ

[Q, Pa] = ΛDa [Pa, Pb] = ΛϵabJ , (2.15)

with the most general invariant metric

⟨J, Q⟩ = µ ⟨Pa, Db⟩ = −µ ϵab ⟨H, H⟩ = µH

⟨J, J⟩ = χJ ⟨Pa, Pb⟩ = Λ χJ δab , (2.16)

which is non-degenerate for µ ̸= 0 ̸= µH . With the connection (2.4) the CS action (2.5) is
then given by

SΛ[τ, e, ω, a, A] =
∫

2µ

(
ω ∧ da − ϵabe

a ∧ dAb + ea ∧ Aa ∧ ω + Λ
2 ϵabe

a ∧ eb ∧ a

)
+ µHτ ∧ dτ + χJ

(
ω ∧ dω + Λ(ea ∧ dea + ϵabe

a ∧ eb ∧ ω)
)

, (2.17)

with equations of motions (for χJ = 0)

δτ : dτ = 0 (2.18a)
δea : dAa − ϵabω ∧ Ab + Λa ∧ ea = 0 (2.18b)

δa : dω + 1
2Λϵabe

a ∧ eb = 0 (2.18c)

δω : da + ea ∧ Aa = 0 (2.18d)
δAa : dea − ϵabω ∧ eb = 0 . (2.18e)

Equation (2.18c) shows that Λ can be interpreted as adding a cosmological constant to the
geometry.

3 Second-order formulation

In this section we will translate the Chern–Simons action to the second-order formulation.
Roughly speaking and similar to general relativity, we integrate out ω and find a connection
that is built out of the Aristotelian metric like fields τµ and hµν . We show that the resulting
action is gauge invariant and derive how to couple it to matter. With the exception of the
matter coupling we show how we can generalize to generic dimension.

3.1 Integrating out fields

We will assume that (τµ , eµ
a) forms an invertible set of vielbeine whose inverse is given by

(nµ , eµ
a) where

nµτµ = 1 , ea
µeν

a + τµnν = δν
µ . (3.1)
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We define ξµ as ζ = ξµτµ and ζa = ξµea
µ, so that we have a bijective correspondence between

ξµ and (ζ, ζa). Using the equations of motion, i.e., that F = 0 it then follows that the
(ζ, ζa) transformations are on shell equivalent to Lie derivatives along ξµ.

Since (τµ , eµ
a) are invertible, the gauge transformation can also be written as

δAµ = ∂µε + [Aµ , ε] = LξAµ + ∂µΣ + [Aµ , Σ] + ξνFµν = δ̄Aµ + ξνFµν , (3.2)

where the last equality defines δ̄Aµ and where

ε = ξµAµ + Σ Σ = λ̄J + Λ̄Q + Λ̄aDa . (3.3)

Because the difference between δAµ and δ̄Aµ is proportional to the equations of motion it
follows that δ̄Aµ is also a gauge symmetry of the theory. Basically this is because we have
ξσ⟨F[µνFρ]σ⟩ = 0. The variation of the CS action is (up to boundary terms)

δSCS = 2
∫

⟨F ∧ δA⟩ , (3.4)

and the above conclusion follows from ⟨F ∧ iξF ⟩ = 0 where iξ denotes the interior product
with respect to the vector ξ.

The equations of motion allow us to solve for some of the fields algebraically in terms
of the other fields. If the set of fields we vary can be solved for that same set of fields
algebraically we are allowed to substitute these back into the action and obtain an equivalent
description in terms of fewer fields. Since the ω connection is one of these fields the resulting
action will be a second order formulation of the theory.

Consider equations (2.11d) and (2.11e). The latter can be written as

∂µeν
a − ∂νeµ

a − ϵab

(
ωµeν

b − ωνeµ
b
)

= 0 . (3.5)

By contracting this equation with nµ and eν
c we can solve for ωµ leading to

nµωµ = 1
2ϵacn

µeν
c(∂µeν

a − ∂νeµ
a) (3.6a)

eµ
aωµ = 1

2ϵcdeµ
c eν

d(∂µeν
a − ∂νeµ

a) . (3.6b)

Equation (2.11d) can be written as

∂µaν − ∂νaµ + eµ
aAν

a − eν
aAµ

a = 0 , (3.7)

from which it follows that

nµAµ
a = nµeν

a(∂µaν − ∂νaµ) (3.8a)
eµ

bAµ
a − eµ

aAµ
b = −eµ

aeν
b(∂µaν − ∂νaµ) . (3.8b)

The second equation tells us that the most general solution to Aa
µ is given by

Aµ
a = 1

2eν
a(δρ

µ + nρτµ)(∂ρaν − ∂νaρ) + Sa
beµ

b =: Ãµ
a + Sa

beµ
b , (3.9)
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where Sab is symmetric in a and b, but otherwise arbitrary, and the a, b, . . . indices are
raised and lowered with a Kronecker delta, and where we defined Ãµ

a. The solution for ω

is equivalent to imposing (2.11e) whereas the solution for Aa = Ãa + Sa
be

b where Ãa obeys
(2.11d). Using the solutions for ω and Aa the Lagrangian can be rewritten (up to a total
derivative) as

