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ABSTRACT

Rapid advances in quantum computing technology lead to an increasing need for software simulators that enable both algorithm
design and the validation of results obtained from quantum hardware. This includes calculations that aim at probing regimes
of quantum advantage, where a quantum computer outperforms a classical computer in the same task. High performance
computing (HPC) platforms play a crucial role as today’s quantum devices already reach beyond the limits of what powerful
workstations can model, but a systematic evaluation of the individual performance of the many offered simulation packages is
lacking so far. In this Technical Review, we benchmark several software packages capable of simulating quantum dynamics with
a special focus on HPC capabilities. We develop a containerized toolchain for benchmarking a large set of simulation packages
on a local HPC cluster using different parallelisation capabilities, and compare the performance and system size-scaling for
three paradigmatic quantum computing tasks. Our results can help finding the right package for a given simulation task and
lay the foundation for a systematic community effort to benchmark and validate upcoming versions of existing and also newly
developed simulation packages.

Key Points
• Efficient, general purpose software simulators for quan-

tum computation provide the means to develop algo-
rithms, anticipate performance gains and estimate re-
source requirements for future deployment on actual
quantum hardware.

• A large variety of software packages designed to simu-
late quantum computers exist, but not all are regularly
maintained or continue to be developed.

• Depending on the simulation task, the computational
performance of packages can differ by more than two
orders of magnitude at both small and large problem
sizes, even when run on the exact same hardware.

• Hardware accelerations enabled by multithreading, the
use of GPUs yield substantial performance improve-
ments — yet at problem sizes between 25 qubits (CPUs)
and 30 qubits (GPUs), all evaluated packages cross over
into exponential scaling behavior, however we observe
significant differences in pre-factors.

Introduction
The rapidly growing interest in quantum computers from both
the academic and commercial side fuels the need for soft-
ware packages that can simulate their operation and aid both
hardware and algorithm development. These software envi-
ronments generally model the quantum state evolution of an
isolated set of qubits acted on by a set of well-defined quan-
tum gate operations with an intrinsic error rate set only by the

classical computer’s numerical precision. Some packages fur-
ther support an open quantum systems simulation, which can
also model external perturbations, thereby allowing for the
simulation of actual, noisy quantum hardware at the expense
of additional computational overhead. In all cases, the avail-
able computational hardware, the underlying mathematical
formalism1 and its particular software implementation place
stringent limits on the system sizes that can be explored. With
the exception of a few special cases, even High Performance
Computing (HPC) platforms often cannot reach beyond a sys-
tem size of about 50 simulated qubits before they run into
resource limitations2–5. Yet, even at moderate scales of a few
tens of qubits, efficient simulation with reasonable execution
times is a formidable challenge due to the vast amounts of data
that have to be processed to faithfully store and manipulate
a generic quantum state. With an amount scaling exponen-
tially as 2#qubits, memory and the transfer of data between
processing and storage are at the core of the slow-down in
computation speed and this is where HPC architecture and a
tailored software implementation can make a difference.

In this Technical Review, we benchmark a number of
locally-installable quantum computing simulation packages
on a HPC cluster in a standardized way using three exemplary
quantum computational tasks, which are among some of the
most important primitives in quantum algorithms6. We start
with a brief survey of available software packages grouped by
simulation strategies, and then down-select to a list of 24 pack-
ages. The chosen packages are integrated into a containerized
toolchain workflow, which ensures performance evaluation on
equal footing as well as extensibility, reproducibility and ease



of maintenance. For the three circuit-based computational
tasks – a gate-based simulation of Heisenberg spin dynamics,
random circuit sampling and a quantum Fourier transform
circuit – we investigate the wall-clock time as a function of
the number of simulated qubits, desired numerical precision
and the specific HPC capabilities enabled. In all settings, we
perform a ranking in terms of the fastest package in the ex-
ponential scaling limit and also compare the scaling behavior
and overheads at intermediate problem sizes.

Quantum computer simulation packages
The recent advances in quantum computing hardware has led
to increased momentum in the development of software that
can simulate quantum circuits, with many new software pack-
ages appearing over the past 5 years. The development goals
of these packages range from the validation of quantum hard-
ware using error models on an abstract or a device-specific
level, to the simulation of hardware-agnostic high-level quan-
tum logic operations that aim to efficiently reach as far as
possible to the boundary of quantum advantage, where clas-
sical computers can no longer simulate a quantum system’s
dynamics in acceptable runtimes. HPC clusters are naturally
positioned at the forefront of this boundary and therefore a
key aspect of our analysis is to benchmark the performance
of HPC-compatible software packages.

Several different strategies are employed by software pack-
ages in the simulation of quantum circuits, usually chosen
based on the primary use case envisioned by the developers.
Table 1 provides a non-exhaustive list of packages grouped
by their underlying simulation approach with links to a cor-
responding publication or website. Further lists of packages
can be found on the websites Quantiki and the Quantum Open
Source Foundation.

First, there are statevector-based simulators that simulate
the evolution of pure quantum states. Here, a statevector of
N qubits is represented by a 2N-sized vector of complex val-
ued entries which are modified under the action of a formally
2N ×2N-sized unitary matrix operator. A more complex (and
resource intensive) simulation is offered by the density ma-
trix formalism, which further allows to simulate mixed states,
which usually arise under the influence of noise and in the
case of open quantum systems. Tensor networks offer an
alternate representation of the quantum state. In the exam-
ple of Matrix Product States (MPS) or Projected Entangled
Pair States (PEPS)68, 69 the wavefunctions are expressed in a
compressed way using a set of local tensors to be contracted.
The unitaries are represented as Matrix Product Operators
(MPO) or Projected Entangled Pair Operators (PEPO), which
are smaller in size than the above unitaries. However, with
increasing entanglement in the system, the size of the tensors,
referred to as the so-called bond dimension, is forced to grow
to maintain an accurate approximation. Clifford algebra based
simulators have been developed70 that allow the access of
qubit numbers on the order of a million and more. They are
mainly used to investigate quantum error correction codes52

Table 1. List of quantum computing simulation packages
grouped by supported simulation approach.

