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Abstract

We describe a novel algorithm that learns a Hamiltonian from local expectations of its Gibbs
state using the free energy variational principle. The algorithm avoids the need to compute the
free energy directly, instead using efficient estimates of the derivatives of the free energy with
respect to perturbations of the state. These estimates are based on a new entropy bound
for Lindblad evolutions, which is of independent interest. We benchmark the algorithm by
performing black-box learning of a nearest-neighbour Hamiltonian on a 100-qubit spin chain. A
implementation of the algorithm with a Python front-end is made available for use.

1 Introduction

In this work we consider the problem of learning a quantum Hamiltonian from its Gibbs state. Gibbs
states are ubiquitous in quantum physics and represent systems in thermal equilibrium. They can be
defined by a variational principle: they are the minimizers of free energy. This fact can in principle
be used for Hamiltonian learning [1, 2], but a naive implementation of this idea is impractical because
the free energy is known to be classically exponentially difficult to compute [3]. However, this does
not preclude use of the variational principle in an efficient algorithm. Indeed, since the free energy
is convex, the global variational principle is equivalent to a local one, which requires only knowledge
of the derivatives of the free energy with respect to perturbations of the state. Linear response
theory relates derivatives of free energy to locally measurable quantities, suggesting that they can
be estimated without knowledge of the free energy itself. If such estimates can be made efficient,
then the variational principle can be efficiently implemented.

The current work contains two main contributions. The first is a new lower bound on the entropy
change due to a local perturbation of a quantum state (Theorem 1). We relate this to a hier-
archy of semidefinite constraints known as the matrix EEB inequality [4] by showing that it is a
relaxation of the free energy variational principle which can be enforced using polynomial classical
resources.

Second, we use this to formulate a semidefinite algorithm for Hamiltonian learning. The algorithm
either finds a local Hamiltonian respecting the matrix EEB inequality, or else it gives a proof that the
given state is not a Gibbs state of any local Hamiltonian. We benchmark the algorithm by performing
black-box learning of a nearest-neighbour Hamiltonian on 100 qubits from local expectation values
with realistic levels of measurement noise.

These contributions are significant for several reasons. Hamiltonian learning is relevant in experi-
mental settings [5]: near-term applications include studying frustrated systems by learning effective
Hamiltonians [6] and probing entanglement properties of many-body states via their entanglement
Hamiltonians [7]. For such applications, the problem of learning a Hamiltonian from local expecta-
tion values currently presents a practical bottleneck limiting the system sizes under consideration.
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Indeed, local expectation values of systems of ∼100 qubits can in many cases be obtained either nu-
merically or using current NISQ technology. Meanwhile, practical algorithms for Hamiltonian learn-
ing that do not assume prior information or additional control over the state have so far achieved
reliable learning only for systems of 10 or fewer qubits. The algorithm we propose in this work has
the potential to remove this bottleneck.

The entropy lower bound in Theorem 1 is also of independent interest beyond Hamiltonian learning.
For instance, efficient preparation of Gibbs states on a quantum computer remains an important
open problem. A common approach is to thermalize an initial state using Lindbladian dynamics.
The convergence speed can be related to the rate of change of free energy, which can be estimated
using Theorem 1.

We begin in Section 2 by introducing the main entropy lower bound (Theorem 1) and the matrix
EEB inequality (Corollary 1). Section 3 describes the semidefinite algorithm.. In Section 4 we
describe the results of numerical simulations on a 100-qubit spin chain. We conclude in Section 5
with a discussion of the results, and some future directions for research. This work additionally
includes three appendices. In appendix A we compare our algorithm to some existing approaches,
with a focus on practical performance. In appendix B we prove in detail the main theoretical results
introduced in Section 2. Finally, C contains extra details about the numerical implementation
described in section 4.

The implementation of the learning algorithm used in this work is available for use at

https://github.com/artymowicz/hamiltonian-learning

Aside from the learning algorithm itself, this repository also contains all routines used for performing
the numerical tests in Section 4.

2 The lower bound on dS

In this section we begin by introducing Theorem 1 and derive the matrix EEB inequality as a
consequence. We defer all proofs in this section to Appendix B. Let H be the Hilbert space of a
quantum system, and assume that dimH < ∞. Let A be the set of all operators on A. As a rule,
we will use lowercase letters to denote elements of A. We will denote the adjoint of an operator a by
a∗. We say a mixed state represented by a density matrix ρ is faithful if the matrix ρ is invertible.
Let ρ be such a state.

We are interested in perturbations of ρ due to interactions with its environment. In the Lindblad
formalism [8, 9] the evolution of the state ρ under open-system dynamics is given for t ≥ 0 by

ρt = etL[ρ] (1)

where L is the Lindbladian superoperator. Under the assumption that the environment is Markovian
and interacts weakly with the system, L can be written in the form

L[ρ] :=

r∑
i,j=1

{
1

2
M ij [a

∗
jai, ρ] +Λij(aiρa

∗
j −

1

2
(a∗jaiρ+ ρa∗jai))

}
(2)

where M anti-Hermitian, Λ is positive-semidefinite, and a1, . . . , ar is a set of operators satisfying
tr(ρa∗i aj) = δij and tr(ρai) = 0 for all i = 1, . . . r.

