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Abstract

We study the relationship between integrable Landau-Zener (LZ) models and Knizhnik-
Zamolodchikov (KZ) equations. The latter are originally equations for the correlation
functions of two-dimensional conformal field theories, but can also be interpreted as
multi-time Schrodinger equations. The general LZ problem is to find the probabilities
of tunneling from eigenstates at t = t;, to the eigenstates at t — +00 for an N x N
time-dependent Hamiltonian H(t). A number of such problems are exactly solvable in
the sense that the tunneling probabilities are elementary functions of Hamiltonian pa-
rameters and time-dependent wavefunctions are special functions. It has recently been
proposed that exactly solvable LZ models map to KZ equations. Here we use this con-
nection to identify and solve various integrable hyperbolic LZ models H(t) = A+ B/t for
N = 2,3, and 4, where A and B are time-independent matrices. Some of these models
have been considered, though not fully solved, before and others are entirely new.
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1 Introduction

Exploring the dynamics of avoided crossings in energy levels is a well known venture in physics.
Famously, they were studied in the context of one-dimensional, slow atomic collisions by Lan-
dau [1] and intra-molecular level transitions by Zener [2] in 1932. In the same year, Ma-
jorana [3] extensively studied a spin-1/2 system in a varying magnetic field while Stiickel-
berg [4] utilized JWKB theory to solve the corresponding differential equations. All of them
essentially set out to determine the probability of an initial state transitioning to another eigen-
state of the Hamiltonian as a function of time. This probability is referred to as the ‘transition
probability’ and was initially studied in the non-adiabatic evolution of two-level systems. The
results obtained have proven to be of integral importance to many advancements. For instance,
Majorana’s work explained the ‘holes’ in the magneto-optical traps used in the first realisation
of a BEC! [5].

The Landau-Zener-Stiickelberg-Majorana problem (LZSM or LZ in short)? [6] is well known
in the studies of ions and molecules placed within a time-varying field. To calculate the tran-
sition probabilities of multi-state systems (i.e. systems of dimension N x N, N > 2), it may
suffice to look at the avoided crossings of two instantaneous energy levels. Hence, transition
probabilities of these multi-state systems simplify into a product of transition probabilities at
each crossing where the probabilities are given by a linearised 2 x 2 LZ model as solved by
Landau, Zener and the others. A schematic description of the setting is given in Fig 1.

IThe question on how to avoid these ‘Majorana holes’ was resolved by Ketterle by simply ‘plugging’ the hole
using a focused laser.
2In this work we will refer to this problem as the ‘LZ problem’ for brevity.
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Figure 1: Schematic depiction of adiabatic (instantaneous) energy levels labeled by
|a) for @ = {1...,4}. As an example, consider the transition probability P|q)_3)
starting from t = 0. At t; it can be computed using standard 2 x 2 LZ problems
defined at anticrossings A and B. The same probability at time t, requires a under-
standing of a higher order (N = 3) LZ problem at point C. Finding the probability
at time t3 requires the solution to a non-standard (i.e. nonlinear) LZ problem as
depicted at point D.

Not surprisingly this simplification down to two level systems does not resolve the general set-
ting of the problem. For example, when linear time dependence of the model is not sufficient
(i.e. the level crossings cannot be linearised) or when the anti-crossing involves more than
two energy levels, the transition probabilities cannot be readily calculated using the solutions
found in 1932. Hence other varieties of the LZ problem require consideration. In the 90 years
after the original papers of 1932, an assortment of these problems have been addressed.

Known exactly solvable LZ models with linear time dependence include the Demkov-Osherov
model [7] where only a single diagonal matrix element is time dependent, the ‘bow-tie’ and
‘generalized bow-tie’ models [8-10] where all or most diabatic energy levels cross at a single
point, and the many-body inhomogeneous Dicke model [11-13], which describes a bunch of
two-level systems interacting with a single linear time-dependent bosonic mode (detuning).
These models are exactly solvable in the sense that transition probabilities from t = —o0 to
t = 400 are found explicitly in terms of elementary functions.

A natural question to consider is; what is special about these and other similar LZ models
that makes them exactly solvable? This question was addressed in [14] with the conclusion
that the necessary condition for LZ solvability is the quantum integrability of the model, in the
sense that there exist nontrivial, mutually commuting partners,

[ﬁl(t)’ﬁ](t)]=0) i)j=]-)""n, (1)

where H,(t) = H(t) is the model (LZ) Hamiltonian and H;(t) with i > 1 are its commuting
partners. With appropriate restrictions on H;(t) to make the condition (1) nontrivial, this is
a good analog [15] of classical Liouville integrability [16]. In the aformentioned examples
above, the H;(t) are required to be linear in t. For a nonlinear LZ model this requirement has
to be generalized.

This quantum version of Liouville integrability is clearly only necessary and not sufficient for
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a LZ problem to be exactly solvable. Indeed, most quantum integrable models (e.g., the 1D
Hubbard or XXZ Hamiltonians) do not turn into exactly solvable L.Z models when we make
their parameters (e.g., Hubbard U or the anisotropy in the XXZ Hamiltonian) depend on time
in an arbitrary way. It has been conjectured in [12] that the necessary and sufficient condition
is in fact the existence of a multi-time Schrodinger system of equations

=H¥(Z), i=1,...,n. 2)

Here Z = (21, ...2,) and v are the parameters of the LZ model, one of which is the rescaled
time variable, z; = %t. In other words, the first equation in (2) is the nonstationary
Schrodinger equation of the original LZ problem, which we are seeking to solve. The re-
maining z;, which play the role of additional ‘times’ in equation (2), are other parameters of
the underlying LZ Hamiltonian. For example, in the inhomogeneous Dicke model z; are the
level splittings of the two-level systems while the energy of the bosonic mode w changes at
the rate v, i.e., w = —vt.

The system of multi-time Schrodinger equations (2) is compatible if and only if the Frobenius
integrability condition is satisfied,

aﬁl aIA—I] N 7N o e
- —i[H;,H;]=0, i,j=1,...,n. (3)
6zj azi

To put it another way, the exact solvability of a LZ problem is equivalent to Frobenius rather
than Liouville integrability [17]. Note that for real Hamiltonians (IA{;“ = FIi) the real and
imaginary parts of equation (3) separate into two conditions, one of which is equation (1)
while the other reads

= . 4
3zj az,-

Thus, in this context the Frobenius integrability is more restrictive than the Liouville one.

Essentially the only nontrivial example of a multi-time system (2) we are aware of, such that
ﬁi admit a representation in terms of finite size matrices are the Knizhnik-Zamolodchikov (KZ)
equations and their various generalizations. The original KZ equations [18] are differential
equations for n-point correlation functions ¥(2) in Wess-Zumino-Witten models. In this case,
I?I,- in equation (2) have the following form:

A N

A naﬁri“®rj

P Ll ®
jtLap 2T E

where r“'i“ are the generators of a Lie algebra and 7 is its Killing form. These H; are known
as rational Gaudin magnets [19]. In addition, there are integrable hyperbolic, trigonometric,
and elliptic Gaudin magnets [19, 20], where the ‘couplings’ % are replaced by hyperbolic,
trigonometric and elliptic functions of (z; — 2;) that are also different for different values of
a and f (anisotropic). Various boundary terms (terms that single out fl.“) can be added to H;
without spoiling the integrability [20-25]. All these generalized Gaudin magnets satisfy the
Frobenius integrability condition (3) and, therefore, give rise to integrable generalizations of
KZ equations and, according to the above conjecture [12], to integrable LZ models.

Let us note here that, strictly speaking, we say that a LZ model is integrable when the Frobenius

4
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integrability condition (3) is satisfied and we say that it is exactly solvable when its transition
amplitudes can be determined in terms of elementary functions and the time-dependent wave-
function in terms of known special functions.

This connection to the KZ equations does not solve all integrable LZ problems for us immedi-
ately. Unfortunately, the solution to the KZ equations is extremely complicated. It is written
in terms of a multidimensional contour integral over the so-called Yang-Yang action, derived
from the off-shell Bethe ansatz equations [26-29]. For a summary of results on the KZ equa-
tions, we refer to the Askey-Bateman Project: Volume 2 and references therein [30] as well
as Aomoto’s book on the cohomology methods in resolving such integrals [31]. As a result,
applying the general solution of the KZ equations in practice remains a complicated endeavor.
That is not to say that this solution is not already useful. For example, Zabalo et al. [32] used
the general solution to provide an asymptotic solution to the hyperbolic time dependent spin-
1/2 BCS Hamiltonian for any system size at large time through a saddle point approximation.

