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Abstract: We further develop the description of three-dimensional quantum grav-

ity with negative cosmological constant in terms of Virasoro TQFT formulated in

our previous paper [1]. We compare the partition functions computed in the Vira-

soro TQFT formalism to the semiclassical evaluation of Euclidean gravity partition

functions. This matching is highly non-trivial, but can be checked directly in some

examples. We then showcase the formalism in action, by computing the gravity parti-

tion functions of many relevant topologies. For holographic applications, we focus on

the partition functions of Euclidean multi-boundary wormholes with three-punctured

spheres as boundaries. This precisely quantifies the higher moments of the structure

constants in the proposed ensemble boundary dual and subjects the proposal to thor-

ough checks. Finally, we investigate in detail the example of the figure eight knot

complement as a hyperbolic 3-manifold. We show that the Virasoro TQFT partition

function is identical to the partition function computed in Teichmüller theory, thus

giving strong evidence for the equivalence of these TQFTs. We also show how to

produce a large class of manifolds via Dehn surgery on the figure eight knot.
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1 Introduction

Three-dimensional quantum gravity with negative cosmological constant has proven

to be one of the most interesting and productive toy models of quantum gravity. The

major outstanding problems are to fully solve the theory from first principles and

firmly establish a holographic correspondence for the theory. There has been major

progress on both fronts over the last few years; see [1–7] and [8–14], respectively.

In our previous paper [1], we developed a formalism that computes the gravity

partition function algorithmically on a background of fixed (on-shell) topology. This

fixes the contributions of hyperbolic three-manifolds to the gravitational path integral

and represents a large step towards a complete solution of the theory directly from
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the bulk. The next step would involve performing the sum over all three-dimensional

topologies that appear in the gravitational path integral, which may also require suit-

able non-perturbative or off-shell contributions. While our previous paper developed

the formalism in terms of the Virasoro TQFT, this paper gives several interesting

applications that exemplify its practical utility and should be viewed as a natural

continuation of [1].

On the holographic side, a consistent picture is emerging that the gravitational

path integral computes certain universal statistical features in a putative ensemble of

holographic 2d CFTs. While the full non-perturbative definition of such an ensemble

is still not settled, this perspective makes very concrete predictions that can be

quantitatively matched between the bulk and boundary. In this paper we will study

partition functions of Virasoro TQFT on multi-boundary wormholes to exemplify the

extent to which the gravitational path integral precisely captures universal statistics

of CFT data, transcending the Gaussian approximation of [10].

We will assume that the reader is acquainted with the concepts introduced in

[1], but now recall some key features. As suggested by holography, the Hilbert space

of 3d quantum gravity is spanned by the left- and right-moving Virasoro conformal

blocks on the spatial surface Σ. This factorization of the Hilbert space allows one to

consider, say, only the left-movers as a fundamental building block.1 A key ingredient

in the proposal of [1] is an explicit form of the inner product on this conformal block

Hilbert space. Important for the consistency of this structure is the fact that the

conformal blocks transform among each other under crossing transformations and

as such the Hilbert space carries a unitary action under crossing transformations.

There are remarkably explicit expressions for the crossing transformation in terms

of the Ponsot-Teschner fusion kernel F and the modular crossing kernel S [15–18].

Since the Hamiltonian in gravity vanishes, the theory can be viewed as a TQFT on

a background topology. This data completely specifies the TQFT that we called

Virasoro TQFT in [1]. The TQFT partition function on a fixed topology can be

computed via surgery techniques similarly to Chern-Simons theory. The Virasoro

TQFT partition function then immediately leads to the full 3d gravity partition

function via the following formula, valid for all hyperbolic three-manifolds

Zgrav(M) =
∑

γ∈Map(∂M)/Map(M,∂M)

|ZVir(M
γ)|2 . (1.1)

Here we sum over all images of the manifold M under the boundary mapping class

group Map(∂M), which is part of the sum over topologies, modulo the bulk mapping

class group Map(M,∂M), which is gauged in gravity.

1The left- and right-movers are entangled only by the sum over topologies in the gravitational

path integral.
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We start in Section 2 by analyzing the gravity partition functions as computed

in Virasoro TQFT and their relation to the semiclassical evaluation of the gravita-

tional path integral. Comparing the two expressions leads to the (refined) volume

conjecture that we already mentioned in [1] and discuss further here. We also discuss

the existence of non-isomorphic hyperbolic manifolds with identical Virasoro TQFT

partition functions. This in particular implies that the gravitational path integral is

not powerful enough to detect the topology of hyperbolic manifolds.

We then discuss examples that are relevant for the holographic description of

3d gravity in Section 3. We focus on a class of manifolds obtained by removing

three-punctured spheres from S3 and connecting the boundaries appropriately with

Wilson lines. They compute holographically the higher moments of the structure

constants in the proposed ensemble description of the boundary dual. We find that

the partition functions may be computed using diagrammatic rules that are simply

the q-deformations of the rules for the computation of disk partition functions in JT

gravity + matter [19–21]. When projecting the Wilson lines on a disk, one associates

a Virasoro 6j-symbol to every crossing of lines and one integral to every loop formed

by the internal lines, see eqs. (3.63) and (3.64) for the precise formulae. We also use

Virasoro TQFT to compute the gravity partition function on a class of contributions

to the single-boundary gravitational path integral that are not handlebodies. These

non-handlebody instantons are formed by quotients of the two-boundary Euclidean

wormhole and we find that the gravity partition function is related to the partition

function of Liouville CFT on a particular non-orientable surface.

Finally, we consider the example of the figure eight knot complement in Section 4,

which constitutes one of the simplest examples of a hyperbolic manifold with no

asymptotic boundary. We compute its Virasoro TQFT partition function from a

variety of perspectives and demonstrate that it agrees with the partition function

computed in an a priori different TQFT known as Teichmüller TQFT. This lends

strong credence to the equivalence of the two theories, even though Virasoro TQFT

provides a far more convenient framework for holographic applications. We also

illustrate the procedure of Dehn surgery on the figure eight knot, which leads to

the gravity partition function on a whole family of hyperbolic three-manifolds whose

volume accumulates to that of the figure eight knot complement.

2 Structural properties of Virasoro TQFT

We start by discussing the relation of the formulation of gravity in terms of Virasoro

TQFT and the semiclassical gravity path integral. Comparing the two leads to the

volume conjecture and we discuss various consequences for the volumes of hyperbolic

3-manifolds, conformal blocks and one-loop determinants. We then also explain some

of the consistency conditions of the Virasoro TQFT. Such consistency conditions are
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all implied by the consistency of the mapping class representation on the initial value

surface, but often the three-dimensional viewpoint is much more powerful.

2.1 Volume conjecture

We already stated the (refined) volume conjecture in [1], but it will play a much

more prominent role in the present paper. By comparing the usual metric approach

of 3d gravity and the Virasoro TQFT approach, one obtains the following prediction

for the semiclassical expansion of partition functions:

|ZVir(M)|2 = e−
c
6π

vol(M)

[∏
γ∈P

∞∏
m=2

1

|1− qmγ |2
+O(c−1)

]
. (2.1)

Here we used that the gravity tree-level action is c
6π

vol(M), where vol(M) is the

volume of the hyperbolic manifold. We also used the explicit form of the one-loop

determinant as computed in [3]. This explicit formula for the one-loop determinant

is valid for hyperbolic manifolds without defects that can be written as H3/Γ for

a so-called Kleinian group Γ. In case M has defects, the volume conjecture should

still hold, but there is no known general formula for the one-loop determinant. We

recall that P denotes the set of all primitive geodesics on the three-manifold in

question. Alternatively, we can think of P as the set of primitive conjugacy classes

in the Kleinian group Γ (i.e. conjugacy classes that are not powers of other conjugacy

classes) and also identify the conjugacy class of γ with the conjugacy class of γ−1,

since this corresponds to orientation reversal of the corresponding geodesic. We

could of course extend the matching to higher loop order, but will restrict here to

the tree-level and one-loop piece.

We refer to this equation as the refined volume conjecture, since the classical

volume conjecture is the corresponding statement for the tree-level term in the 1
c
-

expansion [22]. The relation (2.1) should also hold in the presence of boundaries, in

which case the volume of the hyperbolic manifold is the renormalized volume [23].

2.2 The volume of hyperbolic tetrahedra

Let us explain one of the simplest non-trivial instances of the volume conjecture in

more detail. Consider a single hyperbolic tetrahedron as in Figure 1 with dihedral

angles θi specifying the angle between the two faces meeting at the edge.

The dihedral angles have to satisfy rather complicated conditions for such a

hyperbolic tetrahedron to exist. We can take two identical such hyperbolic tetrahedra

and identify them along the corresponding faces. This leads to a topological three-

sphere with conical defects running in the form of the tetrahedron through it. The

hyperbolic tetrahedron is specified by the dihedral angles θj ∈ (0, π) spanned by the

two faces meeting at an edge. Upon gluing two tetrahedra, the conical defect angle
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θ6

θ5 θ4

θ3
θ1 θ2

Figure 1. Tetrahedron with dihedral angles specified.

becomes 2π−2θj. Semiclassically, the relation between defect angles αj and Liouville

momentum reads2 [24]

Pj =
iαj

4πb
∼ iQ

2
− iθj

2πb
(2.3)

This is the hyperbolic three-manifold that we use for the volume conjecture. Some

extra care is necessary to correctly normalize the vertices. We observe that the

renormalized volume of the Euclidean wormhole of the form Σ0,3 × [0, 1] exactly

vanishes.3 Since it evaluates to the Liouville structure constant C0(P1, P2, P3) in

the Virasoro TQFT, this means that for the purposes of the volume conjecture, we

should define a juncture with a normalization constant C0(P1, P2, P3)
− 1

2 as follows

1√
C0(P1, P2, P3)

×

P1

P3

P2 . (2.4)

We compute the TQFT partition function ZVir of this tetrahedral configuration

in Section 3.2. The result is given by

ZVir


 = ρ0(P6)

−1C0(P1, P2, P3)C0(P3, P4, P5)FP3,P6

[
P4 P2

P5 P1

]
(2.5)

=
√
C0(P1, P2, P3)C0(P1, P5, P6)C0(P2, P4, P6)C0(P3, P4, P5)

×
{
P1 P2 P3

P4 P5 P6

}
. (2.6)

2Here we are adopting the standard notation from Liouville theory for the central charge and

conformal weights:

c = 1 + 6(b+ b−1)2 = 1 + 6Q2, ∆j =
c− 1

24
+ P 2

j . (2.2)

3Here and throughout we use Σg,n to refer to a Riemann surface of genus g with n punctures.

So here Σ0,3 corresponds to the three-punctured sphere.
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The symbol { P1 P2 P3
P4 P5 P6

} is the crossing kernel for sphere four-point function conformal

blocks in the Racah-Wigner normalization [17], which we also call the Virasoro 6j-

symbol. It has the correct tetrahedral symmetry as required by the picture, where

the vertices of the tetrahedron are formed by (P1, P2, P3), (P1, P5, P6), (P2, P4, P6)

and (P3, P4, P5).

Thus the prediction of the volume conjecture is now that

2 vol(η1, η2, η3, η4, η5, η6) = −2π lim
b→0

b2 log

{ iQ
2
− iη1

2πb
iQ
2
− iη2

2πb
iQ
2
− iη3

2πb
iQ
2
− iη4

2πb
iQ
2
− iη5

2πb
iQ
2
− iη6

2πb

}
, (2.7)

where the volume on the left hand side is the volume of the hyperbolic tetrahedron

specified by the dihedral angles ηj.

One can evaluate the integral in the defining formula for the crossing kernel

via saddle-point approximation in this limit and confirm that it agrees with the

volume formula for a hyperbolic tetrahedron. This was done in [17], but the volume

conjecture gives a conceptual derivation of that fact.

We also mention that the Virasoro crossing kernel has the following Regge sym-

metry [25, 26]

FP3,P6

[
P4 P2

P5 P1

]
= FP3,P6

[
1
2
(P2 + P4 + P5 − P1)

1
2
(P1 + P2 + P4 − P5)

1
2
(P1 + P4 + P5 − P2)

1
2
(P1 + P2 + P5 − P4)

]
. (2.8)

This implies via the volume conjecture that the volume of a hyperbolic tetrahedron

is invariant under the replacement

θ1 → 1
2
(θ1 + θ2 + θ4 − θ5) , θ5 → 1

2
(−θ1 + θ2 + θ4 + θ5) , (2.9)

θ2 → 1
2
(θ1 + θ2 + θ5 − θ4) , θ4 → 1

2
(θ1 − θ2 + θ4 + θ5) , (2.10)

with θ3 and θ6 unchanged. This property is very non-trivial to see geometrically and

giving a direct proof of it is rather hard.

2.3 Volume conjecture for handlebodies

Semiclassical vacuum blocks. Let us apply the volume conjecture in the form

(2.1) to a handlebody. Recall that the Virasoro TQFT partition function on a genus-g

handlebody SΣg evaluates to the vacuum Virasoro conformal block,

ZVir(SΣg) =
1

11

, (2.11)

where we drew a genus-2 surface for concreteness. As such the volume conjecture

(2.1) gives the semiclassical expansion of vacuum blocks,

1
11

∼ e−
c

12π
vol(SΣg)

∏
γ∈P(Γg)

∞∏
m=2

1

1− qmγ
. (2.12)
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Here, vol(SΣg) is the in general complex volume of the handlebody.4 Such a semiclas-

sical expansion of the conformal blocks is familiar from 2d CFT, where the leading

term is called the semiclassical conformal block [27–29], but to our knowledge there is

no general CFT derivation of the one-loop determinant, and even direct derivations

of the leading term are somewhat limited. The group Γg ⊂ PSL(2,C) that appears
in the one-loop determinant is the Schottky group of the corresponding handlebody.