A straightforward calculation using the cyclic property of the trace yields the following expression
for the first-order change in the expectation value of an observable under the evolution generated
by the Lindbladian (2):
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Lemma 1. Let h ∈ A be selfadjoint and define the r × r matrix Hij := tr(ρa∗i [h, aj ]). Then we
have

d

dt

∣∣∣∣
t=0

tr(ρth) = tr(MH−) + tr(ΛH+) (3)

where H± := (H ±H†)/2.

Notice that if a1, . . . , ar and h are operators of bounded locality, then the expression (3) uses only
expectation values of operators of bounded locality. One may ask if a similar expression exists for
the first-order change in the von Neumann entropy S(ρ) = − tr(ρ log ρ). In general, this cannot be
expected, since entropy is not a local property of the state. However, instead of an exact expression,
the following proposition bounds first-order change in entropy using only the correlations of the
hopping operators:

Theorem 1. We have

d

dt

∣∣∣∣
t=0

S(ρt) ≥ − tr(Λ log∆) (4)

where the matrix ∆ is defined as ∆ij := tr(ρaja
∗
i ).

Let us remark on some ambiguities in the expression (2) and their effect on the above inequality. For
a given Lindbladian L, the operators a1, . . . , ar and the matrices M and Λ in (2) are not uniquely
defined. Indeed, there are two ambiguities in their definition1:

1. Applying a change of basis a′i =
∑

ij Qijaj that preserves the condition tr(ρa∗i aj) = δij and
applying the inverse change of basis to the matrices M and Λ.

2. Appending additional operators ar+1, . . . , ar+q to the list and setting all new matrix elements
in M and Λ to zero.

While the first ambiguity does not change the right-hand side of (4), it turns out that the second
ambiguity does. Indeed, adding operators to the list a1, . . . , ar increases the right-hand side of (4).
This can be seen as the result of the nonlinearity of the matrix logarithm log(∆). We summarize
the above discussion as follows. Let P = span{a1, . . . , ar} ⊂ A. Then the bound (4) depends
only on L and P. Growing P improves the bound, but requires knowledge of a larger number of
correlations.

In the remainder of this section we describe one of the consequences of the bound (4). The free
energy of a state ρ with respect to a Hamiltonian h and a temperature T is

F (ρ) := −TS(ρ) + tr(ρh). (5)

Lemma 1 and Theorem 1 give an upper bound on the first-order change of free energy under the
Lindbladian evolution generated by (2):

d

dt

∣∣∣∣
t=0

F (ρt) ≤ tr(MH−) + tr(Λ(T log∆+H+)) (6)

Given a Hamiltonian h and a temperature T , the Gibbs state ρ := e−h/T / tr(e−h/T ) is the unique
minimizer of the free energy. Let us call a Lindbladian L P-supported if the operators a1, . . . , ar in
the expression (2) can be chosen to lie in P.

1It is shown in appendix B that these are the only ambiguities in the definition of Λ.
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Corollary 1. If ρ is the Gibbs state of a Hamiltonian h then

T log∆+H ⪰ 0. (7)

Moreover, if (7) fails, then there is a P-supported Lindbladian that decreases the free energy of ρ
with respect to h.

The inequality (7) is known as the matrix EEB inequality [4]. It is a hierarchy (depending on P) of
convex constraints that converges to the Hamiltonian of a Gibbs state.

3 Algorithm

In this section we apply the EEB inequality to the problem of learning the Hamiltonian of a Gibbs
state. Given a set of selfadjoint traceless operators h1, . . . , hs, we give an efficient algorithm that
either finds a Hamiltonian in the span of h1, . . . , hs that satisfies the matrix EEB inequality, or else
returns a Lindbladian that simultaneously rules out every h in the span of h1, . . . , hs by decreasing
the free energy.

By adding a regularization parameter to the matrix EEB inequality and setting T = 1 we get the
following linear semidefinite program:

minimize
h∈span{h1,...,hs}

µ∈R

µ (8)

subject to log(∆) +H + µI ⪰ 0, (9)

As before, ∆ and H are defined as

∆ij := tr(ρaja
∗
i ), (10)

Hij := tr(ρa∗i [h, aj ]). (11)

where a1, . . . , ar satisfy tr(ρa∗i aj) = δij and tr(ρai) = 0. The convex dual of the above program
reads:

maximize
Λ⪰0

M†=−M

− tr(Λ log(∆)) (12)

subject to tr(MH−) + tr(ΛH+) = 0, (13)

tr(Λ) = 1 (14)

In light of Lemma 1 and Theorem 1, the dual program seeks a P-supported Lindbladian that
maximizes dS/dt while preserving (to first order) the expectation values of the operators h1, . . . , hs.
Thus the dual program can be thought of as seeking the direction of steepest ascent for preparing
the maximum-entropy state with prescribed expectation values of the operators h1, . . . , hs.