LCS = 2µ
(
ω ∧ (da + ea ∧ Aa) − ϵabdea ∧ Ab

)
+ µHτ ∧ dτ

= 2µ
(
−ϵabdea ∧ Sb

ce
c − ϵabdea ∧ Ãb

)
+ µHτ ∧ dτ

= 2µ
(
−ϵabdea ∧ Sb

ce
c − ω ∧ eb ∧ Ãb

)
+ µHτ ∧ dτ

= 2µ
(
−ϵabdea ∧ Sb

ce
c + ω ∧ da

)
+ µHτ ∧ dτ

= 2µ
(
a ∧ dω − ϵabdea ∧ Sb

ce
c
)

+ µHτ ∧ dτ , (3.10)

where ω is no longer an independent connection, but where Sab = S(ab) is an independent
variable (as are τµ, eµ

a and aµ).

3.2 Aristotelian geometry

The goal is to rewrite (3.10) in terms of an affine connection and its associated curvature
as well as possibly torsion terms of said affine connection. In order to introduce such a
connection we invoke the following vielbein postulate

0 = ∂µτν − Γρ
µντρ (3.11a)

0 = ∂µeν
a − ϵabωµeνb − Γρ

µνeρ
a . (3.11b)

If we solve these two equations for Γρ
µν we obtain

Γρ
µν = nρ∂µτν + eρ

b

(
∂µeν

b − ϵbcωµeνc

)
. (3.12)

It can be shown (see appendix A) that for ωµ given in (3.6a) and (3.6b) we can write the
affine connection as

Γρ
µν = nρ∂µτν + 1

2hρσ(∂µhνσ + ∂νhµσ − ∂σhµν) − hρστνKµσ , (3.13)

where we defined

hµν = δabeµ
aeν

b hµν = δabeµ
aeν

b , (3.14)

as well as
Kµν = 1

2Lnhµν . (3.15)

This connection is metric compatible in the sense that

∇µτν = 0 ∇µhνρ = 0 , (3.16)

which follows from the vielbein postulates and is thus true by design. This also implies that
∇µnν = ∇µhνρ = 0. Furthermore, it has nonzero torsion. Explicitly the torsion is given by

T ρ
µν = 2Γρ

[µν] = nρ(∂µτν − ∂ντµ) + hρσ(τµKνσ − τνKµσ) . (3.17)
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The torsion is thus determined by dτ and Kµν . One could formulate this as saying that the
torsion is equal to the intrinsic torsion of an Aristotelian geometry [36]. Intrinsic torsion
loosely speaking is a torsion tensor that is constructed from the geometric data τµ and hµν

that is first order in derivatives.
The Riemann tensor associated with this affine connection is

Rµνσ
ρ = −∂µΓρ

νσ − Γρ
µλΓλ

νσ − (µ ↔ ν) . (3.18)

A straightforward calculation tells us that

Rµνσ
ρ = ϵbceρ

beσc(∂µων − ∂νωµ) . (3.19)

The Ricci tensor is defined as Rµσ = Rµρσ
ρ. It follows that

hµσRµσ = ϵbceρ
be

µ
c(∂µωρ − ∂ρωµ) . (3.20)

3.3 Fracton gauge fields on an Aristotelian geometry

From the torsion constraint dea − ϵabω ∧ eb = 0 we can deduce (by applying the exterior
differential) that

d2ea − ϵabdω ∧ eb + ϵabω ∧ deb = 0 ⇔ ea ∧ dω = 0 . (3.21)

Using this it can be shown that the first term on the last line of (3.10) can be written as

a ∧ dω = ϕτ ∧ dω = ϕ

2 eρ
aeσ

b(∂ρωσ − ∂σωρ)τ ∧ ea ∧ eb = −ϕ

2 hµνRµντ ∧ e1 ∧ e2 , (3.22)

where ϕ is given by ϕ = nµaµ. In other words we decompose the gauge potential aµ as

aµ = ϕτµ + ϕaeµ
a , (3.23)

where ϕ = nµaµ and ϕa = eµ
aaµ. In order to rewrite the second term on the last line of

(3.10) we use that

Kab = eµ
aeν

bKµν = 1
2nρeσ

a(∂ρeσb − ∂σeρb) + (a ↔ b) . (3.24)

Using this we can write

dea ∧ ecϵab Sb
c = KadSbc(δadδbc − δbdδac)τ ∧ e1 ∧ e2 . (3.25)