The Virasoro TQFT approach gives a simple derivation of this fact. It also shows

that the semiclassical block is nothing else than the volume of the corresponding

handlebody. It was shown in [30] that this volume is identified with the on-shell

value of the Liouville action as defined by Takhtajan and Zograf [31],

SL(Σg) = −4Re vol(SΣg) . (2.13)

Defining the on-shell Liouville action requires one to pick a conformal block chan-

nel. The Virasoro TQFT also makes a prediction about the order one term in the

semiclassical expansion.

One-loop determinant. Let us recall the formula derived in [32] for the holomor-

phic factorization of the Laplacian on a Riemann surface. We have

det′ ∆2

detN2

= cg e
− 13

12π
SL(Σg)

∣∣∣∣(1− q1)
2(1− q2)

∏
γ∈P(Γg)

∞∏
m=2

(1− qmγ )
2

∣∣∣∣2 . (2.14)

for some constant cg independent of the moduli. It depends on the renormalization

scheme used to define the determinant det′∆2. Here ∆2 is the Laplacian acting on

holomorphic quadratic differentials on the surface Σ and the prime indicates that we

removed the zero modes. detN2 is the determinant of ⟨φj |φk⟩ and {φj}j=1,...,3g−3

is a natural basis of holomorphic quadratic differentials as defined in [32]. We also

denoted qj = qγj with γ1, . . . , γg the g free generators of the Schottky group. The

perhaps unnatural seeming factor (1 − q1)
2(1 − q2) appears because of the specific

way in which φj is defined and is a result of fixing the PSL(2,C) conjugacy freedom

for the Schottky group. Thus we have∣∣∣∣∣∣∣∣
1

11

∣∣∣∣∣∣∣∣
2

∼ c′g
e−

c−13
6π

vol(SΣg)√
det′ ∆2

× |1− q1|2|1− q2|
√
detN2 .

(2.15)

This tells us that the one-loop partition function is exactly the inverse square root of

the partition function of a bc-ghost system with a particular choice of ghost insertions.

4In general to write this formula only for a chiral half (which goes beyond the volume conjecture

(2.1)), we also need to assign an imaginary part to the volume which is known as the Chern-Simons

invariant.
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Explicit check. Here we explicitly check the one-loop refinement of the volume

conjecture for handlebodies in a simple example, perturbatively in the moduli of the

Riemann surface in an expansion about a pinching limit. Consider for concreteness

a genus-two Riemann surface formed by plumbing two two-holed disks D1 and D2:

D1 = {z1 ∈ C | r1 < |z1| < r3, |z1 − 1| > r2} , (2.16a)

D2 = {z2 ∈ C | r̃1 < |z2| < r̃3, |z2 − 1| > r̃2} . (2.16b)

Gluing the boundaries of the disks according to the following inversion map prepares

a disk with three holes

|z2| = r̃3 : z2 ∼
1

p1z1
, with |p1| =

1

r3r̃3
. (2.17)

The remaining identifications are

|z2| = r̃1 : z2 ∼
p3
z1

, with |p3| = r1r̃1 , (2.18a)

|z2 − 1| = r̃3 : z2 − 1 ∼ p2
z1 − 1

, with |p2| = r2r̃2 . (2.18b)

The complex plumbing parameters pi parameterize the moduli of the Riemann sur-

face, with the pi → 0 limit a pinching locus in which the surface is realized by gluing

two spheres along long narrow tubes. The corresponding Virasoro conformal blocks

may then straightforwardly be computed as an expansion in powers of the plumbing

parameters pi, see for example [33] for details.

This parameterization of the genus-two Riemann surface is clearly equivalent to

the Schottky parameterization, in which one realizes the Riemann surface Σg as a

quotient of the form

Σg = (C ∪ {∞} − Λ)/Γ . (2.19)

Here Γ = ⟨γ1, . . . , γg⟩ is the Schottky group, which is a free group generated by the

loxodromic elements γ1, . . . , γg of PSL(2,C), and Λ is the limit set of the action of

Γ. The generators γi act on the Riemann sphere by Möbius transformation. In our

example of the genus-two Riemann surface formed by plumbing two-holed disks as

above, the generators of the Schottky group may be taken to be

γ1(z) = p1p3z , γ2(z) =
(1− p2)z − 1/p1

z − 1/p1
. (2.20)

Each generator γ is conjugate to diag(q
1/2
γ , q

−1/2
γ ), with |qγ| < 1. Here we have

qγ1 = p1p3 , qγ2 =
1− p1 + p1p2 −

√
1− 2p1(1 + p2) + p21(1− p2)2

1− p1 + p1p2 +
√
1− 2p1(1 + p2) + p21(1− p2)2

. (2.21)

We are now in a position to directly compare the perturbative expansion of

the c → ∞ limit of the genus-two Virasoro vacuum block as parameterized in the
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plumbing frame above5 with that of the gravity one-loop determinant on the genus-

two handlebody (2.12). We find

1
11

∣∣∣∣∣∣∣∣
c→∞

=
∏

γ∈P(Γ)

∞∏
m=2

1

1− qmγ
(2.22)

= 1 + p21p
2
2 + p22p

2
3 + p23p

2
1 + 4(p31p

2
2 + p32p

2
3 + p22p

3
3) + . . . (2.23)

On the left-hand side we evaluate the genus-two identity block in the plumbing frame

perturbatively in the moduli by brute force, and on the right-hand side we evaluate

the one-loop determinant by taking the product over primitive conjuguacy classes of

the Schottky group. We have verified the agreement between these two expressions

up to total degree 12 in the expansion in the plumbing parameters.

2.4 Mutations of hyperbolic manifolds

One may ask whether ZVir is a perfect invariant of a hyperbolic three-manifold, or,

in other words, is ZVir powerful enough to distinguish any two hyperbolic manifolds?

As in Chern-Simons theory, the answer to this question is negative. There exist non-

isometric hyperbolic three-manifolds M1 and M2 with ZVir(M1) = ZVir(M2). The

reason for this is a general operation known as mutation.

There are different kinds of mutations, these are all relatively subtle operations

that go undetected by most knot invariants, including the Virasoro TQFT partition

function ZVir.
6 Let us first explain the classical example of knot mutations. Consider

Figure 2. The Conway knot and its mutant, the Kinoshita-Teresaka knot. They are not

equivalent, but the value of ZVir is the same.

a region of a knot in which two strands enter and two strands exit. The path integral

5As explained in [33], in the plumbing frame the c → ∞ limit of the Virasoro blocks is actually

finite; in other words, the corresponding Liouville action vanishes. The c → ∞ limit of the vac-

uum block as computed in (2.12) plays an important role in determining the seed of the recursive

representation of arbitrary Virasoro blocks.
6In Virasoro TQFT, we think of a knot as a defect inserted in the three-sphere S3 that is knotted

appropriately.
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over this region gives a state in the Hilbert space of the four-punctured sphere where

all the four labels are identical (since we considering a knot associated to a single

Virasoro representation). Thus, whatever the resulting state is, it can be expanded

in terms of s-channel conformal blocks. However, any s-channel conformal block

with identical external labels is invariant under a Z2×Z2 symmetry group generated

by rotations around the x and y axis as follows:

P0

P0

P0

P0

P , (2.24)

the composition of which yields a rotation by 180 degrees. It thus follows that the

Virasoro TQFT partition function on the excised four-punctured sphere is invariant

under the same symmetry operations. In particular, this means that one can cut the

four-punctured sphere with a tangle inside, apply one of these symmetry operations,

and then reglue the tangle. This leads in general to an inequivalent knot, but the

difference is not detectable by computing ZVir. A famous example of a mutant

hyperbolic knot pair is the Conway knot and the Kinoshita-Terasaka knot shown in

Figure 2. In particular, since for this example, the mapping class group of both knot

complements is trivial, the gravitational path integral on the Conway knot and the

Kinoshita-Terasaka knot is exactly the same and the gravitational path integral is

hence not a sufficiently refined observable to be able to detect the topology of all

hyperbolic three-manifolds.

Via the volume conjecture (2.1), this implies in particular that mutant knot

complements have the same hyperbolic volume. This result is known in the math

literature [34], but the present discussion makes it tautological. More surprisingly,

the refined volume conjecture (2.1) also implies that the corresponding manifolds

have the same one-loop determinants.

Using the same techniques of Virasoro TQFT, one can also show that the

geodesics fully inside or outside the cutting surface have the same length.7 Thus

the length spectra of two mutant manifolds partially coincide. However, the length

spectrum in general differs as one can see by an explicit computation using the soft-

ware SnapPy [35]. We display in Table 1 the low-lying length spectrum on the Conway

knot and the Kinoshita-Teresaka knot. Thus even though the geodesic length spec-

trum determines the one-loop determinant (we have qγ = e−ℓγ ) and the one-loop

determinants agree, the length spectrum is in general different.

There are other versions of mutations. We can consider any embedded surface

in M with a special symmetry such as the four-punctured sphere above. Cutting

M along such a surface, applying the symmetry and regluing leads to a mutated

7This is based on the observation that inserting Wilson lines with degenerate Virasoro represen-

tations measure the geodesic length in the classical limit [26].
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Conway Kinoshita-Teresaka

1.044 + 2.327i 1.044 + 2.327i

1.152− 2.266i 1.152− 2.266i

1.384 + 2.840i 1.384 + 0.508i

1.756− 2.011i 1.530 + 2.037i

1.831− 0.095i 1.831− 0.095i

1.907 + 2.521i 1.907 + 2.521i

1.938− 2.402i 1.938− 2.402i

2.011 + 0.738i 2.031 + 2.934i

2.184− 1.327i 2.097 + 2.938i

2.230− 1.770i 2.183− 1.425i

2.233− 1.893i 2.233− 1.893i

Table 1. The low-lying length-spectrum of primitive geodesics on the complement of

the Conway and the Kinoshita-Teresaka knot. The imaginary part encodes the holonomy

around the geodesic. The length spectrum partially agrees. All geodesics have multiplicity

1 since the two manifolds have trivial isometry groups.

manifold. For example, we can cut along a genus 2 surface without punctures and

use the Z2 hyperelliptic involution. Every genus 2 conformal block is invariant under

the corresponding Z2 symmetry acting by a rotation around the x axis as follows:8

P1

P2

P3

. (2.25)

Thus any partition function of Virasoro TQFT on a hyperbolic three-manifold with

only a genus 2 boundary must have the same property. In particular, we can produce

two hyperbolic three-manifolds by cutting along a genus 2 surface and applying such

a rotation. This yields in general non-equivalent hyperbolic three-manifolds, but

with the same value of ZVir. Via the volume conjecture (2.1), this implies again that

such a pair of manifolds has the same hyperbolic volume and the same value of the

infinite product appearing as the one-loop determinant in (2.1).

As a concrete example that is perhaps more familiar and directly relevant to

holography, consider the Euclidean wormhole of the form Σ2× [0, 1]. Since the genus

2 surface is hyperelliptic, we can perform the hyperelliptic involution on one side,

which formally leads to a different manifold, but with identical partition function. As

explained in [1], the Virasoro TQFT partition function on the Euclidean wormhole is

simply given by the partition function of Liouville CFT ZLiouville(Σ2,0|m1,m2), where

8This would fail at genus 3 since we have in general two different Liouville momenta on the

bottom and top of the middle loop, which get exchanged by this operation. Correspondingly, not

every genus 3 surface is hyperelliptic.
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P0
P1 P2

Figure 3. The network of Wilson lines used to derive the relation between the modular

crossing kernel S and the sphere crossing kernel F.

the left-moving moduli m1 are associated to the left boundary and the right-moving

moduli m2 to the right-moving boundary. However, the Liouville partition function

is already invariant when we apply the hyperelliptic involution to only m1, which

means that the partition function of this twisted wormhole also equals the Liouville

partition function.

2.5 Consistency conditions on the crossing kernels

The crossing kernels F and S on the four-punctured sphere and the once-punctured

torus, respectively, are subject to a number of constraints known as the Moore-

Seiberg consistency conditions [36]. We listed them in the Appendix of [1], see also

[18]. They express consistency of the projective representation of the 2d mapping

class group on the space of conformal blocks. For example, the modular crossing

kernel S has to satisfy the SL(2,Z) relations together with the Dehn twist T on the

once-punctured torus.9

These relations are also necessary for the consistency of the three-dimensional

theory. However, they can often be seen much easier from the three-dimensional

perspective. We explain here one simple example that shows that S can be fully

expressed in terms of F that we also use later in the paper. We should mention that

this construction is standard in the context of modular tensor categories which can

be viewed as the rational counterpart of Virasoro TQFT [37].10

Consider S3 with a network of Wilson lines as in Figure 3. We recall that a

juncture of Wilson lines was defined as follows in [1]:11

P1

P3

P2 ≡ 1

C0(P1, P2, P3)
×

P1

P3

P2 . (2.26)

On the right hand side, we excise a spherical boundary around the puncture. The

path integral then creates a state in the boundary Hilbert space, which is one-

dimensional and hence can be canonically identified with C by fixing the standard

normalization of the three-point function on the sphere.