The purpose of the present paper is to initiate a systematic construction and explicit solu-
tion to the integrable LZ models of physical interest by utilizing their link to the KZ equations.
Specifically, we derive here several simplest nontrivial examples of integrable L.Z models from
the KZ equations, solve them directly, and extract their solution from the contour integral so-
lution of the KZ equations.

We focus on the case when it is impossible to describe LZ tunneling by linearizing the an-
ticrossings. In particular, when one considers collisions of, for example, atoms and ions, the
electromagnetic potentials involved are inversely proportional to the radius. In this scenario,
assuming a constant velocity, the LZ Hamiltonian is of the form H(t) = A+ B/t, where A and
B are time-independent Hermitian operators. These type of problems were originally dubbed
as ‘Coulomb’ LZ problems, referring to the Coulomb potential involved [33-37]. Alternatively,
these Coulomb models can be described by Nikitin’s [38] exponential models through a simple
transformation described in Section 2. We note that we prefer calling such LZ problems Hyper-
bolic LZ (HLZ) problems, to accommodate more general physical setups. There are plethora
of reasons to study hyperbolic LZ models. Table III in [38] gives some nice examples such as
the ion-atom collisions stated above and transitions between vibrational modes [39]. These
problems also manifest in Rydberg transitions and molecular collisions. See for examples Refs.
[25-26] in [40] and Ref. [41].

This work is structured as follows. In Section 2 we start with basic 2 x 2 and 3 x 3 HLZ
Hamiltonians, some of which were previously considered in [40]. Full analytical solutions
of the non-stationary Schrodinger equation for these models are presented and the resulting
transition probabilities are obtained. The second part of this work in Section 3 shows how
these models arise from the general prescription of the KZ equations. We demonstrate the re-
lationship between the HLZ problems and the BCS (a.k.a. Richardson or Richardson-Gaudin)
model with the superconducting coupling inversely proportional to time as discussed in [13]
and [32]. Then, we show how our initially introduced HLZ models are solved by means of
contour integration, elucidating our understanding of the ‘contour conundrum’ posed by the
formal solution of the KZ equations. Finally, in Section 2 we identify a number of new in-
tegrable multi-level HLZ models through the KZ connection. We do not seek to fully solve
all of these new models, but do derive several explicit exact solutions of their non-stationary
Schrodinger equations as an example. We conclude by discussing our results and outlining
outstanding problems and topics of further interest in the Conclusion & Discussion.
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2 Hyperbolic Landau-Zener models

The general form of the hyperbolic Landau-Zener (HLZ) model is
A~ 1.
16, 9(t) = (A+?B)\Il(t) (6)

where A and B are constant, Hermitian matrices written in the diabatic basis defined through
diagonalising B by a orthogonal transformation. The evolution begins at t — 0% and proceeds
towards the positive direction of infinity.

We immediately note that the differential equations (6), when transformed by the substitution
t = e is written as
i9,¥(A) =[B +e*A]w(n), (7)

where A — —o0 is equivalent to t — 0% and A — oo points to t — o0o. This shows that one
can transform any HLZ model to an exponential LZ problem through a simple substitution [35].

After rewriting (6) in the diabatic basis, we can reduce one of the diagonal terms to zero by
removing an overall prefactor contributing a (time dependent) global phase to the wavefunc-
tion. Then, the lowest non-trivial representation (for real-symmetric matrices) of the problem

is given by .
; («/glct)) _ (% tay az) (wlct)) ®
Pa(t) a0 J\¥2(t))°

This problem is referred to in this manuscript as the ‘2 x 2 HLZ’ problem. While it has been
extensively studied in the literature since the 1970s [33-37,40], we provide a general solution
in this work. In the main text, we focus on the case a; = 0 and set the remaining parameters
as

1
{P =— a1 = O, as = _A}: (9)
14

while the case a; # 0 is addressed in the appendix A.2 for completeness. The 3 x 3 HLZ
problem is generally not solvable in terms of known special functions. The same applies to the
general 3 x 3 LZ problem linear in t. However, there turns out to be a particular version of
the HLZ problem which is solvable,

ll%l(t) % a; 0 [,(t)
il Ya(t) |=|a; § a|]|Wa(t)]. (10)
P3(t) 0 a O P3(t)

In this section, we solve this problem for
3 1 2A 0 2 A an
=—, =—, a =——, a, = —_ 5
p » q N /3 2 3

where A and v are real-valued constants. While the model for the parameters above has been
addressed previously [40], the general solution of (10) provided in this work is new.

The goal of the LZ problem is to calculate the aptly named transition probability matrix. For a
N x N problem, this matrix is written as

Pi-1 Pi-»2 --- Pi1oN
P21 P2-2 --- P2oN

PNxN = . : - . . (12)
Pn—-1 PN-2 .-+ PN-N

6
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Here, 1 refers to the ground state, 2 to the first excited state and so forth, up to N being the
highest excited state. p,,,_,, is the probability for the system starting in the (m)™ state at the
initial time to end up in the (n)™ state at the final time. As mentioned earlier, for the HLZ
problems presented here, the initial and final times are t = 0% and t — o0, respectively.

2.1 Evolution from the ground state

Let us write [¢(t)) =4 1(t)|1) +1(t)|2), where the ground state is |1) and the next excited
state is |2) and so on, all of which are in the canonical basis. The solution of the nonstationary
Schrodinger equation (8) with parameters (9) is (with T = tA)

1/2
1 i
P, 0(2) = (L) et [0, (D) -, ()], (13)
4 zcoshz_v 2" 2y 2" 2y
where J,,(t) is the Bessel function of the first kind. The superscript 1 indicates that the bound-
ary condition at t = 0 is the ground state. The subscripts 1/2 and 0 describe the state in the
corresponding BCS problem, which which will be further explained in Section 3. The solu-
tion of the 3 x 3 problem defined by (10) and (11) is (using the same notation and boundary
condition as above)

IilJ},O(T)) = ¢1(7) 1) + ¢5(7) [2) + ¢3(7) 3), (14)
with
3i i
$1(7) =e71"("’)1F2[ ljgg_i;—cz], (15a)
27V 2y
sy i
¢1(T)=21vre - In(7) Lg5 g2 (15b)
)= i Pl T )
1 ea—viln(’r) i ) e )
J— 2v 2y
HORSS™ (1F2[%+é,3—i;_f | P D (150)
2ﬁv2(2v+i)72e3_;1“(7) F[ 20t 2]
i is—T |-
v+31)(v+ 21 v+ 21 3ty
(2 3)( 2.)(3 2.)1 2] 5 3

Here, the function ,Fy [ ; t] is a generalized hypergeometric function.?

2.2 Evolution from excited states

The solutions to the differential equations (8) and (10) can be determined for any general
choice of initial conditions. In order to obtain all transition probabilities, the problem must
also be solved for the initial conditions being the excited state(s). For the 2 x 2 problem, the
only excited state at the initial time t — 0% is |2). The wavefunction starting from |2) is given
by

12
hbf/z,o(r)) = (ﬁ) 73t [J_%_%(T) [2) + iJ%_%(T) |l)] . (16)
2y

For the 3 x 3 problem, we have the excited states |2) and |3), where |3) is the highest energy
level. The solutions to the Schrodinger equations starting from the excited states are then
given as follows:

195 () = Nic[95(2) 1) + 95 () 12) + §5(7) 13) ], k=2,3, 17)

3Not to be confused with the ‘general hypergeometric functions’ or ‘Gelfand-Aomoto hypergeometric functions’
which are also ubiquitous in literature regarding KZ equations [30].
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with
i 1_i
¢f(7:) = 1e7 ) F [1+2LZ§V_L‘;_T2]’ (18a)
2 2v°2 7V
¢3(7) = ’leFz[ g_zz_s_i;—’ﬂz], (18b)
2 2v°° 2y
i —y+ 2i 1_i
$3) = ivBer [ B ]t o] (180
2y PR T

