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Abstract

In this paper, we study the twisted gauging on the (1+1)d lattice and construct various non-

local mappings on the lattice operators. To be specific, we define the twisted Gauss law

operator and implement the twisted gauging of the finite group on the lattice motivated by

the orbifolding procedure in the conformal field theory, which involves the data of non-trivial

element in the second cohomology group of the gauge group. We show the twisted gauging is

equivalent to the two-step procedure of first applying the SPT entangler and then untwisted

gauging. We use the twisted gauging to construct the triality (order 3) and p-ality (order p)

mapping on the Zp × Zp symmetric Hamiltonians, where p is a prime. Such novel non-local

mappings generalize Kramers-Wannier duality and they preserve the locality of symmetric op-

erators but map charged operators to non-local ones. We further construct quantum process

to realize these non-local mappings and analyze the induced mappings on the phase diagrams.

For theories that are invariant under these non-local mappings, they admit the correspond-

ing non-invertible symmetries. The non-invertible symmetry will constrain the theory at the

multicritical point between the gapped phases. We further give the condition when the non-

invertible symmetry can have symmetric gapped phase with a unique ground state.
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1 Introduction

In (1+1)d, Kramers-Wannier duality, Kennedy-Tasaki transformation, and many other duality
mappings are powerful tools in solving the quantum spin models [1–7]. These dualities map
symmetric operators to other symmetric operators while preserving locality, but they may not
preserve locality when mapping charged operators. Consequently, these dualities induce the maps
among different gapped and gapless phases [8–14]. They provide simple and precise way to identify
the critical points, understand relatively exotic phases and solving the interacting theories. For
the recent discussion of duality mapping and non-invertible symmetry on the lattice, see [15–27].

However, these duality mappings in general lead to the dual theory with a different symmetry.
It is difficult to identify them from these non-local mappings. Translating these duality maps to the
gauging procedure would make the dual theory and symmetry more explicit [28, 29]. Nonetheless,
some duality, such as the Kennedy-Tasaki transformation [3–5, 30–34], involves “twisted gauging”,
which will be the main focus of this paper.

In a (1+1)d quantum spin chain, gauging a 0-form global symmetry will lead to a dual 0-form
global symmetry [28, 35, 36]. The ordinary Kramers-Wannier duality is obtained by gauging the Z2

spin-flip symmetry in the transverse field Ising model. In the continuum perspective, for a theory
with a global symmetry G together with the ’t Hooft anomaly ω ∈ H3(G,U(1)), we can gauge
its anomaly-free subgroup H ⊆ G, twisted by a discrete torsion φ ∈ H2(H,U(1)). The original
theory is mapped to a dual theory with the dual (categorical) symmetry C(G,ω,H,φ), the so-called
group-theoretical fusion category, under the twisted gauging. Many physically interesting fusion
category symmetries are group-theoretical fusion categories, for example, Rep(G) = C(G, 1, G, 1)
[20, 25–27] and the Tambara-Yamagami fusion category can be group theoretical with certain
conditions [37, 38]. The general gauging of H is specified by:

• a symmetric, non-degenerate bicharacter χ : H ×H → U(1), specifying how the dual sym-
metry should be identified with the original symmetry. For H = ZN , the identification is
unique. But for H = ZN × ZN , there are diagonal pairing and off-diagonal pairing, which
are related by the automorphism of H.

• a discrete torsion φ ∈ H2(H,U(1)), corresponding whether applying an SPT entangler before
gauging [39].

In the partition function level, the data is presented as 1

Z̃[X, Â] = #
∑

a∈H1(X,G)

Z[X, a] exp

(
2πi

∫
χ(a, Â) + α(a)

)
(1.1)

1We assume G is abelian for simplicity. Gauging the non-abelian symmetry G leads to dual non-invertible Rep(G)

symmetry. The more accurate treatment is to use the topological defect line operators, which will be elaborated in
Sec. 2.
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where α(g, h) = φ(g, h)φ(h, g)−1 and # is the normalization factor. a is the dynamical gauge
field being summed over and Â is the background gauge field for the dual global symmetry. We
incorporate these data in the lattice gauging in this paper, the non-trivial discrete torsion φ(g, h)
will modify the Gauss law operator (2.10) and different bicharacters are obtained by certain global
symmetries. We denote the untwisted (twisted) gauging as gauging with the trivial (non-trivial)
discrete torsion and using the diagonal pairing between the original symmetry and the dual sym-
metry 2. We implement the twisted gauging using the modified Gauss law, and show on lattice
that

Twisted gauging = Applying SPT entangler then untwisted gauging (1.2)

There is a bulk-boundary correspondence between the (un)twisted gauging in (1+1)d theory and
anyon permutation symmetry of the bulk (2+1)d topological order [40–54], a lightning review
of the bulk-boundary correspondence is given in Appendix D. We will mainly focus on the lattice
version of the transformations on the (1+1)d boundary theory. In this language, we can reinterpret

Bulk anyon permutation symmetry Transformation on the boundary

T-type Applying an SPT entangler

R-type Automorphism of global symmetry

S-type Gauging the global symmetry

Table 1: Bulk-boundary correspondence between the 2+1d bulk Symmetry TFT and 1+1d bound-
ary theory. The anyon permutation symmetries in the bulk correspond to different transformations
on the boundary theory. T corresponds to applying an SPT entangler with non-trivial φ. S corre-
sponds to gauging with diagonal bicharaters. S followed by R corresponds to gauging with different
bicharacters S.

the duality as gauging, for instance,

• Kramers-Wannier duality = Untwisted gauging Z2 global symmetry (S).