Statevector simulators
qiskit7, cirq8, qsimcirq9, pennylane10, pennylane light-
ning10, qibo11, qibojit12, Intel QS13, projectq14, qrack15,
qpanda16, qcgpu17, quest18, qulacs19, qpp20, SV-Sim21,
Yao22, HiQ23, HybridQ24, Braket, myQLM, QuTiP25,
PyQuil26, pytket27, Microsoft QDK Simulator, Blueqat
(qaqarot), Quantastica Toaster, HyQuas28, MPIQulacs29,
JUQCS30, Quimb31, NVidia cuQuantum32, Spinoza33,
QuantumFlow, QPlayer34, Torchquantum34, pyqtorch,
QCompute,QX Simulator, Basiq35, MIMIQ (QPerfect),
Qristal, QCLAB++36,quantum-gates37, Qrisp
Density matrix simulators
qiskit, cirq, pennylane, qibo(jit), braket, hybridq, intel-
qs, myqlm(py), qpanda, qsimcirq, quest, qulacs, q++, sv-
sim, yao, quantum-gates, QuantumSim38, NWQSim21, 39,
QuaC, QuTiP (PIQS), OpenQuantumTools.jl40

Tensor Network
qiskit, PastaQ.jl41, NVidia cuQuantum, QXTools42, Blue-
qat, Tai Zhang Simulator43, qFlex44, HybridQ, ExaTN45

(with TNVQM Accelerator), Jet46, Quimb47, TensorCir-
cuit48, QTensor49, Tensorly50, TenPy51, MIMIQ (QPer-
fect), qrack
Clifford gate
qiskit, cirq, qrack, Stim52, QuantumClifford.jl, PyZX53,
MIMIQ (QPerfect), pennylane
Platform specific packages
Strawberry Fields54 (photons), Generic Tensor Net-
works55 (neutral atoms), QSimulator.jl (superconduct-
ing qubits), IonSim.jl (trapped ions), Bloqade.jl56 (neu-
tral atoms), Perceval57 (photons), isQ58 (superconducting
qubits)
Other simulators or domain-specific packages
OpenFermion59 (fermionic systems, incl. chem-
istry), XACC60 (multi-architecture framework), MQT
DDSIM (decision tree diagrams), qrack (Decision-
tree), qrack (optimized tensor networks), Interlin-q (dis-
tributed/networked QC), Tequila61 (VQE chemistry cen-
tric), Paddle Quantum(QML)62, MindQuantum (HiQ
based, VQE + QML)63, TensorFlow Quantum64 (graph
based, built on TensorFlow), OpenQAOA65 (Simulators
for OpenQAOA), Krotov66 (Optimal control), Quandary67

(Optimal control using distributed computing)

and more recently random unitary circuits. Yet, these have
been shown to not be universal for quantum computation70

and adding non-Clifford operations to these simulations, while
extending their range, rapidly makes them far less efficient.
Both approaches are the leading methods in exploring large
scale simulations at the edge of exact verifiability71, 72.

Further, there are simulators that are tailored to a specific
hardware architecture or application domain, aiming to em-
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ulate the corresponding platform exactly or being optimized
for a specific use-case.

In this manuscript, we restrict our analysis to statevector
simulators. Furthermore, our selection is based on additional
criteria, such as, whether a package offers to exploit the com-
putational power provided by HPC platforms, is actively main-
tained and developed (gauged in terms of release cycles) and
provides access to relevant documentation (feature snippets,
examples and possibly use-case tutorials). Table 2 presents our
down-selected list of packages benchmarked in this work and
their supported HPC capabilities*, in addition to the support
for additional features like shot simulation, noise modelling
and variational quantum algorithms.

Challenges in benchmarking
There are a number of challenges that arise when profiling
the performance of simulation software packages for a direct
comparison on the same hardware. Firstly, a key difference
among the packages is their higher level instruction set, i.e.,
the specific commands required to enact a particular gate oper-
ation on a given quantum state. Hence, each package requires
a recasting of the same algorithmic logic into a different set of
commands and parameters. Necessarily done in a manual way
and bound by a package’s level of mathematical abstraction,
this step is time consuming and not necessarily fool-proof
such that some of the instructions of the original quantum
algorithm might be mistranslated.

A related challenge lies in the more frequent release cycles,
especially of the newer packages, which tend to update gate
definitions or add new ones informed by the development of
new hardware. For instance, the package Qibo added support
for the fSim gate in one of its releases, which arose as the best
working gate operation on one of Google’s newer quantum
processors. Another example is the package Qiskit which
redefined its U2 and U3 gates to adapt itself to the new defini-
tions of the OpenQASM language V374. An ideal comparison
would require the same gate definitions across packages and
different releases, which is hardly feasible due to additional
overhead.

Another difficulty arises from package dependencies on
various external libraries that have to be installed in parallel.
Here, specific combinations of versions are required, which
differ between packages and even releases of the same pack-
age. Hence, the resulting version conflicts generally prevent
parallel installations of different packages and releases.

Given that our focus is on benchmarking packages on the
exact same HPC hardware in different configurations, we fur-
ther need to set the appropriate options not only in a package’s
configuration, but also in the job file that configures the HPC
cluster for each computational task. Finally, we need to store
the numerical results produced by each package for output
validation and extract the profiling data in a form that allows
for comparisons on equal footing.

*While we list the MPI capability, we do not present MPI benchmarks in
this work.

Containerized toolchain workflow

To address the above challenges and ensure reproducibility as
well as extensibility, we have created a containerized toolchain
to implement our benchmarks. Containers are virtualized
images of an operating system (OS) that share the kernel re-
sources of the underlying host. They have not only led to swift
deployment of applications without the need to customize lo-
cal OS installations but also to a more efficient, robust and
secure use of server resources. Another key feature of con-
tainers is their portability, allowing fully installed, customized
packages to be run on different server hardware without re-
peated installation effort.

Various containerization software has been developed and
adopted by various HPC centers world-wide, e.g., Singular-
ity75 at Lawrence Berkeley National Laboratory and Char-
liecloud76 at Los Alamos National Laboratory. Contrary to
what one might expect, there is almost no performance penalty
associated with this type of virtualization when compared with
“bare metal” installations, which others77 and we ourselves
confirmed in experiments. The modularity of the toolchain
allows for easy integration of new packages as well as com-
parisons of same package with different options.