9More precisely, the crossing kernels give rise to a projective representation of SL(2,Z).
10We thank Sahand Seifnashri for explaining the MTC computation to us.
11C0(P1, P2, P3) is the universal Liouville three-point function, see [1, eq. (2.17)].
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The main point is now that the value of the partition function on the network

of Wilson lines in Figure 3 can be computed in two different ways as follows.

Let us first consider the Heegaard splitting into two once-punctured tori. The two

once-punctured tori are homeomorphic to tubular neighborhoods of the Wilson lines

P1 and P2, respectively. The normalization of the juncture in (2.26) is chosen such

that the Virasoro TQFT path integral on the once-punctured tori leads precisely to

the respective conformal blocks on the boundary torus. The two once-punctured tori

are interlocking and hence we have to apply an S-modular transformation. Being

more careful about the definition of the S-modular transformation actually shows

that we need the inverse of the modular crossing kernel S. Since S squares to eπi∆0 ,12

the inverse of S differs from S only by the phase e−πi∆0 . In the end, we obtain for

the partition function of the Wilson line network M ,

ZVir(M) = e−πi∆0

∫
dP ′

1 SP1,P ′
1
[P0]

〈
P0

P2

∣∣∣∣ P0
P ′
1

〉
(2.27)

=
e−πi∆0 SP1,P2 [P0]

ρ0(P2)C0(P0, P2, P2)
, (2.28)

where we applied [1, eq. (2.21)] for the evaluation of the inner product between

conformal blocks. It reads

⟨FC
g,n(P⃗ ) | FC

g,n(P⃗
′)⟩ = δ3g−3+n(P⃗ − P⃗ ′)∏

cuffs a ρ0(Pa)
∏

pair of pants (i,j,k) C0(Pi, Pj, Pk)
. (2.29)

Here, FC
g,n are the genus-g n-point Virasoro blocks in a particular OPE channel

C, C0(P1, P2, P3) is the Liouville three-point function, and ρ0(P ) the inverse of the

two-point function. In other words, conformal blocks in a channel C are orthogonal

with a density given by the inverse OPE density of Liouville theory. See [1] for our

conventions for the Liouville structure constants.

We can alternatively compute the partition function by a Heegaard splitting

along a four-punctured sphere containing the Wilson line P0 and the stubs of the

Wilson lines P1 and P2. We have in hopefully obvious notation

ZVir(M) =

∫
dP FP0,P

[
P2 P1

P2 P1

]
ZVir

(
PP1 P2

)
(2.30)

=

∫
dP FP0,P

[
P2 P1

P2 P1

]
e2πi(∆−∆1−∆2)ZVir

(
PP1 P2

)
(2.31)

=

∫
dP FP0,P

[
P2 P1

P2 P1

]
e2πi(∆−∆1−∆2)

C0(P, P1, P2)
, (2.32)

12See [1, eq. (A.5a)].
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where we used the braiding move twice in the second line. In the last line we recognize

the Euclidean wormhole with two three-punctured sphere on both ends, which eval-

uates to the Liouville three-point function. Taking into account the normalization

in eq. (2.26), we get an inverse structure constant.

Comparing (2.28) and (2.32) then expresses the modular crossing kernel fully in

terms of the sphere crossing kernel,

SP1,P2 [P0] =

∫
dP

ρ0(P2)C0(P0, P2, P2)

C0(P, P1, P2)
eπi(2∆+∆0−2∆1−2∆2) FP0,P

[
P2 P1

P2 P1

]
. (2.33)

Using the explicit form of the sphere crossing kernel given e.g. in eq. (2.42a) of [1],

one can use various known identities of the involved integrals of special functions to

derive the known expression of the modular fusion kernel from this integral formula

[18, 26].

This identity can also be derived from a two-dimensional point of view by requir-

ing the consistency of the representation of the mapping class group on the space of

conformal blocks on the two-punctured torus. It is in fact a special case of the cor-

responding Moore-Seiberg relation. However, the corresponding derivation is much

more complicated and subtle than the three-dimensional point of view.

3 Holographic examples

We now move on to holographic applications of the Virasoro TQFT formalism. We

will mostly focus on multi-boundary wormholes that have direct implications for the

description of the holographic dual of 3d gravity in terms of an ensemble of CFT

data. In order to set the stage for this discussion, let us briefly recapitulate the

ensemble description of AdS3 gravity.

In [10] it was shown that averaged products of CFT observables in a Gaussian

ensemble for the CFT data defined by

cijk = 0 , (3.1a)

cijkc∗ℓmn = C0(Pi, Pj, Pk)C0(P̄i, P̄j, P̄k)

×
(
δiℓδjmδkn + (−1)ℓi+ℓj+ℓkδiℓδjnδkm + 4 permutations

)
, (3.1b)

together with a Cardy spectrum of heavy states, agree with the on-shell actions

(and in certain cases, the one-loop determinants) of suitable Euclidean wormholes in

semiclassical AdS3 gravity coupled to massive point particles. Here ℓi = P 2
i − P̄ 2

i is

the spin of the corresponding primary. The averaged CFT quantities are computed

by performing a simultaneous conformal block decomposition of the observables and

computing Wick contractions of the structure constants using (3.1). The gravity

computations were mostly restricted to two-boundary wormholes with topology Σ×
[0, 1], with Σ a (possibly punctured) Riemann surface, corresponding to two-copy
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averaged observables on the CFT ensemble side. Indeed one may view (3.1) as being

determined by an explicit computation of the 3d gravity partition function on a

Euclidean wormhole with the topology of a three-punctured sphere times an interval

[10]; see figure 4.

i

j

k

i

j

k

Figure 4. The Euclidean wormhole with the topology of a three-punctured sphere times

an interval that contributes to the variance of the structure constants in the ensemble

description of the dual of AdS3 gravity.

In [1] the correspondence between two-boundary Euclidean wormhole partition

functions and averaged products of CFT observables was extended to finite central

charge using Virasoro TQFT. In particular the TQFT partition function on the

Euclidean wormhole was computed, with the result

ZVir(Σ× [0, 1]|m1,m2) = ZLiouville(Σ|m1,m2), (3.2)

where m1,m2 collectively denote the moduli of the Riemann surfaces at the two

boundaries, and ZLiouville(Σ) is the correlation function on Σ in Liouville CFT.

|ZVir(Σ × [0, 1])|2 agrees with the the averaged CFT computations performed in

the Gaussian ensemble (3.1), and its large-c expansion agrees with the semiclassical

gravity saddle-point computations in [10].

Except in certain very special cases it is not clear how to compute the grav-

ity path integral on configurations with more than two asymptotic boundaries in the

metric formalism. Such configurations in particular encode non-Gaussian corrections

to the ensemble formulation of the boundary theory defined in (3.1), which are known

to be needed for the internal consistency of the ensemble description from a variety

of points of view [11, 21, 38]. For example, the existence of a Gaussian contraction

often depends on the specific choice of channel in the conformal block decomposition

of the CFT observables; crossing symmetry then requires non-Gaussian statistics in

the dual channel in order to reproduce the result in the channel where the Gaussian

contraction exists. Hence non-Gaussian corrections, which are necessary for an inter-

nally consistent description of the boundary ensemble, are not presently accessible

in the metric formulation of AdS3 gravity.

In the remainder of this section we will study Euclidean wormholes in AdS3

gravity with more than two asymptotic boundaries using Virasoro TQFT. We will

mostly focus on wormholes with more than two three-punctured sphere boundaries,

since these determine the leading contributions to higher moments of the structure

constants in the ensemble description of the holographic dual. We will see in some
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examples that the resulting non-Gaussian statistics precisely affirm the consistency

of the results computed in the Gaussian ensemble.

There may also be non-Gaussian corrections to (3.1) associated to Euclidean

wormholes with two three-punctured sphere boundaries but with higher topology in

the bulk. We will not study such corrections here, but let us briefly mention that

we have already encountered such a correction associated with a higher-topology

wormhole. In section 2.5 we studied a configuration of Wilson lines equivalent to the

following two-boundary wormhole with linked Wilson lines

M =
i
j

j

i

k
k

. (3.3)

The TQFT partition function on this wormhole may be computed as described in

section 2.5. One finds the following for the wormhole partition function

ZVir(M) =
C0(Pi, Pj, Pj)SPjPk

[Pi]

ρ0(Pk)
, (3.4)

corresponding to the following averaged product of structure constants that would

otherwise vanish (in the case that j ̸= k) in the Gaussian ensemble13

cijjc∗ikk = |ZVir(M)|2 =
∣∣∣∣C0(Pi, Pj, Pj)SPjPk

[Pi]

ρ0(Pk)

∣∣∣∣2 . (3.5)

3.1 Cyclic defect wormholes

A simple class of examples that demonstrate the practical utility of the TQFT re-

formulation of 3d gravity is provided by multi-boundary wormholes with defects

connecting the sphere boundaries. For concreteness, consider the case where each

boundary is a four-punctured sphere with defects connected in a pairwise cyclic way.

See figure 5 for a depiction of such a wormhole with three boundaries. In [10] it was

argued that such on-shell wormholes contribute to the following averaged product of

four-point functions

⟨O1O2O3O4⟩⟨O3O4O5O6⟩ · · · ⟨O2k−1O2kO1O2⟩ (3.6)

in the ensemble of CFT data dual to semiclassical 3d gravity.14 The Gaussian en-

semble hence makes a specific prediction for the gravitational partition function of

13Strictly speaking, we get a different bulk manifold when we exchange the two ends of the

Wilson line labelled by k. Exchanging them leads to a braiding phase eπi∆j . Summing over both

possibilities imposes that the spin of i has to be even.
14Wormholes of this sort also contribute to the Renyi entropies of certain coarse-grained states

in 2d CFT [39].
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these wormholes [10]:

Zgrav(Mk)
?
=

∣∣∣∣∣
∫ ∞

0

dP ρ0(P )C0(P1, P2, P )C0(P3, P4, P ) · · ·C0(P2k−1, P2k, P )

×
P1

P2

P4

P3

P
(z1)

P4

P3

P5

P6

P
(z2) · · ·

P2k

P2k−1

P1

P2

P
(zk)

∣∣∣∣∣
2

. (3.7)

Here we have used the notation Mk to refer to the k-boundary sphere four-point

wormhole, the stick diagrams are shorthand for the conformal blocks as usual, and zi
refers to the cross-ratio of the defect insertions on the ith boundary. The effect of the

Gaussian average is to set all the internal weights equal in this particular conformal

block decomposition of the wormhole partition function.

1
2

4
3

1 2

6
5

4 3

6
5

Figure 5. The three-boundary sphere four-point wormhole M3.

It is not at all clear how to compute the wormhole partition function of the

k-boundary sphere four-point wormhole in the metric formalism of 3d gravity, even

in the semiclassical limit. Here we will describe how this wormhole partition func-

tion may be straightforwardly computed in the Virasoro TQFT, reproducing the

expectation from the Gaussian ensemble (3.7).

6

5

1

2

3

4

Figure 6. The three-boundary sphere four-point wormhole as a compression body.

For concreteness and brevity of the equations we consider here the case k = 3,

but emphasize that the generalization to higher k is completely straightforward.
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The idea is to view the wormhole as a compression body as indicated in figure 6. To

compute the partition function on the corresponding compression body we insert a

complete set of states in the Hilbert space of the inner boundaries. This produces a

particular state in the Hilbert space of the outer boundary. Proceeding in this way

we have

ZVir(M3) =

∫ ∞

0

dPa dPb ρ0(Pa)ρ0(Pb)C0(P1, P2, Pa)C0(P3, P4, Pa)C0(P3, P4, Pb)

× C0(P5, P6, Pb)

P1

P2

P4

P3

Pa

P4

P3

P5

P6

Pb

P5

P6

P2

P1

PbPa

P4

P3

.

(3.8)

We have temporarily restored the sphere boundaries in representing the conformal

blocks in order to emphasize that the last conformal block should be interpreted as

a state in the Hilbert space of the outer sphere boundary with a loop of Wilson lines

in the interior, not as a higher-genus conformal block. In particular we can remove

the loop by recalling the TQFT identity [1]

Pa Pb

P4

P3

=
δ(Pa − Pb)

ρ0(Pa)C0(P3, P4, Pa)

Pa
, (3.9)

which leads us to

ZVir(M3) =

∫ ∞

0

dPa ρ0(Pa)C0(P1, P2, Pa)C0(P3, P4, Pa)C0(P5, P6, Pa)

×
P1

P2

P4

P3

Pa
P4

P3

P5

P6

Pa
P5

P6

P2

P1

Pa
. (3.10)

The generalization to the case of k four-punctured sphere boundaries follows im-

mediately by viewing Mk as a compression body with k − 1 inner boundaries and

repeated application of the identity (3.9). Upon squaring the TQFT partition func-

tion to obtain the 3d gravity partition function, we hence verify (3.7), the prediction

from the averaged product of k sphere four-point functions in the Gaussian ensem-

ble. Much like the case of the two-boundary Euclidean wormhole revisited in [1],

the correspondence between the averaged CFT quantities and the gravity partition

function on a fixed topology persists beyond the semiclassical limit.
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3.2 Four-boundary non-Gaussianity wormhole

Consider a wormhole with four three-punctured spheres as asymptotic boundaries,

with defects threading the bulk of the wormhole in the following tetrahedral config-

uration

M =

3

3

2

2

t

t

ss

4

4

1

1

(3.11)

The gravity path integral on this wormhole should compute the following connected

part of the fourth moment of structure constants in the dual description of 3d gravity

in terms of an ensemble of CFT data

|ZVir(M)|2 ↔ c12scs34c14tct32. (3.12)

Computation via Heegaard splitting. It straightforward to apply the Heegaard

splitting technique described in detail in [1] to compute the Virasoro TQFT partition

function on the four-boundary wormhole. For instance, we can cut M along a four-

punctured sphere through the bulk of the wormhole as pictured in figure 7. This cuts

the four-boundary wormhole into two generalized compression bodies M1 and M2.

