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Abstract

Anomalies of global symmetries are important tools for understanding the dynamics

of quantum systems. We investigate anomalies of non-invertible symmetries in 3+1d

using 4+1d bulk topological quantum field theories given by Abelian two-form gauge

theories, with a 0-form permutation symmetry. Gauging the 0-form symmetry gives

the 4+1d “inflow” symmetry topological field theory for the non-invertible symmetry.

We find a two levels of anomalies: (1) the bulk may fail to have an appropriate set of

loop excitations which can condense to trivialize the boundary dynamics, and (2) the

“Frobenius-Schur indicator” of the non-invertible symmetry (generalizing the Frobenius-

Schur indicator of 1+1d fusion categories) may be incompatible with trivial boundary

dynamics. As a consequence we derive conditions for non-invertible symmetries in 3+1d

to be compatible with symmetric gapped phases, and invertible gapped phases. Along

the way, we see that the defects characterizing Z4 ordinary symmetry host worldvolume

theories with time-reversal symmetry T obeying the algebra T2 = C or T2 = (−1)FC,

with C a unitary charge conjugation symmetry. We classify the anomalies of this

symmetry algebra in 2+1d and further use these ideas to construct 2+1d topological

orders with non-invertible time-reversal symmetry that permutes anyons. As a concrete

realization of our general discussion, we construct new lattice Hamiltonian models in

3+1d with non-invertible symmetry, and constrain their dynamics.
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1 Introduction

Symmetry plays a crucial role in our understanding of quantum systems. In particular, ’t

Hooft anomalies of global symmetries are invariant across all energy scales, and are powerful

tools for constraining dynamics. Examples of anomalies in nature are abundant, including for

instance chiral anomalies in gauge theories, Lieb-Schultz-Mattis anomalies for lattice models,

as well as examples of anomalies of discrete symmetries.

In recent years, the concept of symmetry has been generalized in various directions (see

e.g. [1] for a review with references). In relativistic continuum quantum field theories a

working definition of a symmetry is any topological operator of the system. This includes

ordinary global symmetries (topological operators of codimension one in spacetime) as well as

higher-form symmetries (topological operators of higher codimension) [2]. A particularly novel

generalization is to non-invertible symmetries, which are symmetries generated by topological

operators without inverses. Non-invertible symmetries include the familiar Kramers-Wannier

duality, and other topological line defects in 1+1d [3–22]. Beyond 1+1d systems, non-

invertible symmetries are also ubiquitous in higher dimensions as discussed in e.g. [23–26] in

2+1d, and e.g. [26–81] in higher spacetime dimensions. Generalized symmetry also plays a

role in the weak gravity conjecture and the completeness hypothesis [37,82–86], as well as

particle physics applications [41, 42,52,54,56,77,87,88].

Non-invertible symmetries can also be anomalous, leading to new constraints on the

dynamics of quantum systems. In the case of ordinary symmetries, an anomaly is often

defined as an obstruction to gauging the global symmetry, i.e. summing over insertions of

the associated topological operators. A consequence of a non-trivial anomaly is then that

the system cannot be deformed to a trivially gapped phase by any continuous symmetry

preserving deformation including renormalization group flow. For non-invertible symmetries,

these two points of view on anomalies may in general differ [89], and below we will directly

define anomalies of non-invertible symmetries as obstructions to trivially gapped realizations

of the symmetry. Our main results are to characterize certain anomalies of non-invertible

symmetries in 3+1d.

Anomalies of non-invertible symmetries in 1+1d can be systematically understood using
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fiber functors [13,15,90–92]. These anomalies depend on the F -symbol, which generalizes

the 3-cocycle defining anomalies of invertible symmetries. While systematic, this method

has two main drawbacks. First, it provides more information than just presence or absence

of an anomaly; it completely defines a trivially gapped phase in the absence of an anomaly.

Because fiber functors provide more information than desired, they are also very difficult to

use in general. For example, it is very difficult to determine whether or not a fiber functor

for a given non-invertible symmetry exists. Second, this approach is difficult to generalize to

higher dimensions.

Recently, [28, 38, 39,65, 66, 93,94] made progress in understanding anomalies of particular

kinds of non-invertible symmetries in 3+1d. However, the framework employed only applies to

specific non-invertible symmetries. Moreover, they do not take into account the generalization

of the F -symbol, which includes in particular the 3+1d analogue of the 1+1d Frobenius-Schur

(FS) indicator. We denote this important piece of data defining the symmetry by ω (or ωf

for fermionic systems). In general, the FS indicator is one piece of data entering into the

higher-categorical structure of the non-invertible symmetry [34,47,59,70,72,73,75,95].

Below, we provide an alternate approach for detecting whether or not certain kinds of

non-invertible symmetries are anomalous. This approach is applicable to non-invertible

symmetries that include Kramers-Wannier-like (duality and more general n-ality) defects

in any spacetime dimension. In 1+1d, this is quite restrictive, but in 3+1d, we will show

that this actually encompasses all finite non-invertible symmetries. Our approach refines

of the above studies of non-invertible symmetries in 3+1d to include anomalies due to ω.

Specifically, [28, 39, 65] showed that for a given kind of gauging, certain 1-form SPTs, labeled

by integers (N, p), in 3+1d are invariant and therefore can have duality defects. We show

that for trivial ω or ωf , the 1-form symmetries defined by those valid (N, p) together with the

duality symmetry do indeed form anomaly-free non-invertible symmetries. On the other hand,

for nontrivial ω or ωf , the symmetry is always anomalous for N odd, but can be anomaly-free

or anomalous for N even. Our main results are stated in Theorem 1 and Theorem 2. Our

approach also reproduces, via a quicker and easier calculation, the results of [15,96,97] for

non-invertible symmetries in 1+1d. It furthermore provides an interpretation of the physical

meaning of the anomaly.

1.1 Symmetry TQFTs for 3+1d non-invertible symmetries

Our approach uses the symmetry topological quantum field theory (TQFT), which is a theory

in one higher dimension than the physical system carrying the anomaly. Any QFT can be

viewed as a symmetry TQFT with appropriately chosen boundary conditions [2,48,49,98–100],

with the symmetry given by bulk defects restricted to the boundaries. More precisely, the

boundary of a TQFT is a relative theory [101–103], and we need to further choose a polarization

to obtain an absolute theory, without the bulk TQFT. Specifically, we can put the bulk TQFT
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on an open interval with one topological boundary corresponding to the choice of polarization,

giving the desired symmetry, and the other boundary chosen such that shrinking the interval

removes the bulk and produces the QFT of interest [101–103]. From this perspective,

constraints from anomalies of the symmetry can be viewed as constraints on the possible

boundary dynamics of the given bulk TQFT. Symmetry TQFTs were used in [66,97,99] to

study anomalies of non-invertible symmetries in 1+1d (and some aspects of non-invertible

symmetries in higher dimensions), and have been further explored in [95,104–107]. From this

perspective, we can completely classify finite non-invertible symmetries using TQFTs in one

higher dimension that have at least one gapped boundary condition.

Non-invertible symmetries in 1+1d are diverse because 2+1d TQFTs are diverse. However,

in 4+1d, TQFTs with bosons are all Witt equivalent (i.e. have topological interfaces) to

Abelian two-form gauge theories [108,109] (possibly with a fermion). This is because all the

particles are bosonic, so we can always condense them and the resulting theory is always

an Abelian two-form gauge theory. This means that all TQFTs with bosons in 4+1d can

be obtained from gauging a 0-form symmetry G of an Abelian two-form gauge theory. Our

approach applies to all symmetries for which the symmetry TQFT can be obtained by gauging

a 0-form symmetry of an Abelian gauge theory, so in 3+1d, it can in fact be used to study

all finite 3+1d non-invertible symmetries.

For concreteness, we will focus on symmetries with duality-like defects, whose symmetry

TQFTs are obtained by gauging an Abelian permutation symmetry of an Abelian gauge theory.

For example, Tambara-Yamagami fusion category symmetries in 1+1d have symmetry TQFTs

given by gauging a Z2 permutation symmetry of an Abelian 1-form gauge theory [49,97,110].

Our main interest lies in Tambara-Yamagami-like symmetries in 3+1d, generated by a 1-form

ZN symmetry and a non-invertible duality symmetry, whose symmetry TQFT is a ZN 2-form

gauge theory with a gauged Z4 permutation symmetry1. In general, the theory resulting

from gauging a permutation symmetry is rather complicated, with various non-invertible

higher-form symmetries. However, its properties are already fully determined by two simpler

pieces of data: (1) the 0-form symmetry action on the ZN 2-form gauge theory and (2)

the choice of SPT of the 0-form G symmetry stacked on the system prior to gauging. We

will show that these two pieces of data specify the anomaly: (1) determines whether or not

there is a “first level obstruction” like those studied in Refs. [28, 39, 65] and (2) determines a

“second level obstruction” related to ω and ωf .
2

1We give the full fusion rules in Eq. (2.13).
2The higher fusion category characterizing the symmetry also depends on fractionalization data, i.e. the

possible decoration of junctions of codimension one symmetry defects by codimension two symmetry defects

(i.e. the one-form symmetry operators). In general, this data also modifies the anomaly (see e.g. [111–113]).

However, in our case we are focused on examples that are self-dual under gauging the one-form global symmetry.

This implies that anomalies involving the one-form symmetry are trivial and hence the fractionalization

choice does not modify the anomaly of the QFTs of interest.
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1.1.1 4+1d Abelian 2-form gauge theory

We begin with the first piece of data, which may already indicate that the 3+1d non-invertible

symmetry is anomalous. A general Abelian two-form gauge theory is described by the action

S =
∑
I,J

iKIJ

4π

∫
bIdbJ , (1.1)

where bI are U(1) two-form gauge fields, and K is an antisymmetric matrix.3 Our main

interest is the simplest example of the above which is a ZN 2-form gauge theory,

S =
iN

2π

∫
bedbm . (1.2)

It is characterized by loop excitations labeled by integers (qe, qm) ∈ ZN × ZN , with antisym-

metric braiding [29,104,109,115]. Different kinds of non-invertible defects in 3+1d correspond

to duality symmetries in the 2-form gauge theory with different permutation actions. For

example, S : (be, bm) → (bm,−be) and ST : (be, bm) → (bm,−be+bm). As we will discuss more

in detail in Section 2, the permutation action of the 0-form symmetry can already indicate an

anomaly: if there does not exist a subgroup of N loops that (1) can simultaneously condense,

(2) is invariant under the duality symmetry, and (3) overlaps trivially with those generated by

(qe, qm) = (1, 0), then the 3+1d non-invertible symmetry is anomalous. A collection of loops

fulfilling these criteria is the 4+1d analogue of the “duality-invariant magnetic Lagrangian

subgroup” described in Ref. [97]; different such 4+1d subgroups correspond to different

3+1d duality-invariant 1-form SPTs. By studying these subgroups, we will reproduce and

generalize the results derived in Refs. [28, 39,65]. For example, we will rederive the fact that

for S gauging, −1 must be a quadratic residue mod N for the non-invertible symmetry to be

anomaly-free.

1.1.2 4+1d SPT/Frobenius-Schur indicator

If the two-form gauge theory has the kind of Lagrangian subgroup described above, the

symmetry passes the first level obstruction and we can consider the second piece of data,

which can present other anomalies. The second piece of data describes stacking of a 4+1d SPT

of the 0-form symmetry on the Abelian gauge theory before gauging. The fusion of the fluxes

of the SPT modifies the fusion of the duality defects.4 In 2+1d, the SPT for a Z2 duality

symmetry is classified by H3(Z2, U(1)), and is precisely the Frobenius-Schur (FS) indicator.

This quantity affects the F -symbol of the duality object of 1+1d Tambara-Yamagami fusion

3We can also include diagonal entries in K, which give rise to fermionic loop excitations [104,114]. For

simplicity, we do not consider such cases here.
4In Appendix B, we show that ω is also related to braiding correlation functions for domain wall operators

in 4+1d, similar to how the FS indicator in 2+1d is related to the self-statistics of line operators [116].
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categories. In 4+1d, stacking with an SPT for the 0-form symmetry gives the analogue

of the FS indicator we denoted by ω above. Because ω affects the fusion of the duality

defects in 3+1d [111,117], it plays an important role in determining the anomaly of the 3+1d

non-invertible symmetry.

We will be particularly interested in order four duality symmetries. Then, the relevant Z4

SPTs are those which directly interplay with the Z4 symmetry and hence are given by the

quotient below

Ω5
SO(BZ4)/Ω

5
SO(pt)

∼= Z4 × Z4 , Ω5
Spin(BZ4)/Ω

5
Spin(pt)

∼= Z4 , (1.3)

where above Ω5(pt) denotes purely gravitational SPTs, and the two cases above correspond

to respectively bosonic or spin SPTs. Thus, the higher analogs of the FS-indicator, ω and

ωf takes values in Z4 × Z4 and Z4 respectively. For reasons discussed in Section 3.4, we

will consider ω for N odd and ωf for N even. If ω or ωf is trivial, then it does not present

any additional anomaly; all we must check is the existence of a duality-invariant magnetic

Lagrangian subgroup as described above. If it is nontrivial, then our main strategy is as

follows: ω and ωf describe Z4 SPTs in 4+1d that have a decorated domain wall construction,

that we explain in Section 3.4.1 following [65,118,119]. Specifically, ω describes 4+1d SPTs

where the Z4 domain walls are decorated by 3+1d SPTs of T2 = C symmetry, where T is

time-reversal and C is charge conjugation satisfying C2 = 1, and ωf describes 4+1d SPTs

where the Z4 domain walls are decorated by 3+1d T2 = (−1)FC SPTs. Note that this

correspondence does not require the ambient 4+1d theory to have time-reversal symmetry;

rather T is a symmetry of the worldvolume theory of the defect. This decorated domain wall

construction means that when a Z4 domain wall ends at the boundary, its 2+1d endpoint

hosts a theory with a T2 = C or T2 = (−1)FC anomaly. The 3+1d non-invertible symmetry is

then anomaly free if and only if the 2+1d duality defects also have a T2 = C or T2 = (−1)FC

anomaly, that can cancel that of domain wall endpoints. By determining the anomalies of

the SPTs on the Z4 domain walls and the anomalies of the duality defect theories, we find

that this cancellation occurs when N even but not for N odd. Furthermore, for even N , this

cancellation only occurs for even classes of ωf . Therefore, nontrivial ω and ωf can make the

symmetry anomalous, in certain cases.