• Kennedy-Tasaki duality = (−1)-Twisted gauging Z2 × Z2 then applying an SPT entangler
(TS1S2T−1)

where T denotes bulk anyon permutation symmetry corresponding to applying the SPT entangler
with a non-trivial element in H2(H,U(1)) [55], and Si corresponds to the untwisted gauging of i-th
symmetry with diagonal pairing. There is an additional elementary transformation R corresponds
to the automorphism of the global symmetry, which can be used to change the diagonal pairing to
off-diagonal pairing Tab. 1.

2More generally, the twisted and untwisted gauging only have a relative difference, we thank Sahand for raising
the case about anomaly-free non-on-site symmetry.
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Note that the twisted gauging generates quite general non-local mappings, which are beyond
order 2 duality. Combining with the global symmetry actions, the non-local mapping is the
generator of triality (order 3), p-ality (order p) and even K-ality, where K is a finite group [56].
In particular, this paper studies the lattice version of triality and p-ality which is a combination
of twisted gauging and global symmetry action. To be specific,

• Triality Tri = Twisted gauging ZN × ZN follow by an automorphism (R(U1)S1S2T).

• p-ality P = (−2)-Twisted gauging Zp × Zp follow by an automorphism (R(U1)S1S2T
−2).

where U1 =
(

0 1
−1 0

)
and R(U1) changes the diagonal pairing to off-diagonal pairing. To be concrete,

for a 1d chain with Ze
N , Zo

N acting on even and odd sites respectively. The automorphism of
Ze
N × Zo

N specified by U1 is obtained by TCe, where T is the lattice translation symmetry and
Ce is the charge conjugation symmetry acting on the even sites. The translation symmetry T

effectively swap the two ZN s. All the non-local mappings are derived in the algebra level and they
induce the mapping among the Hamiltonians. For ZN ×ZN symmetric Hamiltonians that describe
gapped phases, triality maps,

Tri : SPT0 =SYM
SPTN−1

SSB , SPTa → SPT(−a−1)−1
(1.3)

where SPTa denotes the a-th ZN × ZN SPT, and the disordered phase (SYM) is equivalent to
0-th ZN × ZN SPT. Depending on N , there could be triality invariant SPTs. For N being prime
numbers, the triality invariant SPTa is given by the condition a(a + 1) + 1 = 0 mod N , which
exists for N = 3 or N = 1 mod 3. The 3+1d analog of triality is discussed in [57]. We show
that the non-invertible triality non-local mapping can be related to invertible Z3 automorphism of
ZN ×ZN in Sec. 7.1. For instance, let’s consider the Z2×Z2 symmetric Hamiltonians, the Ze

2×Zo
2

acts on even and odd sites of the 1d chain respectively,

SPT

SYM SSB

T
=

2c

TS
1 S
2 T

S1S2

Tri

Tri

Tri

KT KWe
←−→

SSBdiag

SSBe SSBo

3
auto

3
auto

3
auto

KT (1.4)

where SSB denotes the Z2 × Z2 spontaneously symmetry breaking phase, and SSBi denotes the
i-th Z2 partially SSB phase. Under the Kramers-Wannier duality on the even sites, the non-local
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map Tri is transformed into the Zauto
3 automorphism of Z2 × Z2. The center of the equilateral

triangle is the gapless Kosterlitz-Thouless (KT) transition point, which is triality invariant and
admits the triality fusion category symmetry.

The p-ality transformation acts on the Zp × Zp symmetric Hamiltonians with p being a prime
number,

P : SPT1 SSB→ SYM→ SPT2−1 → · · · → SPT2 → SSB, SPTa → SPT(−a+2)−1
(1.5)

where x−1 shoud be understood as modular multiplicative inverse of x mod p. For p = 2 the p-ality
reduces to the duality with the off-diagonal bicharacter R(U1)S1S2 related to the blue arrow in the
first diagram of (1.4), the corresponding non-invertible symmetry can be Rep(D8) (one can stack
an 2+1d Z2 SPT to change the Frobenius-Schur indicator of the duality TDL [21] and realize a
different fusion category). Similar to the triality, the p-ality non-local mapping can be transformed
into a Zc

p non-on-site symmetry under the TS1S2T
−1 transformation as the green arrow in (1.4)

and in the following for Z3 × Z3,

SPT2

SYM

SSB

SPT

3
c

P

TST-1

P

P

3
c 3

c

(1.6)

The disordered phase (SYM) is equivalent to the SPT0, the Zc
3 is generated by the SPT entangler∏

j CZ
−1
2j−1,2jCZ2j,2j+1, where CZj,j+1 is the controlled-Z gate for qutrits. For p = 5,

P

P

P

P
P

SPT2

SSB

SPT0

SPT3
SPT4

SPT1

TS1S2T−1

←−−−−−→

5
c

5
c

5
c

5
c

5
c

SPT0

SPT1

SPT2

SPT3
SPT4

SSB

(1.7)
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The type III mixed anomaly among Zp × Zp × Zc
p is used to bootstrap the conformal field theory

at the multicritical point between different SPT phases [58], such as the center of the right figure
in (1.7). Under the TS1S2T

−1, the p-ality also constrains a multicritical point. For general prime
p, the SPT1 is always the p-ality invariant phase and admits the p-ality fusion category symmetry.
It would be interesting to classify the symmetric gapped phases or the fiber functors of the p-ality
fusion category symmetry [56, 59, 60]. As we analyzed in Sec. 7.2, the SPT1 could have several
cousins but their domain walls will host zero modes [24, 61, 62]. More details of these non-local
mapping will be elaborated in the main context.