2y —i)s” 1F2[3 %l_% i;—’b’z] )
(v+1)(3v—2i) 2t

¢§(7) = i‘/g'r [(_2;—:-?,011;'2[ 3 11—5 3i ;—72] (18d)

4y(v—i)72 F[ i '_%_2]
By—i)(4v—3i)" 2li 5 ’

272v° 2y
iln('t:) 1 i —7 3 i
2,y _ T€” [ [ 3725 2] 3(v—i) [ 3725 2]]
T)= — F i l;_T - N F i l;_T 186
¢5(7) J2 172 335 (v+1) s SRS (18¢)
64/212(v—i)(3v—i)t3es () F[ 5_L 2]
i i,
(v+i)Bv+i)(3v—2i)(5v—2i) " 2 5+55-
3(v—i)(2v—3i 2 _i 3vV2(v—i)(5v—4i)72
p3(n) = 2= D@V =3D | T le[s 7 i 2]— = DY 4DT - (1gn
44292 /2 2732 3 (Bv—i)(4v—3i)
i 8v2v2(v—i)z? i
-3 2 -5 2
F i, 3T |+ F i, 37T
! 2[;_5’ -5 ] (3v—i)(4v—3i)(5v—i)" 2[%—27,4—% ]
and
~1/2
3 33\°1/2 9(v*+1)(4»*+9
N2=(—+—) and N3= ( )( ) . (18g)
4 2 3214

This concludes the complete system of solutions to the problems described in this section.
Below, we introduce several notations for the basis states that will prove useful in the upcoming
section. Firstly,

1

|1/2,0>gs%(|11)+m)) and |1,0), = —(I1-1) +2[0,0) +]-L,1)).  (19)

=]

Here, as with the notation for the wavefunctions before, the quantum numbers on the LHS
characterize the state as in the BCS Hamiltonian from which this problem is derived. For the
2 x 2 model we use 1

1) =11/2,0),, |2) = 7

(1) —=11). (20a)
Finally for the 3 x 3 model we use

11) = [1,0),, |z>=%(|1,-1>—|-1,1>), |3)=%(—|-1,1)+|O,0)—I1,-1))- (20b)
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(a) : Energy-Time plot (b) : Transition Probabilities p,_,,
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-5 f r r r 0.0 T T . . .
1072 107! 10° 10! 10? 0 2 4 6 8 10
T 14

Figure 2: (a) Instantaneous (adiabatic) eigenvalues of the 2 x 2 HL.Z model as func-
tions of T = t A for ¥ = 2. The ground state |1) evolves towards |1|) (purple curve).
The excited state |2) ends up in ||1) (green curve). (b) Elements of the transition
probability matrices. Solid lines represent the analytical expressions in (22). The
scatter plots represent the numerical simulation of p,_,, at 7 = 103.

2.3 Transition probabilities
2.3.1 The 2 x 2 HLZ problem

At t = 0%, the ground state of the 2 x 2 HLZ model is [1/2, 0) g in (19). Att — o0, it becomes
[Tl). The large-time asymptotes of the solutions (13) and (16) read

1/2
1 s 1 (ilnr) in & P
|1/)1/2,0(T)) i (—2 cosh%) exp Y (e ew|1])+e e B H)), (21a)

1/2
1 ilnt ir —I —iz &
W’%/z,o(’b')) —>—(—) exp( 2y )(e e m| Tl)_e e®| 11)) (21b)

T
2 cosh 35

This implies
1 ez e v
Pyyp = ——F ( _n = ) (22)
e +e e 2 ez

Fig. 2 shows these transition probabilities, alongside the spectrum of the 2 x 2 model for
various choices of v at large 7 = At.
2.3.2 The 3 x 3 HLZ problem

The ground state of the 3 x 3 HLZ model at t = 0% is |1, 0) ¢ in (19). At t — oo, it becomes
|1,-1). Evaluating the asymptotic behaviour of the solutions (14) and (17) at large time, we
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(a) : Energy-Time plot (b) : Transition Probabilities p;_,;

® p1 — pia
P1—2 — pi1,o
D13 P13

T
=
SN Y
73 -
74 .
-5 - - - - 0.0 % - - - - -
1072 107! 10° 10! 10? 0 2 4 6 8 10
T 1%
(¢) : Transition Probabilities po_; (d) : Transition Probabilities p3_,;
1.0 1 1.0 1
O p21 Pos1 ® p3 P31
P2—2 Pa_so P3—2 P32
081 P23 - - v poyg 087 P33
0.6 1 0.6 1
.-o--‘O-'O"O"'C
0.4 4 0.4 4
0.2 [} 0.2
of
0.0 42— ; ; ; ; 7 0.0 % ; ; ; ; ;
0 2 4 6 8 10 0 2 4 6 8 10
1% 1%

Figure 3: (a) Instantaneous eigenvalues vs 7 = t A for the 3 x 3 HLZ model with pa-
rameters (11) (v = 2). The ground state |1) evolves towards |1,—1) (purple curve).
|2) and |3) evolve to |0,0) (green curve) and |—1,1) (blue curve), respectively. (b-
d) Transition probabilities. The solid lines represent the analytical expressions in
(24). The scatter plots are the numerical simulation of p,_,, for different values of
v evaluated at T = 103.

find
1 2 Z42it—ting 2ne—%ln2 —(£+2iﬂ:+ilnr)
|1l)1’0(7)) - CIT 4 e 4 |1)'1) + i 1 2 |0:0) +e v v |'1:1) 1) (233)
Iz +3)
2i T i 11/_1—‘(% 2L)
63 () = Cov sinh (=) [ 7517 (1,1) — |-L.1)) + 00) [, @3
r(1-5)r(5)
2i 2i'r:—i;,lnr e_Tzlnz[‘( —i+v) e v—Zw—— Int
3 (7)) = C377 | ——1,-1) — ———22-10,0) + 1,1) |. 3c
|f"'bl,o( )) 3 Lres | ) 21_,(1+v) OSh(z—ﬂ;)l ) 1+ev | ) (230)

10
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Here,

e > . , (23d)

and

Cs=Nj3 (23e)
r(—+=)r(1-1
2 2y v
The transition probability matrix is
2
1 e_% (1+e_%) e—%"
2 2 2 2 2 2
(1+e_7n)(1+e_% +e_Tn) (1+e_7n (1+e_% +e_7n) (1+e_7n)(1+e_% +e_7n)
P3y3 = 1 1— 1t 1 . 249
2 cosh( %) cosh( %) 2 cosh( %)
1 1 1
1+e%+627n 2cosh(%)+l 1+e_%+e_27n

A plot of the transition probabilities, alongside the adiabatic spectrum of the 3 x 3 HLZ model
for various choices of v at large 7 = At is provided in Figure 3.

Thus, we conclude our brute force investigation of the two hyperbolic Landau-Zener prob-
lems. The transition probabilities derived in this section have also been found through other
means by Sinitsyn [40], who used symmetries and the no-go constraints for solving the tran-
sition probability matrix. For these models, however, a full solution in terms of wavefunctions
is now also available. We note that the method of constructing the probability matrix through
the constraints and symmetries remain insufficient for larger integrable LZ models that we
consider in subsequent sections.

3 Generalised KZ equations and the BCS Hamiltonian

For the second part of the paper, we investigate the relationship of HLZ models and a set
of integrable, time-dependent Richardson-Gaudin hamiltonians. More specifically, we show
that these models belong to a class of problems that are solved by the formal solution to the
KZ equations. The solutions of the KZ equations is expressed in terms of contour integrals.
In practice, however, it is unclear how these integrals should be evaluated. The solution to
the HLZ models presented in section 2 provide a valuable stepping stone to making sense of
the aforementioned contours and, by extension, a larger class of time-dependent, many-body
quantum systems.