Each compression body has an outer boundary given by a four-punctured sphere and

two three-punctured sphere inner boundaries. The Virasoro TQFT path integral on

each compression body prepares a state in the Hilbert space of the four-punctured

sphere, and the inner product of these states computes the TQFT partition function

on the four-boundary wormhole. Using (2.26) to write the three-punctured sphere

boundaries in terms of trivalent Wilson line junctions, the TQFT partition functions

on the compression bodies are given by

⟨ZVir(M1)| = C0(P1, P2, Ps)C0(P3, P4, Ps)

〈
P1

P2

P4

P3

Ps

∣∣∣∣∣ , (3.13a)

|ZVir(M2)⟩ = C0(P1, P4, Pt)C0(P2, P3, Pt)

∣∣∣∣∣
P1

P2

P4

P3

Pt

〉
. (3.13b)
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3

3
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t

t

ss

4

4

1

1 M1 =

3

4

2

1

s

M2 =

1 4

2 3

t

Figure 7. The Heegaard splitting of the four-boundary wormhole M into two generalized

compression bodies M1 and M2, each with the topology of a three-ball with two three-balls

drilled out in its interior and with Wilson lines connecting the two-sphere boundaries as

shown in the figure. The TQFT path integral on each of M1 and M2 prepares a state in

the Hilbert space of the four-punctured sphere.

Up to the C0 factors, the compression body partition functions are given by individual

sphere four-point conformal blocks in the s- and the t-channel. The inner product of

these states is proportional to the Virasoro fusion kernel essentially by definition:

〈
P1

P2

P4

P3

Ps

∣∣∣∣∣
P1

P2

P4

P3

Pt

〉

=

∫
dP ′

s FPtP ′
s

[
P1 P2

P4 P3

]〈 P1

P2

P4

P3

Ps

∣∣∣∣∣ P1

P2

P4

P3

P ′
s

〉
(3.14)

=

FPtPs

[
P1 P2

P4 P3

]
ρ0(Ps)C0(P1, P2, Ps)C0(P3, P4, Ps)

(3.15)

=

FPsPt

[
P1 P4

P2 P3

]
ρ0(Pt)C0(P1, P4, Pt)C0(P2, P3, Pt)

. (3.16)

In the penultimate line we computed the inner product by expanding the t-channel

block in a complete basis of s-channel blocks using the Ponsot-Teschner fusion kernel

[15, 16], and in the last line we did the reverse. The equivalence of these two expres-

sions is not a priori obvious without appealing to consistency of the conformal block
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inner product, but it is guaranteed by for example a special case of the pentagon

identity, which is one of the Moore-Seiberg consistency conditions satisfied by the fu-

sion kernel. In fact, this combination has a tetrahedral symmetry inherited from the

bulk Wilson line configuration that is obscured by this presentation. Indeed, it can

be rewritten in a manifestly tetrahedrally symmetric form in terms of the Virasoro

6j symbol in the Racah-Wigner normalization [17] as follows

〈
P1

P2

P4

P3

Ps

∣∣∣∣∣
P1

P2

P4

P3

Pt

〉

=

{
P1 P2 Ps

P3 P4 Pt

}
√

C0(P1, P2, Ps)C0(P3, P4, Ps)C0(P1, P4, Pt)C0(P2, P3, Pt)
. (3.17)

The upshot is that the Virasoro TQFT partition function on the four-boundary

wormhole can be expressed in terms of the Virasoro 6j symbol via the following

inner product in the Hilbert space of the four-punctured sphere

ZVir(M) = ⟨ZVir(M1) |ZVir(M2)⟩ (3.18)

= C0(P1, P2, Ps)C0(P3, P4, Ps)C0(P1, P4, Pt)C0(P2, P3, Pt)

×

〈
P1

P2

P4

P3

Ps

∣∣∣∣∣
P1

P2

P4

P3

Pt

〉
(3.19)

=
√

C0(P1, P2, Ps)C0(P3, P4, Ps)C0(P1, P4, Pt)C0(P2, P3, Pt)

{
P1 P2 Ps

P3 P4 Pt

}
.

(3.20)

Consistency with boundary ensemble description. The gravity partition

function Zgrav(M) = |ZVir(M)|2 on the four-boundary wormhole (3.20) makes a

concrete prediction for the connected contribution to the fourth moment of structure

constants in the description of 3d gravity in terms of an ensemble of CFT data:15

c12scs34c14tct32 ⊃ |ZVir(M)|2 =
√
c212s c

2
s34 c

2
14t c

2
t32

∣∣∣∣{P1 P2 Ps

P3 P4 Pt

}∣∣∣∣2 (3.21)

This represents the leading correction to the Gaussian ensemble elucidated in [10].

We say that the fourth moment contains this contribution (rather than being literally

15This fourth moment has previously appeared in [11] where it was argued for by requiring that

the variance of the crossing equation vanish, and in [38] where it followed from genus-three modular

invariance (using similar logic as that which shows that the variance should be given by the C0

formula).
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equal to it) because there may be corrections to (3.21) associated with wormholes

with the same boundaries but with higher topology in the bulk. It is expected that

in the semiclassical limit such contributions are parametrically suppressed and hence

that (3.21) represents the leading contribution to the fourth moment.

Here we will see that this non-Gaussian correction in fact exactly ensures the

internal consistency of the results predicted by the Gaussian ensemble.

To illustrate the point, consider the two-boundary Euclidean wormhole with

the topology of a (possibly punctured) Riemann surface Σ times an interval. The

gravity path integral on the Euclidean wormhole is given by the square of (3.2),

the corresponding observable in Liouville CFT with the moduli on the two sides

paired. This agrees with the averaged product of CFT observables in the Gaussian

ensemble (3.1). However the computation in the Gaussian ensemble often relies on

the choice of a specific channel in the conformal block decomposition; this is obviously

inconsistent with crossing symmetry of the ensemble. Associativity of the OPE then

requires non-Gaussian statistics in order to reproduce this result in other channels.

Relatedly, while the Gaussian ensemble is crossing symmetric on average, higher

moments of the crossing equation do not vanish; this has recently been emphasized

in [11].

For concreteness, consider in particular the averaged product of four-point func-

tions of local operators Oi. In the Gaussian ensemble, we have

⟨O1(0)O2(z, z̄)O3(1)O4(∞)⟩⟨O1(0)O2(z′, z̄′)O3(1)O4(∞)⟩∗

=
∑
s,s′

c12sc34sc∗12s′c
∗
34s′

∣∣∣∣∣ P1

P2

P4

P3

Ps
(z)

P1

P2

P4

P3

P ′
s

(z′)

∣∣∣∣∣
2

(3.22)

=

∣∣∣∣∣∣
∫

dPs ρ0(Ps)C0(P1, P2, Ps)C0(P3, P4, Ps)
P1

P2

P4

P3

Ps
(z)

P1

P2

P4

P3

Ps
(z′)

∣∣∣∣∣∣
2

(3.23)

= |ZLiouville(P1, P2, P3, P4|z, z′)|2 . (3.24)

Here we expanded the four-point functions in the same OPE channel, and performed

the Gaussian contractions in the third line using eq. (3.1). If we had instead expanded

one four-point function in the S-channel and the other in the T-channel, we would

have gotten zero in the Gaussian ensemble since

c12scs34c14tct32|Gaussian = 0 (3.25)

for distinct external operators.16 This is obviously inconsistent with basic principles

of conformal field theory. The result for the averaged product of four-point functions

16We thank Vladimir Narovlansky for asking a question that raised this point.
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in terms of the four-point function in Liouville CFT is equal to the partition function

of 3d gravity coupled to point particles on the Euclidean wormhole with the topology

of a four-punctured sphere times an interval, so we seek a correction to the Gaussian

ensemble that preserves (3.24). If we supplement the Gaussian ensemble with the

fourth moment (3.21) as computed by the four-boundary wormhole, we instead have

⟨O1(0)O2(z, z̄)O3(1)O4(∞)⟩⟨O1(0)O2(z′, z̄′)O3(1)O4(∞)⟩∗

=
∑
s,t

c12scs34c∗41tc
∗
t23

∣∣∣∣∣P1

P2

P4

P3

Ps
(z)

P1

P2

P4

P3

Pt (z′)

∣∣∣∣∣
2

(3.26)

=

∣∣∣∣∣
∫

dPs dPt ρ0(Ps)C0(P1, P2, Ps)C0(P3, P4, Ps)FPs Pt

[
P1 P4

P2 P3

]

×
P1

P2

P4

P3

Ps
(z)

P1

P2

P4

P3

Pt (z′)

∣∣∣∣∣
2

(3.27)

= |ZLiouville(P1, P2, P3, P4|z, z′)|2 , (3.28)

in agreement with the previous computation and with the wormhole partition func-

tion.

On braiding and the u-channel. In the discussion so far we have suppressed

an important subtlety. In 2d CFT, the structure constants are not strictly invariant

under permutations of the three operators. For example, swapping a pair of operators

leads to a sign that depends on the sum of the spins of the three operators

cikj = (−1)ℓi+ℓj+ℓkcijk. (3.29)

This is inherited from reality properties of the structure constants: they are real

if the sum of spins is even and imaginary if the sum of spins is odd, and the swap

complex-conjugates the structure constants, cikj = c∗ijk. Similarly, in the computation

of wormhole partition functions with bulk Wilson lines via Heegaard splitting, there

may be crossings of lines that need to be undone via braiding operations. These

braidings introduce phases that depend on the conformal weights.

In general, we can read off the ordering of the structure constants from a bulk

manifold by fixing a cyclic ordering and reading the labels around three-punctured

boundaries cyclically. The same applies in CFT computations, where we read off

the labels of the structure constants cyclically around every vertex in the conformal

blocks.17

17The overall cyclic direction does not matter since every label appears twice and thus cancels if

we reverse the overall cyclic direction.
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As a simple example of a wormhole computation for which such braidings are

essential, consider the following four-boundary wormhole:

M =

1

2s

s 3

4 4

2 u

u3

1

, (3.30)

which is essentially the same as (3.11). The boundaries of this wormhole are three-

punctured spheres corresponding to the structure constants that appear in the s-

and u-channel conformal block decompositions of the sphere four-point function

⟨O1O2O3O4⟩.
We compute the TQFT partition function as before by splitting along a four-

punctured sphere in the bulk. Undoing the crossing of the Wilson lines and com-

puting the inner product in the Hilbert space of the splitting surface leads to the

following result for the TQFT partition function on this four-boundary wormhole

ZVir(M) =
√
C12sCs34C31uCu42

{
P1 P2 Ps

P4 P3 Pu

}
eπi(P

2
1+P 2

4−P 2
s −P 2

u) . (3.31)

Here we have introduced the shorthand

Cijk ≡ C0(Pi, Pj, Pk) , (3.32)

We notice the presence of an additional phase compared to (3.20). This result fol-

lows from taking the inner product between an s- and a u-channel Virasoro conformal

block, and hence this phase may be understood in terms of the crossing transforma-

tion that relates s- and u-channel blocks. This crossing transformation is given by

1 4

2 3

s

=

∫ ∞

0

dPu e
πi(P 2

1+P 2
4−P 2

s −P 2
u) FPsPu

[
P1 P3

P2 P4

]
1 4

2 3

u

. (3.33)

The combination that appears on the right-hand side is sometimes referred to as

the “R-matrix.” The semiclassical near-extremal limit of the R-matrix governs the

out-of-time-order four-point function in the Schwarzian theory [19].
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Hence for the following fourth moment of CFT structure constants we find

c12scs34c31ucu42 ⊃ |ZVir(M)|2 = (−1)ℓ1+ℓ4+ℓs+ℓu

√
c212s c

2
s34 c

2
13u c

2
u24

∣∣∣∣{P1 P2 Ps

P4 P3 Pu

}∣∣∣∣2 .
(3.34)

This is exactly consistent with the previous result (3.21) upon relabeling t → u,

4 ↔ 3 and making use of the exchange property (3.29). It is also consistent with the

averaged product of sphere four-point functions in the Gaussian ensemble, where we

expand one four-point function in the s-channel and the other in the u-channel.