In this paper, we study the non-local mappings on the 1+1d lattice model using the (un)twisted
gauging. In particular, we define the twisted Gauss law operator and derive the dual Hamiltonians
under the twisted gauging. We connect the (un)twisted gauging to the quantum process and
orbifold in field theory. The locality of symmetric operators is preserved under the (un) twisted
gauging, while the charged operators are mapped to non-local ones. The mapping is on the algebra
level and does not need to specify the Hamiltonians. To be concrete, we study the triality mapping
of ZN × ZN symmetric Hamiltonians and p-ality mapping of Zp × Zp symmetric Hamiltonians in
detail, where p is a prime number. Both non-local mappings are generated by the different twisted
gauging. We find the condition for triality or p-ality invariant gapped phase with a unique ground
state. And consequences of the triality or p-ality fusion category symmetry. The outline is as
follows, we review the gauging in continuum, lattice, and quantum information perspective in
Sec. 2 and define the general twisted Gauss law operator on the 1d lattice. In Sec. 3, we review
the Kramers-Wannier duality and set up the notations. In Sec. 4, we study the Z2 × Z2 twisted
gauging and construct its corresponding quantum process. By simplifying the steps of minimal
coupling and imposing Gauss law, we find that twisted gauging is equivalent to applying the
SPT entangler and then gauging. We summarize the non-local mapping among gapped phases in
Sec. 4.1. We generalize the twisted gauging of ZN × ZN in Sec. 5 and detailed study the triality
and p-ality non-local mapping in Sec. 6. Specifically, we derive the triality and p-ality non-local
mapping on symmetric Hamiltonians and find the condition when the symmetric gapped phases
with unique ground state are invariant under such mapping. We further study their corresponding
fusion category symmetries. In Sec. 7, we give the continuum field theory perspective and connect
them to the lattice transformations. We give the group theoretical fusion category construction of
the triality and p-ality fusion category, which implies that the non-local mapping can be converted
into the invertible symmetries.

We will use mathsf font for general (non-)local mapping of the operators in the Hamiltonians
and quantum gates. K··· represents the corresponding Kraus operator. T··· represents the matrix
acting on the Pauli polynomials as reviewed in Appendix C. U··· represents the corresponding
unitaries. mathrm font, like S,T,R, labels the bulk automorphism symmetry in the one higher
dimensional symmetry topological field theory as reviewed in Appendix D.
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1.1 Relation to the Previous Studies

Another important consequence of the duality is its constraint on the phase diagram. As a text-
book application, the Kramers-Wannier duality can pin the Ising critical point given there is only
one transition point. Since the duality maps one phase to another, the critical point is invariant
under the duality [63]. An interesting scenario is that the second-order transition can be driven to
the first-order via a multicritical point by turning on the duality-invariant operators [64, 65]. The
self-duality is used to constrain the phase diagram and analyze the critical behavior in higher di-
mensions and other contexts [66–71]. Note that we will focus on the strong duality (exact duality)
that maps between ultraviolet theories, in contrast with the weak duality that relates the infrared
phases, see recent review of infrared weak duality web in [72–78]. Given the non-local mapping, it
is generally hard to find such duality invariant operators, but the (un)twisted gauging procedure
again gives clear transformations on the operators. In particular, the (un)twisted gauging can be
mapped to a symplectic transformation acting on the stabilizers [79–81]. The duality invariant
operators can be easily found using the algebraic method reviewed in Appendix C. To be specific,
all the transformations that map the Pauli operator to the Pauli operator while preserving the
commutation relations can be represented as the symplectic transformation. The Pauli operators
are represented by vectors in the symplectic vector space AppendixC. By solving for the invari-
ant vectors under the symplectic transformation, one can find the non-local-mapping-invariant
operators and construct the Hamiltonians.

If a theory is invariant under the duality, it is said to be self-dual. In the generalized sym-
metry perspective, the self-dual theory admits the non-invertible symmetry associated with the
self-duality [82–85]. For (1+1)d systems, the 0-form symmetry is generated by line operators. In
particular, these line operators commute with the energy-momentum tensor and they are topo-
logical defect line (TDL) operators. The TDL associated to the self-duality can be understood as
the interface between the original theory and the dual theory. Because the theory is self-dual, the
duality TDL can be moved freely as a consequence of commuting with the Hamiltonian. However,
such duality TDL is not invertible. The intuition is that the TDL maps among gapped phases
with different ground state degeneracies (GSDs). The ordinary Kramers-Wannier duality maps
the ferromagnetic phase with GSD 2 to the paramagnetic phase with GSD 1 and applies twice to
get back to the ferromagnetic phase but only with 1 ground state. Then the fusion of duality TDL
gives the projection to the symmetric combination of the SSB groundstates. The Kramers-Wannier
duality defect has been extensively studied in [6, 7, 19, 86–91] and can be constructed from the
half-gauging procedure [21, 57, 92, 93]. For the Kramers-Wannier-like non-invertible symmetry in
higher dimension, see [57, 92, 94, 95].