3.1 Preliminaries

The generalised Knizhnik-Zamolodchikov equations we will use in this paper are of the
form [13,22,25]

ov \
iv—=H;¥, j=1,...,N,
£ (25)
ov
iv— = Hp¥,
N

11
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where

-_zn - , Ho=2) £.8°—— ) sts. (26)
> Z] e i

kAj &1 T &k L
Let 2 = Q(t) be a function of time. Then, the second equation in (25) becomes the non-
stationary Schrodinger equation for the time-dependent BCS (a.k.a. Richardson) Hamiltonian

Hpes(t) = Hn(t)—zv_lﬂZ:sJ 5 _(2v0)” 192§ 27)

In this work Q(t) = vt, which yields a BCS Hamiltonian with the coupling inversely propor-
tional to time:

Hpes(t) = 22 £8; — o — 7 §j 5. (28)
Note that §; are general spin operators of arbltrary magmtude s. The parameters €; play the
role of on-site Zeeman magnetic fields. In the original fermion language, €; are the single-
particle energy levels [42-44].

3.1.1 Two-site BCS models

In the basis where the z-component of the total spin is diagonal, the Hamiltonian (28) is block

diagonal, with each block corresponding to a particular value of S* € {—sN,...,sN}, i.e,,

— @SN (5% . . . . .
Hpcs = ;z__s n Hpg - We note that, starting from this section, a spin-label is added to any

operators to make the representations explicit. This is the same spin label as originally intro-
duced in equations (13)-(17).

Beginning with spin-1/2, we have

1{1 O 01 00
32 2 at a— —
1727 2(0 —1)’ *1/2 (o 0)’ *1/2 (1 o)' (29)
We can write ¥(t) for N = 2 as

OEDRINGIHEI)HE (30)
i,je{l,l}

where [i) is the eigenstate of § § / , in (29). By rewriting the eigenstate into a column vector
with elements 1p; j(t) with ordering of the (i, j) indices as [({,1),(1,1), ({,1), (1,1)], we have

(-1)
H1/2 (0)

Hpcs 172 = . H1/2 I (31)

(1)

) H1/2

where
H{ () =—(e1 +82), (322)
g _1
1/2(”) = (&1 + £3) ot (32b)
1

i(/);(v) = (g, —&y)0% — 2—(1[ +07%), (320)

and o' are the usual Pauli matrices. After the unitary transformation defined by Egs. (19)
and (20a) and for A = g5 — £; with &9 > £, the S = 0 sector is identified as the 2 x 2 HLZ

12
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problem in equation (8).

Consider now spin-1,

1 0 O 010 0 0O
2=[0 0 o], st=v2[0 0 1|, 57=v2|1 0 0 (33)
0 0 —1 0 0O 010
Choose the basis |i),i = {0, +1} in (30) with the ordering of (i, j) such that the ordering of the

eigenstates is [ (-1,-1),(0,-1), (-1,0), (1,-1), (0,0), (-1,1), (1,0), (0,1), (1,1)]. The Hamiltonian
becomes

H? .
(-1)
] o
Hpcsa=| - - H; . N (34
. Hil) .
(2)
Hy
Here we identify
(22) 0.\ _ opp(E1)
H; (v) = 2H1/2 (»), (35a)
(1) — ¢7(0) _
H W(v)= Hl/z(v/Z) (&1 + &)L, (35b)
[COPIR()) 1
H, (”)_H1/2(”/2)+(€1+£2_E)H’ (35¢)
1
HO(v) = 2(e1 — €,)87 — — (21 + v/287 — (87)?). (35d)
vt

We notice that the S* = %1 sector, up to a rescaling of ¥ and an overall (time dependent)
term is nothing but the S* = 0 sector from the spin-1/2 model. Then the only novel part that
appears in equation (35) is the S = 0 sector. This sector is identified as the 3 x 3 hyperbolic
Landau-Zener model in equation (10) after using the unitary transformation from Egs. (19),
(20b) and choosing A = g5 — g1 with &5 > &;.

The prescription outlined above can be carried out for general spin-s and $* # 0. More
precisely, different magnetization sectors can always be written as a problem of a lower-spin
BCS model up to a rescaling of the diabatic energy levels, while the S* = 0 problem introduces
additional complexity. As an example of this, we also provide the description of the spin-3/2
case in Sec. 4.

On a similar note, one can also consider systems with more than two sites. For instance,
the model in (55) is the $* = —1/2 problem of a three-site spin 1/2 BCS model. One can
also find varieties of HLZ problems by tweaking spin representations and site numbers. For
the illustration, we consider two and three site BCS models with different spins on each site
in Appendix A.

The correspondence between HLZ problems and the KZ equations is an interesting feature,
suggesting that solving one problem can help understanding the other. To this end, we wish
to make sense of the solution for the LZ problem by means of the contour integral solution
of the KZ equations, which we will do in the following subsections. We will specifically solve
the contour integral for the spin 1/2 problem, to show that the resulting wavefunction is in-
deed the same as that found by direct integration. What is interesting, is that it appears that
the choice of the contour defines the boundary conditions of the BCS and therefore the HLZ
problems.

13
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3.1.2 Integral representation of the solution of the KZ equations

As mentioned before, the generalised KZ equations (25) have an exact solution via an off-shell
Bethe ansatz [13, 22,25,26]. For N spins of lengths s; and the z-projection of the total spin

N o
§* =M —3; s;j, the solution is given as

iS(A, ) M
U(0,¢) = ¢ dAexp [——] |8(A,¢)), dA= n dA,, (36)
e 4 a=1

where € = (€1,...,ey) wWith g1 < ey < ...<éen, A=(A1,...,Ay),

S(A, e)——292£]sj+2QZl ——ZZs]skln(e‘J £1),

j Jj#k (37)
+ZZS]~ In(e; — )——ZZln(lﬁ—},a),
j a p#a
and
M N §J+
=|®(4,¢)) = *(Ag)]0), It = . (38)
U ,le A—g;

The minimal weight state |0) is the state where all spins point in the negative z-direction,
S JZ |0) = —s; |0). The closed contour 7 is such that the integrand comes back to its initial value

after A, has described it.

The s = 1/2, S* = 0 block of the Hamiltonian* (32¢) can be solved in the following way.
First, the Yang-Yang action (37) takes the explicit form

1
S(A,e) =—vt(e;+€3)+2vtA— —log(ey —€,)
4
1 1 (39)
+ > log(e; —A) + > log(e; — 1),

where we dropped an imaginary constant that arises when we combine the log(e, — €7) and
log(e; — €5) terms keeping in mind that €, > €;. This constant is absorbed into the overall
normalization factor C independent of t, €; and €,. The state |®(A, €)) is given by

1
ar,e)=| LT (a = 40
[2(2, €)) ﬂ (Aa) 111) Ry (112 (40)
The solution then becomes
W(t,e) =Ce ,,[ Vf(€1+€2)—'10g(€2—€1)]
dle_%[z”t“% log(e1—A)+3 log(ez—2) | |Tl) V). (41)
r A—eq A—e

This simplifies to

B(t, &) = Celtlerre) (¢, — ) [ f dAe2ith (e, — Y51 (e, — A5 |11) +
f dAe2ith (e, — A5 (e — A) F 1 m)] :
'

4We note that the 1 x 1 block can also be solved using the Yang-Yang action, although the result is trivial. For
completeness we provide the computation in Appendix B.

14
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We then introduce a new variable ) defined by

€yt €1 €9—€q
A= — . 43
2 n— (43)

The integral now becomes

i i

3i . 1—n2) » ; 1—n2) %
¥(t,A)=C(A) ® f d’ne'"“¢ ITl)—} dﬂe”’“¢ 1N, 49
r 1—n r 1+7

where we used A = (e, — €7) and collected all constants depending on v only in the normal-
ization C. Note that there is now a minus sign between the two integrals. Rotating to the same
basis as is used in the solution for the differential equation (20a), we reduce the integral to
the following form:

¥(t,4) = C(A)F ﬁH dnei™tn(n2—1)"7 1) +
Y : (45)
J; dneinAt (712— 1)—z—v—1 12)
7

Here, we extracted a overall constant of (—1)_2%_1 exp[(—ziv—l)Zﬂ:ir] for r € N.
This function is multivalued, but since it affects only the overall prefactor, we can
safely absorb this term into the normalization constant. For the first integral we use
dn =d(n?—1 _sz/ :}10(7)2 - 1)_%_1. We then integrate by parts and use the fact that
the boundary term vanishes. This finally leaves us with

U(t,A)=C(A E \/ElivtAf dne' At (n?— 1)_2% 1) +
! . (46)

f d,nei’r)At (,nz _ 1)_%}_1 |2) :I.
T

It turns out that the solution to this integral is given by integral representations of the Bessel
function of the first kind as found by Hénkel [45].