3.3 Many-boundary wormholes and higher non-Gaussianities

3.3.1 A simple six-boundary example

Consider the following wormhole with six three-punctured sphere boundaries

M =

a

a

1

1

2

2

5

5

4

4

3

3

bb
6

6
c c

. (3.35)

As indicated by the diagram, it contributes to the following sixth moment of CFT

structure constants

|ZVir(M)|2 ↔ c12ac2b3c3c4c45ac5c6c6b1. (3.36)

There are several Heegaard splittings that one could employ to compute the Virasoro

TQFT partition function on this wormhole, but the simplest is indicated in figure 8:

we cut the wormhole through the bulk along a three-punctured sphere. This divides

M into two generalized compression bodies M1 and M2, each of which is itself a four-

boundary wormhole of the type described in the previous subsection. The partition

function of Virasoro TQFT on the generalized compression bodies was computed in

(3.20) as

|ZVir(M1)⟩ =
√

C12aC2b3C6b1Ca36

{
P1 P2 Pa

P3 P6 Pb

}
(3.37a)

|ZVir(M2)⟩ =
√

C3c4C45aC5c6Ca36

{
P3 P4 Pc

P5 P6 Pa

}
(3.37b)
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a

1

1

2

2

5

5

4

4

3

3

bb
6

6
c c

6 3

a

b
1 2

3 6

a

c
4 5

M =

M1 =

M2 =

Figure 8. A Heegaard splitting of the wormhole with six three-punctured sphere bound-

aries. Each constituent compression body is equivalent to the four-boundary wormhole

studied in section 3.2.

Then the Virasoro TQFT partition function on the six-boundary wormhole is given

by the following inner product between these states in the Hilbert space of the shared

three-punctured sphere boundary

ZVir(M) = ⟨ZVir(M1)|ZVir(M2)⟩ (3.38)

=
√

C12aC2b3C3c4C45aC5c6C6b1

{
P1 P2 Pa

P3 P6 Pb

}{
P3 P4 Pc

P5 P6 Pa

}
. (3.39)

Notice that here the only effect of the inner product is to divide by the extra factor

of C0(P3, Pa, P6).

This particular Heegaard splitting of the six-boundary wormhole is far from

unique: for example, we could have cut it through a five-punctured sphere, or along

three four-punctured spheres. In all cases, the corresponding splittings yield the

same result (3.39) for the TQFT partition function.

This wormhole partition function implies that the corresponding sixth moment

of CFT structure constants is given by

c12ac2b3c3c4c45ac5c6c6b1 ⊃
√

c212a c
2
2b3 c

2
3c4 c

2
45a c

2
5c6 c

2
6b1

∣∣∣∣{P1 P2 Pa

P3 P6 Pb

}{
P3 P4 Pc

P5 P6 Pa

}∣∣∣∣2 .
(3.40)

Consistency with boundary ensemble description. Much like the fourth mo-

ment of the structure constants inferred from the four-boundary wormhole of section

3.2, the sixth moment (3.40) is needed for consistency of the description of the bound-

ary theory in terms of an ensemble of CFT data. There are a variety of ways to see
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this. Roughly, for each Heegaard splitting of the wormhole, there is a correspond-

ing product of CFT observables for which consistency of the ensemble description

requires that the appropriate moment of CFT data is correctly computed by the

wormhole.

For concreteness, consider the average of the following product of five-point func-

tions

⟨ObO1OaO4Oc⟩⟨ObO1OaO4Oc⟩∗. (3.41)

This is associated with splitting the wormhole (3.35) along a five-punctured sphere

in the bulk. The average (3.41), which corresponds to the two-boundary sphere five-

point function wormhole, is given by the corresponding five-point function in Liouville

CFT as in (3.24). In the Gaussian ensemble this however requires that we expand

the two five-point functions in aligned channels when taking the ensemble average.

Of course we are free to expand the five-point functions in different channels, in

which case we need to invoke the non-Gaussian statistics. The combination of OPE

channels that is associated to the particular Heegaard splitting is determined by

the combination of sphere three-point boundaries that appear in each compression

body of the Heegaard splitting. For example, if we compute the averaged product of

sphere five-point functions by expanding in the following channel where there is not

a Gaussian contraction

⟨ObO1OaO4Oc⟩⟨ObO1OaO4Oc⟩∗

=
∑

O2,3,5,6

c12ac2b3c3c4c∗4a5c
∗
56cc

∗
61b

∣∣∣∣
b

1 a

4

c
3

2 (m1)

b

1

a 4

c
6

5 (m2)

∣∣∣∣2
(3.42)

=

∣∣∣∣ ∫ ∞

0

dP3 dP6 ρ0(P3)ρ0(P6)C0(P1, Pb, P6)C0(P6, Pa, P3)C0(P3, Pc, P4)

× b

6 3

1 a 4

c (m1) b

6 3

1 a 4

c (m2)

∣∣∣∣2 (3.43)

= |ZLiouville(Pb, P1, Pa, P4, Pc|m1,m2)|2 , (3.44)

then making use of the sixth moment (3.40) and the fact that the 6j symbols im-

plement crossing transformations on the conformal blocks, we reproduce exactly the

result from the Gaussian contraction, the sphere five-point function in Liouville the-

ory. Here mi collectively denote the moduli of each five-point function.

We could have considered other Heegaard splittings, corresponding to averaged

CFT observables that receive contributions from this combination of structure con-

stants in a particular OPE channel. For example, the following averaged product of
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three four-point functions

⟨O6O1O2O3⟩⟨O1O2O4O5⟩⟨O6O5O4O3⟩ (3.45)

receives contributions from the sixth moment (3.40) in a specific OPE channel that

precisely reproduce the result (3.10) for the averaged product in the Gaussian en-

semble.

3.3.2 A more nontrivial six-boundary example

Here we consider another wormhole with six three-punctured sphere boundaries, but

with the defects arranged slightly differently between the boundaries

M =

a

a

1

1

6

6

5

5 4

4

3

3

2

2

c
b

b
c

(3.46)

This contributes to a different sixth moment of the structure constants

|ZVir(M)|2 ↔ c1a2c2b3c3c4c4a5c5b6c6c1. (3.47)

We could of course compute the TQFT partition function on this wormhole by a

straightforward Heegaard splitting, for example along three four-punctured spheres.

In this case it turns out to be most convenient to replace the three-punctured sphere

boundaries with trivalent junctions as in (2.26) and hence regard the wormhole as a

network of Wilson lines embedded in S3:

ZVir(M) = C12aC23bC34cC45aC56bC61c ZVir

( a

a

c
b

b
c

1

6

5 4

3

2 )
(3.48)

≡ C12aC23bC34cC45aC56bC61cZVir(M
′) . (3.49)

Here M ′ is the network of Wilson lines depicted on the right-hand side of (3.48)

embedded in S3. Braiding the Wilson lines and applying a fusion transformation,
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the TQFT partition function may then be simplified as follows18

ZVir(M
′) = (BPaP5

P4
BPcP1

P6
BP3Pc

P4
)−1 ZVir

( 1

6

5 4

3b

a

c

2 )
(3.51)

= (BPaP5
P4

BPcP1
P6

BP3Pc
P4

)−1

∫
dPd FP3Pd

[
P2 Pc

Pb P4

]
ZVir

( 1

6

5 4

d
b

a

c
2 )

.

(3.52)

We then recognize the following Wilson line identity (see [1, eq. (3.44)])

2 3

t

1 4

s
=

√
C23t

C12sC34sC14t

{
P1 P2 Ps

P3 P4 Pt

}
2 3

t

, (3.53)

which allows us to recast the TQFT partition function as

ZVir(M
′) = (BPaP5

P4
BPcP1

P6
BP3Pc

P4
)−1

∫
dPd ρ0(Pd)

√
C2cdCa6d

C2b3C3c4C4a5C5b6

×
{
P2 P3 Pb

P4 Pd Pc

}{
P4 P5 Pa

P6 Pd Pb

}
ZVir

( 1

6 d

a

c
2 )

. (3.54)

Finally, we undo the crossings by braiding the Wilson lines and recognize the remain-

ing configuration as the four-boundary wormhole studied in section 3.2 to arrive at

ZVir(M) =
√
C12aC23bC34cC45aC56bC61ce

πi(P 2
1+P 2

3+P 2
5−2P 2

2−2P 2
4−2P 2

6 )

×
∫

dPd ρ0(Pd) e
3πiP 2

d

{
P6 P1 Pc

P2 Pd Pa

}{
P2 P3 Pb

P4 Pd Pc

}{
P4 P5 Pa

P6 Pd Pb

}
. (3.55)

18Here

BPjPk

Pi
= eπi(P

2
i −P 2

j −P 2
k−

Q2

4 ) (3.50)

is the braiding phase.
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Once the dust has settled, as in previous examples the wormhole partition function is

given by factors of
√
C0 for each sphere three-point boundary together with a suitable

combination of Virasoro 6j symbols associated with the Wilson line crossings.

This wormhole partition function implies that the corresponding sixth moment

for the CFT structure constants receives the following contribution

c12ac23bc34cc45ac56bc61c ⊃
√

c212a c
2
23b c

2
34c c

2
45a c

2
56b c

2
61c(−1)ℓ1+ℓ3+ℓ5

×
∣∣∣∣∫ dPd ρ0(Pd)e

3πiP 2
d

{
P6 P1 Pc

P2 Pd Pa

}{
P2 P3 Pb

P4 Pd Pc

}{
P4 P5 Pa

P6 Pd Pb

}∣∣∣∣2 . (3.56)

As in previous examples, this sixth moment precisely affirms the internal consistency

of the description in terms of an ensemble of CFT data. Indeed, if one expands for

example the product of two sphere five-point functions or three sphere four-point

functions in certain OPE channels where there is not a Gaussian contraction, this

leads to a result consistent with the computation in the Gaussian ensemble. For

concreteness, consider the following averaged product of three four-point functions,

all expanded in the u-channel

⟨O2OcOaO6⟩⟨O6OaObO4⟩⟨O4ObOcO2⟩

=
∑
O1,3,5

c1a2c2b3c3c4c4a5c5b6c6c1

∣∣∣∣∣ 2 6

c a

1

6 4

a b

5

4 2

b c

3

∣∣∣∣∣
2

(3.57)

=

∣∣∣∣∣
∫

dP1 ρ0(P1) dP3 ρ0(P3) dP5 ρ0(P5)
√

C1a2C2b3C3c4C4a5C5b6C6c1 e
πi(P 2

1+P 2
3+P 2

5 )

× e−2πi(P 2
2+P 2

4+P 2
6 )

∫
dPd ρ0(Pd) e

3πiP 2
d

{
P6 P1 Pc

P2 Pd Pa

}{
P2 P3 Pb

P4 Pd Pc

}{
P4 P5 Pa

P6 Pd Pb

}

× 2 6

c a

1

6 4

a b

5

4 2

b c

3

∣∣∣∣∣
2

(3.58)

=

∣∣∣∣∣
∫

dPd ρ0(Pd)C2cdC4bdC6ad 2 6

c a

d

6 4

a b

d

4 2

b c

d

∣∣∣∣∣
2

. (3.59)

So we see that applying the statistics (3.56) precisely reproduces the result (3.10)

anticipated from the Gaussian ensemble.

Notice that in this case the corresponding sixth moment receives contributions

from configurations in which the Wilson lines have a different pattern of over- and

under-crossings in the bulk, in addition to those with higher topology in the bulk. In

principle, we could consider contributions from the manifolds formed by cutting M
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along a six-punctured sphere in the bulk and gluing in another six-punctured sphere

with any tangle formed by three strands in the bulk. As a simple example, we could

have considered the following six-boundary wormhole

M =

a

a

1

1

6

6

5

5 4

4

3

3

2

2

c
b

b
c

. (3.60)

The TQFT partition function on this wormhole differs from (3.55) in a subtle way

ZVir(M) =
√

C1a2C2b3C3c4C4a5C5b6C6c1e
πi(−P 2

1+P 2
3+P 2

5−2P 2
4 )

×
∫

dPd ρ0(Pd) e
πiP 2

d

{
P6 P1 Pc

P2 Pd Pa

}{
P2 P3 Pb

P4 Pd Pc

}{
P4 P5 Pa

P6 Pd Pb

}
. (3.61)

The only difference from (3.55) are the phases, particularly that which appears in the

integral over the intermediate Liouville momentum Pd. Although both contribute to

the corresponding sixth moment of the structure constants, between (3.55) and (3.61)

is not a priori obvious which Wilson line configuration dominates in the semiclassical

limit.

3.3.3 Diagrammatic rules for multi-boundary wormholes and CFT statis-

tics

Although the intermediate details of the computations were nontrivial, there is an

underlying simplicity to the previously discussed results for the Virasoro TQFT par-

tition functions of wormholes with three-punctured sphere boundaries and trivial

topology in the bulk, and hence for the leading contributions to the non-Gaussian

statistics of CFT data in the boundary ensemble description of 3d gravity. In all

cases, the wormhole partition function involves a factor of
√
C0 for each three-

punctured sphere boundary, together with a suitable combination of Virasoro 6j

symbols. Here we describe diagrammatic rules that straightforwardly reproduce

these results and that enable the computation of more nontrivial wormhole parti-

tion functions. These rules will turn out to be a slight generalization of the disk

Feynman rules in JT gravity coupled to matter (see e.g. [21]).19

19SC is grateful to Baur Mukhametzhanov for discussions on this. Baur also independently

observed that higher moments of CFT data required for internal consistency of the ensemble de-
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It is simplest to describe the situation in which the sphere boundaries are con-

nected in a cyclic way, as in (3.30) and (3.46); the CFT statistics in other configura-

tions may be obtained from the results in these cases by application of the swapping

rule (3.29).