If the theory is invariant under the twisted gauging, the TDLs that are constructed from half-
twisted-gauging generate the corresponding non-invertible symmetry. The fusion category consists
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of the original invertible line and the new non-invertible TDLs as its simple objects. Note that the
data of twisted gauging is not enough to determine the fusion category. Additional data should be
provided. For example, the Frobenius-Schur indicator of the duality line in the Tambara-Yamagami
fusion category is specified by whether or not stacking a (2+1)d SPT from H3(Z2, U(1)) before
gauging [38, 96]. The Z2 SPT in (2+1)d is discussed in [97, 98]. For triality and p-ality fusion
category, additional data on symmetry fractionalization is needed [60, 99, 100]. Nevertheless, sets
of the triality and p-ality fusion category have group theoretical fusion category construction, which
is discussed in detail in Sec. 7. The group theoretical fusion category construction suggests that
the non-local mapping Tri or P can be converted into invertible symmetry in the dual theories.
This is reminiscent of the construction in [24, 101].

Similar to ordinary symmetry, the non-invertible symmetry can be anomalous, but the precise
meaning deviates from those of ordinary symmetry [102]. It is possible to gauge the anoma-
lous fusion category symmetry C by inserting the mesh of the Frobenius algebra object but the
anomalous fusion category symmetry C is not compatible with the symmetric gapped phase with a
unique ground state. Gauging the non-invertible symmetry is recently discussed in [100, 101, 103].
The anomaly of a non-invertible symmetry is the obstruction to a symmetric gapped phase with
a unique ground state, and mathematically the fusion category does not admit a fiber functor
[52, 102, 104]. For the anomaly condition of the self-duality TY category and its generalization
in higher dimension, see [38, 62, 96, 105, 106]. If a non-invertible symmetry is anomaly-free, then
it has at least one symmetric gapped phase with a unique ground state. The anomaly free non-
invertible symmetry is described by the local fusion category [42]. More interestingly, it could have
several non-invertible symmetric gapped phases with a unique ground state, but they cannot be
smoothly connected to each other [20, 24]. As commented in [24], there is no notion of stacking the
non-invertible symmetric gapped phases with a unique ground state and there are no symmetric
entangler between the gapped phases.

The (un)twsited gauging relates to the idea of preparing the long-range entangled states from
measuring the short-range entangled states [107–109]. Moreover, the Kramers-Wannier duality and
other mapping are realized by sequential quantum circuits and quantum process [34, 110–115]. In
particular, we construct the Kraus operator for the twisted gauging of ZN × ZN by viewing it
as a quantum process. The Kraus operators of Tri and P can be constructed accordingly. It
is interesting to generalize the twisted gauging to higher dimensions and realize the low-depth
parity check codes [116]. Related construction of the non-local mapping using the matrix product
operator is discussed in [117–123], bond algebraic method in [22, 124, 125] and bilinear phase
map is discussed in [32, 33, 126, 127]. The gauging of generalized symmetry using matrix product
operator is formulated in [119].

These non-local mappings in (1+1)d that are generated by (un)twisted gauging corresponds
to the anyon permutation symmetries of the (2+1)d symmetry topological field theory (SymTFT)
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[40–54]. In particular, the (1+1)d theories are the boundary of the (2+1)d SymTFT with different
boundary conditions. By examining the condensable algebras, one can classify the (1+1)d gapped
or gapless theories [10–12, 14, 46, 128, 129]. We review the corresponding anyon permutation
symmetries of triality and p-ality in AppendixD.

2 Gauging in different perspectives

In this section, we mostly review gauging a global symmetry in field theory, lattice model, and
quantum circuit perspectives. The fruitful generalization of symmetry in (1+1)d theory is by
analyzing the symmetry operators, which are in general codimension-1 topological defect line
(TDL) operators [63, 82], see [130–136] for recent reviews on generalized global symmetry. The
TDLs commute with energy-momentum tensor of the conformal field theory and thus commute
with the Hamiltonian. The mathematical structure of TDLs is generalized from finite group to
fusion category [99], where the TDLs are the simple objects of the fusion category [61, 63, 137].

In the following, we will discuss the TDLs in continuum field theory and lattice theory. We
review the gauging in the continuum by inserting algebraic objects. We then follow [138] to discuss
the TDLs on the lattice. We define the Gauss law operator for the (un)twisted gauging in (2.10)
and pictorially in (2.11). The Gauss law operator can be efficiently diagonalized using the algebraic
method reviewed in Appendix C. The (un)twisted gauging on the lattice can also be implemented
by the quantum process (Kraus operator), which involves adding degrees of freedom, unitary
transformation, and measuring out degrees of freedom. Our goal is to explain how to translate the
(un)twisted gauging procedure step-by-step to quantum processes and derive the corresponding
Kraus operators.