Technical description of the implementation

We realize our toolchain workflow with a number of Ubuntu
Singularity container images into which packages are installed
jointly with their required auxiliary libraries. All packages
which use only CPU features are bundled into one container,
while those that support GPUs are installed into a separate
container. In addition, for MultiGPU benchmarks we have
used a container maintained by the NVidia developers78. The
toolchain, illustrated in Fig. 1, automatically generates the
necessary run files for benchmarking the various combina-
tions shown in Tab. 2, which includes the package-appropriate
high level instruction set translated from the original QASM
input (Fig. 2), the job scripts with the appropriate compute ca-
pability options, and other auxiliary files linking the translated
files to the specific package version installed on the container.

As the packages are written a variety of languages including
C, C++, Python and Julia (cf. Tab. 2), we adopt different
strategies to ensure non-overlapping environments. For the
python packages, we install Miniconda on the container and
create separate Conda environments into which packages are
installed. For Julia, we redefine the path where the libraries
are installed, while also scoping it into the environment of
the container. For C/C++ implementations we build libraries
directly on the container and link them accordingly while
generating the respective binaries/executables of the translated
run files. While most of the packages are readily deployable
in this way, a few packages show exceptions under some
combination of HPC modality and precision. They have been
marked in Tab. 2 and were hence deployed natively on the
HPC environment.
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Table 2. List of benchmarked quantum simulation packages and supported features

Package Language Version ST MT GPU m-GPU MPI Shot Noise VQA†

SP DP SP DP SP DP SP DP
Braket[k] Python 1.38.1 ✓ ✓ ✓ ✓ ✓

Cirq8 Python 1.1.0 ✓ ✓ ✓ ✓ ✓
cuQuantum [ j]73 Python 22.11.0 ✓ ✓ ✓ ✓ ✓[m] ✓[m] ✓[m]

HiQ23 Python 0.0.1 ✓ ✓ ✓[b] ✓[n]

HybridQ24 Python 0.8.2 ✓ ✓ ✓ ✓ ✓
Intel-QS(cpp)13 C++ 2.1.0 ✓ ✓ ✓ ✓ ✓[d] ✓[o] ✓ ✓
myQLM (py) Python 1.7.3 ✓ ✓ ✓ ✓

myQLM (cpp)[l] C++ 0.0.5 ✓ ✓ ✓ ✓ ✓[l] ✓[l]

Pennylane(py)10 Python 0.28.0 ✓ ✓ ✓ ✓ ✓[p]

Pennylane(cpp)10 C++ 0.28.2 ✓ ✓ ✓ ✓ ✓[c] ✓[b]

Projectq14 Python 0.8.0 ✓ ✓ ✓
Qcgpu17 Python 0.1.1 ✓ ✓
Qibo11 Python 0.1.11 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Qibojit12 Python 0.0.7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Qiskit7 Python 0.41.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓[a] ✓ ✓ ✓

QPanda16 Python 3.7.16 ✓ ✓ ✓[h] ✓ ✓ ✓
Qrack15 C++ 8.2.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓[q] ✓[r]

Qsimcirq9 Python 0.15.0 ✓ ✓ ✓[b] ✓ ✓ ✓
Quest18 C 3.5.0 ✓ ✓ ✓ ✓ ✓ ✓[d] ✓ ✓
Qulacs19 Python 0.5.7 ✓ ✓ ✓[e] ✓[ f ] ✓ ✓ ✓
Q++20 C++ 4.0.1 ✓ ✓ ✓ ✓

SV-Sim21 Python 1.0 ✓ ✓ ✓ ✓[g] ✓[d] ✓ ✓[s] ✓[s]

Yao22 Julia 0.8.6 ✓ ✓ ✓ ✓ ✓[d] ✓[d] ✓ ✓ ✓

ST - Singlethread, MT - Multithread, Shot - Shot simulation/Measurement simulation, Noise - Support for noisy simulations,
VQA - Variational Quantum Algorithms, SP/DP - Single/Double Precision, (m)-GPU - (multi) Graphical Processing Unit, MPI - Message Passing Interface,

† We checkmark packages that offer modules with the statevector-optimizer integration,
[a] Installation difficulty: Compilation error, [b] Native HPC and container version different: native HPC run,

[c] Runtime error, [d] Native HPC and container version same: native HPC run, [e] GPU used is different from A100: GeForce RTX 2080 Ti,
[ f ] Closed source: not included in the benchmarks, [g] Installation difficulty: nvshmem missing while compilation, [h] No result, after time limit reached

[ j] Using qiskit and qsimcirq interface in the CuQuantum Appliance (container different from the CPU and GPU container),
[k] Open source version benchmarked, closed source versions available on cloud, [l] Closed CPU and GPU version (GPU not accessible)

[m] Available in CUDA Quantum that uses CuQuantum simulators, [n] Derived from ProjectQ,
[o] Measurements can be derived from probability of a qubit in a particular state, [p] Fundamental design allows for the differentiation of

variational parameters, [q] Support for shots in different providers, [r] Not the typical density matrix support, [s] Q#.
Cutoff for updating packages in containers: May, 2023.

Performance evaluation procedure

One of the features of our toolchain is the translation of the
high-level OpenQASM instruction set of a given quantum
algorithm to the specific instruction set of the chosen soft-
ware package. The translation process thus allows for the
introduction of auxiliary function calls which capture the re-
source consumption of computations. An example for Cirq
is shown in Fig. 2. Here, the translator writes the appropriate
quantum instruction set into a file, simply bracketing it with
two additional timer commands. The files generated by the
translator, hence capture the effective Time-to-Solution (TtS)
or wall-clock time of a computation, which we use to gain
insights into the performance characteristics of the particular
package in a given configuration.

Further, we note that it is possible to capture other per-
formance characteristics like the memory consumption by
complementing the time counters with relevant memory coun-
ters, e.g. using the package memory-profiler in Python or the
Profile module in Julia, but extraction of the actual resource
usage becomes non-trivial in multi-core and -node HPC set-
tings. We generally keep any additional configuration flags in
the software packages at their default value and do not tune
settings to the simulation task at hand. However, an excep-
tion to the above is that we toggle the precision flag where
available for a better compartmentalization of the packages.