The last term on the last line of (3.10) can be written as

τ ∧ dτ = 1
2ϵabeρ

aeσ
b(∂ρτσ − ∂στρ)τ ∧ e1 ∧ e2 = 1

2ερσκτκ(∂ρτσ − ∂στρ)τ ∧ e1 ∧ e2 , (3.26)

where ερσκ = e−1ϵρσκ with ϵρσκ the Levi-Civita symbol and e = det(τµ, eµ
a). Hence, we

obtain the following expression for the Lagrangian (3.10)

LCS =
(

−µϕhµνRµν − 4µKadSbcδd[aδb]c + µH

2 ερσκτκ(∂ρτσ − ∂στρ)
)

τ ∧ e1 ∧ e2 . (3.27)
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Let us define the following symmetric tensor

Aµν = eµ
aeν

bSab = Aρ
aP ρ

(µeν)a , (3.28)

where P ρ
µ = hµνhνρ = δρ

µ − τµnρ. We can then finally write the action as

S[ϕ, Aµν , τµ, hµν ] =
∫

d3x e
(
−µϕhµνRµν + 2µKµρAνσ(hµνhρσ − hµρhνσ)

+ µH

2 ερσκτκ(∂ρτσ − ∂στρ)
)

.
(3.29)

This is a gauge invariant coupling of an Aristotelian geometry to fracton gauge fields. We
will refer to this action as the second order formulation of the theory given in (2.5).

We will next consider the gauge symmetries of this theory. In particular, with a
generalization to higher dimensions in mind, we will try to understand it independently
of its Chern–Simons formulation. We will use the δ̄Aµ transformations of (3.2) which we
repeat here are defined as

δ̄Aµ = LξAµ + ∂µΣ + [Aµ , Σ] , (3.30)

where Σ is given by (3.3). In components we have

δ̄aµ = Lξaµ + ∂µΛ̄ + eµ
aΛ̄a . (3.31)

Likewise, we have
δ̄eµ

a = Lξeµ
a + λ̄ϵa

beµ
b , (3.32)

as well as
δ̄Aµ

a = LξAµ
a + ∂µΛ̄a + λ̄ϵa

bAµ
b − ωµϵa

bΛ̄b . (3.33)

For the clock form τ we can write
δ̄τµ = Lξτµ . (3.34)

Using the definition of the inverse vielbeine (3.1) we find

δ̄eµ
a = Lξeµ

a + λ̄ϵa
beµ

b (3.35a)
δ̄nµ = Lξnµ . (3.35b)

The field ϕa does not enter the action. In fact we can gauge-fix it to be zero. This is
because we have

δ̄ϕa = δ(eµ
aaµ) = eµ

a∂µΛ̄ + Λ̄a + λ̄ϵa
bϕb + ξµ∂µϕa , (3.36)

so that for Λ̄a = −eµ
a∂µΛ̄, we can set ϕa = 0 = δ̄ϕa.

The diffeomorphisms and gauge transformation for the remaining second-order fields
entering the action are

δ̄ϕ = δ̄(nµaµ) = Lξϕ + nµ∂µΛ̄ , (3.37)

and
δ̄Aµν = −P ρ

(µP σ
ν)∇ρ∂σΛ̄ , (3.38)
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where we used Λ̄a = −eµ
a∂µΛ̄.

Finally we will verify that the second order action is gauge invariant with respect to
the Λ̄ gauge transformation. If we take the second order action (3.29) and vary it with
respect to Λ̄, i.e., using (3.37) and (3.38), then after performing a few partial integrations4

and using the identity (B.9), we end up with

δΛ̄S = −2µ

∫
d3xe Λ̄ hκρhλσKκλ

(
Rρσ − 1

2hρσhαβRαβ

)
. (3.40)

We can see that this identically zero since

hκρhλσ
(

Rρσ − 1
2hρσhαβRαβ

)
= 0 , (3.41)

following from (3.19).
If we add the cosmological constant term of section 2.4 and go to the second order

formulation we end up with

S[ϕ, Aµν , τµ, hµν ] =
∫

d3x e
(
−µϕ(hµνRµν − 2Λ) + 2µKµρAνσ(hµνhρσ − hµρhνσ)

+ µH

2 ερσκτκ(∂ρτσ − ∂στρ)
)

.
(3.42)

3.4 Generalization to higher dimensions

It is only in the last step, equation (3.41), that we explicitly use that we are in 2 + 1
dimensions. One of the benefits of the second order formulation (3.29) is that it can be
straightforwardly generalized to higher dimensions.