Our method applies to Kramers-Wannier-like symmetries in general spacetime dimensions.

As a warm-up to our main derivations, we reproduce the result that the 1+1d Z2 × Z2

Tambara-Yamagami fusion category [120] with the diagonal bicharacter and non-trivial FS

indicator is anomalous, but that with the off-diagonal bicharacter and nontrivial FS indicator

is anomaly-free [15]. Here, the domain walls of the 2+1d Z2 SPT carry 1+1d T SPTs, and

the duality defect theory is a free qubit.
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1.2 Anomalies of T2 = (−1)FC and non-invertible T symmetry

As we show in Section 3.6.1 and Section 3.6.2, the anomalies for T2 = C symmetry in 2+1d

admit Z4 × Z4 classification. Similarly, the anomalies of T2 = C(−1)F symmetry in 2+1d

admit Z4 classification. These symmetry algebras involving T are common in 2+1d [121–123]

and as such this classification is of intrinsic interest. The anomalies can be detected as

follows. In the bosonic case, the anomalies ω = (k, ℓ) ∈ Z4 × Z4 means that the theory has

chiral central charge c− = 2ℓ mod 8. The anomaly k can be detected by gauging the C

symmetry (unitary Z2 symmetry in 2+1d is non-anomalous since H4(Z2, U(1)) = 0). When

k = 2, gauging the C symmetry renders the T symmetry into a 2-group symmetry; when k is

odd, gauging the C symmetry makes T symmetry non-invertible. In the fermionic case, the

anomaly ωf ∈ Z4 implies the theory has chiral central charge c− = ωf/4 mod 1/2 for odd ωf .

For ωf = 2, gauging the C symmetry renders the time-reversal symmetry non-invertible.

In the process of studying T2 = (−1)FC anomalies, we also find various 2+1d systems

with non-invertible time-reversal symmetry that are interesting in their own right. Specifically,

we find an infinite family of 2+1d TQFTs that have non-invertible time-reversal symmetry,

denoted by ON,p, that are obtained by gauging a Z2 unitary charge conjugation symmetry in

the minimal Abelian TQFT AN,p [124] with even N and p2 = −1 mod N . The original AN,p

theory has an anomalous T2 = (−1)FC symmetry. As a result, ON,p has an anti-unitary non-

invertible symmetry that implements time-reversal transformation composed with coupling

to a Z2 gauge theory.

The fusion rules of the non-invertible time-reversal symmetry generator with its orientation

reverse produces a sum including both the identity and (copies of) the Kitaev chain [125,126].

Other examples of non-invertible time-reversal symmetry in 3+1d were studied in [44].

1.3 Lattice models

Finally, we also provide concrete lattice models for 3+1d theories with ZN 1-form symmetries,

where the matter degrees of freedom live on the edges of a cubic lattice. These lattice models

are invariant under S gauging. We conjecture a phase diagram in the space of couplings, N ,

and p; the phase diagram has only previously been considered for p = 0 [65,127,128]. We

also consider aspects of ST 2n gauging on the lattice, highlighting some subtleties that will be

further explored in future work.

Note Added Near the completion of this work, we learned of recent work [94] that also

discusses duality-invariant Lagrangian subgroups in 4+1d, as well as [129], which also discusses

the anomalies of non-invertible symmetries.
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2 First level obstruction: Lagrangian subgroups

As mentioned in the introduction, every 4+1d TQFT can be obtained by gauging a 0-form

symmetry of an Abelian 2-form gauge theory, possibly with a transparent fermion. Let us first

present an intuitive argument for this result (see Refs. [108,109] for more details). We will

show that if we ungauge the 0-form symmetry by condensing all the particles, the resulting

theory is an Abelian 2-form gauge theory, possibly with a transparent fermion.5

The particles in a fermionic 4+1d TQFT consist of bosons, emergent fermions, and

a transparent fermion. These particles can all be simultaneously condensed because the

emergent fermions can be paired with the transparent fermion. After condensing the particles,

we obtain a theory with only loop excitations. We need to prove that these loop excitations

have an Abelian fusion algebra.

Suppose that the fusion of two simple loop excitations s, s′ were non-Abelian, i.e.

s× s′ =
∑
i

si , (2.1)

where the right hand is a direct sum of loop excitations. Let us shrink the circumference of

the loops so that they become particle excitations.6 Since there are no non-trivial particles

left, we find

1× 1 =
∑
i

1 , (2.2)

which gives a contradiction unless the right hand side only contains a single term, i.e. the

fusion algebra is Abelian. The TQFT after condensing the particles is therefore an Abelian

2-form gauge theory.

Since every bosonic 4+1d TQFT with emergent fermions can be obtained from a fermionic

one by gauging fermion parity, every bosonic 4+1d TQFT can also be obtained by gauging a

0-form symmetry of an Abelian 2-form gauge theory, possibly with a transparent fermion.

The 3+1d non-invertible symmetries we are interested in have symmetry TQFTs where

the 0-form symmetry acts on the loop excitations by permutation. In this section, we discuss

anomalies determined by these permutation actions.

5Equivalently, every 4+1d TQFT is Witt equivalent to an Abelian 2-form gauge theory, possibly with a

transparent fermion. This means that there is a topological interface between the two theories.
6The reduction of loop excitations to particle excitations by shrinking is also used in e.g. [130] for the

classification of 3+1d TQFTs. We note that in the absence of particles, if shrinking a simple loop excitation

s produced multiple copies of identity, then the loop excitation would have nontrivial endomorphism that

permutes the copies End(s) ̸= C, which contradicts the loop excitation being simple. This property is also

used in the classification of 3+1d topological orders [130,131].
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2.1 Review of Abelian 2-form gauge theory

We begin by reviewing some aspects of Abelian 2-form gauge theories. See Ref. [29] and

references therein for more details. Such a theory can be described by the action

2r∑
I,J=1

KIJ

4π

∫
bIdbJ =

∑
I<J

MIJ

2π

∫
bIdbJ , (2.3)

where K = M −MT is an antisymmetric, non-degenerate matrix, with I, J = 1, · · · 2r. bI are

2-form U(1) gauge fields, and we will also label them by bI = bIe and br+I = bIm for I = 1, · · · r.
Note that in terms of matrix M , the action is properly quantized for each term, while each

term separately is not properly quantized in the expression with K if KIJ is odd.

The theory consists of Abelian loop excitations, described by surface operators ei
∮
qIbI =

ei
∮
(qIeb

I
e+qJmbJm) labeled by integer vectors q = {qI} = {qIe , qJm}. Unlike Abelian particle (anyon)

excitations of 2+1d TQFTs, the loop excitations {qI} and {q′I} have antisymmetric braiding,

given by

⟨q, q′⟩ = e2πiq
TK−1q′ = ⟨q′, q⟩∗ . (2.4)

From (2.15), we see that excitations of the form KIJqI for any integer vector q are trivial.

Therefore, the loops fuse according to an Abelian group given by

A = Z2r/KZ2r . (2.5)

The theory has symmetry g ∈ GL(2r,Z) that transforms the two-form gauge fields {bI}
(and thus the charges {qI}) while preserving the braiding ⟨q, q′⟩:7

gTK−1g = K−1 mod Z . (2.6)

Such transformations include those that satisfy g′TKg′ = K, where g′T = g−1. This symmetry

group consists of all symmetries that permute the loop excitations, so we call it Aut(K).

2.1.1 Aut(K) and Lagrangian subgroups

We would like to constrain the dynamics of 3+1d theories with non-invertible symmetry

corresponding to g ∈ Aut(K). To study the first-level obstruction, we must determine which

gapped boundaries of a 2-form gauge theory described by K are compatible with a given

g ∈ Aut(K).

The gapped boundaries of an Abelian 2-form gauge theory are given by Lagrangian

subgroups of Z2r/KZ2r. They correspond to subgroups of the loop excitations whose

condensation completely trivialize the theory. In other words, gauging the 2-form symmetry

7Similar methods can be used to study symmetries of Abelian Chern-Simons theories [122].
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generated by the surface operators in the Lagrangian subgroup turns the theory into the

trivial theory, given by action
2r∑

I,J=1

JIJ

4π
b′Idb′J , (2.7)

where J =

(
0 1r

−1r 0

)
. The fields {bI} are related to {b′I} by a 2r × 2r integer invertible

matrix U : b′I = U IJbJ , where

K = UTJU . (2.8)

Note that U does not have determinant ±1, because it is not simply a change of basis for the

fields; in general, det(U) =
√

det(K). This can also be understood from the fact that we

have trivialized the theory by gauging a 2-form symmetry leading to new well-defined gauge

fields b′I . The matrix U also specifies a subgroup of the loop excitations ei
∮
q′Ib′I that we can

simultaneously condense because they all have trivial braiding with each other, according to

(2.15). We can denote the subgroup formed by these condensed loops by Λ(U):

Λ(U) = (Im U |Z2r)/KZ2r ⊂ Z2r/KZ2r . (2.9)

For the domain wall g to end on the corresponding gapped boundary, we demand that U

to commute with g

UgU−1g−1 = 1 . (2.10)

This means that Λ(U) is invariant under g.

2.1.2 Polarization for the boundary theory: fixing the symmetry

In addition to the constraint above that there exists a g-invariant Lagrangian subgroup,

there is one further constraint that must be satisfied related to this first-level obstruction.

This constraint is that the Lagrangian subgroup must intersect trivially with a canonical

Lagrangian subgroup specified by the polarization. Recall that the 3+1d non-invertible

symmetries of interest consist of non-invertible defects together with a finite, Abelian 1-

form symmetry. The polarization that gives this 1-form symmetry in the symmetry TQFT

corresponds to a Lagrangian subgroup Λe of the 4+1d Abelian 2-form gauge theory consisting

of loops labeled by q = {qIE, 0}. Therefore, in order to pass the first-level obstruction to the

symmetry being anomaly-free, we must ensure that there exists a Lagrangian subgroup that

is not only invariant under g, but also intersects trivially with Λe:

Λe ∩ Λ(U) = {0} (2.11)

This condition is the generalization of the existence of duality-invariant magnetic Lagrangian

subgroup in the study of 1+1d Tambara-Yamagami fusion category symmetries [97].
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Lagrangian subgroups that have nontrivial intersections with Λe give, in the open interval

setup with Λe condensed on one boundary and Λ(U) condensed on the other boundary,

TQFTs with deconfined particle excitations. The deconfined particle excitations are precisely

those in the overlap Λe ∩ Λ(U). Such 3+1d theories are not invertible, and generally have

nontrivial ground state degeneracy on manifolds other than S4.

Symmetry-enforced gaplessness If we are simply interested in symmetric TQFTs rather

than symmetric invertible TQFTs, then we can drop the requirement (2.11). Lagrangian

subgroups satisfying (2.10) but not (2.11) describe nontrivial 3+1d TQFTs that are invariant

under gauging. When a symmetry has an anomaly that prevents even a symmetric gapped

phase, it demonstrates “symmetry-enforced gaplessness” as discussed in Refs [132,133] for

invertible symmetries. Note that in 1+1d, a symmetric TQFT must be invertible; only in

higher dimensions can a symmetry-preserving TQFT be non-invertible. We will give some

examples of Λ(U) satisfying (2.10) but not (2.11) in Section 2.2.1 and remark on the effect of

ω and ωf on these theories in Section 3.4.

2.2 Kramers-Wannier non-invertible symmetry and generalizations

We will now illustrate the above general discussion in the particular case where the symmetry

of the 3+1d theory includes a non-anomalous ZN 1-form symmetry, together with duality

defects that implement gauging of the 1-form symmetry. In 3+1d, different ways to gauge a

ZN 1-form symmetry correspond to stacking with different SPTs of the 1-form symmetry

before gauging. In terms of the partition function, this amounts to adding a topological

action for the 2-form gauge field, which is a quadratic action with coefficient labelled by an

integer n:

ST n gauging : Z[B] →
∑
b

Z[b]e
2πi
N

∫
bB+ 2πin

2N

∫
P(b) , (2.12)

where B and b are classical and dynamical 2-form gauge fields for the 1-form symmetry

respectively, and P is the generalized Pontryagin square operation (see Eq. 3.31). Invariance

under ST n gauging means that the partition functions on the two sides are equal. We will

study the first-level obstruction described above for non-invertible defects corresponding

to general ST n gauging. For the special case n = 0, which was previously studied in

Refs. [26, 28, 39, 49, 66], the non-invertible symmetry consists of the ZN 1-form symmetry

together with the duality defect D, the charge conjugation defect U , and the condensation

11



defect C0, obeying the following fusion rules (specifically for n = 0):

D̄ × D = D × D̄ = C0
D ×D = U × C0 = C0 × U
U ×D = D × U = D̄
D × C0 = C0 ×D = (ZN)0D
C0 × C0 = (ZN)0 C0

(2.13)

The more general defects studied here, implementing ST n gauging, obey similar but different

fusion rules. For example, the duality defect D would not be order four in general.

We will constrain the dynamics of theories with defects implementing ST n gauging using

Lagrangian subgroups of 4+1d ZN 2-form gauge theories. A ZN 2-form gauge theory is

described by the Lagrangian
N

2π
bedbm, (2.14)

for two-form gauge fields be, bm. The gauge field bm constrains be to have ZN holonomy, and

similarly be constrains bm to have ZN holonomy. The theory has loop excitations described

by eiqe
∮
be+iqm

∮
bm for integers {qe, qm} ∈ ZN × ZN , that generate a ZN × ZN fusion algebra.

The excitations {qe, qm} and {q′e, q′m} have antisymmetric braiding [29], given by

⟨{qe, qm}, {q′e, q′m}⟩ = e
2πi
N

(qeq′m−qmq′e) = ⟨{q′e, q′m}, {qe, qm}⟩∗ . (2.15)

The theory (2.14) has SL(2,Z) symmetry that transforms the fields be, bm [2,29]. Domain

walls that generate ST n ∈ SL(2,Z) in the bulk, when ending on the boundary, become

boundary topological defects between theories related by gauging the ZN 1-form symmetry

with local counterterm n. In terms of the partition function Z[B], the two sides are related

as in equation (2.12).