Gauging in 2d CFT Gauging the symmetry in 2d CFTs is to insert the mesh of algebraic
object in the partition function [28, 139] and resulting in a summation of twisted torus partition
function [87, 88, 140]. The algebraic object A is the direct sum of simple TDLs, together with
the fusion junction µ ∈ HomC(A ⊗ A,A) and split junction µ∨ ∈ HomC(A,A ⊗ A). Since the
gauged theory should be invariant under different triangulations of the manifold, the fusion and
split junctions should be invariant under the various F -moves, [141]

A

A

A

A
A

µ

µ∨

=

A

A

A

A
A

µ∨

µ

, A

A

A

AA

µ

µ
= A

A

A

AA

µ

µ
, A

A

A

A A

µ∨

µ∨ = A

A

A

A A

µ∨

µ∨ ,

(2.1)
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and the bubble shrinking,

A

A

A

µ∨

µ

= A . (2.2)

For a generic triangulation of the torus, the gauging is to put the mesh of an algebraic object on
the dual graph, the partition function is equal to the minimal mesh after the bubble shrinking and
F -moves,

A

A

AA

=

AA

AA

= A

A

=

A

A

A

A
A

µ

µ∨

(2.3)

The algebraic object is used to gauge non-invertible symmetry in 2d CFTs [28, 139]. For example,
to gauge an anomaly-free finite group G, the algebra object A =

⊕
g∈G g. The fusion and split

junctions are given by,

A

A A

µ =
1√
|G|

∑
g,h∈G

φ(g, h)

gh

g h

,

A

A A

µ∨

=
1√
|G|

∑
g,h∈G

φ∨(g, h)

gh

g h

,

(2.4)
According to the consistency condition, δφ(g, h, k) = ω(g, h, k) = 1. φ(g, h) ∈ H2(G,U(1)) and
φ∨(g, h) = φ(g, h)−1. Inserting the mesh of the algebra object into the partition function, we
obtain,

A

A

A

A
A

µ

µ∨

=
1

|G|
∑

g,h∈G
gh=hg

φ(g, h)

φ(h, g)

g

h

g

h
gh

. (2.5)

The gauged partition function depends on the choice of the discrete torsion φ(g, h) ∈ H2(G,U(1)).
However, there is no natural choice to favor one discrete torsion over the others, since the notion
of SPT order is relative. In the quantum information perspective, the SPT phases are short-range
entangled states that can be connected to the trivial product state by finite-depth local unitaries.
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For example, H2(Z2, U(1)) = Z1 is trivial, there is a unique choice of gauging Z2 global
symmetry. But for Z2×Z2, H2(Z2×Z2, U(1)) = Z2, these result in two different ways of gauging
(differed by choice of ± signs in the following gauged partition function),

ZT /Z2×Z2
=

1

4
(ZT [1,1,1] + ZT [1, a, a] + ZT [1, b, b] + ZT [1, ab, ab]

+ ZT [a,1, a] + ZT [b,1, b] + ZT [ab,1, ab] + ZT [a, a,1] + ZT [b, b,1] + ZT [ab, ab,1]

± ZT [a, b, ab]± ZT [a, ab, b]± ZT [b, a, ab]± ZT [b, ab, a]± ZT [ab, a, b]± ZT [ab, b, a]) .

(2.6)

where a, b are the symmetry lines for Za
2 × Zb

2, and the twisted torus partition function is defined
as follows,

Z[L1,L2,L3;µ, ν](τ) =

L1

L2

L3

µ

ν
(2.7)

For TDLs of quantum dimension 1, such as group-like TDLs, their fusion junction is 1 dimensional,
such that the labels µ, ν will be omitted for this case, as in (2.6).

Gauging on the lattice The connection between field theory and lattice begins with the iden-
tification of topological defect lines in the lattice model. This has been elaborated in [138] as well
as the Lieb-Schultz-Mattis anomaly and ’t Hooft anomaly of the symmetry on the lattice. We
follow [138] to define the topological defect lines (TDLs) on the lattice.

Consider the tensor product Hilbert space H = ⊗jHj . For the on-site symmetry G, the
symmetry TDL corresponding to g ∈ G is Ug =

∏
j U

g
j , where Ug

j is a unitary operator acting
non-trivially on the site j. It acts on local operator Oa

j at site j with representation index a as
(Ug)−1Oa

jU
g = (Ug

j )
−1Oa

jU
g
j = R(g)abOb

j . And the Hamiltonian H = (Ug)−1HUg is invariant
under the symmetry action as expected.

In the system with Lorentz invariance, the partition function with TDL L action Tr
(
Le−βH

)
is related to the defect partition function TrHL e

−βH by the modular S-transformation, where HL

is the defect Hilbert space. For a lattice system, there is no Lorentz invariance, and we define the
defect Hamiltonian by acting the TDL on half of the space. To be specific, the defect Hamiltonian
with a symmetry defect of g at link (j, j + 1) is obtained by,

H(j−1,j)
g ≡ (Ug

<j)
−1HUg

<j , where Ug
<j =

j−1∏
j=−∞

Ug
j (2.8)

The symmetry defect is topological, and it can be moved freely without energy cost. The defect
moving operator is given by,

λgj = (Ug
<j)

−1Ug
<j+1 = Ug

j , (λgj )
−1H(j−1,j)

g λgj = H(j,j+1)
g . (2.9)
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When moving one defect close to another defect, the fusion junction of TDLs is in general a
vector space of dimension N c

ab, where a, b, c are the TDLs. There is in general a matrix acting
on the fusion junction. For group-like TDLs, the fusion junction is 1-dimensional and there is
a phase ambiguity 2-cocycle φ(g, h) associated to the junction. Since the φ(g, h) is a 2-cocycle,
δφ(g, h, k) = 0, it will not introduce new ’t Hooft anomaly. Although such phase commutes with
the defect Hamiltonian, we will show the phase φ(g, h) ∈ H2(G,U(1)) could change the Gauss law
operator, imposing the corresponding twisted Gauss law corresponds to the twisted gauging.