As alluded to earlier, the specific choice for the contour determines the initial condition of
the system. The contours in question are shown in Figure 4. First, we consider the contour
71 in the left of Figure 4, which corresponds to the solution to the differential equation (13)
where we started in the ground state. The solution to the integral (46) is then provided using
the following result:

27 (%) = %ewm (Z)"r (K ¥ %M

1 .
dn(n*—1)""ze"", (47)
71

We identify T = t A, and use I'(z + 1) = 2I'(2), to write our final answer to the integral (46):

s i m32yrmt .
[$})5,0(7) = C(A) 25— [—is: () +J: 1 (D12)] @8)

(%)

Indeed, up to normalization this solution is identical to (13).

Nl =
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Im(n) 72

Figure 4: Two choices of the contour to solve equation (46). The red line and arrows
draw the path and direction of the contours. The left contour, 7, corresponding to
(47), encloses the unit circle. The contour is chosen such that 6 < arg(n) <27+,
—0 < 7 < m— 0 and the values of 1) range from 6 to 6 + 7. For 7, corresponding to
(49), we only have the requirement that k + 1/2 ¢ N

For a different initial condition (i.e. starting in the excited state |2) at t = 0*), one can use
the contour 74 as given in the right in Figure 4. The integral in this case is solved by using

; L Ey(1i 2_ 1yK—3 pinT
2mJK(r)—ﬁ(2) r(z K)ﬁzd'n(n 1)<z, (49)

We find

i i 1
3i 2—ﬂ+2ﬂ3/2(_i)v75+§ [

2 = —%
92, (7)) = C(A) 0

This solution is indeed equal to (16), up to normalization.

iJ_i+l(1:)|1)+J_2L-v_%(1:)|2)]. (50)

2y 2

3.2 Higher level models and the choice of contour

The calculations in this section show how the HLZ models in Sec. 2 are connected to the KZ
equations. For the simplest case, we have explicitly linked the corresponding contour integrals
to the solutions that are obtained by directly solving the HLZ problems. This is a promising
result, as the choice of the contour appears to dictate the boundary conditions of the HLZ
problems. Thus, these HLZ problems reduce to choosing (and solving) the contours for the
KZ equations’ solution. This choice of contour remains a partially open problem for general
HLZ problems. It is not a priori obvious which HLZ initial condition coincides with a arbitrary
choice of contour.

For the contour discussed in Fig. 4, one can argue for these shapes by inspecting the sta-
tionary points of the Yang-Yang action. The stationary points of the Yang-Yang action (39) can
be found readily from the Bethe equation

1
+

4vt = .
81—), 82—),

(51)
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The solution of this equation in the limits ¥t — 0% and vt — oo are given as

vt — 0% : A oo, Pt — 00 : A= e, (52)
A— —61;_82, A— g,

The upper row of solutions corresponds to the lowest value for the Bethe root in (51) and the
lower two solutions to the highest value for the Bethe root. From the exact solution (37), it
can be seen that the evolution is dominated by the stationary points in the ¥ — 0 limit, and is
adiabatic. Therefore, in order to start in the ground state with the lowest value for the Bethe
root at t = 0%, we presumably need a contour that can be pushed onto the point A = —o0,

but not the point A = 222 and vice versa for when the initial condition is the excited state.

2
This argument can be made directly for the integrals solved in this section, however it is not
immediately clear how to generalize it for more complicated integral solutions to the LZ prob-

lems.

We also point out a interesting example of a complicated integral structure that is found in
the two-site spin-1 BCS Hamiltonian. Specifically, the Yang-Yang action corresponding to the
Hf sector in (35d) is written as

st(i, €) =—2vt(e1 + €5) + 29t (A1 + Ay) —log(e, — €1) + log(e; — A1) 53
5
+log(€z — A1) +log(e; — A2) + log(ez — A2) —log(A, — 44).

Here, there are two integration variables, A; and A,. This means that the solution as given by
the Yang-Yang action (37) is a double contour integral. Unfortunately, we have not been able
to perform this integral explicitly However, from the corresponding HLZ problem we know
that the following must hold:

. iSyo(A, )
U f diexp | ———
r Vv

where £ = (€4, €5), i= (A1,25), |1/)’1‘O(’c)) is given in (17) and U is the unitary transforma-
tion as defined by (19) and (20b). The contours 7 in (54) determine which state |1/)’1‘ 0(1:))

is computed. We speculate that the choices for y are double contours comprised of the ones
shown in Figure 4.

®(2,8) o< [} (7)), (54)

For example, we expect the boundary condition where the HLZ problem (10) starts in the
ground state (15) to be associated with the contour 7, in Figure 4 with a second contour of
the same shape enveloping the first. Starting in the first excited state then corresponds to 7,
enveloping 7, with the final boundary condition being given by a double 7, contour. We find
that the number of possible combinations of the two contours given in Figure 4 equals the
number of boundary conditions for any spin-s two-site BCS model-derived HLZ problem. For
larger-site (N > 2) BCS models this no longer holds, due to the additional branch points that
appear in the integral-solution to the corresponding KZ equation. The appropriate contours
for these HLZ models are a topic of further investigation.

In the next section, we will consider several other models, that, according to the KZ prescrip-
tion are integrable, but for which no solutions in terms of known functions currently exists.
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4 New 3 x 3 and 4 x 4 integrable HLZ models

With the connection between the KZ equations and LZ models established, we now proceed to
discuss two more examples of HLZ models that derive from the time dependent BCS Hamil-
tonian (28). Furthermore, we will also make more general statements on higher order HLZ
problems. Due to their connection to the KZ equations, all these models are integrable, yet we
will obtain exact solutions to some of them.

4.1 Three-site spin-1/2 BCS-derived HLZ problem

First, we consider a problem derived from the three-site spin-1/2 BCS Hamiltonian. It is
found within the S = —1/2 sector, see equation (A.24). It looks similar to equation (10) and
is described by

. alA 3 2 1
P(t) T "o \/;A —3v/2aA

! Pi(t)
i) |=| Za X L ()], (55)
b)) |\ tygea -2 g ¥s(t)
3

where —1 < a@ £ 1 and A and €, are positive real numbers.

For a = 0, the model reduces to the form (10) with parameters given as

= ——3 =0 = —2 A =—— (56)
, , a \ ,a .
P 2y 1 ! 3 2 J3

This problem is solved in general in Appendix A.4 in terms of the 1 F, hypergeometric functions.
To make sense of this problem as one may derive it from a magnetization sector the BCS
Hamiltonian, we make the following identification for the basis states of the spin-1/2 particles:

1

1) =— ,

1) ﬁ(ITll)+llTl)+IllT))
1

2)=—(— ,

2) 1/5( ITL) + 1L (57)
1

3)=—(ITL) +2[IT)) = [IL1).

|3) 1/8( ITL) + 2411 =1L

The probability transition matrix is calculated to be
eg 1 1 \
1+2cosh(%) 1+2cosh(§) 1+e%+e27n

1

(5

N

m
ev

p = 7
3x3 2(1+eg—eﬁ)

1

n —
2(1+e7—e ZV)

1

k3

n —
2(1+e7—e Zv)

m
ev

n

5+ r prs T
2(1+2cosh[ 53 ]) 2(1+ev+e2—v”

WY
\2(1+e7+eﬁ)

(58)

A plot of the transition probabilities and the energy spectrum as a function of time is provided
in Figure 5.

By tuning the value of a to 1 or —1, a non-trivial degeneracy arises at t — 00, see Appendix
A.5. Here, the middle energy band coalesces with either the ground state or the highest band
respectively. While the differential equations can be solved for certain choices of boundary
conditions, they are unfortunately not sufficient to compute the probability transition matrix.
More details are provided in Appendix A.5 with plots of numerical simulation for the case of
a =—1 given in Figure 8.
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00 (a) : Energy-Time plot Lo (b) : Transition Probabilities p1_,;
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Figure 5: (a) Instantaneous eigenvalues of the 3 x 3 HLZ model (56) vs T = tA
for ¥ = 2. The ground state |1) evolves towards |1]]) (purple curve). |2) and |3)
evolve to ||1]) (green curve) and |]]1) (blue curve) respectively. (b—d) Elements
of the transition probability matrices, where the solid lines represent the analytical

expressions in (24). The scatter plots represent the numerical simulation of p,_,, as
a function of » at T = 103.