We now briefly introduce the hardware of our local HPC
cluster, while also noting the limits for our benchmarks re-
sulting from constraints to the memory and time available to
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Figure 1. Workflow of the toolchain which takes four inputs: (i) Quantum Task, (ii) Simulation package, (iii) Compute
capability of the HPC, (iv) Float precision. The task is input as the QASM instruction set which is processed by the translator
to further generate the package specific instruction set. Post translation, other auxiliary file generation is triggered that creates
the necessary job scripts, linker files that scope the translated run files into the environment of the container. In addition, a
script to trigger the job submission onto the cluster is also generated. Finally, the performance characteristics either
corresponding to the time or memory are collected for further analysis. (∗) The translated files generated from OpenQASM are
executed using the package installed on the container, while the pre- and post-processing steps are executed on the HPC node
independent of the container.

its users. The Merlin6 cluster at the Paul Scherrer Institute
(PSI) provides access to both CPU and GPU architectures.
The CPU architecture consists of Intel processors with each
node comprising two sockets that each contain 22 cores. Fur-
ther, each core supports hyperthreading with two physical
threads per core. Regular nodes are equipped with a mem-
ory of 384 GB. The support for GPU architectures includes

Figure 2. An operational representation of the translator,
translating the openQASM instructions into the instruction
set of the package, cirq. The translator incorporates timer
functions at the start and the end of the circuit execution. We
note the image is for illustration purpose only, the variables
used in the original code might differ, see code repository.

a variety of GPU cards from Nvidia. For the purpose of our
benchmark, we focus on the A100 node that comprises of
8 GPUs, each equipped with a memory of 40 GB and total
CPU memory of almost 1 TB. To account for the constraints
imposed on users, we introduce a fixed set of limits for our
benchmarks, which we keep the same for all packages: The
maximum run time for a job script is set to 23 hours with
a memory limit of 300 GB for the CPU runs and 320 GB
GPU/900 GB CPU memory for the GPU runs. This implies
that some of the limits in qubit numbers that we report are
dictated by the benchmarking environment and should not be
understood as an intrinsic limitation of the software package
tested. The limitations, for a particular choice of a quantum
algorithm are presented in detail in Tab. 3.

Tasks used for benchmarking
As noted earlier, the overall wavefunction describing N qubits
can be represented as a statevector with 2N complex entries.
Operations defined on m-qubits that update this statevec-
tor, while preserving its norm, are formally represented by
2m ×2m sized matrices, Um, which satisfy the unitary condi-
tion UmU†

m = I, with I being the identity matrix. It should
be noted that gates involving only m qubits at a time, can
be applied onto a state vector in O(2m × 2N) operations. In
quantum computing, such unitaries are generally referred to
as quantum gates, which serve as the building blocks of the
QASM implementation of each compute task.

With the unfavorable, exponential resource scaling of both
statevector and unitaries with increasing qubit numbers, it
is not necessarily optimal to perform matrix-vector multipli-
cation directly. Many simulation packages therefore exploit
strategies that involve sparse matrices and update the statevec-
tor based on indexing, circumventing the need for an explicit
storage of the operators during multiplication79.

We chose three paradigmatic tasks to benchmark our se-
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lected set of packages. They are motivated by typical use-
cases, such as the simulation of the dynamics of an arbi-
trary Hamiltonian through digital quantum gates generally
prescribed by a Trotter approximation80, the random circuit
sampling experiments used to establish the transition to a
regime of quantum advantage81, and the Quantum Fourier
Transform as a core algorithmic component to many applica-
tions6.

Task 1: Dynamics of the XYZ-Heisenberg model
In this task, we follow the prescription for a circuit implemen-
tation of the dynamics of the Heisenberg model as devised by
Smith et al.82. We consider a spin-1/2 chain with open bound-
ary conditions, with the interaction given by the Hamiltonian

H =−Jx ∑
i

σ
i
xσ

i+1
x − Jy ∑

i
σ

i
yσ

i+1
y

−Jz ∑
i

σ
i
zσ

i+1
z +hz ∑

i
σ

i
z.

(1)

where J{x,y,z} indicates the interaction strengths with the near-
est neighbors, hz the strength of the magnetic field and σx, σy,
σz are Pauli matrices given by

σx =

[
0 1
1 0

]
,σy =

[
0 −i
i 0

]
,σz =

[
1 0
0 −1

]
.

The dynamics of the Hamiltonian is captured by the unitary
e−iHt , can be approximated by series of unitaries obtained by
Trotter-Suzuki expansion83 as outlined in Ref.82. This results
in M-unitaries given by

e−iHt = (e−iH∆t)M (2)

with ∆t = t f /M, where t f is the total time of evolution and M
the level of discrete “Trotter steps”. Each unitary of the form
e−iH∆t can be further broken down into to

e−iH∆t = ∏
j even

A j ∏
j odd

A j ∏
j

B j +O((∆t)2) (3)

where

A j = e−i(−Jxσ i
xσ i+1

x −Jyσ i
yσ i+1

y −Jzσ i
zσ i+1

z )∆t (4)

and

B j = e−i(hzσ i
z)∆t . (5)

In the digitized simulation of the evolution, the Hamiltonian
term A j can be mapped to a unitary N(α,β ,γ) given by

N(α,β ,γ) = ei(ασx⊗σx+βσy⊗σy+γσz⊗σz) (6)

where α = Jx∆t,β = Jy∆t,γ = Jz∆t encode the respective
interaction strength and time steps. This unitary can then be
optimally represented using a sequence of single qubit and two
qubit Controlled-NOT (CNOT) gate operations as outlined
in the Ref.82 (optimally here refers to a decomposition with
minimum number of CNOTs). We simulate the dynamics of
the XYZ-Heisenberg Hamiltonian to a final time t f = 1 with a
stepsize of ∆t = 0.01 by setting the initial state to |0⟩⊗N with
|0⟩=

[
1 0

]T and Jx = 1, Jy = Jz = hz = 0.1.

Task 2: Random Quantum Circuits
One of the first experiments that established claims of quan-
tum advantage was the Random Quantum Circuits (RQC)
sampling experiment implemented on the Sycamore chip84.
In our benchmarks, we have used QASM files (specifically,
the set marked as the EFGH pattern) supplied by the authors
of the original experiment.