2.2.1 Gapped boundaries with ST n non-invertible symmetry

We will consider in this section gapped boundaries of the ZN gauge theory that describe

duality-invariant TQFTs. These are boundaries where the ST n domain wall can end, with

the same theory on either side of the defect. In Section 2.2.2, we will specify a polarization

and restrict to invertible TQFTs by requiring (2.11).

As discussed in Section 2.1.1, the gapped boundaries of an Abelian 2-form gauge theory

are labeled by Lagrangian subgroups. The Lagrangian condition means that gauging a 2-form

symmetry, which can be expressed as a change of variables {be, bm} → {b′e, b′m} by a 2× 2

integer matrix U , can bring the theory to the trivial theory. For ZN gauge theory, the trivial

theory is given by
1

2π
b′edb

′
m . (2.16)

12



The symmetry transformation g = ST n ∈ Aut(K) is given by

(
0 1

−1 n

)
, which maps

be → −bm bm → be + nbm. (2.17)

U must commute with g according to (2.10), so U must take the form

U(n, α, β) =

(
α β

−β α+ nβ

)
, (2.18)

where α and β are integers. Substituting the transformation into (2.8) gives

N = α2 + β2 + nαβ . (2.19)

For values of N with solutions to (2.19), there exists duality-invariant Lagrangian subgroups,

so the ST n domain wall can end on the boundary with the same theory on either side. The

non-invertible symmetry can therefore be realized in a symmetric TQFT. For other values of

N , the ST n defects can only appear in gapless phases.

The subgroup of bulk loop excitations that condenses on the gapped boundary is given by

(Im U(n, α, β)|Z2) /KZ2, since all excitations
∫
b′e,

∫
b′m are trivial. The Lagrangian subgroup

Λ(U(n, α, β)) is therefore generated by loops {qe, qm} = {α,−β}, {β, α + nβ}.
Let us give some examples of N with solutions to (2.19), for a given n:

• For n = 0, we have

N = 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40, 41, 45, 49, 50, 52, 53, 58,

61, 64, 65, 68, 72, 73, 74, 80, 85, 89, 98, 100, 113, 128, · · · .

(2.20)

Note that the above N agrees with the entries in Table 1 of [65]. Examples of theories

with these defects are ZN 3+1d Toric code in a transverse field [28].

• For n = 1, we have

N = 3, 4, 7, 9, 12, 13, 16, 19, 21, 25, 27, 28, 31, 36, 37, 39, 43, 48, 49, 52, 57, 61,

63, 64, 67, 73, 75, 76, 79, 84, 91, 93, 97, 108, 109, 112, 127, · · · . (2.21)

• For n = 2, we have

N = 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, · · · . (2.22)

• For n = 3, we have

N = 4, 5, 9, 11, 16, 19, 20, 25, 29, 31, 36, 41, 44, 45, 49, 55, 59, 61, 64, 71, 76, 79, 80, 81, 89,

95, 99, 100, 101, 109, 116, 121, · · · .

(2.23)
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2.2.2 Invertible boundaries with ST n non-invertible symmetry

We now specify the polarization, to study invertible duality-invariant 3+1d theories. We

choose the polarization to be given by the “electric” Lagrangian subgroup Λe, generated by

the {1, 0} loop. To get a symmetric invertible theory, we must impose (2.11). This means

that Λ(U(n, α, β)), generated by loops {α,−β}, {β, α + nβ} cannot generate r{1, 0} for any

integer r ̸= 0 mod N :

Invertible boundary: ∀p, q ∈ Z, p(α,−β) + q(β, α + nβ) ̸= r(1, 0) , (2.24)

for some integer r ̸= 0 mod N . Note that −pβ + q(α + nβ) = 0 can be satisfied by

p = (α + nβ)m/ℓ and q = βm/ℓ for some integer m, and ℓ = gcd(α + nβ, β). However,

pα + qβ = Nm/ℓ, so (2.24) is equivalent to

gcd(α + nβ, β) = 1 . (2.25)

Notice that this means that {α,−β} generates {β, α+ nβ} and vice versa, so these two

loops are not independent generators.8 Let us list some examples of theories satisfying (2.25),

for a given n:

• For n = 0, the Lagrangian subgroup is generated by (α,−β) and (β, α). The first few

cases of N with invertible absolute boundaries, labeled by Nα,β, are

N = 21,1, 52,1, 101,3, 132,3, 171,4, 253,4, 261,5, 292,5, 343,5, 371,6, 414,5, 501,7, 532,7, 583,7, 615,6 · · · .
(2.26)

Note that the N above coincide with the entries for SPT in table 1 of [65].

• For n = 1, the Lagrangian subgroup is generated by (α,−β) and (β, α+ β). The first

few cases of N with invertible absolute boundaries are

N = 31,1, 71,2, 131,3, 192,3, 211,4, 311,5, 373,4, 392,5, · · · . (2.27)

Example: bulk and boundary field theories for N = 5 To illustrate the confinement

of particles in a concrete example, let us consider n = 0 and N = 5. The boundary and bulk

action is given by
10

4π

∫
4d

bmbm +
5

2π

∫
5d

bedbm . (2.28)

The equation of motion for bm gives be + 2bm = 0 on the boundary, so {qe, qm} = {1, 2} =

2{3, 1} is condensed on the boundary, indicating α = 2, β = 1. To consider an absolute

8In more detail, Bézout’s identity means that there exists integers x, y such that xβ + y(α+ nβ) = 0 mod

N . But if −xα+ yβ ̸= 0 mod N , then the Lagrangian subgroup overlaps nontrivially with Λe. Therefore we

must have x{α,−β} = y{β, α+ nβ} mod N for some x, y.
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boundary theory, we can choose e-condensed polarization be = da. The 3+1d absolute theory

is then given by ∫
4d

(
10

4π
bmbm +

5

2π
bmda

)
. (2.29)

In this absolute theory, the gauge invariant operators are generated by the open surface

operator ei
∮
a+2

∫
bm , and there are not genuine line operators [2, 124,134]. Thus all particles

are confined. The 3+1d absolute theory is therefore an invertible TQFT that realizes the

non-invertible symmetry.

Note that the gauge invariant open surface operators can be obtained from the loops

condensed on the boundary. Thus when the Lagrangian subgroup Λ(U(n, α, β)) intersects

trivially with the Lagrangian subgroup of the polarization, all particles are confined.

3 Second level obstruction: generalized FS indicators

For the symmetries that pass the first-level obstruction discussed in the previous section, we

can consider an additional piece of data denoted by ω (for odd N) or ωf (for even N). ω and

ωf are the generalization of the FS indicator of 1+1d fusion categories and 2+1d TQFTs.

In 2+1d TQFTs, the FS indicator can be defined for self-dual anyons satisfying a× a ⊃ 1.

In the case where the self-dual anyons arise from gauging a 0-form Z2 symmetry the FS

indicator comes from stacking with a Z2 SPT before gauging. The FS indicator therefore

modifies the topological spins of the self-dual anyons, and leads to 1+1d boundary fusion

category symmetries with different F symbols [110].

We define ω (or ωf , for fermionic systems) as the analogous quantity for 3+1d non-

invertible symmetries and 4+1d TQFTs. Surface excitations in 4+1d that obey the fusion

rule aN ⊃ 1 come from gauging a ZN 0-form symmetry, and we can always stack a ZN SPT on

the theory before gauging. ω specifies this SPT, and modifies the braiding correlation functions

of the surface excitations (see Appendix B). It therefore partially defines the associator of

symmetry defects in the 3+1d boundary theory. For example, for a 3+1d noninvertible

symmetry with fusion rule given by (2.13), the 0-form bulk permutation symmetry is Z4.

Therefore, we consider ω labeling 4+1d Z4 SPTs, classified by Z4 × Z4 (in the bosonic case)

or Z4 (in the fermionic case, if the Z2 subgroup is not identified with Zf
2). More generally, one

must consider SPTs classified by Ω5
SO(BG)/Ω5

SO(pt) or Ω
5
Spin(BG)/Ω5

Spin(pt) [135], because

we do not include SPTs that do not involve the G symmetry. The FS indicator ω or ωf

can make the 3+1d symmetry anomalous even if it passes the first level obstruction. In

this section, we will study anomalies related to ω and ωf using a method applicable to

the case where the 4+1d SPT has a decorated domain wall description. Our strategy can

be generalized to include more general 4+1d SPTs if we incorporate suitable tangential

structures on the domain wall to specify lower dimensional junctions.
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Bulk TQFT + SPT (FS)

Bulk decorated domain wall SPT

Non-invertible symmetry defect

Boundary

(Gauging on half boundary)
/boundary of domain wall SPT

Figure 1: The second obstruction to trivially gapped phase: the non-invertible symmetry

with nontrivial generalized Frobenius-Schur (FS) indicator as described by a bulk SPT (grey),

cannot be realized in a trivially gapped phase if the generator of the non-invertible symmetry

(red line) cannot be decorated with an anomalous TQFT that corresponds to the decorated

domain wall SPT (orange) for the bulk SPT.

At first glance, it may be surprising that a symmetry with a nontrivial Frobenius-Schur

indicator has any hope for being anomaly-free. This is because the Frobenius-Schur indicator

already introduces an anomaly in 3+1D, given by the stacked SPT in 4+1D. However, it is

well known that an anomaly can be trivialized by an appropriate extension of the symmetry

(see e.g. [27, 136]). As we will discuss by example in section 3.2, sometimes the anomaly can

be trivialized by extending an invertible symmetry to a larger invertible symmetry. In other

cases, like in the cases studied in this work, the anomaly is trivialized by a non-invertible

extension. If the anomaly can be trivialized in this way, and the non-invertible extension

matches the non-invertible symmetry of interest, then the total symmetry is anomaly-free.

More precisely, for 3+1D Kramers-Wannier like symmetries, we use the observation that

the relevant 4+1D SPTs have a decorated domain wall description. Therefore, the defects

have an SPT attached, whose 2+1D defects carry anomalies (see Fig. 1). If the 2+1D duality

defects also carry an anomaly, that cancels the anomaly from the decorated domain wall SPT,

then the symmetry as a whole forms a non-invertible extension of the anomalous symmetry is

anomaly-free. In other words, the symmetry is anomaly-free if and only if the anomaly of the

duality defects cancel those given by the 4+1D SPT; this is the condition for the extension

to be anomaly-free.

3.1 Strategy: decorated domain walls and anomaly cancellation

The SPTs labeled by ω and ωf are characterized by the property that domain walls of the

bulk 0-form symmetry are decorated with 3+1d SPT phases. When such a domain wall ends

on the boundary of the 4+1d bulk, the boundary defect carries the anomaly of the 3+1d SPT.
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We can cancel the anomaly by decorating the boundary defect with a TQFT, at the cost

of modifying the fusion rules of the boundary defects and thereby extending the symmetry.

Therefore, the 3+1d non-invertible symmetry is anomaly-free if and only if the fusion rules

of the non-invertible defects are compatible with the TQFT that decorates the defects to

trivialize the anomaly ω or ωf , i.e. it is precisely one of these non-invertible extensions. We

will show that in particular the anomalies described by the even classes of ωf , for N even,

can be canceled by an extension to a non-invertible symmetry.

If a symmetry passes the first level obstruction, we then proceed as follows:

1. Determine the 3+1d domain wall SPT given by ω (for odd N) or ωf (for even N).

2. Check if the TQFT of the duality defect has an anomaly that can cancel that of ω (for

odd N) or ωf (for even N).

Note that if ω or ωf is trivial, then we do not have to go through these steps; only the first

level obstruction is relevant. In the following, we will first work out the steps above for 1+1d

Z2×Z2 Tambara-Yamagami fusion categories, recovering the results from Refs. [15,96,97]. We

will then study obstructions related to ω and ωf for 3+1d ZN Kramers-Wannier symmetries

with fusion rules given by (2.13), to both symmetric TQFTs and symmetric invertible TQFTs.

Note that non-invertible symmetries in 3+1d with non-trivial ω occur in many gauge

theories with fermions. An example of such a symmetry is the non-invertible chiral symmetry

in quantum electrodynamics [41,42]. In an upcoming work, we will investigate constraints

from these non-invertible symmetries on the dynamics of various gauge theories in 3+1d.

3.2 Trivializing the anomaly by symmetry extension in 1+1d

The FS indicator for 1+1d non-invertible symmetries comes from the 2+1d bosonic Z2

SPT [137], which has the effective action

π

∫
A ∪ A ∪ A , (3.1)

where A is a background gauge field for the Z2 symmetry. The anomaly implies that the line

defect N that generates the symmetry in 1+1d is attached to the 1+1d topological action

π

∫
A ∪ A . (3.2)

Identifying the Z2 gauge field A with the first Stiefel-Whitney class w1 of the normal bundle

of the domain wall that generates the bulk symmetry, we obtain the action of the 1+1d

bosonic time-reversal (T) SPT, which has defects carrying Kramers doublets [118, 119]. Note

in particular that the bulk does not in general have T symmetry even though the defect

worldvolume theory does.
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To cancel the T2 = −1 anomaly of these defects, we need to modify the domain walls to

cancel the 1+1d SPT phase. These modifications come at the cost of extending the symmetry.

There are multiple different ways to extend the symmetry to trivialize the anomaly:

• Invertible extension: decorate the defects with π
∫
ã/2 where a has the same transfor-

mation as A and we pick a lift to Z4. Then the symmetry becomes a Z4 symmetry,

because the line squares to (−1)
∫
a:

N 2 = (−1)
∫
a, N 4 = 1 . (3.3)

• Non-invertible extension: decorate the defects with the gapped boundary of π
∫
a1 ∪ a2,

where a1 and a2 are Z2 gauge fields with transformation correlated with A. For such a

topological surface to end on the defect, we will take the T symmetry of the domain

wall to not permute the Wilson lines (−1)
∫
a1 and (−1)

∫
a2 (we will expand on this point

in the next section). Then using the method in Refs. [29,35], the line fuses with itself to

produce

N ×N = 1 + (−1)
∫
a1 + (−1)

∫
a2 + (−1)

∫
(a1+a2) , (3.4)

which is the fusion rule of the Z2 × Z2 Tambara-Yamagami fusion category [120].

Intuitively, the degenerate boundary theory of π
∫
a1 ∪ a2 can absorb the Wilson lines.