The idea is the following. Starting from a wormhole configuration with the

boundaries connected in a cyclic way, replacing the punctured sphere boundaries

with a trivalent vertex as follows

1

23
−→

3

1

2
(3.62)

produces a disk diagram with lines that may cross in the interior of the disk, such

as that drawn in (3.48). It is important to keep track of the way that the lines over-

and under-cross in the projection to a two-dimensional disk diagram. The TQFT

partition function associated with this disk diagram is then computed according to

the following simple Feynman rules:

• Each trivalent vertex contributes a factor of
√
C0:

3

1

2
=
√

C0(P1, P2, P3) . (3.63)

• Each closed region in the interior of the disk is associated with a Liouville

momentum P that is integrated with the measure ρ0(P )dP .

• Each crossing of a pair of lines in the interior of the disk contributes a Virasoro

6j symbol

1 2

34

t

s

=

{
P1 P2 Ps

P3 P4 Pt

}
eπi(P

2
1+P 2

3−P 2
2−P 2

4 ) . (3.64)

Here the labels 1, 2, 3 and 4 are associated to the four faces delineated by the

Wilson lines s and t.

The Virasoro 6j symbol plays the role of a quartic vertex in these diagrammatic rules,

dressed with a phase that keeps track of the way that the Wilson lines over- and

scription of 3d gravity were reproduced by generalizations of the disk Feynman diagrams in JT

gravity coupled to matter [40].
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under-cross. This reproduces the partition function on the four-boundary wormhole

(3.31) essentially by design.

As a simple example, consider the six-boundary wormhole studied in section

3.3.2. The two-dimensional projection of this configuration involves three crossings

of Wilson lines and one closed region in the interior of the disk, so the TQFT partition

function involves a single integral of three 6j symbols. Indeed, a straightforward ap-

plication of these rules immediately reproduces the TQFT partition function (3.55).

The Virasoro 6j symbol obeys many identities that facilitate the consistency of

this description. For instance, it is often the case that there is an ambiguity of how

to arrange the Wilson line crossings in the interior of the disk. The TQFT partition

function as computed from these rules should be independent of such choices. For

example, we should have

a

b

2

1 3

4

=
a

b

2

1 3

4

, (3.65)

which is guaranteed by idempotency of the Virasoro 6j symbol∫
dPs ρ0(Ps)

{
P4 P1 Pb

P2 Ps Pa

}{
P2 P3 Pa

P4 Ps Pb

}
=

δ(P1 − P3)

ρ0(P1)
. (3.66)

There is also a Yang-Baxter equation, which facilitates moving a line over a crossing

as follows,

a b

1

2

3

4

5

6
c

=

1

2

3

4

5

6

a b

c
. (3.67)

In equations, this translates to∫
dPd ρ0(Pd)

{
P1 P2 Pa

P3 Pd Pb

}{
P5 P6 Pb

P1 Pd Pc

}{
P3 P4 Pc

P5 Pd Pa

}
eπi(P

2
d+P 2

2+P 2
4+P 2

6 )

=

∫
dPe ρ0(Pe)

{
P6 P1 Pc

P2 Pe Pa

}{
P2 P3 Pb

P4 Pe Pc

}{
P4 P5 Pa

P6 Pe Pb

}
eπi(P

2
e +P 2

1+P 2
3+P 2

5 ) . (3.68)

This identity follows from the consistency of braiding on the sphere. Indeed, the

R-matrix also appears as the braiding matrix of conformal blocks as in eq. (3.33).

The Yang-Baxter equation then corresponds to the fundamental relation in the braid

– 33 –



group as follows:

1
2 3

4

abc

=

1
2 3

4

abc

. (3.69)

Using (3.33) to unbraid the left- and right-hand side and comparing the result leads

to the Yang-Baxter equation (3.68).

These diagrammatic rules for wormhole partition functions are structurally iden-

tical to the disk Feynman rules for JT gravity coupled to matter, as described for

example in [21]. The only differences are that here the trivalent vertex is given by√
C0, the quartic vertex is given by the Virasoro 6j symbol rather than the SL(2,R)

6j symbol, and one must keep track of the over- and under-crossings of the Wilson

lines in the bulk, leading to extra phases in the quartic vertex. Indeed, these rules

precisely reduce to the JT gravity + matter disk Feynman rules in the semiclassical

near-extremal limit of [5, 41]. In this limit one takes

c = 1 + 6(b+ b−1)2, Pext = bsext, Pint =
i

2
(b+ b−1 − 2bhint), b → 0 (3.70)

fixing sext and hint in the semiclassical limit. Here Pext are the Liouville momenta of

the Wilson lines forming the perimeter of the disk, Pint are the Liouville momenta of

those in the interior of the disk, and this limit corresponds to sending the external

Wilson lines very near extremality while assigning the internal Wilson lines a fixed

conformal weight hint. With all external Wilson lines near extremality, the extra

phase in the quartic vertex (3.64) cancels and we no longer need to keep track of the

over- and under-crossing of the Wilson lines in the semiclassical limit.

It is likely that these diagrammatic rules may be derived directly from the tensor

model for AdS3 gravity recently introduced in [11], with tensor model diagrams

corresponding to specific wormhole topologies. However we will not pursue this any

further here.

3.4 Handle wormholes

In [10], the on-shell action of a class of wormholes contributing to certain single-

boundary observables was constructed. These wormholes admitted an elegant inter-

pretation in terms of the Coleman-Giddings-Strominger mechanism [42–44], whereby

the existence of Euclidean wormholes induce random bulk couplings in the low-energy

effective theory. Here we demonstrate that the gravity partition function on these
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single-boundary “handle wormholes” is straightforward to compute using Virasoro

TQFT.

For concreteness, consider the sphere four-point function of pairwise identical op-

erators ⟨O1O2O2O1⟩. Suppose there is a third species of defect, dual to the operator

O3. Naively, the trivalent coupling λ123 in the bulk low-energy effective field theory

vanishes since in the Gaussian ensemble the averaged structure constant vanishes

c123 = 0. However, there is a two-boundary wormhole that computes the variance

c2123 ̸= 0, so the conclusion that the defects are entirely non-interacting in the bulk

cannot quite be correct. In particular, we expect a topology that corresponds to the

exchange of O3 in the O1 × O2 OPE and hence contributes to the bulk-dual of the

four-point function ⟨O1O2O2O1⟩.
Consider the following topology discussed in [10]

M =

1

2

1

2

3
. (3.71)

It is constructed by starting with a compression body whose outer boundary is a

four-punctured sphere and two three-punctured sphere inner boundaries, and then

identifying the two inner boundaries as shown in (3.71). The Wilson lines corre-

sponding to O1 and O2 traverse the resulting wormhole and that corresponding to

O3 forms a closed loop in it. The TQFT partition function on the compression body

(without the identification among the inner boundaries) is simply proportional to

the corresponding sphere four-point conformal block

ZVir

( 1

2

1

2

3
)

= C0(P1, P2, P3)
2
1

2

1

2

3
. (3.72)

To implement the identification of the inner boundaries, we first view the partition

function on the compression body as a state in the tensor product Hilbert space

associated with the inner and outer boundaries H0,4 ⊗H0,3 ⊗H0,3. Taking the inner

product between the states in the three-punctured sphere Hilbert spaces implements

the identification between the inner boundaries and leaves us with the following state

in H0,4:

ZVir(M) = C0(P1, P2, P3)
1

2

1

2

3
. (3.73)

Squaring the TQFT partition function leads to the expected contribution to the

gravity path integral corresponding to the exchange of O3 in the O1 × O2 OPE,
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with squared OPE coefficient given by the corresponding variance in the Gaussian

ensemble

Zgrav(M) = |C0(P1, P2, P3)|2
∣∣∣∣ 1
2

1

2

3
∣∣∣∣2 . (3.74)

This is precisely the result that was computed semiclassically in [10].

3.5 Twisted I-bundles

Let us discuss another interesting example which has appeared before in the litera-

ture on AdS3 gravity known as a twisted I-bundle. It was studied in [45] as a simple

example of a non-handlebody saddle-point contribution to the 3d gravity path inte-

gral with a single higher-genus boundary. The name stems from the fact that these

three-manifolds are constructed as a non-trivial I-bundle over a Riemann surface,

where I is an interval. Consider a hyperbolic Riemann surface Σ together with an

orientation-reversing (i.e. anti-holomorphic) fixed-point free involution Φ : Σ → Σ.

We can then consider a quotient of the Euclidean wormhole Σ× [0, 1] as follows:

MΦ = (Σ× [0, 1])/{(z, x) ∼ (Φ(z), 1− x)} . (3.75)

This identification is again orientation-preserving and thus we get an orientable hy-

perbolic manifold with a single boundary Σ, where the hyperbolic structure is inher-

ited from the Euclidean wormhole.

Φ induces an involution on the boundary Teichmüller space which we also call

Φ and hence the boundary moduli are constrained to lie on the fixed point set T Φ.

By the uniformization theorems of three-dimensional hyperbolic manifolds that we

reviewed in the Appendix of [1], we are however guaranteed that the manifold with

the same topology can also be defined away from the real locus in Teichmüller space.

The construction then proceeds by taking a quotient of a quasi-Fuchsian wormhole,

where the moduli of the left boundary are the image under Φ of the moduli of the

right boundary.

From the TQFT point of view, it is very simple to determine the Virasoro TQFT

partition function on these manifolds. Indeed, we could squash the manifold to the

surface Σ× {1
2
} and the quotient by Φ simply produces Σ̃× {1

2
}. Here,

Σ̃ = Σ/{z ∼ Φ(z)} (3.76)

is the non-orientable surface obtained from quotienting Σ. Given that the Virasoro

TQFT partition function on the Euclidean wormhole is simply the Liouville partition

function, we see that Φ acts precisely by an orientifold projection. In other words, the

partition function on the twisted I-bundle is simply the Liouville partition function

on the non-orientable surface Σ̃.

To see that this makes sense, recall that the conformal block expansion on a non-

orientable surface involves a single conformal block on the doubled surface Σ which
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hence defines a state in the boundary Hilbert space of the twisted I-bundle. Let us

make this more concrete by recalling the precise construction of Liouville theory on

a non-orientable surface. We can construct a non-orientable surface by including a

number of cross-caps on an orientable surface.20 E.g. on a torus with one puncture

and a cross-cap, we have

= (3.77)

The orientifold acting reflects the right hand side of the picture to the left side and

simultaneously rotates by 180 degrees around the dashed horizontal line. This map

has no fixed point and the quotient indeed leads to the crosscap state. On the level of

the conformal blocks, this means that the conformal block of the Liouville partition

function on this surface takes the form

ZL

(
P0

)
=

∫ ∞

0

dP1 dP2 dP3 ρ0(P1)ρ0(P2)Γ(P3)C0(P0, P1, P2)

× C0(P1, P2, P3)
P0 P0

P1

P2

P2

P1

P3 , (3.78)

where the picture represents the ordinary conformal block. The only new ingredient

is the normalization of the crosscap state given by Γ(P3). It is fully determined by

requiring consistency with the bootstrap. It is in general given by [46]

Γ(P ) =
P1,P√
S1,P

×
√

ρ0(P ) = P1,P . (3.79)

Here, the first factor is the general result when the two-point function of the theory is

canonically normalized. We then multiply by
√

ρ0(P ) to account for our normaliza-

tion of the two-point function. The P-matrix describes the modular transformation

of the Möbius strip characters:

P = T
1
2ST2ST

1
2 . (3.80)

It is simple to work this out explicitly:

PP1,P2 = 8

∫
dP eπi(P

2
1+P 2

2+4P 2− 1
4
) cos(4πP1P ) cos(4πP2P ) = 2 cos(2πP1P2) . (3.81)

20Since two crosscaps are equivalent to a handle in the presence of another crosscap, one can

restrict to one or two crosscaps.
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Thus we have

Γ(P ) = P1,P = P
P1=

i(b2+1)
2b

,P
+ P

P1=
i(b2−1)

2b
,P

= 4 cosh(πbP ) cosh(πb−1P ) . (3.82)

The + sign comes from a careful treatment of the factor T 1
2 in the definition of the

P-matrix; more physically, it comes because the orientifold projection acts by a factor

(−1)N on a level N descendant. This is the same result as obtained in [47, 48] after

translating to our conventions. This fully specifies the Liouville partition function on

any non-orientable surface and hence directly gives the value of ZVir on any twisted

I-bundle.

Finally, the gravity partition function is given by applying eq. (1.1),

Zgrav(MΦ) =
∑

γ∈Map(Σ)/Map(Σ̃)

|ZL(Σ̃
γ)|2 , (3.83)

where we used that the bulk mapping class group is the mapping class group of the

non-orientable surface Σ̃ under which the Liouville partition function is invariant by

crossing symmetry.

4 The figure eight knot complement

In this section, we look at one particular hyperbolic 3-manifold in detail and illustrate

some features of the theory through this example. The manifold in question is the

figure eight knot complement, i.e. S3 with a Wilson line inside forming a figure eight

knot. This manifold is known to admit a hyperbolic metric. The figure eight knot

is the hyperbolic knot with the smallest possible volume and the only knot with

the crossing number 4, as demonstrated in Figure 9. Thus it is usually denoted as

Figure 9. A visualization of the figure eight knot.

41. There are two approaches to calculate the Virasoro TQFT partition function

of the figure eight knot complement. One way to compute the partition function

is via the Heegaard splitting procedure. The other way is to consider the surface
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bundle construction of the figure eight knot, and to use the mapping torus technique

introduced in [1]. These two approaches will lead to different integral expressions as

the final results. We check that these two expressions agree and both have the same

semiclassical expansions as expected.