To gauge the symmetry G, we first introduce the degrees of freedom on the links labeled by a
group element g. |g⟩j− 1

2
at the link (j − 1, j) denotes the g defect between site j − 1 and j. The

gauge transformation operator is defined by,

φGg
j ≡

∑
a,b∈G

(
φ(ag−1, g)†

∣∣ag−1
〉
⟨a|
)
j− 1

2

⊗ λgj ⊗ (φ(g, b) |gb⟩ ⟨b|)j+ 1
2
. (2.10)

which is pictorially depicted as,

φGg
j ≡

∑
a,b

a〉 b〉

ag-1〉 gb〉

g 〉

λg

j - 1 / 2 j j + 1 / 2

φ (g, b)

φ† a g-1, g
(2.11)

Different from the Gauss law operator in the previous literature, this Gauss law operator in-
corporates the data of φ ∈ H2(G,U(1)). The twisted (untwisted) Gauss law operator refers to
non-trivial (trivial) φ(g, h). We note that the general Gauss law operators φGg

j on different sites
commute with each other. The product of all the Gauss law operators act the same as the sym-
metry operator on the physical Hilbert space on sites

∏
j
φGg

j |sites⟩ =
∏

j U
g
j |sites⟩, as it is not

necessary to require
∏

j
φGg

j =
∏

j U
g
j . When imposing the (un)twisted Gauss law φGg

j = 1, ∀j,
we obtain the dual physical space. The (un)twisted gauging refers to the process of introducing
the link variable, mimial coupling, and imposing the (un)twisted Gauss law constraint.

Technically, one needs to find a unitary to transform the Gauss law operator to its diagonal
form, and other terms in the extended Hamiltonian will be transformed accordingly. This unitary
in general is hard to find, so we will use the algebra structure of the Pauli polynomials to find the
unitary. This method is used in studying stabilizer code [79–81, 142].

The untwisted gauging corresponds to φ(g, h) = 1, while the twisted gauging is obtained by
taking φ(g, h) ∈ H2(G,U(1)). Note that such modification will not contribute to the ’t Hooft
anomaly. Although the symmetry operator Ug has a phase ambiguity, such phase ambiguity can
not trivialize the phase φ(g, h) ∈ H2(G,U(1)) associated with the fusion vertex of the defect lines.
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The twisted gauging of ZN × ZN is explicitly shown in the following section Sec. 5. We will show
that twisted gauging is equivalent to first applying SPT entangler and then untwisted gauging the
symmetry.

Gauging via quantum process Both the untwisted gauging and twisted gauging involve
adding additional link degrees of freedom, extending the Hamiltonian, and imposing the Gauss
law constraint. These procedures can be translated to quantum processes, that involve adding
ancilla freedoms, performing unitary transformations via quantum circuits, making partial mea-
surements, and then post-selecting measurement outcomes to enforce gauge constraints. Here, the
notion of a quantum process refers to a completely positive (CP) map of quantum states that are
not necessarily trace-preserving, namely ρ → KρK† by some Kraus operator K. To be precise,
given that the post-selection procedure (as a projection) is not trace-preserving, (non-)invertible
symmetries K (as TDLs) are generally implemented as quantum processes, other than quantum
channels that are completely positive trace-preserving (CPTP) maps.

Nevertheless, a key ingredient in specifying these quantum processes is the sequential quantum
circuit that implements the (majority of) operator mappings. We will explain how to realize the
gauging process by quantum gates in the quantum circuit. After compilation and simplification
of the circuit structure, the mapping between the original Hamiltonian and the dual Hamiltonian
can be achieved efficiently. Once having the quantum circuit, one can find general translation
invariant local operators that are invariant under the duality transformations and construct the
duality invariant Hamiltonians.

3 Warm-up: Kramers-Wannier duality in Ising model as Z2 gauging

In this section, we review the Kramers-Wannier duality in the Ising model and understand it from
field theory, lattice, and quantum process perspectives. This section is meant to set up the notation
and review the method, all results in this section are not new. The qubit (spin) operators in the
original Hamiltonian are Xj , Zj , j ∈ Z, while the dual operators are X̃j+ 1

2
, Z̃j+ 1

2
, j ∈ Z.