A primal-dual pair is said to satisfy Slater’s condition if the primal program has a strictly feasible
point. Such a point can be found for (8) by setting h = 0 and taking µ sufficiently large. As a
consequence, a standard result in convex optimization states that the optimal values of the primal
and dual program coincide [10]. Thus we have:

Proposition 1. Let µ, h be the optmizers of the primal program (8), and M ,Λ the optimizers of
the dual program (12).

1. If µ ≤ 0, then h satisfies the matrix EEB inequality (7).
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2. If µ > 0 then the Lindbladian L corresponding to M and Λ increases the entropy of ρ while
preserving tr(ρhα) to first order for every α = 1, . . . , s.

Thus, by running the primal-dual pair, we are guaranteed to get either a Hamiltonian h that satisfies
the EEB inequality, or else get a P-supported Lindbladian that a) acts as an interpretable guarantee
that ρ is not the Gibbs state of any Hamiltonian in the search space, and b) is a heuristic for the
best available Lindbladian for thermalizing the state ρ.

We conclude this section by discussing the computational complexity of the primal-dual pair.
Interior-point methods produce solutions to the primal and dual problem whose objectives are within
ϵ of the true optimum in poly(r) log(1/ϵ) time, where r is the dimension of P [11]. In the remainder
of the paper we will restrict our attention to a system of n spins on a lattice, where it is natural
to choose an integer k > 0 and let P be the span of all k-local Pauli operators, and the variational
Hamiltonian terms h1, . . . , hs to be the set of all k′-local Pauli operators. Here we mean k-local in
the sense that the operator acts trivially outside a set of k contiguous qubits. With these choices
we have r = O(4kn) and the algorithm requires O(4k

′+2kn2) expectation values of Paulis of weight
at most k + 2k.

4 Numerical results

In this section, we describe a numerical implementation of the algorithm from section 3, applied to
the problem of learning a nearest-neighbour 100-qubit Hamiltonian from local expectation values
of its Gibbs state. A variable amount of noise was added to the input of the algorithm. At zero
noise, this acts as a test to how tightly the matrix EEB inequality constrains the set of possible
Hamiltonians. At nonzero noise levels, this acts as a test of the number of independent samples of
the state ρ required to accurately reconstruct the Hamiltonian.

Learning an XXZ Hamiltonian

The MPS purification technique [12] was used to prepare thermal states of the following anisotropic
Heisenberg ferromagnet:

hXXZ = −
n−1∑
i=1

(σx
i σ

x
i+1 + σy

i σ
y
i+1 +

1

2
σy
i σ

y
i+1). (15)

with n = 100. Both the set of perturbing operators b1, . . . , br and the set of variational Hamiltonian
terms h1, . . . , hs were chosen to be the 1192 geometrically 2-local Pauli operators. Measurement
error was simulated by adding Gaussian noise with variance σnoise to the expectation value of each
Pauli operator. The learning algorithm itself was implemented in Python, using the MOSEK solver
[13] for the semidefinite optimization2.

Hamiltonian recovery error was quantified using the overlap as in [16]: let y ∈ Rs be the vector
of recovered Hamiltonian coefficients and z ∈ Rs the vector of true Hamiltonian coefficients. The
Hamiltonian recovery error is then defined as the relative angle of the two, which for small angles
approximately equals the reciprocal of the signal-to-noise ratio:

θ = arccos

(
|⟨y|z⟩|
∥y∥∥z∥

)
≈ ∥y − z∥

∥z∥
. (16)

Note that this metric is not sensitive to the overall scaling of the Hamiltonian. This degree of
freedom is effectively the inverse temperature 1/T . Interestingly, the algorithm reconstructed the

2The convex modeling language CVXPy [14] and the open source solver SCS [15] were used in prototyping but
not in the final code.
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Figure 1: Numerical results for the 100-qubit anisotropic Heisenberg model (15) at several tempera-
tures. Left: Recovery error θ as a function of noise amplitude σnoise, averaged over 10 runs. Dotted
line is (mean) + (standard deviation). Right: Ratio of recovered temperature to actual temperature,
averaged over 10 runs. Shaded region is (mean) ± (standard deviation).

“projective” degrees of freedom of the Hamiltonian terms much more accurately than it did its
overall scale (or equivalently, the temperature).

The Hamiltonian recovery error θ and the recovered temperature T are plotted against σnoise in
Figure 1. A temperature-dependent noise threshold is found between σnoise ≈ 10−5 and σnoise ≈
10−3 above which the matrix ∆ ceases to be positive definite – these are the right endpoints of
the plots in Figure 1. The algorithm could possibly be emended to work for higher noise values by
projecting onto the positive eigenspace of ∆, but we leave this to future work.