Explicitly, if we take the action

S[ϕ, Aµν , τµ, hµν ] =
∫

dd+1x e
(

−µϕhµνRµν +2µKµρAνσ(hµνhρσ − hµρhνσ)
)

+Sτ,h , (3.43)

where all fields are now defined in d + 1 dimensions, then if we modify the gauge transfor-
mation of Aµν under Λ̄ to

δ̄ϕ = nµ∂µΛ̄ (3.44a)

δ̄Aµν = −P ρ
(µP σ

ν)

[
∇ρ∂σΛ̄ − Λ̄

(
Gρσ − 1

d − 1hρσhκλGκλ

)]
, (3.44b)

in which we defined
Gµν = Rµν − 1

2hµνhαβRαβ , (3.45)

whose spatial projection is a d-dimensional Einstein tensor, it follows that (3.43) is gauge
invariant under the Λ̄ transformation. Note that in (3.43) we left out the term proportional
to µH in (3.29). This is because that term does not generalise so straightforwardly to higher

4Since the connection has torsion it is useful to note the following when performing partial integrations

∇µXµ = e−1∂µ(eXµ) + T µ
µνXν , (3.39)

for any vector Xµ.
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dimensions. We replaced it with the action Sτ,h which only depends on the fields τµ and
hµν . For example we can take for the action Sτ,h the following [37],

Sτ,h = 1
4

∫
dd+1x e hµρhνσ(∂µτν − ∂ντµ)(∂ρτσ − ∂στρ) . (3.46)

In principle we could take a Hořava–Lifshitz type action for Sτ,h whose diffeomorphism
invariant formulation can be given in terms of Aristotelian geometry [38].

If we are in 2 + 1 dimensions, i.e., we consider (3.43) for d = 2 with (3.46), then we
know from the rewriting of the first order action that the τµ equation of motion (upon using
all the other equations of motion) cannot receive any contributions from the terms in (3.43)
that are proportional to µ. If vary (3.43) in which we use (3.46) with respect to τµ we get
that τµ must obey [37],

hµρhνσ(∂µτν − ∂ντµ)(∂ρτσ − ∂στρ) = 0 , (3.47)

which is equivalent (in form notation) to τ ∧ dτ = 0. To get this result it is sufficient to
vary τµ as δτµ = Ωτµ where Ω is an arbitrary function (while keeping hµν fixed). This says
that τ must be hypersurface orthogonal which is less constraining than what we had for
the 3D CS theory in which we found that dτ = 0. The variation of Sτ,h with respect to hµν

vanishes upon using the condition (3.47). It would be interesting to work out the equations
of motion of (3.43) with (3.46) in general dimensions.

We can generalize (3.43) by adding a cosmological constant. The action becomes

SΛ =
∫

dd+1x e
(
−µϕ(hµνRµν − 2Λ) + 2µKµρAνσ(hµνhρσ − hµρhνσ)

)
+ Sτ,h , (3.48)

where the only modification is the appearance of a “cosmological constant” term e ϕ Λ,
with Λ = σ d(d−1)

2ℓ2 where σ = −1, 1 and ℓ is a length (see Appendix C). The fracton gauge
transformations are then modified to

δ̄ϕ = nµ∂µΛ̄ (3.49a)

δAµν = −P ρ
(µP σ

ν)

[
∇ρ∂σΛ̄ −

(
Gρσ − 1

d − 1hρσhαβGαβ − 1
d − 1hρσΛ

)
Λ̄

]
. (3.49b)

All theories (in three or higher spacetime dimensions, with and without cosmological
constant) share many similarities with magnetic Carroll gravity defined in [39] and studied,
e.g., in [40, 41]. Besides the issue of interpreting the different fields entering the action,
the main difference between these two physical situations lies mainly in the treatment
of the clock form and the issue of boost-invariance. While magnetic Carroll gravity is a
boost-invariant theory for the Carrollian metric, the equivalent gauge-invariance in fractonic
theories has been exploited to arrive at the transformation laws (3.38) (or (3.44b) or (3.49b)).
The clock form in Carroll gravity is a dynamical object while here it is a fixed part of the
geometry, subject to the constraints obtained by variation of Sτ,h.
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3.5 Coupling to matter

In [11, 12] it was shown that the complex scalar field Φ with global dipole symmetry can be
coupled to an arbitrary curved Aristotelian geometry leading to the following action (where
we adapted the result of [11] to the notation used here)

Sscalar =
∫

dd+1x e
[
(nµ∂µΦ − iϕΦ)(nν∂νΦ⋆ + iϕΦ⋆) − m2|Φ|2 − λhµνhρσX̂µρX̂⋆

νσ

]
,

(3.50)
where

X̂µν = P ρ
(µP σ

ν)(∂ρΦ∂σΦ − Φ∇ρ∂σΦ) − iAµνΦ2 , (3.51)

in which ∇ρ is covariant with respect to the Aristotelian connection (3.13). The parameters
m2 and λ are real numbers.

The Lagrangian (3.50) is gauge invariant under the gauge transformations

δϕ = nµ∂µΛ̄ δAµν = −P ρ
(µP σ

ν)∇ρ∂σΛ̄ δΦ = iΛ̄Φ . (3.52)

Comparing (3.49a) and (3.49b) with (3.52) we see that the coupling to (3.50) only works
in 2 + 1 dimensions (with Λ = 0). We can now simply add the actions (3.43) and (3.50)
and set d = 2 leading to

S =
∫

d3x e
(
−µϕhµνRµν + 2µKµρAνσ(hµνhρσ − hµρhνσ) +

+(nµ∂µΦ − iϕΦ)(nν∂νΦ⋆ + iϕΦ⋆) − m2|Φ|2 − λhµνhρσX̂µρX̂⋆
νσ

)
+ Sτ,h , (3.53)

where Sτ,h is for example given by (3.46) or by the term proportional to µH in (3.29).
If we now vary ϕ and Aµν we get equations for the curvature that are determined by

the scalar field. Hence, this theory is not necessarily restricted to maximally symmetric
spacetimes (as was the case in [9, 11] where the dipole gauge theories were quadratic in the
gauge fields).