The Ising model on 1d lattice is given by,

HIsing = −
∑
j

ZjZj+1 + gXj , (3.1)

where X,Y, Z are the Pauli matrices. The Z2 global symmetry is generated by Uη =
∏

j Xj , and
the local operator Zj is charged under this Z2 global symmetry. For simplicity, we will first consider
an infinite chain, and we will deal with the boundary conditions later. It is well-known that the
Kramers-Wannier duality exchanges the paramagnetic (disordered) and ferromagnetic (ordered)
phase, and,

KW : ZjZj+1 ⇒ X̃j , Xj ⇒ Z̃j−1Z̃j . (3.2)
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Hence, the Ising critical point g = 1 is invariant under the Kramers-Wannier duality (3.2). We
will use ⇒ for mapping using generic quantum processes and their reserves, and → for mapping
using unitary operators. Although KW maps the local Hamiltonian to the dual Hamiltonian and
preserves locality, it maps the Z2 charged local operator to the non-local disorder operator,

KW : Zj ⇒ X̃jX̃j+1X̃j+2 · · · . (3.3)

More drastically, KW maps the symmetry operator Uη =
∏

j Xj ⇒
∏

j Z̃j−1Z̃j = 1. The KW

cannot be implemented by a unitary operator. However, the Kramers-Wannier duality is obtained
by gauging the global Z2 symmetry,

Kramers-Wannier duality = untwisted gauging Z2 global symmetry (S). (3.4)

Lattice perspective To gauge the Z2 symmetry on the lattice, we follow the procedure in [138].
We first create many Z2 defects and then make them dynamic. This enlarges the Hilbert space to
include link degrees of freedom. In particular, for every link (j, j+1), we introduce a local Hilbert
space as j + 1

2 with two states labeling the Ising domain wall degrees of freedom. The extended
Hamiltonian becomes,

HIsing-gauged = −
∑
j

ZjZ̃j+ 1
2
Zj+1 + gXj . (3.5)

The Z2 defect moving operator is given by λgj = (Xj)
g. According to (2.10), the Gauss law operator

is given by,

Gg
j =

∑
a,b

(|a− g⟩ ⟨a|)j− 1
2
⊗Xg

j ⊗ (|g + b⟩ ⟨b|)j+ 1
2
= X̃g

j− 1
2

Xg
j X̃

−g

j+ 1
2

. (3.6)

Finally, we impose Gj = 1, ∀j to project to the dual Hilbert space. To be specific, we use the
unitary,

Ucond =
∏
j

Hj+ 1
2

∏
j

CZj− 1
2
,j

∏
j

CZj,j+ 1
2
, (3.7)

where CZi,j = 1
2(1 + Zi + Zj − ZiZj) and Hj = 1√

2
(Zj + Xj). Ucond is a finite depth unitary

quantum circuit,

i - 3 / 2 i - 1 i - 1 / 2 i i + 1 / 2 i + 1 i + 3 / 2
H H H H

(3.8)
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In our convention, the unitary transformation is taken as O U−→ O′ = U †OU . Applying the unitary
transformation, the extended Hamiltonian and Gauss law become,

HIsing-gauged = −
∑
j

ZjZ̃j+ 1
2
Zj+1 + gXj

Ucond−→ H̃Ising-gauged = −
∑
j

X̃j+ 1
2
+ gZ̃j− 1

2
XjZ̃j+ 1

2
, (3.9)

Gj = X̃j− 1
2
XjX̃j+ 1

2

Ucond−→ G̃j = Xj . (3.10)

By setting Xj = 1, we arrived at the dual Ising model,

H̃Ising = −
∑
j

X̃j+ 1
2
+ gZ̃j− 1

2
Z̃j+ 1

2
(3.11)

It can be further mapped back to the original Ising model by shifting the lattice by “j → j − 1
2 ”

and sending g → 1/g.

Quantum process perspective In the quantum process perspective, introducing new degrees
of freedom on the link and minimal coupling can be formulated as introducing ancilla qubits and
entangling with the original qubits, and enforcing the Gauss law constraint can be formulated as
making measurement and post-selecting the measurement outcome.

To be concrete, we introduce ancilla qubits on the link with an initial state specified by Z̃j+ 1
2
=

1, ∀j ∈ Z. First, we apply a layer of Hadamard gates

Uinitial =
∏
j

Hj+ 1
2

(3.12)

to transform these ancilla qubits to the state of X̃j+ 1
2
= +1, ∀j ∈ Z, which will turn out to be more

convenient for performing the gauging procedure via minimal coupling. In the quantum process
perspective, gauging means entangling the ancilla qubits to the system as the link (gauge string)
degree of freedom with Gauss law constraint.

Next, we aim to construct a sequential quantum circuit that can implement the following maps:

Xj → Xj , X̃j+ 1
2
→ X̃j− 1

2
XjX̃j+ 1

2
, Zj → ZjZ̃j+ 1

2
Z̃j+ 3

2
Z̃j+ 5

2
· · · , · · · Z̃j− 1

2
Zj → · · · Z̃j− 1

2
Zj .

(3.13)
Physically, the second mapping corresponds to the emergence of a local Gauss law constraint
Gj = +1 from the ancilla qubit initial state X̃j+ 1

2
= +1, and the last two mappings correspond

to the generation and termination of gauge string at the matter field site, realizing the minimal
coupling. Such sequential quantum circuit is given by,

Ugauge =
∏
j

CXj+ 1
2
,j− 1

2
CXj+ 1

2
,j , (3.14)
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where CXi,j = 1
2(1 + Zi + Xj − ZiXj). Together with the introduction of the ancilla qubit, the

quantum circuit UinitialUgauge in each sequential step can be depicted as,

j - 1 / 2 j j + 1 / 2

H

(3.15)