The usage of this fixed set of QASM files ensures fair
benchmarking across different simulation packages as the
generation of RQC circuits involves randomization, which
may have an impact on circuit runtime. Central to the RQC
experiments are the single qubit gates given by the Pauli σx,
σy and

σw = (σx +σy)/
√

2 (7)

as well as the hardware-specific two-qubit gate

fSim(θ ,φ) =


1 0 0 0
0 cos(θ) −isin(θ) 0
0 −isin(θ) cos(θ) 0
0 0 0 e−iφ

 . (8)

The general scheme of RQC involves a sequence of “blocks”
of gates, with each block consisting of single qubit gate ran-
domly chosen from {√σx,

√
σy,

√
σw} for each qubit and a

two qubit unitary which can be decomposed into gates involv-
ing σz-rotations and the fSim(θ ,φ) gate where the parameters
θ ,φ are chosen depending on the pairing pattern (for instance:
EFGH, ABCD are two different pairing patterns) of the qubits
on which the fSim gate acts84, 85.

Recently, the claim of quantum advantage in the original
experiment has been challenged as tensor networks deployed
on HPC clusters were able to reproduce the expected linear
cross-entropy benchmarking fidelity associated with original
experiment86. However, the boundaries keep moving as more
efficient classical simulation methods as well as the quantum
hardware87 continue to be developed, making this - despite
the lack of concrete applications - a highly relevant field for
benchmarking81, 88.

We note that our benchmarks involving this task start at a
system size of 12 qubits, as this was the minimum number
for which QASM circuits were supplied in the original 2019
publication84 with the circuit depth varying almost linearly in
the number of qubits.

Task 3: Quantum Fourier Transform
The Quantum Fourier Transform (QFT) is a key ingredient
in many quantum algorithms, such as Shor’s factoring al-
gorithm89, and - as a paradigmatic circuit element - has al-
ready been benchmarked in other works in the literature (e.g.
Refs90, 91). Our inclusion of QFT thus provides a reference
point for comparisons to previous and future results. Addition-
ally, properties of the final state obtained after the application
of QFT can be directly calculated analytically with the expres-
sions below, and therefore be used to validate the benchmark
results in absolute terms.
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Figure 3. Scaling of the number of gates for each task as a
function of system size. The number of single qubit gates
(SQG) and two qubit gates (TQG) are illustrated as a very
simple proxy for the complexity of the calculations that have
to be performed.

QFT maps the state |ψ⟩ =
M−1
∑

i=0
αi |i⟩ where M =

2N bitstrings (basis states) to |φ⟩ =
M−1
∑

i=0
βi |i⟩ where

βk =
1√
M

M−1
∑

m=0
αmωmk

M with k = 0,1,2,3, ...,M − 1 and

ωM = e
2πi
M . The corresponding unitary is given by

QFTN =



1 1 1 1 . . . 1
1 ωM ω2

M ω3
M . . . ω

M−1
M

1 ω2
M ω4

M ω6
M . . . ω

2(M−1)
M

1 ω3
M ω6

M ω9
M . . . ω

3(M−1)
M

...
...

...
...

. . .
...

1 ω
M−1
M ω

2(M−1)
M ω

3(M−1)
M . . . ω

(M−1)(M−1)
M


.

QFT can be represented using Hadamard and controlled phase
gates acting on an initial state |ϕ⟩= |ϕ0ϕ1ϕ2...ϕn−1⟩, where
ϕi = {|0⟩ , |1⟩} resulting in the state

QFT (|ϕ⟩) = 1√
M

{(
|0⟩+ e2πi[0.ϕn−1] |1⟩

)
⊗
(
|0⟩+ e2πi[0.ϕn−2ϕn−1] |1⟩

)
⊗ ....

⊗
(
|0⟩+ e2πi[0.ϕ0ϕ1....ϕn−2ϕn−1] |1⟩

)}
(9)

where [0.ϕ0ϕ1...ϕl ] =
l
∑

p=0
ϕp2−p. The σz expectation value

of Eq. (9) at any site i will be equal to zero, which we use to
validate the computations and order the benchmarked pack-
ages based on their precision via their proximity to zero, as
detailed in a later section.

Circuit Structure and Gate Count
In Fig. 3 we illustrate the gate count and circuit composition
in terms of one- and two-qubit gates as a function of system
size. The Heisenberg dynamics simulation (Task 1) involves
a sequence of single qubit and two qubit nearest neighbor
gates that are 2-local due to the nearest neighbor description
of the Hamiltonian. The scaling of the number of gates is
linear in the system size, i.e. the number of qubits N. It
also depends on the final time of the dynamics simulated,
which is however held constant in this task. For the case
of RQCs the unitaries are realized on a 2D grid (matching
the Sycamore architecture), interspersed with permutations
between interaction “blocks”. The gates are one- and two-
body gates and their number scales linearly with the total
number of qubits. For the chosen depth of the circuits the total
number of gates is about a factor three or four smaller than
the Heisenberg dynamics task and the fraction of two-qubit
gates is also lower. Finally, for the case of QFT, the scaling
of the unitaries follows a quadratic scaling ∝ N2 with a lower
number of overall gates than the other tasks.

Results
Our results focus on the wall-clock time recorded for each
combination listed in Tab. 2. It captures the elapsed time for
the application of the circuits on the starting state and does
not involve the calculation of expectation values.

We present the results first for the three tasks using a single
computational core of a single node on our compute cluster,
while treating the single and double precision cases separately.
We then study the time to solution for a set of packages and a
given task as a function of the problem size, i.e. the number
of qubits N. Given that that the unitaries in the considered
circuits are one- and two-site gates only, we expect an optimal
implementation to scale as O(Ngates × 2N), where Ngates de-
notes the number of gates of the circuit (which itself depends
linearly or quadratically on N).

Interestingly we observe for many packages that this asymp-
totically expected behaviour only sets in for relatively large
qubit numbers, while for smaller number of qubits the time to
solution has a substantially weaker system size dependence,
and can even be almost system size independent in some
particular cases. We suspect that a possible origin of this
behaviour could be internal circuit analysis and optimisation
by certain packages, whose overhead only starts to amortize
for the larger system sizes.