4 Solutions and charges

In this Section we will derive circularly symmetric solutions of the Chern–Simons theory
(for any Λ). Geometrically they share similarities with the spatial geometries of 2 + 1
dimensional gravity, but our analysis of the charges shows that they carry electric charge
and we therefore interpret them as monopoles. We also comment on asymptotic symmetries
which infinitely enhance the fracton algebra.

4.1 Circularly symmetric solutions in 2 + 1 dimensions

In this section, we will discuss circularly symmetric solutions to the field equations (2.18),
which describe the field generated by an electric monopole in a curved background with
and without a cosmological constant.

We will make use of the first order formulation. Let us consider a circularly symmetric
ansatz of the form

τ = N(r)dt e1 = 1
f(r)dr e2 = rdθ a = ϕ(r)dt Sab = S(r)δab , (4.1)
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where θ is 2π periodic. We only specify Sab, which we defined as Aa =: Ãa + Sabeb, since Ã

will be determined by a (as we have already discussed around (3.9)).
The Aristotelian geometry given by τ and ea is completely determined by (2.18a),

(2.18c) and (2.18e). Indeed, the equation of motion (2.18a) shows that N(r) is constant. In
particular, by selecting an appropriate time normalization, N can be set to one, resulting in

τ = dt . (4.2)

Additionally, equations (2.18c) and (2.18e) imply

ω = f(r)dθ , (4.3)

with

f(r) =
√

−Λr2 − M , (4.4)

where M is a real constant.5

The fractonic fields are determined by (2.18b) and (2.18d). One finds

ϕ(r) = ϕ0
√

−Λr2 − M S(r) = S0 , (4.5)

where ϕ0 and S0 are integration constants and Aa = δa
1Λrϕ0dt + S0ea.

In sum, the Aristotelian geometry of the circularly symmetric solution is described by
the following clock form and spatial metric:

τ = dt hµνdxµdxν = dr2

−Λr2 − M
+ r2dθ2 , (4.6)

while the fractonic fields are given by (cf. (3.28))

ϕ = ϕ0
√

−Λr2 − M, Aµν = S0hµν . (4.7)

In analogy to their lorentzian geometries we called the integration constant M , but it should
not be interpreted as a mass, but rather as a charge. This can be inferred from the fact
that the curvature of the geometry (2.18c) comes from the coupling aµJµ rather than from
coupling to ea

µ.
Let us first focus on the flat case, which is the well-defined limit Λ → 0 with metric

−dr2

M + r2dθ2 (for the following remarks further details are, e.g., in [42, 43] and references
therein). For M = −1 this is the plane with flat metric, while for −1 < M < 0 the plane is
deformed into a cone, which is metrically flat except at the tip which can be interpreted as
a point particle. When M → 0 the geometry approaches a cylinder and when M < −1 it is
a conical excesses. When M > 0 we can think about it as a Milne universe. The ansatz
in (4.1) assumes a static and circularly symmetric configuration, thereby precluding the
possibility of deriving a rotating solution from it. In relativistic gravitational theories, a
common technique to obtain rotating solutions involves applying an improper boost to a

5Strictly speaking there is the freedom to have both signs, i.e., f(r) = ±
√

−Λr2 − M , but since we can
absorb this freedom into the orientation of θ in (4.3) we will restrict henceforth to the positive root.
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static and circularly symmetric solution. However, this method is not applicable here due
to the absence of boosts. Nevertheless, one could consider a more general ansatz that is
stationary and invariant under the Killing vector ∂θ, allowing the metric to include cross
terms with dtdθ. We will explore this possibility in the future.

Let us from now on focus on Λ < 0 where the spatial metric takes precisely the same
form as the spatial metric of a nonrotating BTZ black hole [44, 45] in general relativity
in 2 + 1 dimensions. However, the clock form is different since the clock form does not
depend on any integration constant of the spatial geometry as would have been the case for
the lorentzian geometry. Furthermore, the geometry does not depend on the integration
constants ϕ0 and S0 of the fractonic gauge fields, meaning there is no backreaction of
the gauge fields on the geometry. This is similar to the case of Einstein gravity in 2 + 1
dimensions coupled to U(1) abelian Chern-Simons fields (see, e.g., [46]).