As one shrinks the noise amplitude, the recovery error first decreases (for high temperatures, this
decrease is linear to a good approximation). This persists up until, at some temperature-dependent
critical value of the noise amplitude, the recovery error plateaus. We interpret this two-stage be-
haviour as follows. In the limit of zero measurement error, perfect recovery is not guaranteed because
the matrix EEB inequality (7) is weaker than the Gibbs condition. Instead, it defines a convex set
of candidate Hamiltonians, and the algorithm picks one of these by maximizing the regularization
parameter µ. The recovery error is then on the order of the diameter of this convex set. Thus for low
enough levels of measurement noise the recovery error is approximately noise-independent.

The only way to lower the levels of these plateaux is to enlarge P, which tightens the matrix EEB
constraint. This is relevant if one wants to prove asymptotic bounds on the number of copies of
the state and the computational resources needed to specify the Hamiltonian up to an arbitrarily
low error. Such results, however, do not necessarily have practical implications. Indeed, for the
particular Hamiltonian under consideration, the plateaux start at noise amplitudes σnoise of around
10−9 to 10−8. Assuming that expectation values are estimated from independent copies of the state,
this would require on the order of 1016 to 1018 samples, far beyond what is experimentally feasible
anyway. So for practical applications it may be more important to understand the high-noise regime
rather than the locations of the plateaux.

5 Outlook

Let us conclude by describing some directions for future research. While Proposition 4 establishes
the correctness of the algorithm, it suffers from two important limitations which must be overcome
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if one is to prove sample complexity and computational complexity bounds. First, neither the
feasibility nor the recoverability statements of Proposition 4 take into account measurement noise
in the expectation values of the state, which is unavoidable whenever these are estimated using
finitely many copies of the state. Second, the recoverability statement only holds when the set of
perturbing operators is grown to a complete set of operators. The utility of this algorithm depends
on approximate recoverability when the set of perturbing operators is far smaller than a complete
set. Section 4 gives numerical evidence that this is indeed the case, but a proof is still lacking.
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A Comparison to other work

In this appendix we compare the Hamiltonian learning algorithm discussed in sections 3 and 4 to
a few existing approaches, focusing on practical performance. We include only algorithms that
learn from independent copies of an identical state ρ without assuming any other control over ρ.
On the theoretical side, the recent series of works [2, 17, 18] culminated with a proof by Bakshi
et al. that this problem can be solved using polynomial classical resources [18]. However, their
result is asymptotic and no implementation yet exists by which to assess its practical performance.
Algorithms which have so far seen practical implementation either use exponential classical resources
[2, 19, 20], or solve the more general problem of learning a Hamiltonian from a stationary state,
which we show below is ill-posed in the setting of Gibbs states. Thus, so far a demonstration that
the problem of learning a Hamiltonian from local expectations can reliably be solved in the noisy
100-qubit regime has been missing.

Local equilibrium criteria

On a theoretical level, the current work bears closest resemblance to the algorithm given by Bakshi
et al in [18]. The KMS condition [21, Section 5.3] states that ρ is the Gibbs state of a Hamiltonian
h at temperature T = 1/β if and only if

tr(ρe−βHaeβHb) = tr(ρba) (17)

for all a, b ∈ A. Another is the EEB condition [21, Theorem 5.3.15]: ρ is the Gibbs state of h at
temperature T = 1/β if and only if

tr(ρa∗a) log

(
tr(ρaa∗)

tr(ρa∗a)

)
+ β tr(a∗[h, a]) ≥ 0 (18)

for all a ∈ A. Both of these are local conditions in the sense that they can be checked for a subset
of operators, yielding relaxations of the Gibbs condition. While the matrix EEB inequality used in
the current work is a semidefinite relaxation of the EEB condition[4], the algorithm in [18] uses a
sum-of-squares relaxation of the KMS condition.

Learning from steady states

The algorithms [22] and [23] learn a Hamiltonian from local expectation values of a steady state.
This can be applied to a Gibbs state, since a Gibbs state is necessarily a steady state. Both these
algorithms work by approximately enforcing the linear constraints

tr(ρ[h, bi]) = 0, i = 1, . . . ,m (19)

for some choice of operators b1, . . . , bm.
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A constraint of this form can be seen to be implicit in the constraint used in the current algorithm.
Indeed, by breaking the regularized EEB constraint

log(∆) +H + µ1 ⪰ 0 (20)

into its hermitean and anti-hermitean parts, (20) can be see to be equivalent to the pair of con-
straints

H− = 0 (21)

log(∆) +H+ + µ1 ⪰ 0, (22)

where H± = (H ±H†)/2. It is not hard to check that H− = 0 if and only if

tr(ρ[h, a∗i aj ]) = 0 for all 1 ≤ i, j ≤ r. (23)

Let us remark on why the additional positive-semidefinite constraint is necessary. The linear con-
straint alone cannot recover h if the state ρ has any local symmetries other than the Hamiltonian.
This happens, for instance, for Gibbs states of the XXZ model (15) considered in Section 4. A Gibbs
state of hXXZ at any temperature will commute with the generator q :=

∑
i σ

z
i of onsite z-rotations.