4.2 Two-site spin-3/2 BCS-derived HLZ problem

Here we consider a HLZ problem that is derived from a spin-3/2 BCS Hamiltonian. We intro-
duce the spin-3/2 operators,

30 0 O 0 v3 0 0 0 0 0 O
01 0 O 0 0 2 0 /3 0 0 O

§%2 == §t = §T =

5327210 0 =1 o |” %327 o 0o o V3| P2 0 2 0 0 (59)
00 0 -3 0 0 0 O 0 0 v3 0
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We write the wavefunctions in the canonical basis states |i),i = £1,+3 as in (30) where |i)
is the eigenstate of § ; 12 with eigenvalue i/2. By ordering the (i, j) indices as

[(_33 _3)’
(_17 _3): (_31 _1)’
(1’_3)5 (_1’ _1); (_3’ 1)2

(3, _3), (1: _l)s (_13 1)’ (_3’ 3): (60)
(3’_1): (1: 1); (_1’ 3)’
(3,1),(1,3),
(3,3)]
we find 5
Hycs 3/ = @ HS;), (61)
Sz=—3
where
(:I:3) (:I:l)
(-2) — 70
B () = H /ch/s) —2(e1 + &)L,
@ ©) 1
H3/2('V) Hl/Z(v/3)+2(81+€2_E)1[’ (62)

3/2

H D () = HO(v/4/3) + (&1 + &)1 — %diag(Z— V3,3-24/3,2—v/3),

3/2

HD (v) = HO(v//3) + (&1 + £5)I — %diag(:}— V3,4—24/3,3—4/3).

It is worth noting that we cannot solve for H (x1) through any re-scaling of the S* = 0 solution

3/2
of the spin-1 case. This is because in this case, the Hamiltonian is not shifted by a term pro-
portional to unity as before, but rather the individual (adiabatic) energy levels have shifted.
Since the equations are still fundamentally the same, the solution to this problem is given in

terms of the ;F, hypergeometric functions (see Appendix A.4).

The S* = 0 sector is written using the spin-3/2 (59) operators as

>

vt L2

(__2‘/_)( S3/2° 3/2 3/ +33/2 3/2 ;/2)
A— At A— At A—
+ (3‘/5_ 2) (53/2 S50 830 T 855785 S3/2)

A+ A— A—
(__2‘/_)( S32° 3/2 3/2+s3/2 S3/2'33/2)]'

The solution of the non-stationary Schrodinger equation for this Hamiltonian is out of reach
for the present work.

O () — e —ea? — L[+ o= Lo .o+
H3/2(v)—2(.¢:1 32)33/2 [ (53/2 3721535 3/2)

Cl»

(63)

4.2.1 A new 4 x 4 integrable HLZ model and remarks on N > 4 integrable models

While we do not attempt to fully solve the non-stationary Schrodinger equation for the H, ;(/);

block in equation (63), we do solve the corresponding 4 x 4 HLZ problem numerically. Here
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we also provide some remarks on the general multi-state problems that can be constructed by
going to higher spin-s representations.

First, it is interesting to note that (20a) and (20b) are also the eigenstates of $*§= =3}, | §]+§k_

in their corresponding spin representation. By choosing the correct eigenstates of $*$~ of a
given S* sector, we can construct the unitary transformation to simplify HS”) blocks of ar-
bitrary spin-s. For instance, for S* = 0 this allows us to define the following orthogonal
transformation:

13/2,0), = 1) = 2—11/§(|3, 3)+3[1,-1) +3]-1,1) +-3,3)),

12) = %(—|3, 3)—|1,-1) +]-1,1) +]3,3)),

) (64)
13) = —(313,-3) —1,-1) —|-1,1) + 3]-3,3)),
2/5
1
14) = 3 (—13,-3) +[1,-1) —|-1,1) +1-3,3)).
Then, the differential equation of H ;2 takes the form
) 6 3A
Y\ [ & 2 0 ) i)
. 3A 3 aA
: = 4A 1 t) |’
Ps(t) o 2 _L /af{vst)
/ll)(t) /5 vt Pa(t)
4 0 0 /50 0

where A = g; — &5. All HLZ models in this work are presented as tridiagonal matrices, with
only the diagonal elements being time dependent as o< 1/t. In fact, this is the general ap-
pearance of any N x N representation of our model. The plots of instantaneous (adiabatic)
eigenvalues of these models also have a familiar behaviour: at t = 0%, the BCS ground state
evolves from the lowest energy, while the highest energy band begins at E = 0. At t — 00,
they all tend towards one of the |i) ® |j) states, see Figure 6.

Finally, it is always possible to identify the transition probabilities at the limits v — 0 (adi-
abatic, assuming there are no degeneracy) and ¥ — oo (diabatic). In the adiabatic limit,
Px—x = 1, while the remaining probabilities are zero. In the diabatic limit, each p,._,, is given
by the weighted coefficients of the basis transformation in (64). We numerically validate this
in Figure 7 (the grey dashed lines) for s = 3/2, and it can be further verified with the help
of (22) and (24). Additionally, using a saddle-point approach, one can always compute each
P1-y ° as was done in [32].

SHere the label ‘1’ refers to the BCS ground state of each magnetization sector in the BCS Hamiltonian.
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Energy-Time plot

s/l

1072 1071 10° 10! 102
T

0

/
€9 =2, and v = 2. The BCS ground state |1) evolves towards |3, -3) which represents

the lowest energy curve.

Figure 6: Instantaneous eigenvalues of H ; ; as functions of time 7 =t A for g; =1,

5 Conclusion & Discussion

In this work, we obtained exact solutions for several hyperbolic Landau-Zener (HLZ) problems.
We solved a number of nontrivial examples of the non-stationary Schrodinger equation of the

form ig—‘f = (A+B/t)¥, where A and B are time-independent N x N Hermitian matrices. We
obtained the wavefunctions ¥(t) at arbitrary time t as well as transition probabilities between
eigenstates at t = 0" and t — +00. More importantly, we demonstrated how these models
arise from the generalized Knizhnik-Zamolodchikov (KZ) equations of Conformal Field Theory.

The BCS Hamiltonian with the superconducting coupling parameter inversely proportional
to time shares the integrability properties of the KZ equations. By examining individual mag-
netization sectors in the finite-size BCS model, we readily identified a plethora of integrable
HLZ problems, some of which we explicitly solved as mentioned above. Meanwhile, the KZ
equations are solvable in terms of (multidimensional) contour integrals. We explicitly showed
how the choice of the contours determines the boundary conditions of the corresponding HLZ
problem. We suggest that most, if not all, solvable finite-dimensional Landau-Zener problems
are connected to the KZ theory (including various generalisations of the KZ equations) in the
manner described in this work.

There are several intriguing problems that remain unsolved. One is the general solution of
the 3 x 3 problem (A.20), which itself is a generalisation of (10). Another problem is to iden-
tify the proper contours and to compute the integral in the solution of the KZ equations (54)
corresponding to the spin-1 derived 3 x 3 HLZ problem. A similar 3 x 3 problem derived from
a three-site spin-1/2 BCS Hamiltonian, which we solved in terms of generalised hypergeomet-
ric functions in Section 4.1, can also be written in terms of contour integrals. Finally, we note
that (55) for @ = £1 represents a 3-site BCS problem with degenerate single-particle energy
levels (Zeeman fields) € j- While this problem can be solved for certain boundary conditions,
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Figure 7: (a—d) Numerically evaluated transition probabilities p,_,, for the 4 x 4
HLZ model at T = 102 as functions of v at log-equidistant values between 10~2 and
103. Gray horizontal lines indicate the predicted probabilities from (64) : in (a),(c)
they are 1/20 and 9/20 and in (b),(d) itis 1/4. Atlarge v, the expected behaviour of
Px—y is verified. For ¥ & 0, p,_,, tends towards unity, while the rest of probabilities
are approximately O.

the evolution starting from the ground state at t = 07 is still unknown. This will be investi-
gated in further work. In general, we believe that in order to systematically solve the contour
integration problems described in this manuscript, cohomology methods should be employed.