The gauge connection associated with this solution is given by

At = H + ϕ0
√

−Λr2 − M Q + Λrϕ0 D1 (4.8a)

Ar = 1√
−Λr2 − M

P1 + S0√
−Λr2 − M

D1 (4.8b)

Aθ = r P2 +
√

−Λr2 − M J + rS0 D2 . (4.8c)

In complete analogy with the Chern-Simons formulation of Einstein gravity, it is possible to
gauge away all the dependence on the radial coordinate r, such that the physical information
is encoded in an auxiliary connection a = atdt + aθdθ, where A = h−1(d + a)h for some
gauge group element h. For the circularly symmetric solution, one explicitly finds that

h = exp

 1√
−Λ

Arcoth

√
1 + M

Λr2

(P1 + S0D1)

 , (4.9)

where the auxiliary connection is given by

a =
(
H +

√
−Mϕ0Q

)
dt +

√
−MJdθ. (4.10)

The removal of the radial dependence via (4.9) can only be achieved for negative values of
Λ and M . For vanishing cosmological constant the auxiliary connection takes exactly the
same form as (4.10) and the group element h simplifies to h = exp

[
r√
−M

(P1 + S0D1)
]
.

4.2 Charges and asymptotic symmetries

The charges of this theory are related to large gauge transformations. To determine them we
need to find gauge transformations that preserve the form of the auxiliary connection (4.10),
i.e., we must find an ε such that dε + [a, ε] = 0 and which leads to non-vanishing charges.
The charge associated with these large gauge transformations can then be obtained using
the canonical formalism [47] and it is given by the following expression [48]

δQ[ε] = −2
∮

dθ⟨εδaθ⟩ . (4.11)
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When a transformation changes the charge it should not be thought of as a nonphysical
gauge redundancy, but as an observable physical change.

For the case at hand large gauge transformations are generated by

ε = Λ̄Q , (4.12)

for a constant Λ̄.6 When Λ̄ has no functional variation we find the electric charge

Q[ε] = −4πΛ̄µ
√

−M . (4.13)

This shows that the integration constant M , which geometrically shares some similarities
with mass (but is not the mass of the system), is associated to the electric charge of the
system.

The total energy can be obtained by considering the charge associated with time
evolution and can be derived from

δE = 2
∮

dθ⟨atδaθ⟩ . (4.14)

Then, if one assumes that δϕ0 = 0, then the energy of the solution takes the form

E = −2πµϕ0M . (4.15)

Therefore the total energy and the electric charge are related E ∼ ϕ0Q
2. The constant

S0 does not appear in the charges. Indeed, since Aµν = S0hµν , the constant S0 can be
interpreted as as labeling a particular ground state of the symmetric tensor Aµν .

Note that the components of the auxiliary connection (4.10) are defined along the
generators H, J and Q, which form a set of commuting generators. This suggests that
a natural set of asymptotic conditions that accommodate this solution could be given by
“soft hairy asymptotic conditions”, similar to those introduced in [49, 50] whose asymptotic
symmetry algebra is given by a set of U(1) Kac-Moody current algebras. This aligns
with the fact that the dipole algebra with a negative cosmological constant is isomorphic,
apart from the central element H, to the three-dimensional Poincaré algebra. Indeed, this
isomorphism allows us to map all the known results in three-dimensional general relativity
in flat space to the case of the dipole algebra with a negative cosmological constant. Indeed,
based on the results in [51], after a suitable gauge transformation, it would be possible to
write a set of asymptotic conditions in the flat space analogue of the highest weight gauge
[52–54], where

aθ = (J − ℓP1) − M(t, θ)
2 (J + ℓP1) − L(t, θ)

2

(
Q + 1

ℓ
D2

)
− H(t, θ)

2 H . (4.16)

Here ℓ is the AdS radius related to the cosmological constant by Λ = −ℓ−2. The asymptotic
symmetry algebra is then given by the three-dimensional BMS algebra with an additional
U(1) current, which contains the cosmological dipole algebra as its wedge algebra. The

6When χJ is nonzero there are more large general transformations that lead to non-vanishing charges,
but they will not provide additional information since they will be proportional to this charge.
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case when the cosmological constant vanishes is less clear, as the previous asymptotic
conditions do not appear to have a natural flat limit. However, (4.10) suggests that soft
hairy asymptotic conditions might naturally be applicable. We plan to investigate this
further in the future.

5 Discussion

We conclude by recalling that the main result of the paper is a metric formulation of a
fracton gauge theory (3.29) obtained from a Chern-Simon action in 2+1 dimensions, with
gauge fields Aµν and ϕ coupled to dynamical Aristotelian gravitation fields hµν and τµ. We
want to emphasize that the invariance of the action under the dipole gauge transformations
given by Eqs. (3.37) and (3.38) imposes no restrictions on the geometry, in stark contrast
to previous no-go results. [9, 11, 12]. This theory was generalized to higher dimensions
without (3.43) and with (3.48) a cosmological constant. Additionally, we showed that the
three-dimensional theory can be consistently coupled to fractonic matter fields (3.50).