This means that the linear constraint alone, and in general any algorithm that does not discriminate
steady states from Gibbs states, cannot distinguish the Hamiltonians hXXZ +λq for different values
of the parameter λ.

Algorithms using loss functions

Several algorithms [2, 19, 20] work by minimizing a loss function which is intended to measure the
discrepancy between the input state and the Gibbs state of a trial Hamiltonian. In [2] the loss func-
tion can be shown to equivalent to the relative entropy and requires computing the partition function
of the trial Hamiltonian. In both [19] and [20], the loss function is a χ2 statistic based on a random
measurement scheme. In all three cases, the loss function requires exponential classical resources to
compute, preventing these algorithms from being scaled beyond the ∼ 10 qubit regime.

B Proofs

In this appendix we prove the claims made in section 2. First we prove a standard form for Markovian
Lindbladians analogous to the GKSL standard form [24, 8]. In what follows ρ will always refer to a
faithful state.

Proposition 2 (Standard form for Lindbladians). Every Markovian Lindbladian can be written in
the form

L[σ] =

r∑
i,j=1

{
1

2
M ij [a

∗
jai, σ] +Λij(aiσa

∗
j −

1

2
(a∗jaiσ + σa∗jai))

}
(24)

where M is anti-Hermitian, Λ is positive-semidefinite, and a1, . . . , ar satisfy tr(ρa∗i aj) = δij and
tr(ρai) = 0. For a given L, the matrix Λ is uniquely determined by the choice of a1, . . . , ar.

Next we prove a detailed version of the entropy bound in Theorem 1:

Proposition 3 (Entropy bound). Let L be a Lindbladian of the form given by Proposition 2 and
define

S := − tr(Λ log∆), (25)

where ∆ij := tr(ρaja
∗
i ). Then

10



i) S depends only on ρ, L, and P = span{a1, . . . , ar}.

ii) If P ⊂ P ′ then S(ρ, L,P) ≤ S(ρ, L,P ′).

iii) If P = {a ∈ A : tr(ρa) = 0} then

S =
d

dt

∣∣∣∣
t=0

S(ρt) (26)

for ρt = etL[ρ].

Finally, we state in detail the matrix EEB inequality.

Proposition 4 (Matrix EEB inequality). Let a1, . . . , ar be operators satisfying tr(ρa∗i aj) = δij and
tr(ρai). For a given T ≥ 0 define K to be the convex set of all traceless selfadjoint operators h ∈ A
such that

T log(∆) +H ⪰ 0 (27)

where ∆ij := tr(ρaja
∗
i ) and H = tr(ρa∗i [h, aj ]). Then

i) K depends only on ρ, T , and P := span{a1, . . . , ar}.

ii) If P ⊂ P ′ then K(ρ, T,P ′) ⊂ K(ρ, T,P).

iii) If P = {a ∈ A : tr(ρa) = 0} then K(ρ, T,P) is a singleton containing the unique traceless
operator h such that ρ = e−h/T / tr(e−h/T ).

Parts iii) of the above two propositions can be seen as convergence results. We remark however
that when P = {a ∈ A : tr(ρa) = 0}, the expressions (25) and (27) use the expectation values of
all operators, and thus requires full tomography of the state ρ. As such, this result does not give a
practical convergence proof for the Hamiltonian learning algorithm considered in section 3. Instead
it acts as a sanity check that the algorithm performs no worse than the naive algorithm using full
state tomography.

The proofs of these three propositions will use the Gelfand-Naimark-Segal (GNS) construction, which
we introduce briefly now. Although our introduction is entirely self-contained, readers wanting more
details are referred to the standard references [25, 26], or to the lecture notes [27] which contain an
introduction aimed at physicists.

Let A be the space of all operators on the physical Hilbert space H, and let ρ be a faithful state. The
bilinear form (a, b) 7→ tr(ρa∗b) endows A with the structure of a Hilbert space. For an operator a ∈ A
we write |a⟩ when we view a as a vector in this Hilbert space3. The GNS vector |1⟩ corresponding
to the identity operator is usually denoted |Ω⟩.

The modular operator ∆ : A → A is defined by the equation

⟨a|∆|b⟩ = tr(ρba∗). (28)

It is easy to check that ∆ is self-adjoint with respect to the GNS inner product. As the follow-
ing calculation shows, an equivalent characterization of ∆ is that it takes a GNS vector |b⟩ to
|ρbρ−1⟩:

⟨a|∆|b⟩ = tr(ρba∗) (29)

= tr((ρbρ−1)ρa∗) (30)

= tr(ρa∗(ρbρ−1)) (31)

= ⟨a|ρbρ−1⟩. (32)

3There is a close analogy between this notation and the state-operator correspondence in CFT.
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We will use the following conventions: operators on the physical Hilbert space will be denoted by
lowercase letters, operators on the GNS Hilbert space will be denoted by capital letters like ∆ and
Λ, and numerical matrices will be denoted by boldface captial letters like ∆ and Λ.