While the small system scaling can vary very significantly
between packages, we focus on the exponential scaling part
to extract a ranking between packages, representative of their
efficient handling of circuits for large numbers of qubits.

As illustrated in Fig. 4, we fit the time to solution as a
function of qubits for a given package and task to the following
formula in the large N regime:

t = exp(a)× exp(b)N ,

7/19



Figure 4. Extraction of relative speed and scaling overhead.
Performance time scales linearly in the large-N limit on the
log scale i.e., log(t) = a+bN where t is the wall-clock time
and N is the system size (number of qubits). We extract the
y-intercept, a and slope, b using the above linear fit, which
we use for relative speed assessment (marked by the black
solid line around N = 0).

or in logarithmic form:

log(t) = a+b×N.

The two fit parameters a and b are interesting for the purpose
of comparing the implementations and the performance. The
parameter b in an efficient implementation is expected to
be simply b = log(2)*, while the parameter a captures the
prefactor via exp(a), and turns out to be the main proxy for
the performance difference among the various packages.

In the current analysis, we restrict the extraction of a and
b among different packages to the case of singlethread per-
formance but it can be similarly extended to other compute
capabilities, provided enough data points are available in the
regime of exponential scaling. For comparison across other
compute capabilities we simply use wall-clock time ratios.

The results figures in our manuscript show our aggregated
findings, which can make them hard to read with regards
to individual packages. To allow for a better data explo-
ration, we have therefore set up an interactive website at
https://qucos.ngrok.app, where readers are invited
to perform targeted analyses across all the benchmarked di-
mensions and packages.

Singlethread performance
In this part of our study, we configure the toolchain to limit the
available compute capability to a single computational thread.
The aim is to investigate the effect of numerical precision

*with some small enhancement to compensate for the fact the the number
of gates depends itself on N.

(single vs. double) on both the wall-clock time scaling as well
as the maximum system size that can be simulated. While this
difference of 32 bit vs. 64 bit representation will not allow for
a much larger number of qubits (a factor two reduction in total
memory), less data will have to be processed at every step,
allowing for speed-ups depending on the package internals.

Figs. 5 and 6 show the recorded wall-clock time as a func-
tion of the number of simulated qubits for single or double
precision singlethread configurations, respectively. We also
plot the ratio of each package’s wall-clock time with that of
the fastest (smallest a coefficient) large-N simulator, more eas-
ily revealing distinct regimes of scaling among the packages.
This is most pronounced in the single precision case, where
the wall-clock time can differ by up to a factor of 1000 for
system sizes around N = 26 qubits.

We start by noting that in the top row of Figs. 5(a) and 6(a),
we observe that some packages exhibit almost straight lines
for the entire range of system sizes, while other packages have
a rather small slope at lower numbers of qubits and only cross
over to the steeper slope for qubit numbers of about 20. This
leads to the paradoxical situation that the fastest package in
Fig. 6(a) at the largest qubit numbers (qiskit) is among the
slowest packages for eight qubits †.

Among the packages that support single precision, shown
in Fig. 5(a), we can clearly identify that the package qsimcirq
performs best in the large-N limit. For double precision reso-
lution, shown in Fig. 6(a), the best performing package is less
clear, but qiskit and qpanda are consistently among the fastest
packages (qsimcirq only supports single precision).

However, in the small-N limit, below N ∼ 15 qubits, many
other packages perform better in comparison to these two,
indicating smaller constant computational overhead. In par-
ticular, for the case of single precision qrack shows little to
no overhead at low N across all tasks with the same behav-
ior retained for the case of double precision for most of the
tasks. We observe similar exponential trends at low N in the
case of yao for the task of Heisenberg dynamics in a single
precision setting and across all tasks in the double precision
setting. These packages therefore might be beneficial for sim-
ulating small system sizes as they scale exponentially even
in the low N regime in comparison to the others that have a
constant overhead.In the other extreme, the package hybridq
has a high computational overhead for small and intermediate
qubit numbers, yet almost competes with qsimcirq for large
N.

While the behavior of constant computational overhead
followed by an exponential scaling in the time is almost con-
sistently observed across the different tasks, we note that the
wall-clock time in the case of QFT is small in comparison
to the Heisenberg dynamics and Random Quantum Circuits,
which we partially attribute to the lower number of gates
required at a given system size (cf. Fig.3).

In Figs. 5(b) and 6(b) we quantify speed and computational

†A similar observation holds for hybridq in the single precision case,
although it is never the fastest package, even though it gets quite close.
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Figure 5. (a) Singlethread performance (single precision) ‡(top) Absolute wall clock time as a function of qubit number for
packages that support single precision according to the package documentation. (bottom) Performance ratio with respect to best
performing package, here qsimcirq. (b) Scaling behavior of singlethread single precision performance by extracting a, b as
detailed in the main text. (top) Relative slow-down with respect to the fastest large-N package, qsimcirq. (bottom) Deviation
from the expected log(2) exponential scaling (red line) as a function of the number of qubits.

‡ The section "Cross-validation of results" discussed later reveals that the packages qiskit and pennylane(py) operate in double precision inspite of the fact
that the single precision flag is set i.e., in other words the single precision flag in the above packages in ineffective. We retain the performance measures of
these packages for completeness, however note that they are actually double precision in operation.
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Figure 6. (a) Singlethread performance (double precision). (Top) Absolute wall clock time as a function of qubit number for
packages that support double precision according to the package documentation. (Bottom) Performance ratio with respect to
optimally performing package, here qiskit. Note that numbers above one correspond to a relative slow-down. (b) Scaling
behavior of singlethread double precision performance by extracting a, b as detailed in Fig. 4 for different quantum algorithms.
(Top) Relative speed-down with respect to the reference package, qiskit. (Bottom) The red line indicates the expected scaling
following log(2) as a function of the number of qubits. The paucity of data points in the large N-limit for the package
myqlm_cpp limit the extraction of a and b. ∗ In the an effort to minimze the errors on a and b for package braket, the final data
point has been excluded while fitting.

overhead at large scales for the various packages using fit
parameters a and b. As we are unable to obtain reliable fit
parameters for the package hybridq due to the paucity of data
in the large-N limit, we exclude it from the comparison.