This work opens various interesting avenues for further exploration:

Other multipole symmetries The tools we have used in this work are of course not
restricted to dipole symmetries and it could be interesting to generalize to higher
multipole moments.

Supersymmetrization An immediate generalization is the supersymmetrization of the
CS theory. Again using the correspondence to Carroll symmetries [11, 27, 28] it is
clear that such a theory exists [55] and it could be interesting to generalize the work
of Huang [26] and ours to this framework.

Fracton BF gravity There also exist generalizations to (1 + 1)-dimensional gravitational
models [56, 57] in particular there is an analog proposal for fracton BF gravity [58] to
which much of what we have done could be applied.

Relation to scalar charge gauge theories In order to make contact with more stan-
dard gauge theories of fractons on flat space [13, 14] let us take the action (3.29)
and choose a background configuration which satisfies the equations of motion at
0th-order, given by the flat Aristotelian background τ̄t = 1 and h̄ij = δij and all
other fields are zero. Linearizing the theory (3.29) up to quadratic order around this
background yields, among others, the term EijȦij + ϕ ∂i∂jEij (where Eij is related
to the metric perturbation eij = hij − h̄ij by Eij = eij − δijek

k) which is ubiquitous
in the Hamiltonian treatment of fracton gauge theories performed, e.g., in [11]. We
reserve a more thorough study of the Hamiltonian formulation of the theory displayed
in (3.43) or (3.48) and its relation to the theories (or others) described in [11, 13, 14]
for future works.

Infrared triangle, memory effects It was recently shown [33, 34] that fracton theories
allow for interesting interrelations, called infrared triangle [59], between asymptotic
symmetries, soft theorems and (double kick) memory effects. The fracton CS theory
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also allows for infinite dimensional asymptotic symmetries (cf., Section 4.2) which
makes it natural to expect related soft theorems and memory effects. What makes
the case at hand an interesting challenge is that the gauge theory is topological and
therefore has no propagating degrees of freedom.

Applications to condensed matter systems We briefly suggest a possible application
of our fractonic Chern-Simons theory in the framework of topological phases of matter.
We first observe that our action (2.17) can be seen as an one-loop effective topological
field theory induced by integrating out some massive degrees of freedom. In particular,
in a (2 + 1)-dimensional microscopic system made by non-relativistic massive fermions
with conserved electric charge, dipole and rotational symmetry but broken time-
reversal symmetry, (2.17) can describe the topological response of the system to
external probings. In fact, the first term is known in the condensed-matter literature
as first Wen-Zee term [60] and in absence of dipole conservation, it has been employed
to study several kinds of topological systems, such as quantum Hall insulators and
higher-order topological phases in two space dimensions [61–65]. The first Wen-Zee
term, entirely related to the charge conservation and rotational symmetry of the
system, gives rise to the shift invariant and corresponding Hall viscosity. On the
other hand, the first term related to the cosmological constant Λ in the same action
coincides with the topological response of an atomic insulator in two space dimensions
[66], which only depends on charge conversation and translation symmetry. Finally,
the first term related to χJ in (2.17) is known as second Wen-Zee term and plays a
role mainly in the fractional quantum Hall effect [67, 68]. Thus, we expect that our
(2 + 1)-dimensional fractonic theory with a non-zero cosmological constant represents
the low-energy description of suitable topological phases augmented by the dipole
symmetry, namely topological dipole phases (see [69] for an example of topological
dipole insulator) that will be investigated in detail in a future work.
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A Affine connection

The purpose of this appendix is to show that equation (3.13) follows from (3.12) in which
we substitute (3.6a) and (3.6b).

First we use completeness to write (3.12) as

Γρ
µν = nρ∂µτν + eρ

b∂µeν
b − ϵbceρ

beνc

(
τµnσωσ + eµ

deσ
dωσ

)
. (A.1)

In this equation we substitute (3.6a) and (3.6b) leading to (after some straightforward
algebra)

Γρ
µν = nρ∂µτν + hρστµKνσ − hρστµhσκ∂νnκ + Xρ

µν , (A.2)

where
Xρ

µν = hρλhκσ
(
eλbhσµ∂κeν

b + eµbhσν

(
∂κeλ

b − ∂λeκ
b
))

. (A.3)

Using completeness once more we can write

Xρ
µν = τνnαXρ

µα + P α
ν Xρ

µα , (A.4)

where we have
Xρ

µαnα = −P κ
µ P ρ

α∂κnα . (A.5)

In order to rewrite P α
ν Xρ

µα we use that

hρλP κ
ν P σ

µ

[
eσ

b
(
∂κeλ

b − ∂λeκ
b
)

+ cyclic permutations of σ, κ, λ
]

= 0 . (A.6)

Applying this identity to one-half of Xρ
µν while using (A.4) for the other half we find

Xρ
µν = τνXρ

µσnσ + 1
2hρλP κ

ν P σ
µ (∂κhσλ + ∂σhλκ − ∂λhσκ) . (A.7)

After a bit of furthermore straightforward algebra we then find (3.13).