Proof of Proposition 2

First let us show that every Markovian Lindbladian has a parametrization of the form (24). The
GKSL theorem [24, 8] says that every Markovian Lindbladian has an expression of the form (24) but
where a1, . . . , ar don’t necessarily satisfy tr(ρa∗i aj) = δij and tr(ρai) = 0. Notice that the right-hand
side of (24) is invariant under the following two operations

1. Applying a coordinate transformation ai 7→
∑

j Qijaj while taking Λ 7→ (Q−1)†ΛQ−1 and

M 7→ (Q−1)†MQ−1.

2. Adding new operators ar+1, . . . , ar+q to the list and setting all new matrix elements of M and
Λ to zero.

Using the above operations we can ensure that r = N2 (where N is the dimension of the physical
Hilbert space H), aN2 = 1H, and tr(ρa∗i aj) = δij for 1 ≤ i, j ≤ N2. Notice now that for every term
in (24) where i = N2, the dissipative part can be absorbed into the unitary part:

1

2
MN2,j [a

∗
j , σ] +ΛN2,j(σa

∗
j −

1

2
(a∗jσ + σa∗j )) =

1

2
(MN2,j −ΛN2,j)[a

∗
j , σ]. (33)

Together with an analogous calculation for terms where j = N2, we have

L[σ] = [h, σ] +

N2−1∑
i,j=1

Λij(aiσa
∗
j −

1

2
(a∗jaiσ + σa∗jai)) (34)

where

h =
1

2

N2∑
i,j=1

(M ij + (δi,N2 − δj,N2)Λij). (35)

To conclude the existence proof, we need to replace h with
∑N2−1

i,j=1 M ′
ija

∗
i aj for some antiselfadjoint

matrix M ′
ij . We will use the following lemma:

Lemma 2. Every a ∈ A can be written as a =
∑m

i=1 b
∗
i ci + γ1H where tr(ρbi) = tr(ρci) = 0 and

γ ∈ C.

Proof. For N = 1 this is immediate with m = 0 and γ = a. Suppose that N > 1. Let ρ =∑N
i=1 ρi|i⟩⟨i|. It suffices to prove the claim for a = |i⟩⟨j| for any 1 ≤ i, j ≤ N . Choose any k ̸= j.

Then we have a = b∗c where b = |j⟩⟨i| and c = |j⟩⟨j| − ρj

ρk
|k⟩⟨k|.

Since a1, . . . , aN2−1 form a basis for {a ∈ A : tr(ρa) = 0}, by the above Lemma we can write

h =

N2−1∑
i,j=1

cija
∗
i aj + γ1H (36)

=
1

2

N2−1∑
i,j=1

(cij − cji)a
∗
i aj + Im(γ)1H (37)
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for some {cij}N
2−1

i,j=1 , where the second line is because h is anti-Hermitian. Thus finally we have

L[σ] =
1

2

N2−1∑
i,j=1

(cij − cji)[a
∗
i aj , σ] +

N2−1∑
i,j=1

Λij(aiσa
∗
j −

1

2
(a∗jaiσ + σa∗jai)) (38)

which establishes the existence statement of Proposition 2.

The uniqueness statement will follow from the following result, which we will also use in the proof
of Theorem 1. Let Λ : A → A be the positive-semidefinite operator

Λ :=

r∑
i,j=1

Λij |ai⟩⟨aj |. (39)

Lemma 3. Suppose a Lindbladian L is expressed in the form (24) where the operators a1, . . . , ar
are unrestricted. Let Q = 1− |Ω⟩⟨Ω|.

i) The operator QΛQ is independent of parametrization, ie. for a given L it does not depend on
(a1, . . . , ar, M , Λ).

ii) If a1, . . . , ar are required to satisfy tr(ρai) = 0, then Λ = QΛQ and thus Λ is parametrization-
independent.

Proof. To prove part i), suppose (a1, . . . , ar, M , Λ) and (a′1, . . . , a
′
r′ , M

′, Λ′) are two parametriza-
tions of L of the form (24). Notice that Λ is invariant under the operations 1. and 2. above. As a
result we can assume without loss of generality that r = r′ = N2 and a1, . . . , aN2 = a′1, . . . , a

′
N2 is a

basis of A with aN2 = 1H/2N−1 and tr(a∗i aj) = δij for 1 ≤ 1, j ≤ N2. Then the trick used to obtain
(34) shows that there are self-adjoint operators h and h′ such that

L[σ] = −i[h, σ] +

N2−1∑
i,j=1

Λij(aiσa
∗
j −

1

2
(a∗jaiσ + σa∗jai)) (40)