The ratio of the exponentials ea indicates the approximate
wall-clock time overhead incurred for each package in com-
parison to the best performing one. In the single precision
setting we notice that ranking remains almost same with minor
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deviations across the different tasks. In contrast, the double
precision setting does not follow a strict trend as we notice
varying performance with respect to different tasks. In terms
of the computational overhead captured by b, which is ex-
pected to be close to log2 ∼ 0.7, we find that some packages
get close to this theoretical limit in case of the Heisenberg
dynamics and RQC, yet the overhead in QFT circuits consis-
tently appears to be larger. This might be due to the number
of gates of the circuits, which depend quadratically on N, and
lead to an apparent enhancement of our parameter b.

Impact of parallelization strategies
In this section, we compare the performance of various simula-
tion packages across the three tasks under different hardware
architectures available on our HPC cluster. Specifically, we
focus on the observed performance differences between sin-
glethread, multithread and GPU compute capabilities. We
briefly outline the multithreading and GPU compute options
as declared in the job scripts. For multithreading, the number
of threads utilized is 84 (42 cores with hyperthreading turned
on, i.e. two physical threads per core). For the case of GPU,
we use the Nvidia A100 compute node while varying the num-
ber of GPUs from 1 to 8. The results with a single GPU are
presented here while the ones with multi-GPU are presented in
the online data explorer at https://qucos.ngrok.app.

Overall, the results shown in Fig. 7 again show the familiar
scaling behavior of an almost constant computation overhead
at small system sizes, which changes to an exponential scaling
at a particular numbers of qubits. The transition point between
the different regimes of scaling notably shifts to larger system
sizes by 2-4 qubits, depending on the package, when moving
to multithreading and GPU-based calculations. As a conse-
quence, correspondingly larger system sizes can be simulated
in the same fixed time. In the Heisenberg model and QFT
this shift to larger accessible system sizes is most apparent in
Fig. 7. However, at smaller system sizes before the transition
point, a GPU-associated overhead penalty often makes cal-
culations slower that even its singlethread counterparts. The
packages Yao and QUEST are two notable exceptions here, at
least in the RQC and QFT tasks. Notably, in the RQC tasks,
the two leading packages at large system sizes, Qiskit and
QPanda, are notably faster than other simulators. The pack-
age cuquantum only shows the onset of exponential scaling
in the Heisenberg model simulation task. It otherwise retains
almost constant performance for all system sizes in the RQC
and QFT tasks, with the size limit of N = 32 coming from our
memory and not the time limit.

Speedup trends
As evident from the analysis so far, the benefit of using a
more powerful compute capability can vary based on task and
system size. To better judge where significant speedups can
be obtained within one and the same package, we therefore
plot the respective performance ratios for each package indi-
vidually in Fig. 8. As not all packages support all hardware
capabilities (esp. GPU) some entries are left blank, but the

majority supports both single- and multithread computations,
exhibiting performance gains of factors between 5 and 30 for
some intermediate problem sizes N > 20. GPU performance
enhancements are even more striking, reaching up to factors
of 500 for the package Quest. pennylane’s C++ version also
exhibits significant performance gains in the large N limit.
Interestingly, the package yao instead gains the most in small
and intermediate problem sizes, hinting at a fundamental dif-
ference between its CPU and GPU implementation.

Cross-validation of results
In this section, we present results that we use to both validate
our toolchain implementation as well as asses the precision of
the benchmarked statevector simulators.

Calculating a reference solution for the Heisenberg dynam-
ics with high accuracy remains a challenge as there is no
exactly solvable analytical form. RQC, by definition, has no
analytical form. However, in the case of QFT as outlined
earlier, the final statevector obtained after the application of
the QFT has a closed form i.e., it can be estimated analytically,
via Eq. 9. As previously noted, the σz expectation value of
the state vector after the application of the QFT has to remain
zero at all sites. This observation allows us to validate the pre-
cision settings of the different packages and also to order them
based on the accumulated error. In Fig. 9, we plot the quantity
log10(∑i | ⟨σ i

z⟩ |)/N for different simulation packages and note
that all packages are in good agreement with the expected re-
sult of 0, thereby validating the entire toolchain for the given
task. To validate the precision settings, we expect the above
defined quantity for a package that promises single precision
to be on the order of 7 decimal digits, while those that promise
double precision to be on the order of 16 decimal digits. We
infer that the packages qiskit and pennylane despite promising
single precision via an optional setting actually continue to
operate in double precision.

For the tasks of Heisenberg dynamics and RQCs the vali-
dation of the toolchain and assessment of the quality of the
solution remains a challenge. We therefore employ a cross-
validation of results by computing the quantity

∆Expectation(p1, p2) = log10(∑
i
(| ⟨σ i

z⟩p1
−⟨σ i

z⟩p2
|)). (10)

This measure is inspired by the case of QFT, but instead
of comparing the ⟨σz⟩ at all sites to the expected result, we
compare among the packages and validate the quality of the
solution if the value of the quantity as defined in Eq. 10 is on
the order of the precision target set in the configuration. We
note that the above quantity involves computation of the ex-
pectation value of σz at all sites, which we choose to compute
for a system size of N = 16 as the mechanism deployed to
compute the expectation values remains the same irrespective
of the system size. Significant deviations in the calculated ex-
pectation values from the results of the other packages points
to a potential defect in some component of the toolchain spe-
cific to the chosen simulator package, including the package
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Figure 7. Performance comparison of simulation packages supporting double precision across different hardware
architectures.

itself. In addition, any deviation in the performance charac-
teristics from the general trend also implies a potential failure
either in the toolchain or the packages itself demanding further
investigation. We note that we have observed such a devia-
tion in the general trend only for a single package, namely
QCGPU which apparently performs much faster for a system
size of N = 32, yet fails to produce results without giving any
error message in our setup.

In Fig. 10, we present matrix plots with packages on rows
and columns representing the p1 and p2 as in the Eq. 10.
We clearly notice that for the case of single precision the
packages that differed from the single precision as in the case
of QFT, see Fig. 9, reflect similar behavior across the different
tasks i.e., qiskit on different architectures and pennylane(py)
operate on double precision even when the single precision
flag is set. In addition, RQC circuits when run using pennylane
set to double precision on the GPU architecture fail to produce
a solution that is in agreement with the other packages. To

further validate the above observation, we compare both, the
generated run files and the job scripts related to the package
and note that the generated files vary only in the choice of the
hardware and are equivalent elsewhere. Due to the above, we
conclude that pennylane with double precision on the GPU
architecture fails to produce the correct.