B Curvature

In this appendix we will collect some useful formulas for affine connections Γρ
µν with nonzero

torsion.
The covariant derivative will be denoted by ∇µ, the Riemann tensor by Rµνσ

ρ and the
torsion tensor by T ρ

µν . The latter are defined via

[∇µ, ∇ν ]Xσ = Rµνσ
ρXρ − T ρ

µν∇ρXσ (B.1a)
[∇µ, ∇ν ]Xρ = −Rµνσ

ρXσ − T σ
µν∇σXρ (B.1b)

from which it follows that

Rµνσ
ρ ≡ −∂µΓρ

νσ + ∂νΓρ
µσ − Γρ

µλΓλ
νσ + Γρ

νλΓλ
µσ (B.2a)

T ρ
µν ≡ 2Γρ

[µν] . (B.2b)
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The algebraic and differential Bianchi identities are

R[µνσ]
ρ = T λ

[µνT ρ
σ]λ − ∇[µT ρ

νσ] (B.3)
∇[λRµν]σ

κ = T ρ
[λµRν]ρσ

κ . (B.4)

The Ricci tensor is defined as

Rµν ≡ Rµρν
ρ . (B.5)

Our connection satisfies the property that

Γρ
µρ = ∂µ log e , (B.6)

where e = det(τµ , ea
µ) is the integration measure. From this it follows that

Rµνρ
ρ = 0 . (B.7)

The antisymmetric part of the Ricci tensor is then

2R[µν] = T λ
µνT ρ

λρ + ∇µT ρ
νρ − ∇νT ρ

µρ + ∇ρT ρ
µν . (B.8)

Consider the differential Bianchi identity (B.4) and contract κ with ν. Contracting the
resulting identity with nλhµσ and using the torsion tensor (3.17) leads to

0 = ∇λ

(
nλhµσRµσ

)
+ 2hκσhρλRρσKκλ (B.9)

−2
(
hκσhρλ − hκρhλσ

)
[∇κ∇ρKλσ − ∇κ(KλσLnτρ) + KλσLnτκLnτρ − ∇ρKλσLnτκ] .

This identity is used in Section 3.3 to prove gauge invariance of the second order theory.

C Fracton algebraic considerations

We start by defining the (anti) de Sitter Carroll algebras in generic spacetime dimension
d + 1

[Jab, Jcd] = δbcJad − δacJbd − δbdJac + δadJbc

[Jab, Bc] = δbcBa − δacBb

[Jab, Pc] = δbcPa − δacPb

[Ba, Pb] = δabH

[H, Pa] = −ΛBa

[Pa, Pb] = −ΛJab .

(C.1)

where Λ = σ
ℓ2 with σ = 1 (−1) for (anti) de Sitter Carroll and is related to the cosmological

constant d(d−1)
2 Λ (we follow [70, 71]).

We now replace the Carroll boost by dipole moment Ba 7→ Da and Carroll energy by
charge H 7→ −Q and add a central element H to the new algebra. This curved fracton
algebra is then spanned by g = ⟨Jab, H, Pa, Q, Da⟩ and given by

[Jab, Jcd] = δbcJad − δacJbd − δbdJac + δadJbc

[Jab, Dc] = δbcDa − δacDb

[Jab, Pc] = δbcPa − δacPb

[Pa, Db] = δabQ

[Q, Pa] = ΛDa

[Pa, Pb] = −ΛJab .

(C.2)
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To obtain further geometric understanding let us think about the homogeneous space
where we quotient g by h = ⟨Jab, Q, Da⟩. The homogeneous space is a curved Aristotelian
homogeneous space7 either R × Sd or R × Hd, for positive or negative Λ, respectively.

When we restrict to 2 + 1 dimensions the rotations commute and with J = −J12 we
obtain the algebra

[J, Pa] = ϵabPb [J, Da] = ϵabDb [Pa, Db] = δabQ

[Q, Pa] = ΛDa [Pa, Pb] = ΛϵabJ , (C.3)

where ϵ12 = 1. The most general invariant metric is

⟨J, Q⟩ = µ ⟨Pa, Db⟩ = −ϵabµ ⟨H, H⟩ = µH

⟨J, J⟩ = χJ ⟨Pa, Pb⟩ = χJΛδab (C.4)

which is nondegenerate for µ ≠ 0 ̸= µH , i.e., we are free to set χJ to zero. The flat limit
Λ → 0 is well defined on the Lie algebra and invariant metric and consequentially also for
the action. The main change is that we have the freedom to add an additional element
⟨J, H⟩ to the invariant metric which leads to

⟨J, Q⟩ = µ ⟨Pa, Db⟩ = −ϵabµ ⟨H, H⟩ = µH

⟨J, J⟩ = χJ ⟨J, H⟩ = χJH . (C.5)
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