= −i[h′, σ] +

N2−1∑
i,j=1

Λ′
ij(aiσa

∗
j −

1

2
(a∗jaiσ + σa∗jai)). (41)

for every σ. By adding a multiple of the identity, h and h′ can be made traceless and so the
uniqueness statement of Theorem 2.2 in [24] shows that Λij = Λ′

ij for all 1 ≤ i, j ≤ N2 − 1. Thus
we have

Λ′ − Λ =
∑

i=N2 or j=N2

(Λ′
ij −Λij)|ai⟩⟨aj | (42)

= |Ω⟩⟨a|+ |a⟩⟨Ω|. (43)

for some a ∈ A. The result then follows from the fact that Q(|Ω⟩⟨a|+ |a⟩⟨Ω|)Q = 0.

Part ii) then follows immediately from part i) and the fact that tr(ρai) = ⟨Ω|ai⟩.

The above lemma proves the uniqueness statement of Proposition 2, since the additional condition
tr(ρa∗i aj) = δij implies that Λij = ⟨ai|Λ|aj⟩.
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Proof of Proposition 3

Part i).

Let Q : A → A be the orthogonal projection onto P := span{a1, . . . , ar}. Since ∆ is the coordinate
expression for Q∆Q in the basis a1, . . . , ar and since ⟨ai|aj⟩ = tr(ρa∗i aj) = δij it is easy to check
that

− tr(Λ log(∆)) = − tr(ΛQ log(Q∆Q)Q) (44)

By part ii) of Lemma 3, this expression depends only on L, ρ, and P.

Part ii).

We will use the operator version of Jensen’s inequality applied to the matrix logarithm, which follows
from the main theorem in [28] and the fact that log is operator convex [29]:

Lemma 4 (Operator Jensen’s inequality for log). Let K be a Hilbert space and let Q and Q′ be
projections in K such that the image of Q is contained in the image of Q′. Then for any positive
operator M on K we have

Q log(QMQ)Q ⪰ Q log(Q′MQ′)Q. (45)

Let (a1, . . . , ar,M ,Λ) and (a′1, . . . , a
′
r,M

′,Λ′) be two parametrizations of L, and suppose P ⊂ P’.
Letting Q and Q′ be the orthogonal projections onto P and P ′, we have

− tr(Λ log(∆)) = − tr(ΛQ log(Q∆Q)Q) (46)

≤ − tr(ΛQ log(Q′∆Q′)Q) (47)

= − tr(ΛQ′ log(Q′∆Q′)Q′) (48)

= − tr(Λ′ log(∆′)) (49)

where in the third line we used the fact that Λ = QΛQ = Q′ΛQ′.

Part iii).

We begin by computing a general expression for the derivative of the entropy:

Lemma 5. Let σt, t ≥ 0 be a smooth path of density matrices and suppose that σ0 is faithful. Write
St = − tr(σt log σt). Then using a prime to denote a time-derivative at t = 0, we have

S′ = − tr(σ′ log(σ)). (50)

Proof. We have

− tr(σ log(σ))′ = − tr(σ′ log(σ))− tr(σ log(σ)′). (51)

Using the power series of log about the identity operator and the cyclicity of the trace, the second
term can be seen to equal − tr(ρ′) = 0.

Now we apply the above lemma to the time-evolution of our state ρ generated by the Lindbladian
(24):

Lemma 6. With ρt = etL[ρ], we have

d

dt

∣∣∣∣
t=0

S(ρt) = − tr(Λ log(∆)) (52)

where Λ :=
∑

ij Λij |aj⟩⟨ai|
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Proof. Since the first term of (24) generates a unitary evolution it does not contribute to the entropy
and so we may set M = 0 without loss of generality. Since ∆|a⟩ = |ρaρ−1⟩, we have log(∆)|a⟩ =
|[log(ρ), a]⟩. Thus we can expand the right-hand of (52) as

− tr(Λ log(∆)) = −
∑
ij

Λij⟨aj | log(∆)|ai⟩ (53)

= −
∑
ij

Λij⟨aj |[log(ρ), ai]⟩ (54)

= −
∑
ij

Λij tr(ρa
∗
j [log(ρ), ai]) (55)

= −
∑
ij

Λij

[
tr(aiρa

∗
j log(ρ))− tr(ρ log(ρ)a∗jai)

]
(56)

= −
∑
ij

Λij

[
tr(aiρa

∗
j log(ρ))−

1

2
tr(a∗jaiρ log(ρ))−

1

2
tr(ρa∗jai log(ρ))

]
(57)

= − tr(L[ρ] log(ρ)), (58)

which equals d
dt

∣∣
t=0

S(ρt) by Lemma 5.

Finally, we need the following lemma:

Lemma 7. Let Q = 1− |Ω⟩⟨Ω| be the orthogonal projection onto {a ∈ A : tr(ρa) = 0}. We have

Q log(Q∆Q)Q = log(∆). (59)

Proof. Since ∆|Ω⟩ = |Ω⟩, we have log(∆)|Ω⟩ = 0, which proves the lemma.