Limitations of the benchmarked quantum simulators
Three main types of limitations were found, which we classify
as design limited, time limited and memory limited. Design
limitation refers to the inability of the simulation package to
go beyond a certain system size due to design decisions con-
sidered as a part of the development of the package. Design
decisions range over a wide spectrum that include: the choice
of the language used to develop the package, the choice of
the core support libraries (for instance: numpy, scipy, AVX
acceleration among others), design features to support multi-
compute capabilities and so on. Time limited and memory
limited are more subjective to the cluster on which the per-
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Figure 8. Double precision speedup/slowdown due to the increase in computational capabilities with respect to packages
supporting double precision as in their documentation as a function of number of qubits. In the large-N limit there is a
significant speedup with increase in computational resources, captured by the ratios labeled on the extreme right.

formance is being benchmarked. In our case, we limited the
time to a day and the memory to 300 GB on the CPU node
and 320 GB-GPU/900 GB-CPU on the GPU node.

Entries in Tab. 3 mark limits and other issues we encoun-
tered in simulating the dynamics of the Heisenberg model.
Here, D(N) denotes a design limitation starting at system
N, i.e., a statevector starting N cannot be processed by the
simulation package even if there is sufficient memory and
time resources available. T (N) and M(N) denote the time

limitation and the memory limitation starting at N. These
limits are dynamic and vary subjectively, depending on clus-
ter resource constraints and the benchmarking task at hand.
We expect D(N)’s to remain the same across various tasks,
however, T (N) and M(N) will likely vary slightly as implied
by the performance charts shown earlier.
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Figure 9. Accumulated errors in QFT for N=16 with regards to baseline expectation in (a) single precision and (b) double
precision settings. Summed up deviations from the expected ⟨σ i

z⟩= 0 are shown for each setting (red line) and packages sorted
correspondingly. We note that in (a) packages like qiskit and pennylane document single precision settings but are found to be
running double pression, instead.

Table 3. Task dependent feature limitation - Dynamics of the Heisenberg model

Package Singlethread Multithread GPU
SP DP SP DP SP DP

Braket T (28),D(34) T (28),D(34)
Cirq T (30),D(34) T (30),D(34)

cuQuantum
HiQ T (30),M(36) T (30),M(36)

HybridQ D(32) D(32) M(30),D(34)
Intel-QS(cpp) T (28),M(36) T (28),M(36) T (32),M(36) T (32),M(36)
myQLM (py) T (28),D(34)
myQLM (cpp) RA(22) RA(22) RA(22) RA(22)
Pennylane (py) T (28),D(34) T (28),D(34)
Pennylane (cpp) D(34) T (32),D(34) D(34) T (32),D(34) RE M(32)

Projectq T (32),M(34) M(34)
Qcgpu F(32),M(34)
Qibo T (28),D(32) T (28),D(32) T (28),D(32) T (28),D(32)

Qibojit T (32),M(36) T (30),M(36) T (34),M(36) T (34),M(36) M(34) M(32)
Qiskit T (32) T (32) M(34) T (34) T (34) T (32)

QPanda T (32),M(34) T (32),M(36) NO

Qrack T (30),M(36) T (30),M(36) T (34),M(36) T (32),M(36) M(32) M(32)
Qsimcirq D(34) D(34) M(34)

Quest T (30),M(36) T (30) T (34),M(36) T (34) M(32)
Qulacs T (32),M(36) T (34),M(36) M(30)
Q++ T (22) T (22)

SV-Sim D(30) D(30) D(30)
Yao T (30),M(36) T (30),M(36) T (34),M(36) T (32),M(36) T (32),M(34) M(32)

D(N),T (N),M(N) denote design limitation, time limitation and memory limitation respectively.
F(N) represents runs that return success but terminate on short scales defying the expected scaling of time,

RE represents Runtime Error, NO represents No Output,
RA represents Restricted Access (higher system sizes are available via cloud access for a fee).
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Figure 10. Matrix representation of Eq. 10 for simulation packages labeled on the rows and the columns. Each row indicates
different tasks benchmarked: (a, b) Heisenberg dynamics, (c, d) RQC, (e, f) QFT. The left column (a, c, e) includes the
packages supporting single float precision while right column (b, d, f) includes packages supporting double precision. Some of
the exceptions include: Pennylane (GPU backend with double precision) is inconsistent, results do not match with the results
from other packages. Packages such as qiskit (all hardware backends) and pennylane which support single precision as in the
documentation but are double precision in operation.The white blocks indicate that the data matches exactly.
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Outlook
To summarize, we have benchmarked a variety of quantum
computing simulation packages that are able to leverage HPC
capabilities. We have automated the benchmarking procedure
by developing a containerized toolchain solution, that accepts
the simulation package, QASM instructions of the quantum al-
gorithm to be benchmarked and the HPC compute capabilitiy
as input, and outputs the performance characteristics. Central
to the automation is the translation of the QASM instruction
to the instruction set of the chosen simulation package. In the
current benchmarks we have chosen algorithms that are static
i.e., non-variational in nature. However, the current transla-
tors in our toolchain can easily be equipped with classical
optimizers and integrated in a loop to be suitable for automat-
ing the benchmarking of variational algorithms. One further
interesting direction to explore would be to benchmark the
performance of simulators which support noise and also simu-
lators based on tensor networks. For static algorithms with no
parameter updates (non-variational) the toolchain developed
in the current context can already be extended to benchmark
these kinds of simulators.

Data and Code availability
The entire source code for the QASM translator,
toolchain, plotting/data analysis and auxillary files as
well as the extracted data can be found at https:
//huggingface.co/spaces/amitjamadagni/
qs-benchmarks/tree/main. Additionally, the work-
flow used for generating the benchmarking results, including
the singularity images, the quantum algorithms in the QASM
format and sample job scripts can be found at the data reposi-
tory92: https://zenodo.org/records/10376217.
An interactive web platform for online data ex-
ploration and on-demand comparison across pack-
ages, tasks and hardware modalities can be found at
https://qucos.ngrok.app.
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