The fact that the anomaly can be trivialized by the above non-invertible extension is

consistent with the fact that the Z2 × Z2 Tambara-Yamagami fusion category with the

off-diagonal bicharacter is anomaly-free even with the nontrivial FS indicator [15,96,97].

We remark that decoration of TQFTs on the symmetry generator to cancel the anomaly

is also discussed in [27] in the context of gauging a subgroup of anomalous symmetry.

3.3 Z2 × Z2 Tambara-Yamagami symmetries in 1+1d

We will now study in more detail the example of trivializing the above anomaly via non-

invertible extensions. In 1+1d, there are four kinds of Z2 × Z2 Tambara-Yamagami fusion

categories with the same fusion rules. They differ in their FS indicator and bicharacter, which

together specify the F symbol. We will show that the Z2 × Z2 Tambara-Yamagami fusion

category with off-diagonal bicharacter can cancel the T2 = −1 anomaly (as mentioned in the

previous section), but the one with diagonal bicharacter cannot. The fusion category with

the nontrivial FS indicator and the diagonal bicharacter is therefore anomalous.

The quantum mechanics on the non-invertible line defect can be described by the Z2

scalars ϕ1, ϕ2

π

∫
ϕ1 ∪ dϕ2 , (3.5)

where ϕ1, ϕ2 transform under Z2 × Z2 unitary symmetry, whose Wilson lines generate the

invertible Z2 × Z2 symmetry. Because this defect is attached to a time-reversal invariant
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= ε

Figure 2: Two time-reversal defects in a duality domain wall, circled in pink, fuse to the FS

indicator ϵ = ±1. This means that the nontrivial FS indicator, given by ϵ = −1, corresponds

to T2 = −1 on defects.

domain wall [118,119,126], there is an action of time-reversal on this quantum mechanics .

The two bicharacters correspond to two choices of time-reversal action:

Off-diagonal : T(ϕ1) = ϕ1, T(ϕ2) = ϕ2

Diagonal : T′(ϕ1) = ϕ2, T′(ϕ2) = ϕ1 . (3.6)

These symmetry actions are precisely the involution corresponding to the off-diagonal and

diagonal bicharacters respectively (see Ref. [15] for the definition of the involution in terms

of the bicharacter). We will call the latter electromagnetic duality symmetry in the quantum

mechanics system.9

The FS indicator corresponds to the anomaly of the quantum mechanics, described by

π
∫
w2

1, which decorates the domain walls of the 2+1d invertible phase π
∫
A3 as described

above. From the anomaly, we can see that a nontrivial value of the FS indicator means that

T2 = −1 on the quantum mechanics. Another way to see this directly from the F symbol of

the fusion category is illustrated in Fig. 2.

If the fusion category symmetry can be realized by an invertible phase, then the quantum

mechanics is well-defined by itself. Clearly, this is the case if the FS indicator is trivial. When

the FS indicator is non-trivial, the fusion category symmetry can be realized by an invertible

phase if and only if the quantum mechanics can realize the anomaly π
∫
w2

1, i.e. if the Hilbert

space is in the Kramers doublet projective representation of the time-reversal symmetry.

It is instructive to present the quantum mechanics as a free qubit, where the Z2 × Z2

symmetry is generated by the Pauli Z and X operators. A non-anomalous time-reversal

symmetry can be realized in both cases, with

Off-diagonal : T = K

Diagonal : T′ = HK , (3.7)

9Note that the choice of involution can also be derived from the permutation action of the Z2 duality

symmetry in the corresponding 2+1d Z2 × Z2 gauge theory, and applying the Z2 symmetry along with CPT

as described in Refs. [118,119].
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where K is complex conjugation and H is the Hadamard gate.10 The Hadamard gate

satisfies H2 = 1 and HZH = X. Therefore, it implements the electromagnetic duality

permutation. Both T and T′ square to the identity, so the above time-reversal symmetries

are non-anomalous (i.e. the Hilbert space is in a Kramers singlet). Since both cases can

realize non-anomalous time-reversal, Z2×Z2 Tambara-Yamagami fusion category with trivial

FS indicator is anomaly-free, for both the diagonal and off-diagonal bicharacters [96].

3.3.1 Off-diagonal bicharacter

Let us couple the quantum mechanics to Z2 gauge fields A1, A2, such that dϕ1 = A1, dϕ2 = A2.

Then the quantum mechanics has the anomaly

π

∫
A1 ∪ A2 . (3.8)

In the off-diagonal bicharacter case, since T does not permute the ϕ1, ϕ2 fields, the anomaly

remains the same as above in the presence of background w1, and we can choose a “symmetry

fractionalization” A1 = A2 = w1. This produces the anomaly

π

∫
w2

1 . (3.9)

We conclude that the fusion category with the off-diagonal bicharacter is anomaly-free, even

with a nontrivial FS indicator, in agreement with Ref. [96].

We can also present the “fractionalization” in terms of the free qubit. This means that

the time reversal action is correlated with the action of the two Z2 symmetries. The product

of the two Z2 generators Z and X is the Pauli Y operator, so we obtain

Tanom = Y K. (3.10)

Since KYK = −Y , we find T2
anom = −1, i.e. the Hilbert space is in a Kramers doublet

projective representation. This anomaly cancels that of the FS indicator, recovering the fact

that this fusion category is anomaly-free even with a nontrivial FS indicator [96].

3.3.2 Diagonal bicharacter

Let us use the free qubit presentation. In this case, if we try to change the “fractionalization”

by correlating the time reversal action with those of the two Z2 symmetries, we get

T′
anom = Y HK . (3.11)

10In the basis of Z-eigenvectors, H = 1√
2

(
1 1

1 −1

)
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Using the commutation relation HYH = −Y , we find

T′2
new = Y H(−Y )H = Y 2 = +1 . (3.12)

Thus the Hilbert space is in a Kramers singlet, and there is no anomaly for the time-reversal

symmetry. In fact, this is the only consistent way to modify the time-reversal symmetry

while preserving the electromagnetic duality permutation.

We conclude that the quantum mechanics with the T action given by the diagonal

bicharacter cannot cancel the anomaly of the non-trivial FS indicator. This is consistent

with the property that the Z2 × Z2 Tambara-Yamagami fusion category with the diagonal

bicharacter is anomalous when the FS indicator is nontrivial [96].

3.4 Trivializing the anomaly by symmetry extension in 3+1d

We denote the analogue of the FS indicators in 3+1d by ω and ωf for bosonic and fermionic

theories respectively. In this section, we will only consider S gauging, corresponding to

3+1d non-invertible symmetries with fusion rules described by (2.13). Our main results are

summarized in Theorem 1 and Theorem 2.

The duality defect is order four in this case, so ω and ωf label 4+1d bosonic and fermionic

Z4 SPTs respectively. Let us first discuss the domain walls of these SPTs and the 3+1d SPTs

that they carry. These 3+1d SPTs correspond to 2+1d anomalies, that can be cancelled by

extension in various ways (see Appendix C). Here we will focus on non-invertible extension.

3.4.1 4+1d Z4 SPTs

The 4+1d topological action for the Z4 gauge field given by the Chern-Simons term will be

relevant for both bosonic and fermionic Z4 SPTs. We will first show that this action can

be defined on un-orientable manifolds, but requires a Wu3 structure. The same structure

is present on the domain wall, and is crucial for certain anomalies to be well-defined. The

domain wall depends on the Wu3 structure since it generates Z4 symmetry, but it has

time-reversal symmetry and thus the domain wall can be un-orientable [65].

Let us begin with the 4+1d Chern-Simons action

2πk

4

∫
A
dA

4

dA

4
, (3.13)

where A is Z4 gauge field normalized to have integer holonomy 0, 1, 2, 3 mod 4. k = 0, 1, 2, 3

mod 4 is an integer labeling the Z4 classification of these SPTs. To examine whether or not

we can define this action for k odd on general five manifolds, let us extend the action to a 6d

non-orientable bulk manifold (setting here k = 1):

π

∫
dA

2

dA

4

dA

4
= π

∫
Sq1

(
ASq2

(
dA

4

))
(3.14)
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where Sqi are the Steenrod squares. Further simplifying using the Cartan formula and the

Adem relations,11 we obtain

π

∫
dA

2

dA

4

dA

4
= π

∫
Sq1Sq2A

dA

4
= π

∫
Sq3A

dA

4
= π

∫
w1w2A

dA

4
, (3.15)

where the last relation comes from Sqd−ia = via on a d dimensional manifold. Here, i is the

degree of a and vi is ith Wu class. In particular, v3 = w1w2. Thus we can define the action

on a general manifold by introducing the coupling

2π

4

∫
A
dA

4

dA

4
+ π

∫
ρA

dA

4
, (3.16)

where dρ = w1w2 is the Wu3 structure. Such a structure exists in any closed manifolds of

dimension below or equal to five. Under a time-reversal transformation, ρ → ρ+ w2 [138],

and the coupling π
∫
ρAdA

4
transforms by

π

∫
Sq2

(
A
dA

4

)
= π

∫
ASq2

(
dA

4

)
= π

∫
A
dA

4

dA

4
, (3.17)

which exactly compensates the transformation of 2π
4

∫
AdA

4
dA
4

under flipping the orientation.

Thus the entire action can be defined on un-orientable manifolds.

We can also express the Chern-Simons term using the Z4 valued quadratic form qρ as

2π

4

∫
A ∪ qρ

(
dA

4

)
=

2π

4

∫
PD(A)

qρ

(
dA

4

)
, (3.18)

where PD(A) means the Poincaré dual of A. See Ref. [138] for a review of the quadratic form

qρ.

Bosonic 4+1d SPTs Z4 SPTs have a Z4 × Z4 classification labeled by ω = (k, l), that

we will define below. One Z4 factor comes from the group cohomology classification, given

by the Chern-Simons term described above. In addition, there is also a Z4 classification of

beyond cohomology SPT phases, with action

πℓ

2

∫
Ap1(TM) =

2πℓ

4

∫
PD(A)

p1(TM) , (3.19)

where ℓ = 0, 1, 2, 3 mod 4, and p1(TM) is the first Pontryagin class of the tangent bundle.

This means that the domain wall that generates the Z4 symmetry is decorated with a

gravitational theta term.

11These are given by Sqn(a ∪ b) =
∑

i+j=n Sq
i(a) ∪ Sqj(b) and SqiSqj =

∑⌊i/2⌋
k=0

(
j − k − 1

i− 2k

)
Sqi+j−kSqk

respectively. In particular, the latter gives Sq1Sq1 = 0.
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Note that the possible bosonic invertible topological phases in 4+1d also include the

invertible phase with the effective action π
∫
w2 ∪ w3 [135, 139, 140]. However, this phase

is independent of the Z4 symmetry and thus does not affect our discussion. The invertible

topological phases with Z4 symmetry modulo the invertible phases without symmetry have

Z4 × Z4 classification (see e.g. [141]), and are labelled by ω = (k, ℓ) as above.

Fermionic 4+1d SPTs The 4+1d topological terms for Z4 × Zf
2 symmetry (where Zf

2 is

the fermion parity symmetry) are classified by Z4 [142], and the generator can be described

by the anomaly of 3+1d massless free Dirac fermion (see e.g. [143]) with Z4 charge 2 and

charge 1 (the charges are chosen such that the fermion parity is not identified with the Z2

subgroup of Z4 symmetry):

I =
2π

4

∫
5d

(
23 + 13

3!
A
dA

4

dA

4

)
− 2π

4

∫
5d

(2 + 1)A
p1
24

= 3I0, (3.20)

where

I0 =
2π

8

∫
5d

A
dA

4

dA

4
− 2π

4

∫
5d

A
p1
24

. (3.21)

Thus the SPT phases are generated by action I0, which is the (k, ℓ) = (1/2,−1/24) term in

the previous notation. Note that the action I0 has order four on spin manifolds, matching

the Z4 classification above. This is because on a spin manifold, σ = p1/3 is a multiple of

16, where σ is the signature of the 4-manifold. Therefore, the second term in (3.21) is order

two. Moreover, the k = 2 term on spin manifolds is trivial. It follows that we can label

the effective actions of the SPT phases by ωfI0 with ωf = 0, 1, 2, 3 mod 4, where 2I0 is the

ω = (1, 0) term.

3.4.2 3+1d SPTs on the domain walls

The above 4+1d Z4 SPT phases can be described by 3+1d SPT phases that decorate the

domain walls of the Z4 symmetry. Let us characterize these 3+1d SPTs, to determine the

anomalies they correspond to at the 2+1d boundary defects.

We begin with the Chern-Simons term, which describes four of the SPTs in the bosonic

case and two of the SPTs in the fermionic case. This SPT is given by the action (3.16), with

a coefficient k = 0, 1, 2, 3 mod 4:

Generalized FS indicator k :
2πk

4

∫
A
dA

4

dA

4
+ πk

∫
A
dA

4
ρ , (3.22)

where A is the background Z4 gauge field. On the domain wall that generates the symmetry,

the Z4 symmetry becomes T2 = C, where C2 = 1 is charge conjugation [65]. Again we

stress that the bulk theory does not in general have T symmetry only the defect does. The

background gauge fields for these symmetries are related by A = 2B̃1 + w̃1, where B1 is the
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background for C symmetry and tilde denotes a lift from Z2 to Z4. Let us discuss odd and

even values of k separately:

• For odd k, there is dependence on ρ, and we restrict the Wu structure of the bulk to

the domain wall. The domain wall is described by the inflow term from A → A+ dϕ for

ϕ = 1:
πk

2

∫
qρ(y2) , (3.23)

where y2 = dA/4 = d(2B̃1 + w̃1)/4 as above. A boundary state is 2+1d Z2 doubled

semion theory, where the boson and semion (or anti-semion) have C2 = −1 and T2 = i.

• For even k, there is no dependence on ρ, so the action simplifies from (3.23). The

domain wall is described by the inflow term from A → A+ dϕ for ϕ = 1 as:

πk

2

∫
y2 ∪ y2 , (3.24)

where y2 = dA/4 = d(2B̃1 + w̃1)/4. For k = 2, this is an order two SPT phase for

T2 = C, C2 = 1 symmetry [144]. A boundary state is 2+1d Z2 toric code where the

electric and magnetic particles have C2 = −1 and T2 = i.