As a final note, we emphasize that all models presented in this work are solely based on the the
su(2) algebra. Generalizations to other Lie algebras should reveal new classes of integrable
(H)LZ models. This is reserved as a topic for later investigation.
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A Derivation of HLZ models from the KZ-BCS theory

In this section, we will show step-by-step how we arrive at HLZ problems from an n-site BCS
Hamiltonian for spins of magnitude j;. The Hamiltonian reads

H=22€i§f—$(i§;’) (Zn:sl—) (A1)

i=1

where siz |ji)m) =m Iji: m) and sii |ji’ m) = '\/Jl(jl + 1)_m(m + 1) Iji: m =+ 1)

A.1 The 2 x 2 case

For n = 2, we look into the S* = —j; — jo + 1 sector, whose basis states are given by
2
=@ lit,—ji +8:)), i=1,2. (A.2)

Investigating the matrix elements of the Hamiltonian in this basis, we determine the corre-

sponding block

2

. 0 11 J1J2
2x2 ; i (0 €2) vt\vij21 J2

) A
we rewrite the Hamiltonian as

J1tja J1—Jj2
HY, —2( me — (557) (2 =€) (62_61)) (A.5)
x (e2—€7) 0

Using the unitary transformation
T = ; ( v Jl

- . .

viitJ2 V2

ﬁﬁ

up to a multiple of identity [% -2 Ziz:l €; ji] I. This model is of the form (8). Taking

Jj1 = jo, we reproduce the parameterization (9) that we considered in the main text.
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A.2 Solution to the 2 x 2 case

Consider the following set of differential equations

P
(mm) (;+a1 az) (¢1(t)) A6
$2(t) as 0 )\ ¢2(t)
where a; # 0. The case with a; = 0 is solved in the main text. Eliminating ¢; from the first
equation, we obtain

¢2(t)+z( +a1)¢2(t)+¢12¢2(t) - A7)
Eqs'z(t) = ¢1(t). (A.8)

The solution of (A.7) is

1 . 1
Po(t) =cle-f(“+l“1)fU(§p (i—ﬂ),ip, tu)
K (A.9)

—l(u+ia1)t ip—1
+CZe 2 L (t,u),

ap(-i+%)

where = ‘/—ai - 4a§. U and L are the Tricomi Hypergeometric and Generalised Laguerre
functions respectively. C; 5 are arbitrary complex constants which fix the boundary condition.

A.3 The 3 x 3 cases
For n = 3, we are interested in the S = —j; — j, — j3 + 1 sector. The basis states are
3
=®|ji:_ji+6i,j): i=1,2,3. (A.10)
j=1
In this basis,
€z 0 O 1 J1 vz Vs
HIV2I = 22 ejil+2| 0 e 0 |—=| Vi Jj» AJajs |- (A1D
vt — — .
i=1 0 0 e Visji Visj2  Js

We use the following unitary transformation

[ i [ 2 [ Js
Jitja2ts Jitiz2tis Jitjztis

T = Y I A.12
Jitja Jitje 0 ( )
Jjij3 Ja2Js J Jitj2
(1ti2)Uitizt+is) (j1+72)G1+j2+j3) Jitietis
and choose L )
€3—E€
e, =B (A.13)
J2

Then, the transformed model takes the form
Jitjatjz / j1(i1+i2)
T 2mt ]2(]1+]2+]3)( 1= ) 0
HLZ =92 / Jj1(i1+j2) _ 1 _ Jjijs _ , (A.14
3x3 f2(11+jz+j3)(el 63) (fz 1) (63 61) jz(jl+jz+js)(el 63) ( )

/ Jjijs
0 f2(11+j2+j3)(€l —€3) 0
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up to a multiple of identity (263 — 22?;1 eiji) I
The Hamiltonian (A.14) is a new integrable HLZ model and can be generically written as

% al 0
HZ =|la; a3 a|, (A.15)
0 a2 0

with arbitrary real parameters a;, a,, as, and p. So far, we have not found an analytical so-
lution to the non-stationary Schrodinger equation for this model. For j; = ja, (A.14) takes
the form of (10) with ¢ = 0. The solution presented in Appendix A.4 for the 3 x 3 model
solves the S = —j; —jo —j3 + 1 sector of the three-site BCS model with on-site Zeeman fields

1
(€1,5(€1 +€3),€3).

We can also arrive to a 3 x 3 problem from the n = 2 BCS Hamiltonian. Consider the sector
S% = —j; — jo + 2 where jq, jo > 1/2. The basis states are

2
ba,m) = Q) lji,—ji + 8nj +8m), n,m € {1,2}. (A.16)
j=1

Choosing the basis ordering as (bl’l, b1, bz,z), we write the matrix elements as
261 0 0

H;;’;z——ZZe,-j,-]I+2 0 €;+ey O
i= 0 0 26

. _ _ (A.17)
1 2j;+1 Vv (2j1 +1)j2 0
o Vv (2j1 +1)j2 Ji+J2 vV (2j2 + 1)j1
0 vV (2j2 +1)j; 2ja+1
The unitary transformation involved is
¢ J1(2j1+1) ‘/ Jij2 ¢ Jj2(2ja+1)
(1+j2)(2j1+2j2+1) (j1+j2)(2j1+2j2+1) (1+j2)(2j1+2j2+1)
/ (2j1+1)j2 J1—J2 / j1(2j2+1)
r= (14j2)G1+j2+1) VG142)G1+ja+1) (1+j2)(1+j2+1) (A.18)
Jj2(2ja+1) _ (2j1+1)(2j2+1) J j1(2j1+1)
(1 +j2+1)(2j1+2j2+1) (1t+j2+1)(2j1+2j2+1) (1t+j2+1)(2j1+2j2+1)°
We then write
(j2—j1)(2j1+2j2+1) 2 [ Jjui201t+j2+1) 0
(j1+j2)G1tia+1) (2j1+2j2+1)(j1+j2)?
HLZ =2(e;—€1) | 2 [ jij2(i+je+1) (j2—j1)(1+j2—1) (2j1+1)(j1+j2)(2j2+1)
3x3,(2) (2j1+2j2+1)(j1+)2)? (1t+j2)U1tjat1) (2j1+2j2+1)(j1+j2+1)?
(2j1+1)(j1+j2)(2j2+1)
0 V @h 272+ D01 F 12 0 (A.19)
. 2j1+2j,+1 0 0 . i
. . J2€11+2]1€21€1+€7 2 .
7t 0 J1 +]2+1 0 +2(W—Zi=l ei]i)]I.
0 0 0
Thus, we arrive to a generalisation of the model which can be summarized as
p
Lz T +as ] a; 0
Hi,=| a1 t+a; az|, (A.20)
0 (¢5)) 0

with arbitrary real a; 53, p, and q. Thus far we have not been able to identify the general
solution to this problem. Setting j; = jy, we obtain (10). Appendix A.4 also solves the
S§% = —2j+1 sector of the two-site BCS model with spins of the same magnitude j for arbitrary,
distinct on-site Zeeman fields €; and €.
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A.4 Solution to 3 x 3 cases

Consider the following set of differential equations

¢:1(t) T oar 0 [¢1(r)
il 206) |=|az F a5 || 20)]. (A.21)
¢3(t) 0 a, 0)\9s(t)

These equations are a generalised version of (10), but a special case of (A.20). These differ-
ential equations can be cast into the form

—it3€1’.i(t) +(p+q)t21(t) + (ipq —2p—q—i(asaz + azal)tz) tP4(t)

+p (—2iq +t2asa, + 2) d.(t) =0, (A.22a)

pa(0)= - [i(ﬁl(t)_g‘pl(t)]’ (A.22b)
a t

ba(0) = [—¢5‘1(t)_ Lo +)br(0)+ —(plg +1)— tzalaz)qsl(t)]. (A.220)
aas t t

We only need to solve for ¢;(t) and subsequently use it to find ¢(t) and ¢3(t). The general
solution is

tz 1+ ipagay 1 5
$1(t)=Cy Z(alaz +azag) Fa 25‘;}‘12;“3}34) =5t (a1az + azay) [+
2 2772

ipagzay

1Y% I g
Cz —Z (—alaz—a3a4) 2 t ple (Taz-‘—ﬂ?’a“) 1 ;—Zt (a1a2+a3a4) + (A23)
2t 3

i(g—;
—3ip L@ ),

(—ig+1) . ipagay iq 1
1 3 (—ig+1) i a4ty 1
—5 +—ig+1 2(ajag+aga R 2
Cs (—z) (Fa1az—azay) 2 TN, (ll_fl si(;_)q)+§ 5 4t (a1az +azas)|,
37202 *2

where Cq 5 3 are arbitrary complex constants that determine the boundary condition.