We are now ready to prove part iii). Suppose P = {a ∈ A : tr(ρa) = 0}. Then

− tr(Λ log(∆)) = − tr(ΛQ log(Q∆Q)Q) (60)

= − tr(Λ log(∆)) (61)

=
d

dt

∣∣∣∣
t=0

S(ρt). (62)

Proof of Proposition 4

Parts i) and ii) follow from the corresponding parts of Proposition 3.

Part iii).

Suppose first that ρ = e−h/T / tr(e−h/T ). Define H : A → A as H : |a⟩ → |[h, a]⟩. Since T log(∆) +
H = 0, Lemma 7 gives TQ log(Q∆Q)Q+H = 0, and sandwiching this expression between ⟨ai| and
|aj⟩ for all 1 ≤ i, j ≤ N2 − 1 gives T log(∆) +H = 0.

Conversely, suppose h satisfies the matrix EEB inequality for P = {a ∈ A : tr(ρa) = 0}. This
implies in particular that H is self-adjoint, and the calculation

0 = Hij −Hji (63)

= tr([ρ, h]a∗i aj) (64)
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together with Lemma 2 shows that [h, ρ] = 0. From this it is easy to show that QHQ = H, and so
the matrix EEB inequality gives

T log(∆) +H ⪰ 0. (65)

Let J be the modular involution, which is the complex-antilnear operator defined as

J |a⟩ := |ρ1/2a∗ρ−1/2⟩. (66)

For any a ∈ A we have

⟨Ja|H|Ja⟩ = tr(ρ ρ−1/2aρ1/2[h, ρ1/2a∗ρ−1/2]) (67)

= tr(aρ1/2hρ1/2a∗)− tr(ρ1/2aρa∗ρ−1/2h) (68)

= − tr(ρa∗[h, a]) (69)

= −⟨a|H|a⟩, (70)

where in the third line we used the fact that [ρ, h] = 0. Thus J†HJ = −H. The same calculation
with log(ρ) replacing h shows that J† log(∆)J = − log(∆). It follows that −(T log∆ + H) =
J†(T log(∆)+H)J ⪰ 0 and thus T log(∆)+H = 0. From this we see that log(ρ)−h/T commutes with
every operator in A, which means it is a multiple of the identity, and so ρ = e−h/T / tr(e−h/T ).

C Corrections to ideal algorithm

In this appendix we describe several modifications that were made to the idealized algorithm (8) for
the numerical work in section 4.

1. For any matrix M , a semidefnite constraint M ⪰ 0 can be broken down to the constraints
M− = 0 and M+ ⪰ 0, where M± := (M ±M†)/2. Doing so with the semidefinite constraint
(9) yields

H− = 0 (71)

log(∆) +H+ ⪰ 0 (72)

Instead of imposing these constraints simultaneously, we impose the linear constraint H− = 0
first. This greatly reduces the number of degrees of freedom in the semidefinite program,
leading to a more computationally efficient algorithm.

2. In the presence of noise in the expectation values of ρ, it is not appropriate to impose the
linear constraint H− = 0 exactly. Instead, the following matrix was computed

Wαβ := tr((Hα −H†
α)(Hβ −H†

β)
†), (73)

where (Hα)ij := tr(ρa∗i [hα, aj ]) for α = 1, . . . s, and the search space of Hamiltonians was
restricted to the span of the eigenvectors of W with eigenvalue below a threshold ϵW > 0.
This is equivalent to the matrix K used in [22]. For sufficiently small values of σnoise, the
spectrum of W was found to have several near-zero eigenvalues and a spectral gap to the rest
of the eigenvalues, and ϵW was chosen to lie in this gap. An empirical formula that was found
to produce an ϵW lying in the spectral gap of W was

ϵW = 400max(σ2
noise

√
m, 10−11), (74)

where m denotes the number of terms a∗i [hα, aj ] such that [hα, aj ] ̸= 0. This formula is not
expected to be universal across different values of n and choices of perturbing operators. We
note that in practice, while choosing ϵW to be too low caused the output to be inaccurate,
choosing ϵW to lie above the gap did not significantly affect the accuracy of the result.
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3. Although the temperature can be thought of as the same degree of freedom as the overall scale
of the Hamiltonian, we chose to explicitly isolate it by adding a variable T ≥ 0 to the the
semidefinite program and replacing the constraint

log(∆) +H+ − µI ⪰ 0 (75)

with

T log(∆) +H+ − µI ⪰ 0, (76)

tr(ρh) = −1. (77)

Here the extra normalization (77) is necessary to eliminate the degree of freedom associated
with simultaneously scaling T, h, and µ.

4. Although the MOSEK interior-point solver [13] solves the primal and dual programs simulta-
neously, it was found that the algorithm ran significantly faster when it was called explicitly
with the dual program instead of the primal.
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