Bosonic 3+1d SPTs The above 3+1d T2 = C SPTs describe decorated domain walls

of the in-cohomology 4+1d Z4 bosonic SPT phases ω = (k, 0). The four 4+1d beyond

cohomology Z4 SPT phases ω = (0, ℓ) have domain walls decorated by SPTs corresponding

to framing anomalies given by c− = 2ℓ on their 2+1d boundary,12 due to the gravitational

theta term.

Fermionic 3+1d SPTs For fermionic theories, the SPT phases are described by 4+1d

effective actions labeled by ωf = I0 with ωf = 0, 1, 2, 3 mod 4. When ωf = 0, 2, the effective

action is the same as the bosonic actions corresponding to ω = (0, 0), (1, 0), and it represents

an anomaly for T2 = (−1)FC symmetry as discussed above. For ωf = 1, 3 mod 4, the

effective action of the SPT phase contains an Ap1 term, that implies the 3+1d domain wall

is decorated with an SPT whose 2+1d boundary has c− = ωf/4.

3.5 Obstructions to symmetric TQFTs

Let us first remark on how ω and ωf modify the classification of symmetric TQFTs, such as

those discussed in Section 2.2.1. We consider separately ω, ωf describing SPTs within the

group cohomology classification, and those outside of the group cohomology classification.

If ω describes a 4+1d group cohomology SPT, then it does not present any additional

obstruction to a symmetric TQFT. This is because such SPTs always admit a symmetric

12The 3+1d term − 2πc−
8 σ for signature σ = p1/3 implies that the 2+1d boundary has framing anomaly c−.
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gapped boundary given by a finite group gauge theory [145] (see also [27] for a review). Thus

the gapped boundaries for non-trivial bulk SPT phase can be obtained from the gapped

boundaries for the case with trivial bulk SPT by stacking with the finite group gauge theory

on the boundary. The boundary non-invertible symmetry then acts as

D′
g = Dg ⊗ D̃g , (3.25)

where D̃g acts on the finite group gauge theory, while Dg generates the non-invertible

symmetry on the boundary with trivial bulk SPT phase (i.e. trivial ω, ωf ).

3.5.1 Obstructions from “beyond group cohomology” SPTs

While the group cohomology SPTs have gapped, symmetric boundaries as described above,

there can be obstructions from beyond group cohomology SPTs. We will show that these

do not occur for S symmetry, but they do occur for more general ST n symmetries. For

bosonic theories, beyond-cohomology SPTs in 4+1d can be described by a one-dimensional

representation of Aut(K), ω1 ∈ H1(Aut(K), U(1)), with the 4+1d effective action∫
ω1 ∪ (p1/3) , (3.26)

where p1 is the first Pontryagin class of the tangent bundle. We note that since p1 = 3σ, and

p1 = 3P(w2) + 2w4
1 mod 4, when the order of ω1 is 4 (which applies to S symmetry), the

anomaly can be realized by a symmetric TQFT by the inflow construction in [146]. If the

order ω1 does not divide 4, the anomaly may not be realized by a TQFT; if this is the case,

it is an example of “symmetry-enforced gaplessness”(see e.g. [132,133] for other examples).

Such beyond group cohomology SPTs present obstructions to symmetric gapped boundary.

Let us give another argument using the partition function of 3+1d TQFT. It is known

that the partition function of unitary TQFTs without local operators on simply connected

spin 4-manifolds is positive [147]. Let us take the 4-manifold to be K3,

ZTQFT(K3) ̸= 0 . (3.27)

On the other hand, since K3 manifold has signature −16,
∫
K3

p1 = −48, the anomaly from

(3.26) implies that under a transformation ω1 → ω1 + dα, the partition function transforms

by the phase factor

Z(K3) −→ Z(K3) e−16iα . (3.28)

If 16α ̸∈ 2πZ, the partition function transforms by a non-trivial phase factor under the global

symmetry transformation. Thus the partition function vanishes on K3 manifold, contracting

the positive condition (3.27). We conclude that no symmetric gapped phase can realize the

non-invertible symmetry with such “beyond group cohomology” FS indicator.
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For instance, if the non-invertible symmetry has the fusion rule of the triality symmetry in

[39], then the generalized Frobenius-Schur indicator is given by the beyond group cohomology

SPT phase
2π

6

∫
A ∪ (p1/3) , (3.29)

where A is the background field for bulk Z6 permutation symmetry. This gives an obstruction

to realizing the non-invertible symmetry in symmetric gapped phases.

We now proceed to study obstructions to symmetric invertible TQFTs with S symmetry

from ω, ωf .

3.6 Kramers-Wannier duality symmetry in 3+1d

As in the 1+1d example in Section 3.3, we must first determine the 2+1d defect theory

that ends the non-invertible duality defect of a 3+1d non-invertible symmetry with 1-form

symmetry labeled by N and p. We will then check if these theories can cancel the anomalies

described above. If so, then the 3+1d non-invertible symmetry is a non-invertible extension of

the Z4 symmetry that trivializes the anomaly. This means that the non-invertible symmetry

is anomaly-free.

The non-invertible Kramers-Wannier symmetries in 3+1d that pass the first level obstruc-

tion for S gauging are listed in (2.26). These are N that satisfy N = α2 + β2 with integers α

and β satisfying gcd(α, β) = 1. It can be shown that N satisfies this condition if and only

if there exists an integer p such that p2 = −1 mod N .13 In fact, each of the Lagrangian

subgroups in (2.26) gives a boundary theory described by a ZN 1-form symmetry labeled by

N, p, with action
2πp

2N

∫
X

P(B), (3.30)

where B is a background gauge field for the ZN 1-form symmetry and

P(B) =

{
B ∪B −B ∪1 dB ∈ H4(X,Z2N) N even

B ∪B ∈ H4(X,ZN) N odd.
(3.31)

These SPTs are invariant under gauging the 1-form symmetry [65]. For a Kramers-

Wannier symmetry with 1-form symmetry specified by N and p, it was shown in Ref. [65]

that the 2+1d defect of the non-invertible duality symmetry D is described by the minimal

Abelian TQFT AN,p. This is a theory consisting of Abelian anyons aq, q ∈ [0, N) with ZN

fusion rules and spins h[aq] = pq2

2N
mod 1. The S matrix follows from the Abelian fusion and

the topological spins, and is given by

Sqq′ =
1√
N
exp

(
−2πip

N
qq′

)
, (3.32)

13One can also show that N is a product of pythagorean primes, which are primes that are 1 mod 4,

possibly with a factor of two.
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which is unitary if gcd(p,N) = 1 (this is always the case for p satisfying p2 = −1 mod N). If

pN is even, the theory is bosonic, and if pN is odd, the theory is fermionic. We will consider

the cases where pN is even.

Ref. [65] furthermore showed that the duality defect has a T2 = C symmetry when N is

odd and p is even, and a T2 = C(−1)F symmetry when N is even and p is odd. When N

is even, we must add an additional transparent fermion to make the theory time reversal

invariant, which is why we considered fermionic SPTs in Section 3.4. Specifically, the time

reversal symmetry actions are given by

Even N : aq → ap
−1q = a−pq Odd N : aq → a−pqf q, (3.33)

where f is the transparent fermion. It is straightforward to check that both symmetries take

h[aq] → −h[aq], and that applying them twice takes aq → a−q. We will check whether the

T2 = C symmetry in AN,p for odd N and the T2 = C(−1)F symmetry in AN,p for even N

are anomalous, to cancel the anomalies of Section 3.4.2.

3.6.1 Anomalies in AN,p with odd N

Let us begin with theories with odd N . Ref. [148] showed that the T2 = C symmetry in

AN,p for N = m2 + n2 with even p = m and odd n (and gcd(m,n) = 1) is anomaly-free,

by explicitly writing down a symmetric gapped phase under ZT
4 . The same method can be

used to prove that AN,p with odd prime N are all anomaly-free.14 For more general N, p

we will show that the T2 = C symmetry is anomaly-free by studying the structure of the

time-reversal symmetry after gauging C. We will show that the resulting theory has a T2 = 1

symmetry. Because the gauging does not cause the time-reversal symmetry to be extended

(to form a 2-group) or become non-invertible, we conclude that the original T2 = C symmetry

is not anomalous [27].

Gauging the C symmetry Let us gauge the charge conjugation symmetry without

stacking any additional invertible phases. The anyons in the gauged theories can be obtained

using the methods in e.g. [110,149], and they are as follows:

• a0 = 1 and the charge conjugation defect χ are invariant under the symmetry. They

split into 1, ϵ and χ+, χ− respectively. 1 and ϵ have quantum dimension 1 and spin 0,

14The basic idea is to use the U(1) Chern-Simons description of the anyon theory, with K matrix
(
m n
n −m

)
,

and find null vectors for the K matrix describing the interface edge theory between two regions related by

reflection. This method works for any K matrix of the form
(
m n
n −m

)
, but in general, this describes AN,m

and m ̸= p. However, if N is prime, one can show that there always exists an integer x such that m = px2

mod N , so this K matrix also describes AN,p. In other words, AN,m is equivalent to AN,p upon a relabeling

of the anyons. To show that such x exists, note that m = px2 mod N means that −pm (and therefore pm) is

a quadratic residue of N . From m2 +n2 = N we get n = pm mod N , where n is odd. n is always a quadratic

residue of N by quadratic reciprocity.
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and χ+ and χ− have quantum dimension
√
N and spin c−

16
and c−

16
+ 1

2
, where c− is the

framing anomaly. They obey the fusion rule χ+ = ϵχ−. In the particular case of AN,p

with odd N and p2 = −1 mod N , c− = 0 [65], so the spins of χ+ and χ− are 0 and 1
2

respectively. Note that ϵ is represented by the Wilson line for the C symmetry ei
∫
a′ ,

where a′ is the background gauge field for C.

• The other anyons in AN,p form orbits of size two under the symmetry, resulting in

anyons of the gauged theory with quantum dimension 2 and spin pq2

2N
. We label these

anyons by a+ aN−1, a2 + aN−2, · · · aN−1
2 + a

N+1
2 .

One can verify that the total quantum dimension is D2 =
∑

a d
2
a = 2 + 2N + N−1

2
· 4 = 4N .

Gauging the time-reversal symmetry: anomaly indicators We can check whether

the time-reversal forms a 2-group with the Z2 1-form symmetry generated by ϵ by computing

the anomaly indicators for time-reversal symmetry [111,150–152]. These indicators detect

obstructions to gauging the time-reversal symmetry. There are two anomaly indicators:

η1 =
1

D

∑
a∈C

d2ae
2πih[a] = e

2πic−
8 η2 =

1

D

∑
a∈CT

daT
2
ae

2πih[a], (3.34)

where C is the set of all anyons in the theory and da is the quantum dimension of anyon a.

In the definition of η2, we use CT ⊂ C to denote anyons that are not permuted under the

time-reversal symmetry, and T2
a = ±1 indicates whether a is Kramers singlet or doublet.

These two anomaly indicators take value in ±1 when the time-reversal symmetry does

not participate in a 2-group with ϵ [111]. η1 = 1 because c− = 0 mod 8 [65], so all we need

to do is compute η2. The only anyons in CT are 1, ϵ, χ+, and χ−, because these are the only

anyons with spin 0 or 1
2
mod 1. Furthermore, T2

ϵ = −1 so T2
χ+

= −T2
χ− from the fusion rule

χ+ = ϵχ−. Putting this together with the spins listed above, we find

η2 =
1

2
√
N

(
1− 1 +

√
NT2

χ+
− (−1)

√
NT2

χ+

)
= T2

χ+
= ±1. (3.35)

Therefore, the time-reversal symmetry does not participate in a 2-group with the 1-form

symmetry generated by ϵ. The value of η2 depends on the fractionalization classes for the

one-form symmetry generated by ϵ, classified by H2(Z2,Z2) = Z2. The fractionalization class

determines T2
χ+

because χ± have π mutual statistics with ϵ. We see that there is always

a fractionalization that allows us to gauge the entire T2 = C symmetry. Changing the

fractionalization amounts to adding the local counterterm B1 ∪ w2
1, where B1 is the gauge

field for C symmetry. Therefore, the anomaly can be cancelled by local counterterm, and

we conclude that the T2 = C symmetry is non-anomalous in AN,p theories with odd N and

p2 = −1 mod N . Moreover, since c = 0 mod 8, the theory does not have framing anomaly.

Because the theory has neither a T2 = C anomaly nor a framing anomaly, it cannot cancel

any of the anomalies of ω discussed in Section 3.4.2. Therefore, the non-invertible symmetry

with odd N and even p is anomalous when the generalized FS indicator ω is nontrivial.
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Theorem 1 The 3+1d Kramers-Wannier (S gauging) non-invertible symmetry with ZN

1-form symmetry where N is odd is anomalous if and only if the generalized FS indicator

ω ∈ Z4 × Z4 is nontrivial.

3.6.2 Anomalies in AN,p with even N

AN,p with even N does not have a T2 = C symmetry. We will show that the time-reversal

symmetry in AN,p with even N either participates in a 2-group with the Z2 subgroup of the

ZN 1-form symmetry, or we can add a transparent fermion by tensoring the theory with

{1, f} to make the symmetry T2 = (−1)FC. We will consider the latter, and determine

whether or not the T2 = (−1)FC symmetry is anomalous in a way that cancel the anomalies

of Section 3.4.2.

Time-reversal symmetry and 2-group The time-reversal symmetry in the AN,p theory

is given by the permutation

q → pq, p2 = −1 mod N . (3.36)

Under the time-reversal transformation, the spin changes into

pp2q2

2N
=

p(−1 +N)q2

2N
= −pq2

2N
+

q

2
, (3.37)

where we used p2 = −1 +N mod 2N for even N (note in particular that there does not exist

p satisfying p2 = −1 mod 2N for even N because 2N is divisible by four). Therefore, the

theory has time-reversal symmetry T obeying T2 = C that simultaneously shifts the spin of

the odd charge q by a half.

This kind of time-reversal symmetry is discussed in [138], and it participates in a 2-group

with Z2 subgroup of the ZN 1-form symmetry, with the Postnikov class being the third Wu

class w1w2. For an introduction to higher group symmetry, see e.g. [111,153].