A.5 Some special solutions of the 3 x 3 model

Consider the following set of differential equations

so) [F-m Via —5vEea) (4,0
il |=| ia 22 2 [|ea0) . (A.24)
¢3(t) _% J2aA —2 0 ¢3(t)

This model is obtained from (A.11) but without the simplification (A.13). Specifically, to obtain
(A.24) up to a term proportional to identity, we start with (A.11), perform the transformation
(A.12), and set j; = jy, = j3 = 1/2 with
1
€3=A+€1, €2=5[(1+a)€1+(1—a)€3]. (A.25)

Note that €, €5, and €3 are the eigenvalues of the Hamiltonian at t — 00, see (A.11).

Now consider the case @ = +1, which corresponds to €5 = €; or €5 = €3, i.e., the eigen-
values at t — 00 are degenerate. Let T = t A. At those specific values of , it turns out that
¢,(t) and ¢3(t) are related as

Aexp (i%At) —av/3¢3(t) = ¢o(t). (A.26)
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05 (a) : Energy-Time plot Lo (b) : Transition Probabilities p1_,;
3) 1), 1) ® P
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0.8
154 P1-3
—~ i 0.6 1
E—?.O 12)
2
K —2.51 0.4
a0 [T
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Figure 8: (a) Instantaneous (adiabatic) eigenvalues of the 3 x 3 HLZ model (55) with
a=-—1, €, =1, and v = 2 with time 7 = At. The ground state |1) evolves towards
[11]) which represents the lowest energy curve. (b—d) All elements of the transition
probability matrices. The scatter plots represent the numerical simulation of p,_,,
for different values of v at time © = 103.

This allows us to write the differential equations as

—9\/§Ae%i‘” +18v7¢3(7) + 3id3(7)(Bavt —9) + ¢3(t)(10vT +27a) =0

[_ 3A siaAt 31‘453(1') 3¢3(l‘)

(A.27)
——es - + ] = ¢1(t)’

2a v2aA V2

whose solutions are given in terms of the Tricomi hypergeometric function U and Generalised
Laguerre polynomial L,

31

$3(7) = e~3ia)T 14y, [c U(1+ 5522+ 55, 2it) + ool P (207) +AI(, 7)], (A.28)
T
where
i 3i L3
3 Aeil@Dx x 235 (U(‘(“+3)+1 242, Zw)L [(Zavm (le) —U(X2 41,24 51, 2lx)L l(za”m (2ic))
I(v,7) = f: dx. (A.29)

i(a+3) i(a+3)

4 (S52 4, 245 le)L 3 (2ix)+(a—4iv+3)U(

>t 2v *
l(u+3) +2, 3+ le)L (le)

1(a+3)
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We study this analytical solution with the numerical simulations in Fig. 8. It is interesting to
note that for » — 0, the transition probabilities p;_,; where i, j € {2,3} oscillate heavily as
functions of v.

B Contour integral solution to the KZ equation for 1 x 1
LZ-Hamiltonians

In this section we detail the contour integral solution to the Hamiltonians in equation (32).
The Hamiltonians in question are

H{ V(%) =—(e1 + €3),

Wy — _1
H ,(»)=(e1+¢€5) o

(B.1)

Our first observation is that the Hamiltonians in (B.1) are proportional to the single site, spin-
1/2 (n =1, s = 1/2) BCS Hamiltonian:

Hy=1,1/2 =2§§Z—i“+“——2§ ——(1+2§Z) (B.2)
2yt

Specifically, (B.1) are simply equal to 2H,,—; 1/2 where we identify § = (€ + €2)/2. First, let

us focus on the Hamiltonian H Szl )(v) in (B.1) which corresponds to s* = —1/2 in (B.2). The

Yang-Yang action (37) for (B.2) becomes

S(4,&) = —vt&. (B.3)

The state |®(A, &)) is simply |]). Since M = 0, there is no integration to be done in equa-
tion (36) (the set of A, is empty), and we immediately write down the solution,

o(t,&) = f die5539 = 50D}y (B.4)

This result is the same as the solution found by directly solving the non-stationary Schrédinger
equation for the Hamiltonian H 5721 )( ) in (B.1).

The Hamiltonian H S;( v) in (B.1) is slightly less trivial. By directly solving the non-stationary
Schrodinger equation, we find (up to normalization)

w(t, &) = el s[5z tesO ] gy (B.5)
For this problem, the off-shell Bethe state as defined in (38) is given by
Al = 7). (B.6)
l_[ a g)
The Yang-Yang action reads
- 1 1
S(A,8)=— 2vt§(§ —1)+2vt(A,—&)+ 3 log(& —24). (B.7)

Note that we explicitly added and removed a factor of 2vt¢ in the first and second term of
the action respectively. For a general one-site spin-s BCS Hamiltonian one can always make a
simple replacement like this. The solution is then given by

w(t, §) — } die—%[vt€+2vt(l1—§)+%log(g—l1)]+§) I1). (B.8)
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Redefining A; —& — A, we find

W(t, &) = e f die—s[r2remratosm] Ly _ iy, (B.9)
A

By comparing Egs. (B.5) and (B.9), we see that the integral I(t) must equal ezivbg(t). This
can be shown straightforwardly by taking the derivative of I(t). Using the fact that

d : A .
day——(e7HH) = Tld (e72ith), (B.10)

we can write (removing an overall constant)

di(t) 1 o -
=—¢d(e?M)A>. B.11
dt té (e )4 (.11
Integrating by parts, we find
dI(t) 1 ( i) i Cgitay . T
-¢dfe ‘“Ll;w)+— d (e 2tM) 277 da,. B.12
Tdt tf 1 )7 2nt ( )4 ! (B.12)

Since the boundary term vanishes for a closed contour, we have

dI(t) i i
= —1I(t) = I(t) o< e7'08(t), B.13
It 7ot (t) (t)oce (B.13)

We end this section by noting that the calculation presented in this appendix can be general-
ized to a arbitrary single-site spin-s BCS Hamiltonian. The calculation will be slightly more
difficult, but the procedure remains the same. Let us go through the calculation below.

For a single-site spin-s BCS Hamiltonian of the form (B.2), we find for the Yang-Yang action:

M
S(i,g)=zvt§(—s+M)+zvtz[(A —&)+slog(E — za)——21og(x,5—x) . (B.14)
a ﬁ;éa

Note that we rewrote the first two terms using s, = —s + M. The off-shell Bethe state is

@) =[[E* (a1l = (]'[ z = 5) In). (B.15)

a a

The same shift as before, A, —& — 4, simplifies the final result to
¥(t,8) = e 2=F(D)1), (B.16)
where

F(t) = § die 2t ZZ’[}WH log(—Aq)—3 2pta 108(%—%)] l_[ }\,;1 (B.17)
a

We now do the same as before: differentiate F(t) and use (B.10). The steps remain largely
the same, only now we have to sum over @ = {1,...,M} and keep track of an additional
logarithmic term. We find

ar _Zf l_[ d},ﬁ —; _zltlp)d (e—ZItl )2’ ezV Za’ Pia’ log(lﬁ—la/) (B18)

pta
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We integrate by parts as before,

= S Ty (a2, e BT I )[4 S ] 819

The summation over a simplifies the second term in the square brackets,

i M(M—1)
2| _Zx,j A, _%[SM_T]' (B-20)

a

We conclude that

dF(t) i [SM_M(JV.;—I)]

F(t) = ¥(t,&) = Ne 255 s[sm=25 ]1°g(t)|1) (B.21)

dt t
where N is a normalization constant. This is the same result as the one we obtain through
direct integration of (B.2).6
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