4.1 Direct computation

Let us first compute the partition function by successively undoing the over- and

under-crossings in a particular projection of the knot.

We start by computing the partition function via surgery. We embed the above

knot configuration into a three-sphere to create the figure eight knot complement.

In the TQFT setup, we consider the knot as a tangled Wilson loop with associated

conformal weight ∆0 = Q2

4
, i.e. the cusp, although we will keep the label of the

Wilson loop generic for most of the discussion. If we slice the above figure 9 into

halves along the equatorial S2, we obtain two manifolds M1,M2 with boundaries

as four-punctured sphere. The path integral over each half prepares a state in the

Hilbert spaceHΣ0,4 , and the partition function is the inner product between these two

sphere 4-point conformal blocks. Here the Wilson lines inside each component have

nontrivial braidings. Before evaluating the inner product, we want to untangle the

Wilson lines. For this purpose, we need to apply the crossing and braiding operations

on the boundary surface Σ0,4.

To make the crossing and braiding explicit, we firstly specify the intermediate

channels in the figure eight knot. In the diagram, we have identity operators prop-

1

1

Figure 10. Heegaard splitting of the figure eight knot complement.

agate in the intermediate channels corresponding to the contractible cycles in the

bulk. We can use the fusion kernel F to transform the diagram 10 into the other

channel
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ZVir

( 1

1

P0

)
=

∫
dPs dPt F1,Ps

[
P0 P0

P0 P0

]
F1,Pt

[
P0 P0

P0 P0

]

× ZVir

( Pt

Ps

P0

)
, (4.1)

where P0 labels the conformal weight of the Wilson loop, i.e. P0 = 0 for ∆ = Q2/4.

After transforming the figure eight knot diagram into the other channel, we can

untangle the knot at each trivalent node via the braiding move B as follows

ZVir(41) =

∫
dPs dPt F1,Ps

[
P0 P0

P0 P0

]
F1,Pt

[
P0 P0

P0 P0

]
(BP0,P0

Ps
)2

× (BP0,P0

Pt
)−2ZVir

( Pt

P0P0 Ps

)
. (4.2)

The fusion kernel F corresponding to the exchange of the identity operator can be

written in terms of ρ0 and C0 as follows

F1,P
[
P0 P0

P0 P0

]
= ρ0(P )C0(P, P0, P0) . (4.3)

Meanwhile, we recognize the remaining contraction as the four-boundary wormhole

discussed in Section 3.2 for which we can use the result (3.20), normalized by inverse

structure constants to account for the normalization of the junctures.

In the end, we obtain an integral expression of the figure eight knot partition

function

ZVir(41) =

∫
dPs dPt ρ0(Ps)ρ0(Pt) (BP0,P0

Ps
)2(BP0,P0

Pt
)−2

{
P0 P0 Ps

P0 P0 Pt

}
. (4.4)

There are two momentum integrals in the above formula (4.4), and we can reduce

the number of integrals by one by using the relation (2.33) between the fusion kernel

F and the modular S-matrix S. We hence get

ZVir(41) =

∫ ∞

0

dP
ρ0(P )

ρ0(P0)
e

πiQ2

4
−3πiP 2 SP0,P0 [P ] (4.5)

=

∫ ∞

0

dP
ρ0(P ) e

3πiQ2

8
− 5πiP2

2

Sb(
Q
2
+ iP )

∫ ∞

−∞
dx e−4πixP0 Sb(

Q
4
+ iP

2
± iP0 ± ix) ,

(4.6)
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where we inserted the explicit expression for the modular crossing kernel in the second

line [18].

Of course, this expression is dependent on the framing that we implicitly chose

in this computation. For the figure eight knot complement, a nice way to fix the

framing anomaly is by requiring that the partition function should be real. Indeed,

complex conjugation corresponds to orientation reversal, but since the figure eight

knot is invariant under orientation reversal (this property is called amphichirality),

we can choose the partition function to be real.

One can easily check, for example numerically, that this is the case if we multiply

the above expression with e4πiP
2
0 = e4πi(∆0− c

24
), which is part of the ambiguity from

framing. We hence have

ZVir(41) =

∫ ∞

0

dP
ρ0(P ) e

3πiQ2

8
+4πiP 2

0−
5πiP2

2

Sb(
Q
2
+ iP )

∫ ∞

−∞
dx e−4πixP0 Sb(

Q
4
+ iP

2
± iP0 ± ix) ,

(4.7)

which is the formula we will use from now on.

Choice of contour. There is one additional subtlety with this formula. As it

stands, the integral over P is actually not convergent. Indeed, using the asymptotics

of the double sine function, see e.g. [26, eq. (B.53)] and using that the integral over

x is dominated for small x, we see that∫ ∞

−∞
dx e−4πixP0 Sb(

Q
4
+ iP

2
± iP0 ± ix) ∼ 1√

2
e

πiP2

2
−πPQ

2
+πiQ2

24
−πi

12 . (4.8)

Combining this with the asymptotics of the rest of the integrand, we see that the

integrand behaves for large Re(P ) as

integrand(P ) ∼ e
3πQP

2
− 5πiP2

2 ×O(order 1 in P ) . (4.9)

Thus the integral in (4.7) doesn’t converge for P on the real axis. However, we see

that we could have improved convergence by taking P to run along a contour starting

at P = 0 and asymptoting for large P the line R− ia, where the shift a has to be at

least a > 3Q
10

to ensure convergence. Shifting the contour in this way doesn’t cross

any poles and is hence a generally harmless operation. Thus it is understood that

the integral over P in (4.7) actually follows this modified contour.

4.2 Comparison to Teichmüller TQFT

The figure eight knot partition function can also be obtained in Teichmüller TQFT

developed in [49–52]. Translating to our conventions, the expression for the Te-

ichmüller TQFT partition function is21

ZTeich(41) =
√
2

∫
R−i0+

dx Sb(ix± 2iP0) , (4.10)

21Teichmüller TQFT depends on a parameter ℏ, which, following the conventions of [50], we

identify as ℏ = −iπb2. This expression does not literally match the one given in [49–52]. We are
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Here the integral runs slightly below the real axis to avoid the poles at x = ±2P0.

This formula can be obtained by realizing the figure eight knot complement as a

gluing of two tetrahedra. Each tetrahedron gives rise to one double sine function

and the gluing to the integral (modulo some constraints).

As we already conjectured in our previous paper [1], we expect that Virasoro

TQFT is equivalent to Teichmüller TQFT and thus the two expressions should

match,

ZVir(41)
!
= ZTeich(41) . (4.11)

This equality turns out to be quite hard to prove analytically. However, we checked

numerically for various values of b and P0 that the two expressions agree.

Figure 11. Numerical comparison of the Virasoro TQFT and the Teichmüller TQFT

partition function of the figure eight knot complement. The plotted data points are for the

Teichmüller expression (4.10), but are indistinguishable from the Virasoro data points.

The numerical evaluation is in principle straightforward. We restricted our at-

tention to rational values of b2, since in this case, there is a simple way to express the

double sine function through the Barnes G-function for which we can use efficient

implementations, for example in Mathematica,

Sb(z) = (2π)
√
mnz−m+n

2

m−1∏
k=0

n−1∏
ℓ=0

G
(
k+1
m

+ ℓ+1
n

− z√
mn

)
G
(

k
m
+ ℓ

n
+ z√

mn

) . (4.12)

It is then simple to compute the required integrals in (4.7) over a converging contour

and compare with the simpler expression (4.10). We computed the partition functions

unsure whether this is a typo in the previous literature. In any case, the semiclassical expansion

that we discuss below does match previous expressions, which gives us a lot of confidence in the

correctness of (4.10). We thank Boris Post and Davide Saccardo for discussions about this.
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for b = 1, b =
√
2 and b =

√
3 for P0 = 0, 0.02, . . . , 0.2. To the precision we have

computed, all values agree to seven decimal places, thus showing the equality (4.11)

beyond reasonable doubt. The data points are plotted in Figure 11.

From this discussion, it may seem that the Teichmüller TQFT always produces

simpler expressions than Virasoro TQFT, but this is not the case. The expressions

in Teichmüller TQFT become more complicated when the 3-manifold in question

requires more tetrahedra to form a triangulation, while this is not necessarily so in

Virasoro TQFT. It is in general quite hard to recognize when two integral repre-

sentations of the partition function agree since there are an enormous number of

non-trivial integral identities relating them.

4.3 Computation via the Seifert surface

Let us explain a completely different way to compute the partition function that will

lead to an inequivalent integral for the partition function.

The figure eight knot admits a genus 1 Seifert surface. This means that we can

realize the knot as the boundary of a one-holed torus embedded in S3, so that the

boundary of the one-holed torus coincides with knot. This is depicted in Figure 12.

However, even more is true. One can slightly deform the Seifert surface and obtain

Figure 12. The Seifert surface of the figure eight knot. One can easily verify that the

boundary of the Seifert surface traces out a figure eight knot.

a foliation of the knot complement in terms of one-holed tori. The figure eight knot

complement is in fact a surface bundle over a circle, i.e. it is of the form

[0, 1]× Σ1,1/ ∼ , (4.13)

where Σ1,1 is the one-holed torus and we identify

(0, z) ∼ (1, ϕ(z)) (4.14)

with ϕ = ST 3 being the corresponding mapping class group element in SL(2,Z)
generated by S and T .
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This might let one suspect that we can compute the partition function of the

figure eight knot complement as

ZVir(41)
?
= trH1,1(S[P0]T3) , (4.15)

but this is not quite correct yet. Indeed, taking the trace over the Hilbert space

H1,1 of conformal blocks on the once-punctured torus would lead to the partition

function of the three-dimensional manifold where the Wilson line runs along the

thermal circle S1. This is not what we want, since the Wilson line bounds the Seifert

surface, which forms the meridian of the boundary torus of the manifold. This means

that the correct expression is obtained by applying the S-modular transformation in

the external parameter P0. So we conclude that we should have

ZVir(41) =

∫ ∞

0

dP ′
0 SP0,P ′

0
[1] trH1,1(S[P ′

0]T3) . (4.16)

We can easily plug in the explicit expressions for the modular crossing kernel and get

an alternative expression for the partition function of the figure eight knot comple-

ment. This expression is even more unwieldy then the previous ones, since it involves

three integrals, one from the definition of S, one from the trace, and one from the

integral over P ′
0. This pushes our numerical capabilities a bit too far. Instead, we

will check below that the first two terms in the semiclassical expansion agree with

the semiclassical expansion of the previous expression.22

We note that this expression makes reality of the partition function manifest,

while it was obscured in the expression (4.7) that we discussed above. Indeed, one of

the Moore-Seiberg relations states that TSTST = S as operators (see [1, eq. (A.5b)])

and thus

tr(ST3)∗ = tr(T−1S−1T−2) = tr(STS−1T−1) = tr(ST2STS−1) = tr(ST3) , (4.17)

and so after Fourier transformation we still get a real function.

4.4 Semiclassical expansion

We now write down the semiclassical expansion of the Virasoro TQFT partition

function in the form (4.10) and check the volume conjecture explicitly. This was

already done before in the context of Teichmüller TQFT [49, 50] and hence we shall

be rather brief.

The key identity is the semiclassical expansion of the double sine function,

logSb(x0 + x) =
∞∑
n=0

(2πib2)n−1

2n!

×
(
Li2−n

(
e−2πibx0

)
− (−1)nLi2−n

(
e2πibx0

))
Bn

(
1− x

b

)
. (4.18)

22We also checked that the corresponding expressions for the figure eight knot partition function

in SU(2)k Chern-Simons theory agree where all the integrals are just finite sums.
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In this identity we think of x0 as being of order O(1
b
), while x is of order O(1). This

identity is standard for the quantum dilogarithm to which the double sine function

is closely related, see e.g. [52, Proposition 6]. For completeness, we have included a

short derivation in appendix A.

We now apply this expansion as follows. In the semiclassical limit, the argument

of the double sine function in eq. (4.10) becomes large and we write P0 = η0
b
. We

can then evaluate the integral via saddle point approximation. We write x to leading

order as x0

b
. Then the saddle-point equation is

0 = − 1

2π
∂x0

∑
±

(
Li2(e

2π(x0±2η0))− Li2(e
−2π(x0±2η0))

)
(4.19)

= log
∏
±,±

(
1− e2π(±x0±2η0)

)
. (4.20)

The solution to this saddlepoint equation takes the form

x0 =
1

2π
log
(
cosh(4πη0)±1

1
2
±2

√(
cosh(4πη0)±1

1
2

)2 − 1
)
+ni , n ∈ Z . (4.21)

The steepest descent contour runs through the saddle point at

x0 =
1

2π
log
(
cosh(4πη0)− 1

2
−
√(

cosh(4πη0)− 1
2

)2 − 1
)

(4.22)

and hence only that one is relevant for our analysis. For this to be valid, we should

assume that

|η0| < − 1

2π
log
(√5− 1

2

)
, (4.23)

since otherwise x0 becomes real and the saddle-point evaluation is different. We

obtain the semiclassical expansion

ZVir(41) =

√
2 e−

1
2πb2

vol(41)

∆
1
4

exp
( ∞∑

n=1

Snb
2n
)
, (4.24)

where

∆ = −X2 + 2X + 1 + 2X−1 −X−2 , X = e4πη0 , (4.25)

and

vol(41, η0) = − i

2

(
Li2
(
X−1+X−1+i

√
∆

2X

)
+ Li2

(
X−1+X−1+i

√
∆

2
X
)

− Li2
(
X−1+X−1−i

√
∆

2X

)
− Li2

(
X−1+X−1−i

√
∆

2
X
))

. (4.26)
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The first few orders for the higher loop corrections are given by

S1 = − π

12∆
3
2

(X3 −X2 − 2X2 + 15− 2X−1 −X−2 +X−3) , (4.27a)

S2 =
2π2

∆3
(X3 −X2 − 2X + 5− 2X−1 −X−2 +X−3) , (4.27b)

S3 =
π3

90∆
9
2

(X8 − 4X7 − 128X6 + 36X5 + 1074X4 − 5630X3 + 5782X2

+ 7484X1 − 18311 + 7484X−1 + 5782X−2 − 5630X−3 + 1074X−4 + 36X−5

− 128X−6 − 4X−7 +X−8) . (4.27c)

Not surprisingly, this reproduces the semiclassical expansion given in [49–51]. Also

noticed there, the one-loop determinant equals the Reidemeister torsion of the figure

eight knot, which can also be derived from computing the functional analytic one-

loop determinants appearing in 3d gravity. Thus this shows the validity of the volume

conjecture (2.1) for the figure eight knot.