Alternatively, we can add transparent fermion by tensoring the theory with {1, f}, where
the fermion f satisfies T2 = (−1)F . Then w2 is trivialized, and the 2-group becomes the tensor

product of the 1-form symmetry and the time-reversal symmetry that satisfies T2 = (−1)FC,

C2 = 1. This means that the permutation action of the time-reversal symmetry on the anyons

must mix the transparent fermion with the anyons in the AN,p theory [154]. The relevant

spacetime structure is called “Epin” in [144], where w2
1 and w2 are both exact.

Gauging the C symmetry: time-reversal symmetry becomes non-invertible As in

the odd N case, we will probe the anomaly of T2 = (−1)FC by gauging the C symmetry.

Since the transparent fermion does not participate in the C symmetry, we can focus on

gauging the C symmetry in the bosonic AN,p theory. Denote the framing anomaly of the
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bosonic AN,p theory by c(N, p), which is an odd integer. Gauging the C symmetry without

additional invertible phase, using the methods in e.g. [110, 149], gives a theory with the

following anyons:

• a0 = 1 and the C defect χ are invariant under the symmetry. As in the odd N case,

they split into 1, ϵ (with quantum dimension 1 and spin 0) and χ+, χ− (with quantum

dimension
√

N/2 and spin c(N,p)
16

, c(N,p)
16

+ 1
2
) respectively. χ± obey the fusion rule

χ+ = ϵχ−. Again, ϵ is represented by the Wilson line for the C symmetry.

• aN/2 is also invariant under the symmetry and leads to another C defect ξ. These split

into s+, s− and ξ+, ξ− respectively. s± have quantum dimension 1 and spin pN
8

mod

1, and ξ± have quantum dimension
√

N/2 and spin of spin c(N,p)
16

(ξ+),
c(N,p)
16

+ 1
2
(ξ−).

They have the fusion rules s+ = ϵs− and ξ+ = ϵξ−.

• The other anyons in AN,p form orbits of size two under the symmetry, resulting in

anyons in the gauged theory with quantum dimension 2 and spin pq2

2N
mod 1. We label

these anyons by a+ aN−1, a2 + aN−2, · · · aN/2−1 + aN/2+1.

The total quantum dimension is D2 = 4 + 4 · (N/2) + (N/2 − 1) · 22 = 4N , as ex-

pected. For instance, when N = 2, A2,1 = U(1)2, and we only have the first two kinds

of anyons. The gauged theory has 8 anyons, all with quantum dimension 1, and spins

0, 0, 1/4, 1/4, 1/16, 1/16, 9/16, 9/16. This is precisely U(1)8, in agreement with [149,155].

Notice that the gauged theory does not have an invertible time-reversal symmetry.

Specifically, c(N, p) is odd for odd N , so there are no anyons with spins opposite of those of

χ±, ξ±. We will see that there is instead a non-invertible time-reversal symmetry. Because

the time-reversal symmetry becomes non-invertible after gauging C, we conclude that the

T2 = C (or T2 = C(−1)F if we add the transparent fermion) must be anomalous [27].

Let us show that the time-reversal symmetry becomes non-invertible after gauging the C

symmetry. Denoting the gauged theory by ON,p, we will show that the theory is invariant

under the following time-reversal symmetry T′:

non-invertible time-reversal : T′ = T ◦ Sp[X], (3.38)

where

Sp[X] =
X × (Z2)2c(N,p)

Z2

=

{
X×(Z2)2

Z2
p = 1 mod 4

X×(Z2)−2

Z2
p = 3 mod 4

, (3.39)

where (Z2)2c(N,p) is the fermionic Abelian Z2 gauge theory with Chern-Simons level c(N, p)

[155], whose magnetic charge has spin −c(N, p)/8 mod 1. The diagonal Z2 quotient is

generated by the tensor product of a non-anomalous 1-form symmetry in X and the Z2

electric charge, which are both bosons. In (3.39), we used the property that the chiral central

charge satisfies c(N, p) = p mod 4 for N = 2 mod 4 [124], which simplifies (Z2)2c(N,p) = (Z2)2p
by the mod 8 periodicity of the Z2 topological term (see e.g. [155]).
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ON,p T ◦ S[ON,p] = ON,p

Non-invertible time reversal symmetry

Figure 3: Non-invertible time reversal symmetry of ON,p, which is the AN,p after gauging C. T

means reversing the orientation, and S means coupling to a Z2 gauge theory: S[X] := X×(Z2)2p
Z2

for general 2+1d theories X that has non-anomalous Z2 one-form symmetry. We have omitted

the transparent fermion {1, f} in the figure.

For X = ON,p, we choose the non-anomalous 1-form symmetry to be ϵ, so the Z2 quotient

is generated by the tensor product of ϵ and the Z2 electric charge of (Z2)2p. The theory is

invariant under (3.39) because Sp[O
N,p] flips the spins of χ± and ξ±, and T flips the spins

of all the anyons, in particular flipping back the spins of χ± and ξ±, bringing the theory

back to ON,p. This time-reversal symmetry is non-invertible: the domain wall that generates

the time-reversal symmetry is decorated with the topological boundary condition of the

Abelian Z2 Chern-Simons theory (Z2)2p (see Figure 3). The fusion rule can be computed

using e.g. [26, 28,29,35,39,49,60], and is as follows:

T′ × T′ =
1

M

(
1 + ip

∫
qρ(B1)

)
, (3.40)

where qρ(B1) is the Z4 valued quadratic form for the Z2 gauge field B1 for the C symmetry,

and M is an overall normalization numerical factor. The operator ip
∫
qρ(B1) represents p

copies (note that p is odd) of the Kitaev chain [125,126].

We remark that in an upcoming work [156], we will investigate other 2+1d TQFTs and

Chern-Simons matter theories with similar non-invertible time-reversal symmetry. Examples

of non-invertible time-reversal symmetry in 3+1d are discussed in e.g. [44].

Diagnosis for the anomaly in AN,p Because the time-reversal becomes non-invertible

after gauging C, we conclude that the original T2 = (−1)FC in {1, f} × AN,p is anomalous.

We now determine which anomalies it can cancel out of those described in Section 3.4.2.

The fact that the non-invertible time-reversal symmetry requires coupling to (Z2)2c(N,p),

which has the action πc(N,p)
4

∫
B1dB1 (the factor 1/4 can be defined in fermionic theories), im-

plies that the time-reversal symmetry in AN,p has mixed anomaly with the charge conjugation
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symmetry, described by the anomaly term

Abulk ⊃ −πc(N, p)

8

∫
dB1dB1 = −πc(N, p)

2

∫
4d

(
2dB1

4

)2

. (3.41)

To see this, we note that reversing the orientation produces the term πc(N,p)
4

∫
4d
dB1dB1 =

πc(N,p)
4

∫
3d
B1dB1. Therefore, after gauging the charge conjugation symmetry, the time-reversal

symmetry becomes the non-invertible time-reversal symmetry T′ = T ◦ S. It follows that for
even N , the theory AN,p has time-reversal anomaly (for the trivial fractionalization class) is

described by the bulk term

−πc(N, p)

2

∫
qρ

(
dA

4

)
= −πp

2

∫
qρ

(
dA

4

)
= ±π

2

∫
qρ

(
dA

4

)
mod 2π , (3.42)

where A = 2B̃1 + w̃1, and we used c(N, p) = p mod 4. By reversing the orientation (or

changing the Wu3 structure ρ), the coefficients can be ±. The above anomaly corresponds to

ω = (1, 0), (3, 0) or ωf = 2 mod 4.

Anomalies from changing the fractionalization class Does the anomaly of AN,p

indicate that the 3+1d Kramers-Wannier symmetry is only anomaly free if ωf = 2 mod

4? This is not the case, because we can change the fractionalization class. Here, we will

show that fractionalization of the T2 = (−1)FC symmetry can cancel the above anomaly,

allowing the 3+1d Kramers-Wannier symmetry with 1-form symmetry ZN with even N to

be anomaly-free, even with trivial ωf .

Since N is even, the theory has Z2 subgroup of the 1-form symmetry generated by aN/2,

which is invariant under charge conjugation. There can be non-trivial fractionalization class

for the T2 = (−1)FC symmetry on this 1-form symmetry. Here, we will regard this as a

R2 = C symmetry in the Euclidean signature spacetime. We can describe the fractionalization

using background fields.

Denote the background field for C and R by B1 and w1, and the background for the Z2

subgroup of the 1-form symmetry by B2. Then we can consider the fractionalization class

from activating the background [111,113]

B2 =
dA

4
mod 2 = Bock(A) , (3.43)

where A := 2B̃1 + w̃1 is a Z4 1-cocycle, tilde denotes lift from Z2 to Z4, and it is a Z4 cocycle

dA = 0 mod 4 since dB1 = dw̃1/2 = Bock(w1) mod 2 as describing R2 = C symmetry

extension of R by C. The operation Bock is the Bockstein homomorphism, see e.g. [111] for

a review. Since the Z2 subgroup of the 1-form symmetry is generated by an anyon of spin
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p(N/2)2

2N
= N

2
p
4
= p/4 mod 1 = ±1/4 mod 1,15 the 1-form symmetry is anomalous. The above

fractionalization class induces an anomaly for the symmetry given by [113]

±2π

4

∫
qρ(B2) = ±2π

4

∫
qρ

(
dA

4

)
, (3.44)

where the sign is positive if (N/2)p = 1 mod 4 and negative if (N/2)p = 3 mod 4. q is

the quadratic function for the Wu3 structure ρ that satisfies dρ = w1w2 inhered from the

trivialization of w2, as discussed in Section 3.4.1 (for a review, see e.g. [138]). We can flip the

sign by fractionalizing on aN/2f rather than aN/2. Therefore the fractionalizations realize the

ω = (1, 0), (3, 0) or ωf = 2 mod 4 anomalies. This means that changing the fractionalization

class can trivialize the anomaly, so the 3+1d Kramers-Wannier non-invertible symmetry with

1-form symmetry with even N does not need ωf = 2 mod 4; it is also anomaly-free with

ωf = 0 mod 4.

ωf = ±1 mod 4 anomalies According to the discussion above, AN,p with even N and

odd p can produce the T2 = (−1)FC anomalies labeled by ωf = 0, 2 mod 4. On the other

hand, since the tensor product of the theory AN,p and the transparent fermion has framing

anomaly quantized in units of 1/2 [116], it cannot realize the anomaly of ω4 = 1, 3 mod 4,

which requires framing anomaly ±1/4. In summary,

Theorem 2 The 3+1d Kramers-Wannier (S gauging) non-invertible symmetry with ZN

1-form symmetry where N is even is anomalous if and only if the generalized (fermionic) FS

indicator ωf ∈ Z4 is odd. Otherwise, it is anomaly-free.

4 Lattice models with non-invertible symmetry ST n

In this section, we will give a method for constructing lattice models invariant under S

gauging of the ZN 1-form symmetry. These models are akin to the Ising model (and more

general clock models) at criticality. We will also discuss ST n gauging, which is gauging with

an additional topological term n for the ZN two-form gauge field [124] (see Eq. 2.12).

We will give an example of a model with ST 4 symmetry, whose defects have fusion rules

different but related to those written in (2.13).

4.1 Lattice models with S symmetry

We consider lattice models in 3 + 1 spacetime dimensions, where space is put on a cubic

lattice [0, 1]3. We assign to each edge of the lattice a local “matter” Hilbert space, where the

15Since gcd(N, p) = 1, p is odd for even N , and p2 = −1 mod N implies that N = 2 mod 4. Moreover,

one can show that N = 2 mod 8 because N is has a single factor of 2, and all its other prime factors are

Pythagorean primes, of the form 4k + 1 where k is an integer [28].
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symmetry acts, and we assign to the faces Hilbert spaces associated with the gauge fields. For

the theory to be invariant under gauging the 1-form symmetry, the faces must be dualized to

be edges on the dual lattice. This is the case here because the dual of a cubic lattice is also a

cubic lattice, and the faces get mapped to the edges of the dual lattice and vice versa.16

We will focus on lattice models with ZN 1-form symmetry, but our methods can easily be

generalized to other finite, Abelian groups
∏

i ZNi
. The operators acting on the edges are

generated by the ZN generalizations of the Pauli operators, Xe and Ze, which obey

ZN
e = 1 XN

e = 1 XeZe = ZeXee
2πi/N . (4.1)

The operators acting on the faces are generated by X̃f and Z̃f , which obey the same

relations (4.1). The 1-form symmetry is generated by
∏

eX
σe
e on closed surfaces, where

σe = ±1 depending on the orientation of the edge e (see the vertex term in Figure 4). A

model invariant under S gauging the symmetry can be constructed as follows.

We start with the model with Hamiltonian H0 built out of Xe, Ze, which has symmetry as

described above acting on the edges of the cubic lattice. Gauging the symmetry as described

in Section 4.2 produces a Hamiltonian H̃1, in terms of operators X̃f , Z̃f . In the gauged model,

the symmetry is generated by the Wilson operators given by
∏

f Z̃
σf

f on closed surfaces, where

again σf = ±1 depending on the orientation of the face f (see the cube term in Fig. 6). For

the model to be invariant under gauging, we need to identify the generator with the original

symmetry generator
∏

eX
σe
e . To do so, we shift the operators on the faces to the edges. In

particular we map the symmetry generator
∏

f Z̃
σf

f to
∏

eX
σe
sk
. In general, this involves a

“half translation, like in the 1+1d Ising chain in [22].17 We leave the complete study of the

fusion rule for the defects on the lattice to future work.

Denoting the resulting Hamiltonian by H1, we then consider the interpolation between

the two Hamiltonians given by

H = J0H0 + J1H1 (4.2)

When J0 ≫ J1, the model H describes the original theory H0, while for J1 ≫ J0, H describes

the S gauged theory. At J0 = J1, we expect the theory to be self-dual with X ↔ Z.