Expression from Seifert surface. We now reproduce the semiclassical expansion

from the expression that we got from the computation via the Seifert surface as

described in section 4.3. This gives strong evidence that the expression (4.16) is in

fact equal to the simpler expression given by eq. (4.10).

By using the explicit formula of the Virasoro crossing kernel shown in [1], we

rewrite the integral formula (4.16) in terms of double-sine functions

ZVir(41) = 2
√
2

∫ ∞

0

dP ′
0 cos 4πP0P

′
0

∫ ∞

0

dP ρ0(P )

×
∫ ∞

−∞
dξ

e
πi∆′

0
2

−6πi(P 2− 1
24

)−4πiξP

Sb(
Q
2
+ iP ′

0)
Sb(

Q
4
+

iP ′
0

2
± iP ± iξ) . (4.28)

For simplicity, in the following computation, we consider P0 = 0 which sets the

conformal weight of the knot to be ∆ = Q2

4
. As we will see later, the saddle-point

equation in the semiclassical approximation will be simplified in this case. In general,

we can also compute the partition function for the knot with a generic conformal

weight, while the complexity of solving the saddle-point equations increases. Once

we consider the semiclassical limit of this expression, we similarly rescale P ′
0 = η0

b
,

P = x
b
and ξ = η

b
. Then we apply the expansion formula of the double sine function

to write the integrand into a expansion in 1/b2.

ZVir(41) =

∫
dη0 dx dη

b3
e
∑∞

n=0 S
(n)b2(n−1)

. (4.29)

In b → 0 limit, we can approximate this integral by saddle-point. The leading order
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contribution is proportional to 1/b2 with the coefficient

S(0) =
πi

8
+ 2πx+

πiη20
2

− 6πix2 − 4πiηx− i

4π

(
Li2(e

−2πη0+iπ)− Li2(e
2πη0−iπ)

)
+

i

4π

∑
±,±

(
Li2(e

−2π(
η0
2
±x±η)+πi

2 )− Li2(e
2π(

η0
2
±x±η)−πi

2 )
)
. (4.30)

This leads to three saddle-point equations.

Since S[P ′
0] only depends on the conformal weight ∆′

0 = P
′2
0 + Q2

4
, the function

tr(S[P ′
0]T3) is even in P ′

0. This observation implies that η0 = 0 will be a saddle-point

and we can reduce one saddle-point equation with respect to η0. When η0 is set to

be 0, we have the saddle-point equations of η and x respectively as follow

0 =− 4πix+
i

2
log

[(
cosh (2πx) + i sinh (2πη)

cosh (2πx)− i sinh (2πη)

)2
]
, (4.31a)

0 =− 12πix+ 2π − 4πiη +
i

2
log

[(
cosh (2πη) + i sinh (2πx)

cosh (2πη)− i sinh (2πx)

)2
]
. (4.31b)

The first equation can be solved by taking 2πiη = arcsin (sinh (2πx)). By plugging

this relation between η and x into the second equation, we solve for x and obtain the

following saddle-point of S(0)

x =
1

4π
log

(
−1− 3

√
3i−

√
−42 + 6

√
3i

4

)
. (4.32)

We also explicitly check that ∂S(0)

∂η0
is vanishing when η0 = 0 and x, η take the given

saddle-point values. Therefore, η0 = 0 is indeed the saddle-point along η0 direction

as we justified before. By evaluating the S(0) at the saddle point, we recover the

hyperbolic volume of the figure eight knot as expected

S(0) = −vol(41)

2π
. (4.33)

In order to compare the semiclassical result with the refined volume conjecture

(2.1), we should also study the higher-loop corrections. Using the expansion of

double-sine functions in (4.18), we can compute the partition function to all orders

perturbatively in b2. Here we focus on the order one factor in the expansion

Z(1) =
1

2

√
− (2π)3

det(HessS(0))
eS

(1)

, (4.34)

since this factor is closely related to the one-loop determinant in the 3d gravity

calculation. The prefactor comes from the Gaussian integral around the saddle point.

The additional factor of 1
2
appears because the integral is restricted to P ′

0 > 0, while
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the minus sign inside the square root originates from the fact that the Gaussian

integral has the form e
1
b2

S0 . The three factors of b get cancelled against the three b’s

from the Jacobian in (4.29). We collect all order-one terms in the expansion

eS
(1)

=
4i sinh(2πx)

sinh(π( i
4
− η0

2
± x± η))

1
4

, (4.35)

which upon inserting the saddlepoint value simplifies to

eS
(1)

= 4
√
2i sinh(2πx) . (4.36)

We then take the Gaussian integral contribution to (4.34) into account, we obtain

the order-one correction to the partition function

Z(1) =
2
√
2i sinh(2πx)√

7i+ 5 cosh(2πx)
√

6− 2 cosh(4πx)− 5i cosh(4πx)
=

√
2

3
1
4

. (4.37)

This result matches with the order-one term in the expression (4.24) with the Rei-

demeister torsion
√
∆ =

√
3 at P0 = 0.

Note that in the refined volume conjecture (2.1), we write the semiclassical ex-

pansion of the partition function in terms of the central charge c, while we have

the b2 expansion in this part of calculation. The central charge c is defined as

c = 1 + 6(b + 1
b
)2 = 13 + 6

b2
+ 6b2. Therefore, strictly speaking, the one-loop de-

terminant from the gravity calculation is not equal to Z(1). Instead, we need to

renormalize Z(1) to obtain the one-loop determinant

Zone-loop = Z(1) e
13
12π

vol(41) , (4.38)

which should be compared with the calculations performed in [3].23

4.5 Dehn surgery

As final application to the figure eight knot computation, we discuss an example of

Dehn surgery. Consider the figure eight knot and excise a small tubular neighborhood

around the knot. We can then glue back a torus, but twisted by an SL(2,Z) element.

Such an element is specified by a two coprime integers (p, q) specifying the slope of

the meridian (the contractible curve).

The Virasoro TQFT partition function on a solid torus gives simply the vacuum

character χ1 in the appropriate channel, while it gives a generic Virasoro character

χP with the inclusion of a Wilson line of momentum P . We can write24

ZVir(41, P0) = ⟨ZVir(4
◦
1) |χP0⟩ , (4.39)

23The computation in [3] is not directly applicable to the figure eight knot case because of the

presence of the cusp, in which case the relevant Kleinian groups has parabolic elements.
24As explained in [1], the normalization of the inner product on the torus is somewhat ambiguous,

but this ambiguity will cancel out of the calculation.
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where 4◦1 is the figure eight knot complement with a tubular neighborhood around the

knot removed and we emphasize the P0-dependence of the Virasoro TQFT partition

function.

Thus the partition function of a manifold obtained by Dehn surgery from the

figure eight knot is given by

ZVir(41(p, q)) = ⟨ZVir(4
◦
1) |U(p, q) |χvac⟩ (4.40)

=

∫ ∞

0

dP U(p, q)1,P ⟨ZVir(4
◦
1) |χP ⟩ (4.41)

=

∫ ∞

0

dP U(p, q)1,P ZVir(41, P ) (4.42)

where U(p, q) is the representation of the SL(2,Z) modular transformation on the

Virasoro characters. It takes the explicit form (see e.g. [53])

U(p, q)1,P = ε(p, q)

√
8

q
e−

2πi
q

(p∗ Q2

4
−pP 2)

(
cosh

(2QPπ

q

)
− e

2πip∗
q cosh

(2Q̂Pπ

q

))
.

(4.43)

Here Q̂ = b − b−1, ε(p, q) is a P -independent 24-th root of unity coming from the

transformation behaviour of the Dedekind η-function and p∗ is the modular inverse of

p, pp∗ ≡ 1 mod q. This leaves an ambiguity in the expression which can be absorbed

in the framing ambiguity. For the figure eight knot, we should also notice that

because of amphichirality, the Dehn surgeries (p, q) and (−p, q) are equivalent and

we can focus on p, q ≥ 0.

It is in particular simple to evaluate the hyperbolic volume of this class of man-

ifolds via saddle point approximation. Set P = η
b
as before. Then the action is

S = vol(41, η) +
π2i

q
(p∗ − 4pη2)± 4π2η

q
. (4.44)

Since we focus on the volume, we can omit the purely imaginary part involving p∗.

The sign choice of the last term is also immaterial, since we can send η → −η. We

hence find that

vol(41(p, q)) = Re

(
vol(41, η) +

4π2η(1− piη)

q

)∣∣∣∣
η=η∗

, (4.45)

where we plug in the saddle-point value η∗ and the volume is given by (4.26). The

saddle-point equation is transcendental and doesn’t admit a closed form solution.

However, it is straightforward to compute the volumes of various examples numeri-

cally, see Table 2. We compared them to the volumes as computed by the program

SnapPy. It is also simple to compute the volumes in a large p and q expansion, since

for large p or q, the saddle point η∗ → 0 and the volume converges to the volume of
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p q 1 2 3 4 5 6 7 8 9

1 0 1.3985 1.7320 1.8581 1.9186 1.9521 1.9725 1.9858 1.9950

2 0 1.7371 1.9195 1.9727 1.9951

3 0 1.4407 1.8634 1.9210 1.9732 1.9862

4 0 1.7571 1.9231 1.9738 1.9955

5 0.9813 1.5295 1.7714 1.8735 1.9557 1.9745 1.9870 1.9958

6 1.2845 1.9287 1.9754

7 1.4638 1.6496 1.8058 1.8871 1.9321 1.9591 1.9882 1.9965

8 1.5832 1.8243 1.9358 1.9776 1.9970

9 1.6678 1.7521 1.9027 1.9397 1.9789 1.9897

Table 2. The volumes of manifolds obtained from Dehn surgery from the figure eight knot.

Zero entries indicate that the corresponding manifolds do not admit a hyperbolic metric.

The other two exceptional cases that do not admit a hyperbolic metric are (p, q) = (1, 0)

and (0, 1), see also [54, Theorem 4.7].

the figure eight knot. We find to the first few orders

vol(41(p, q)) = vol(41)−
2
√
3π2

p2 + 12q2
+

4π4(p4 − 72p2q2 + 144q4)√
3(p2 + 12q2)4

− 8π6(23p8 − 8904p6q2 + 302400p4q4 − 1620864p2q6 + 767232q8)

45
√
3(p2 + 12q2)7

+ · · · (4.46)

The correction to the figure eight knot volume is always negative as required by

general theorems about Dehn surgery [54, Theorem 6.5.6.]. This expansion is a known

result, see [55]. This case of Dehn surgery exemplifies the existence of accumulation

points in the spectrum of three-manifolds. We discussed their implications for the

gravitational path integral in our previous paper [1].
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A Semiclassical expansion of the double sine function

In this appendix, we will derive the semiclassical expansion of the double sine function

(4.18). We start from the integral representation

logSb(x0 + x) =
1

4

∫
R+i0+

dt

t

sinh
(
(Q
2
− x− x0)t

)
sinh( bt

2
) sinh( t

2b
)

(A.1)

=
1

4

∫
R+i0+

dt

t

e(
b2+1

2
−bx−bx0)t − e−( b

2+1
2

−bx−bx0)t

(e
b2t
2 − e−

b2t
2 ) sinh( t

2
)

(A.2)

=
1

4

∫
(R+i0+)∪(R+i0−)

dt

t

e(b
2+ 1

2
−bx−bx0)t

(eb2t − 1) sinh( t
2
)
. (A.3)

Here we rescaled t and put t → −t in the second expression to have the integrand

have the same form. We can now use the definition of the Bernoulli polynomials and

get as formal expansion

logSb(x0 + x) =
∞∑
n=0

b2n−2

4n!
Bn(1− x

b
)

∫
(R+i0+)∪(R+i0−)

dt
tn−2 e(

1
2
−bx0)t

sinh( t
2
)

. (A.4)

The remaining integral can be computed for example by pulling off the contour off

and summing over the residues at t = 2πim. This gives∫
R+i0+

dt
tn−2 e(

1
2
−bx0)t

sinh( t
2
)

=
∞∑

m=1

2(2πim)n−2 e−2πimbx0 = 2(2πi)n−2Li2−n(e
−2πibx0) .

(A.5)

We similarly evaluate the contribution from the other contour R + i0− which then

recovers (4.18).
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