4.2 Microscopic model

A lattice model with a 1-form symmetry generated by closed surfaces
∏

eX
σe
e is given by the

bottom row of Figure 4 [157].18 Note that Fig. 4 shows lattice models for even classes (even

16This discussion can be generalized to d+ 1 spacetime dimensions with a k-form symmetry, where the

matter degrees of freedom reside on the k-simplices and the gauge fields on the (k + 1)-simplices. The

requirement for gauging the k-form symmetry to produce a dual k-form symmetry is then (d− k) = k + 1 so

the spacetime dimension must be even, reproducing the result from field theory.
17We thank Shu-Heng Shao for bringing up this point.
18While Ref. [157] specified N to be even, the model also works for N odd. Here we allow N to be odd,

since we take the class label to be even integer p.
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Z−p/2
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Z†

X†

X†
X†

Z†

Z†

Z†

Z†
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Figure 4: After gauging the 1-form symmetry generated by
∏

eX
σe
e surfaces (vertex term of

H1), and then shifting from the dual lattice (faces) to the original lattice (edges) with X ↔ Z,

H0 gets mapped to H1. H0 describes the SPT of class p with ZN 1-form symmetry [157]

while H1 is dual to the 2-form gauge theory with topological action p in Figure 6 on the dual

lattice. Here, we show the lattice models for even p for simplicity, the model for odd p can

be similarly constructed and is given in [157]. While H0 and H1 are individually commuting

Hamiltonians, H = J0H0 + J1H1 is not commuting for nonzero J0 and J1.

p) of the 1-form SPTs. When N is odd, these are the most general bosonic 1-form SPTs.

When N is even, there are also bosonic SPTs labeled by odd classes. Ref. [157] discusses

lattice models for these SPTs. They are relatively complex so we will focus on even classes for

simplicity. Let us call the model for the SPT in Fig. 4 H0. S gauging the 1-form symmetry

consists of five steps.

1. We introduce N -dimensional gauge degrees of freedom on the faces, with local operators

generated by X̃f , Z̃f .

2. If the Hamiltonian terms do not commute with the Gauss laws in Figure 5 with n = 0

(we will discuss n ̸= 0 in Section 4.4), which happens when p ̸= 0, we need to apply

minimal coupling. This modifies the Hamiltonian terms by Z̃p
f on each of the two faces

to make them commute with the Gauss law terms.

3. We implement the Gauss laws in Figure 5 with n = 0 to replace matter operators with

gauge field operators.

4. We “integrate out the matter” by fixing the gauge Ze = 1 for all edges. The resulting
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X̃
X̃
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X̃
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Z̃n/2

Z̃n/2
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X̃† X̃†

X̃†
X̃†

X̃†

X†

X† X†

Figure 5: Modified Gauss law constraint that implements ST n gauging. Each of these

terms are set to be 1, so the symmetry transformation on a matter field gets mapped to

transformations on neighboring gauge fields. Here we list the model for even n, while the

model for odd n can be obtained similarly from the SPT models in [157].

Hamiltonian is H̃1

5. We implement zero gauge flux by adding the closed surface in Figure 6 to the Hamiltonian.

This generates the dual 1-form symmetry.

We then shift H̃1 to H1, so its operators act on the edges of the original lattice, and use

X ↔ Z. The resulting Hamiltonian is given by the latter two rows of Figure 4. Similarly,

gauging H1 via the above five steps gives H̃0, which after shifting back to the original

lattice and using X ↔ Z gives H0. Note that H0 and H1 are individually commuting, but

H = J0H0 + J1H1 is not commuting. If we were to shift H0 onto the dual lattice rather than

H̃1 onto the original lattice, then we get a 2-form gauge theory in a transverse field, where

the transverse field is given by the 1-form SPT:

H = J0H̃0 + J1H̃1 . (4.3)

where H̃1 is given by Figure 6. The S gauging of the p = 0 case, where H0 is a trivial

paramagnet and H̃ is a trivial transverse field, was studied in Appendix B of [28].

4.3 Dynamics

As briefly mentioned in Section 4.1, we can infer some regimes of H:

• At J0 ≫ J1, we can ignore the term H1, and the theory describes the class p SPT phase

with ZN one-form symmetry.

• At J1 ≫ J0, we can ignore the term H0, and the theory describes twisted ZN 2-form

lattice gauge theory with topological action n. For gcd(N, n) ̸= 1 there are deconfined

excitations and non-trivial topological order. For gcd(N, p) = 1, the theory describes a

ZN 1-form SPT phase of class −p−1, but with a surface topological order AN,p, which

can have nontrivial chiral central charge c [2, 158]. When the boundary theory has
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Figure 6: Lattice Hamiltonian for pure 2-form gauge theory with topological action p on

cubic lattice. Each face has a ZN degree of freedom, acted by the generalization of Pauli

operators that satisfying (4.1). The model can be obtained by gauging the 1-form symmetry

in ZN 1-form symmetry SPT phase of class p. The first row is the Gauss law term, while the

second row is the flux term. Here we list the model for even p, while the model for odd p can

be obtained similarly from the SPT models in [157].

c ̸= 0 mod 8, it can only be obtained from the trivial Hamiltonian H0 with p = 0 by a

nontrivial quantum cellular automaton (QCA) [159].

We see that even for p2 = −1 mod N , where the phases are the same for J0 ≫ J1 and

J1 ≫ J0, the two models may differ because their boundaries have different c (mod 8). When

N is odd, AN,p has c = 0 mod 8 if p2 = −1 mod N [65], but when N is even, c ̸= 0 mod 8.
19 On the lattice, H0 and H1 differ by QCA even though they describe the same phase.

H0 and H1 are individually commuting Hamiltonians, but H is not commuting for

nonzero J0 and J1. When gcd(n,N) ̸= 1, we expect a confinement-deconfinement transition

at intermediate values of J0 and J1. For gcd(n,N) = 1, we still expect a quantum phase

transition between different SPT phases, except in the case p2 = −1 mod N . For N even

and p2 = −1 mod N , there would at least be a surface transition due to the change in c. On

the other hand for N odd, it does not seem necessary for the system to undergo a phase

transition.

When p = 0, the model reduces to the toric code in a transverse field studied in [28],

where it is shown that the model is invariant under gauging ZN 1-form symmetry. Monte

Carlo studies show that the self-dual point is a first order phase transition for N ≤ 4 [127].

When N ≥ 5, the theory flows to gapless Maxwell theory at the coupling e2 = 2π/N , where

the coupling is fixed by matching the duality defect in the renormalization group flow using

the non-invertible symmetry in Maxwell theory [28].

19Previously, we considered fermionic systems when N is even, but here we restrict to bosonic lattice

models for simplicity.
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For general N, p, the dynamics of the lattice model is constrained by the non-invertible

defect: it cannot flow to gapped phase preserving the non-invertible symmetry unless p2 = −1

mod N . This indicates at these special values of N, p, there should be duality-symmetric

terms that one can add to the Hamiltonian to make it gapped (at least in the bulk) at J0 = J1.

We discuss this point more in Section 5.

4.3.1 Large N limit

For p = 0, for sufficiently largeN , the lattice model flows to gapless Maxwell theory at coupling

τU(1) = iN, where the coupling is obtained by matching the non-invertible symmetry [39].

Here we make some conjectures of what might happen at nonzero p.

Let us impose the vertex term of H1 in Figure 4 exactly to enforce the Gauss law, and we

express the operators Z and X using the U(1) gauge field a and its canonical electric field Π

(we choose the temporal gauge a0 = 0) as

Z = eiaj , X = e
2πi
N

Πj , (4.4)

where j labels the direction of the edge, and we used [Π, a] = 1. In the Euclidean spacetime

picture, the terms in the first row in Figure 4 are small loop operators with two edges in the

temporal direction. In the continuum limit, they contribute the action
∫
(2π
N
Πi + ipϵ0ijkBjk)

2,

where we denote the magentic field as Bij = ∂iaj − ∂jai. The terms in the last line of Figure

4 are small loop operators in spatial directions, and in the continuum limit they contribute

the action
∫
(Bij +

2πp
N
iϵ0ijkΠk)

2. Thus for N sufficiently large compared to p, the theory at

low energy is described by the free U(1) gauge theory. When p is larger, the quadratic terms

above are not sufficient to capture the Hamiltonian terms, and we expect the theory is not

the Maxwell theory, as discussed further below.

Domain wall tension Consider the interface where on half space we perform the S gauging

(with the appropriate shift and X ↔ Z). Then along the interface, there is additional energy

cost from the terms in H0 and H1, because the terms do not commute. For p < 2
√
N ,

such energy cost can be estimated, for N ≫ 1, as 1 − e2πi(p
2)/N ∝ sin

(
2π(p2)

N

)
, from the

commutation relation of Zp, Xp and Z,X.

From the domain wall tension, we expect the following

• When p2 ≪ N , the tension vanishes for large N , and the duality symmetry is unbroken.

For large N the phase is described by gapless Maxwell theory.

• When p2

N
∼ 1/4, the tension is finite for large N , and the duality symmetry is broken.

Since N, p are discrete, we do not expect new fixed points from dialing p/N . Therefore

we propose that the phase diagram in terms of the three parameters p,N and the lattice

coupling J0/J1 is given by cone extending from small p,N and J0 = J1, where inside the
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Maxwell theory
1st order transition

N

J0/J1

Figure 7: Proposed phase diagram for the lattice model: inside the cone the duality symmetry

is unbroken but the theory is gapless, while outside the cone the symmetry is broken. At

the upper part of the interior of the cone for large N and small p, the phase is described by

gapless Maxwell theory. The shell of the cone are first order phase transitions. The N, p

plane through the origin corresponds to J0 = J1.

cone the duality symmetry is unbroken, and for large N the upper part of the cone is the

Maxwell theory. The plane at p = 0 should match with the phase diagram of Ref [65] (see

also [127]). Outside the cone, the duality symmetry is broken. The boundary cone represent

first order phase transitions. See Figure 7 for an illustration.

4.4 ST n gauging

The action of ST n gauging on the lattice is more subtle, when gcd(n,N) = 1. This is because

there are different versions of the ZN 1-form SPT given by H0 and H1, that may differ by a

gravitational term. ST n gauging for gcd(n,N) = 1 can be implemented as S ◦ U0 or S ◦ U1,

where U0 and U1 are the unitary operators that entangle the H0 1-form SPT or the H1 1-form

SPT respectively. Specifically, U †
0H

(0)
0 U0 = H

(n)
0 and U †

1H
(0)
0 U1 = H

(n)
1 , where the superscript

denotes the ZN 1-form SPT class (i.e. p = n). U0 is a finite-depth quantum circuit, while

U1 may be a QCA due to the nontrivial surface topological order with c ̸= 0 [159]. We

can equivalently implement the ST n gauging using modified Gauss laws. We illustrate the

modified Gauss laws corresponding to S ◦ U0 in Figure 5. For gcd(n,N) = 1, there is an

alternate set of modified Gauss laws corresponding to S ◦ U1.

Due to this ambiguity, we will discuss in this section an example where gcd(n,N) ̸= 1. 20

We will give a lattice model similar to the ones above, but for ST 4 gauging, and we use as

a particular example N = 4. Because ST 4 is not order 2 (up to charge conjugation, which

leaves the SPT invariant), we actually obtain a model with an ST 4 invariant multicritical

20We plan to study the subtleties of general STn gauging in forthcoming work.
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Figure 8: ST 4 cyclically maps the trivial paramagnet H0 to the twisted deconfined gauge

theory H1. It them maps the gauge theory to the class p = 4 SPT H2 and finally to the

untwisted deconfined gauge theory H3. We have only shown one of the three kinds of terms

(and neglected the vertex terms) of each Hamiltonian.

point. Specifically, the model takes the form

H = J0H0 + J1H1 + J2H2 + J3H3, (4.5)

where the Hamiltonian terms for H0, H1, H2, and H3 are illustrated in Figure 8. The order

four ST 4 symmetry cyclically permutes H0, H1, H2, and H3, so at the point J0 = J1 = J2 = J3,

the theory is invariant under ST 4.

4.5 Fusion rule and condensation defect

Let us study the D̄ × D fusion rule of the non-invertible S symmetry. We will insert the

symmetry defect by gauging on part of space, instead of on the entire space, with the rough

boundary condition (i.e. Dirichlet boundary condition), by setting Z̃ = 1 on the plaquettes

on the domain wall. We consider the convention of starting with the gauge theory in all of

space. Let us take the defect D̄ to be at coordinate z = −ϵ and the defect D to be at z = ϵ.

We then shrink the strip −ϵ < z < ϵ.

We remove the second and third“windmill” terms with X̃, X̃† in the first line of Figure 6,

since they have plaquettes with X̃, X̃† on the domain wall, and thus they do not commute

with Z̃ = 1 on the domain wall plaquettes.

The remaining second “windmill term” in the first line of Figure 6 becomes a product

of four X̃ (or X̃† depending on the orientation) on the edges of a cross on the domain wall,

where the edge variables are labelled by the variables on the plaquettes that end on the edges

on the domain wall. See the first term in Figure 9.

Similarly, the cube terms in the second line of Figure 6 becomes a product of four Z̃ (or

Z̃† depending on the orientation) on the edges around a plaquette on the domain wall, see

the second term in Figure 9. Those are the standard vertex term and plaquette term in ZN

toric code model in 2+1d [160]. Thus we find that

D ×D = Condensation Defect , (4.6)
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X̃+

X̃

X̃

X̃+

Z̃+

Z̃

Z̃Z̃+

Figure 9: Condensation defect on the domain wall (grey shade) given by ZN toric code model

in 2+1d, where the variables on the domain wall edges (dark red and dark blue) are labelled

by the variables on the plaquettes ending on the domain wall.

where the condensation defect is described by ZN gauge theory on the domain wall. This

reproduces the fusion rule in e.g. [28] for D̄ × D.

5 Outlook

In this work we presented a general framework for studying anomalies of non-invertible

symmetries in 3+1d, using a corresponding 4+1d Abelian 2-form gauge theory with a 0-form

symmetry. We found that for the particular example of Kramers-Wannier like symmetries,

certain symmetries are anomalous due to a quantity that generalizes the 2+1d FS indicator.

These provide anomalies beyond those studied in Refs. [28,39,65]. We also uncovered a family

of non-invertible time-reversal symmetries in 2+1d and presented some lattice models with

these non-invertible symmetries.

Let us comment on some future directions which we would like to revisit:

• It would be interesting to study how non-invertible symmetries might fractionalize in

3+1d. This was studied in depth in e.g. [113,146,161,162] for invertible symmetries.

• We can generalize to study topological defects of other dimensions including those

related to continuous symmetries. As a particular example, the anomaly field theory

that describes mixed anomaly of U(1) higher form symmetries is given by the analogue

of Chern-Simons term for the gauge fields. It would be interesting to study the possible

gapped or gapless boundaries of such examples from this point of view.

• In principle, our discussion does not need to assume Poincaré invariance, and should

apply also to condensed matter systems. For instance, the anomaly field theory is Witt

equivalent to the ZN two-form gauge theory described by the loop toric code model in

4+1d. This is unlike the argument in [65]. It would be interesting to apply our results

to a more broad class of systems with less spacetime symmetry.

• The discussion can be generalized to defects that generate gauging a subsystem symmetry.

See e.g. [163,164] for examples of non-invertible subsystem symmetries.

• A natural future direction is to study other non-invertible symmetries in 3+1d by using
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different 0-form symmetry enriched 2-form Abelian gauge theories in 4+1d. For example,

we can study anomalies of ST n symmetries in 3+1d. We already studied the first

level obstructions in Section 2.2, but we did not systematically study anomalies from

FS indicators. We did give an example in Section 3.5.1 showing that ST n symmetry

may have obstructions to symmetric TQFTs related to beyond-cohomology SPTs not

encountered for S symmetry.

• The 0-form symmetry enriching the Abelian gauge theory can also be non-Abelian. For

example, it can be a permutation group. It would be interesting to study anomalies of

symmetries in 3+1d related to more general 0-form symmetries of the 4+1d Abelian

gauge theory.

• In Section 3.6.2, we uncovered an infinite family of theories with non-invertible time

reversal, originating from theories where the time-reversal had a mixed anomaly with

charge conjugation. This method of obtaining a non-invertible time reversal symmetry

from an anomalous time reversal symmetry is very general; we will discuss this and

present many more examples in forthcoming work. [156]

• It would be very interesting to find realistic examples (beyond stacking constructions)

where the FS indicators ω, ωf are nontrivial. It should also be possible to construct

lattice models where ω is nontrivial. The lattice models we presented, like the Ising

model, have trivial ω. Furthermore, we restricted to bosonic models, but it should also

be possible to construct fermionic models, especially with nontrivial ωf , for N even.

• As mentioned in Section 4.3, the lattice models we constructed have predictable dynamics

for p = 0. However, for p ̸= 0, and in particular for p ∼
√
N , our models for large N

seem have very different dynamics. It would be interesting to study the phase diagram

numerically, to confirm our hypothesized phase diagram in Figure 7. It would also be

interesting to study the phase diagram for p2 = −1 mod N , where the bulk does not

need to undergo a phase transition.

• If the phase diagrams for N, p where p2 = −1 mod N demonstrate that the J0 = J1
point is gapless, it would be interesting to study what symmetric perturbations can be

used to take the system into a trivially gapped phase.

• There are many remaining questions related to the subtleties of gauging 1-form symme-

tries on the lattice. This is especially true for ST n gauging (see Section 4.4). We plan

to study the gauging, and recover the fusion rules (modified by translations) in future

work.
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A Non-invertible fusion rules from Aut(K) symmetry

When the domain wall that generates the bulk invertible Aut(K) symmetry ends on the

boundary, it gives non-invertible symmetry on the boundary. Alternatively, if we gauge the

bulk g ∈ Aut(K) symmetry, there is codimension operator given by open domain wall (such

operator belongs to the twisted sector), and it generates new non-invertible symmetry.

We can compute the non-invertible fusion rules as follows. First, we obtain the worldvolume

description of the domain wall using the action with properly quantized matrix m for each

term, and perform the g transformation on bI on half spacetime Y with boundary ∂Y that

supports the domain wall:

1

2π

∑
I<J

∫
Y

(
(gTmg)IJb

IdbJ −mIJb
IdbJ

)
=

1

4π

∑
I,J

∫
∂Y

W (g)IJb
IbJ , (A.1)

where the right hand side is the worldvolume action on the domain wall in the bulk, and

W (g) is a symmetric integer matrix that describes which excitations are condensed on the

worldvolume of the g domain wall. Explicitly,

WIJ =

{ ∑
K,L gIKmKLgLJ I = J∑

K,L gIKmKLgLJ −mIJ I ̸= J
. (A.2)

For instance, when the theory is N
2π

∫
5d
bedbm, under g = T transformation bm → bm + be, the

W matrix is given by N
4π

∫
4d
bebe [29]. Under T = S transformation (be, bm) → (bm,−be), the

W matrix is given by N
2π

∫
4d
bebm [29]. The domain wall itself is condensation with charges

gei − ei where ei is the charge carried by the operator ei
∮
bi [49].

If we gauge the g symmetry in the bulk, the open domain wall gives a codimension-two

operator on its boundary which obeys non-invertible fusion rule. Denote the support of the

domain wall by M4 with boundary M3 = ∂M4, the fusion of g with ḡ can be obtained from

W (g) by the methods in e.g. [26, 28,29,35,39,49,60]:

∂M4 = M3 : g(M4)× g(M4) = #
∑
λ

e
i
∑

I≤J W (g)IJ
∫
PD(λI/2π)

bJ+ i
4π

∑
I,J

∫
M3

λIdλJ

, (A.3)
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where # is a normalization factor, and λ = {λI} are one-forms on M that take values in

A = Z2r/KZ2r, PD denotes the Poincaré dual on M3.

Then the fusion rule in the absolute boundary theory with polarization P is given by

further imposing the equivalence relation that sets the surface operators in P to be trivial.

We remark that the absolute theories for different polarizations can have different symme-

tries as in the examples in e.g. [104,165].

A.1 Example: ZN two-form gauge theory

Let us consider ZN two-form gauge theory

N

2π
bedbm . (A.4)

We will derive the fusion rule for the non-invertible symmetry from the ST n transformation.

The transformation is generated by the bulk domain wall∫
4d

(
N

2π
bebm +

nN

4π
bmbm

)
. (A.5)

The fusion rule for defect ending on the boundary is given by

N ×N =
∑
Se,Sm

ei
∫
nSm+Se

bm+
∫
Sm

be . (A.6)

On gapped boundary that preserves the ST n symmetry, where N = α2+β2+nαβ, we can

choose polarizations such as the Dirichlet boundary condition be| = 0 to obtain an absolute

gapped boundary theory. For this polarization, the fusion rule is

N ×N =
∑
Se,Sm

ei
∫
nSm+Se

bm . (A.7)

B Generalized Frobenius Schur-indicator and statistics

In this appendix, we discuss a similar obstruction to symmetric gapped phase as in [97]

for topological lines in 1+1d, to volume operators in 3+1d. In the Abelian theory (2.14),

suppose we consider an ordinary symmetry of order 2. We can obtain the anomaly field

theory by gauging the symmetry. We have choice of gauging the symmetry with additional

local counterterm. Suppose we add additional bosonic 4+1d Dijkgraaf-Witten theory for Z2

gauge group described by H5(BZ2, U(1)) = Z2, the F symbol from fusing 5 volume operators

give (−1) since the Dijkgraaf-Witten term describes the 0-form symmetry anomaly [111,166].

We will show that the volume operator in this case has “self-statistics” i compared to the

case without the Dijkgraaf-Witten term. This is similar to the 2+1d Z2 Dijkgraaf-Witten
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theory, where the F symbol for fusing three vortex operators is the Frobenius–Schur indicator

(see e.g. [116]).

More generally, let us consider Dijkgraaf-Witten theory for Z2 gauge group in odd

spacetime dimension (2n + 1). We can describe the theory by the action in continuous

notation ∫
M2n+1

(
π
a

π

(
da

2π

)n

+
2

2π
adb

)
, (B.1)

where a is a one-form and b is a (2n− 1)-form. The equation of motion for a gives

n+ 1

(2π)n
(da)n +

2

2π
db = 0 . (B.2)

Consider the correlation function on M2n+1 = S2n+1 for the gauge invariant operator

exp

(
i

∮
V2n−1

b+
(n+ 1)i

2(2π)n−1

∫
V2n

(da)n
)

, (B.3)

where V2n−1 = ∂V2n. With such operation insertion, the equation of motion for b gives

da = −πδ(V2n−1)
⊥, a = −πδ(V2n)

⊥ , (B.4)

where δ(V2n−1)
⊥ is the delta function two-form that restricts to V2n−1, and δ(V2n)

⊥ is the

delta function one-form that restricts to V2n. Thus the correlation function is

⟨exp
(
i

∮
V2n−1

b+
(n+ 1)i

2(2π)n−1

∫
V2n

(da)n
)
⟩

= exp

(
(−1)n+1πi

2n

∫
M2n+1

δ(V2n)
⊥(δ(V2n−1)

⊥)n +
(−1)nπ(n+ 1)i

2n

∫
M2n+1

δ(V2n)
⊥(δ(V2n−1)

⊥)n
)

= exp

(
(−1)n

niπ

2n

∫
M2n+1

δ(V2n)
⊥(δ(V2n−1)

⊥)n
)

, (B.5)

where the integral in the last line equals the intersection number of V2n and the one-dimensional

nth intersection of V2n−1. Thus nontrivial F symbol implies nontrivial self-statistics of the

magnetic operator. We can call the F symbol as generalization of the Frobenius-Schur

indicator.

Let us consider some cases with lower n:

• For 4 + 1d spacetime dimension, n = 2, and the self statistics is ei
π
2 = i. Thus we

find that non-trivial F symbol (equals (−1)) for fusing 5 operators, which gives the

Dijkgraaf-Witten term, implies nontrivial self-statistics.

• Similarly, for 2 + 1d spacetime dimension, n = 1, and the self-statistics is e−
πi
2 = −i,

as expected from the vortex in the Z2 Dijkraaf-Witten theory in 2+1d. The F symbol

(equals (−1)) for fusing three operators, which gives the Dijkgraaf-Witten term, implies

nontrivial self-statistics.
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C Trivializing the anomaly by symmetry extension

Consider the non-invertible symmetry associated with the S-transformation in bulk ZN , with

N > 2. The S transformation has order 4, and we can stack the bulk TQFT with an SPT

phase for Z4 symmetry, described by

2πp

4

∫
A
dA

4

dA

4
, (C.1)

where p is an integer, and A is the background gauge field for the Z4 symmetry. This implies

that the domain wall that generates the unit transformation is attached to the SPT phase

2πp

4

∫
dA

4

dA

4
. (C.2)

We can trivialize the anomaly by decorating the domain wall with TQFTs to cancel such

phase. For instance, we can extend the Z4 symmetry in the following way:

• We can extend Z4 to Z16, denote a lift of Z4 gauge field to Z16 as Ã a Z16 cochain, then

we can cancel the domain wall anomaly be decorating it with the Chern-Simons term

2πp

16

∫
Ã
dA

4
. (C.3)

The fourth power of the domain wall gives

2πp

4

∫
A
dA

4
. (C.4)

Thus the decorated domain wall generates symmetry Z16/ gcd(p,4).

• We can extend Z4 symmetry to a three-group by decorating the domain wall with Z4

three-form gauge field that satisfies

dB3 = p
dA

4

dA

4
. (C.5)

• We can decorate the domain wall with the gapped boundary of the invertible TQFT

Z4 × Z4 two-form gauge theory with the topological action 2πp
4

∫
b ∪ b′ for the two-form

gauge fields b, b′,21 such that the transformations of b, b′ are correlated with that of dA/4.

Encircling the surface operators
∫
b,
∮
b′ on the junction of the domain wall such that

dA/4 is non-trivial picks up a factor of i. Then the domain wall becomes non-invertible:

N ×N =
∑
S,S′

e
2πi
4

∫
S b+ 2πi

4

∫
S′ b′ , (C.6)

where we omit an overall normalization factor on the right hand side.

21Note the TQFT is the same as the Walker Wang model for 2d toric code.
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[86] M. Cvetič, J. J. Heckman, M. Hübner, and E. Torres, “Generalized Symmetries,

Gravity, and the Swampland,” arXiv:2307.13027 [hep-th].
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[118] C. Córdova, K. Ohmori, S.-H. Shao, and F. Yan, “Decorated Z2 symmetry defects and

their time-reversal anomalies,” Phys. Rev. D 102 no. 4, (2020) 045019,

arXiv:1910.14046 [hep-th].

[119] I. Hason, Z. Komargodski, and R. Thorngren, “Anomaly Matching in the Symmetry

Broken Phase: Domain Walls, CPT, and the Smith Isomorphism,” SciPost Phys. 8

no. 4, (2020) 062, arXiv:1910.14039 [hep-th].

[120] D. Tambara and S. Yamagami, “Tensor categories with fusion rules of self-duality for

finite abelian groups,” Journal of Algebra 209 no. 2, (1998) 692–707.

https://www.sciencedirect.com/science/article/pii/S0021869398975585.

54

http://arxiv.org/abs/2305.09734
http://dx.doi.org/10.1017/S0004972721000095
http://arxiv.org/abs/2010.07950
http://arxiv.org/abs/2010.07950
http://dx.doi.org/10.21468/SciPostPhys.13.3.068
http://dx.doi.org/10.21468/SciPostPhys.13.3.068
http://arxiv.org/abs/2104.04534
http://dx.doi.org/10.1103/PhysRevB.100.115147
http://arxiv.org/abs/1410.4540
http://dx.doi.org/10.1007/JHEP03(2019)118
http://arxiv.org/abs/1803.09336
http://arxiv.org/abs/2206.15401
http://arxiv.org/abs/2206.15118
http://dx.doi.org/10.1007/JHEP10(2017)080
http://arxiv.org/abs/1701.08264
http://dx.doi.org/10.1007/JHEP04(2022)138
http://arxiv.org/abs/2104.07067
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://arxiv.org/abs/cond-mat/0506438
http://dx.doi.org/10.1103/PhysRevB.90.235137
http://dx.doi.org/10.1103/PhysRevB.90.235137
http://arxiv.org/abs/1409.5436
http://dx.doi.org/10.1103/PhysRevD.102.045019
http://arxiv.org/abs/1910.14046
http://dx.doi.org/10.21468/SciPostPhys.8.4.062
http://dx.doi.org/10.21468/SciPostPhys.8.4.062
http://arxiv.org/abs/1910.14039
http://dx.doi.org/https://doi.org/10.1006/jabr.1998.7558
https://www.sciencedirect.com/science/article/pii/S0021869398975585
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