Here we stick to the notation that the ancilla qubit (down-triangle) is always introduced in the
Z = +1 state in the circuit diagram, therefore it requires a Hadamard gate Hj+ 1

2
(as provided by

Uinitial) to transform to the X = +1 initial state.
Finally, we need to implement the gauge constraint Gj = X̃j− 1

2
XjX̃j+ 1

2
= +1,∀j ∈ Z by

measuring each Gj observable, and post-selecting its measurement outcome to Gj = +1. Given
that Gj is a non-onsite operator, the first step is to evoke the unitary transformation Ucond in
(3.7) to transform the Gauss law operator Gj = X̃j− 1

2
XjX̃j+ 1

2
to an on-site operator G′

j =

U †
condGjUcond = Xj . This amounts to applying the unitary layer Ucond to the system. Then

we further apply a final layer of Hadamard gates

Ufinal =
∏
j

Hj , (3.16)

to transform Xj → Zj , such that the gauge constraint becomes Zj = +1,∀j ∈ Z effectively, which
can then be implemented by measuring every integer-site qubit in Z basis and post-selecting the
Z = +1 result.

Note that all these unitary transformations can be combined as a single unitary circuit UKW,

UKW = UinitialUgaugeUcondUfinal

=
∏
j

Hj+ 1
2

∏
j

CXj+ 1
2
,j− 1

2
CXj+ 1

2
,j

∏
j

Hj+ 1
2

∏
j

CZj− 1
2
,j

∏
j

CZj,j+ 1
2

∏
j

Hj

=
∏
j

HjCXj− 1
2
,jCXj+ 1

2
,jSWAPj,j+ 1

2
.

, (3.17)

where SWAPi,j = 1
2(1 +XiXj + YiYj + ZiZj). Here we have merged the gates and compiled the

quantum circuit into a simpler form.
As a result, the Kramers-Wannier duality KW can be viewed as the composition of introduc-

ing of ancilla qubits Z̃j+ 1
2
= 1,∀j ∈ Z on the links (half-integer sites), performing the unitary

transformation UKW, and post-selecting Zj = 1, ∀j ∈ Z by projective measurement on integer
sites. The combined operation goes beyond the scope of unitary transformations. It should be

16



understood as a quantum process implemented by a Kraus operator KKW, such that any opera-
tor mapping KW : O ⇒ O′ under the Kramers-Wannier duality will be realized as a Kraus map
O′ ∝ K†

KWOKKW, or more precisely as OKKW = KKWO′. Thus KKW should be identified as the
duality operator, corresponding to a non-invertible symmetry in the self-dual Ising model.

Inherited from the sequential structure of the unitary quantum circuit UKW, the Kraus operator
KKW also assumes a sequential structure,

KKW =
∏
j

KKW
j− 1

2
,j,j+ 1

2

, (3.18)

where each step of the Kraus operator can be represented by the following quantum circuit diagram
following the result of (3.17),

KKW
j− 1

2
,j,j+ 1

2

=

j - 1 / 2 j j + 1 / 2

H
. (3.19)

In the above diagram, we assume that the ancilla qubit (down-triangle) is always introduced in
the Z = +1 state and the single-qubit measurement (square apparatus) is always performed in
the Z basis and post-select to the Z = +1 outcome. To be more precise, we define the Z = +1

projection operator on site-j as

Pj =
1

2
(1 + Zj), (3.20)

which enables us to express the Kraus operator in terms of

KKW
j− 1

2
,j,j+ 1

2

= Pj+ 1
2
HjCXj− 1

2
,jCXj+ 1

2
,jSWAPj,j+ 1

2
Pj , (3.21)

with the understanding that the projection operator Pj+ 1
2

prepares the a new qubit j + 1
2 to the

Z̃j+ 1
2
= +1 state and the projection operator Pj post-selects an existing qubit j to the Zj = +1

state. Since the projection Pj is not invertible, the Kraus operator KKW as a whole is also not
invertible.

From the simplified quantum circuit, we can see that the introduced ancilla qubit in the Z = +1

state is never modified by any gate in the circuit until it gets measured to the same Z = +1

state with probability one (therefore no selection is actually needed). Effectively, the introduced
ancilla will do nothing and then be projected out by measurement, so the combined operations
Pj+ 1

2
CXj+ 1

2
,jSWAPj,j+ 1

2
Pj can be dropped together from the circuit, apart from those in the initial

and final steps (we will take care of these boundary operations later). The gauging with respect to
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symmetries encoded into nilpotent fusion categories can be realised in constant depth as discussed
in [123]. The sequential unitary circuit within each step is then simplified to:

j - 1 j
H

. (3.22)

It is easy to check that the sequential unitary circuit maps ZjZj+1 → Xj and Xj → Zj−1Zj , as
expected for the Kramers-Wannier duality.

However, more care should be given to the gate structure near the left and right boundaries,
since the first ancilla qubit on the left boundary will be entangled into the system and not be
measured until the sequential quantum circuit runs into its right end. To be more specific, we
choose j = 1 as the starting point of the periodic chain of size L, meaning that the site L + 1 is
equivalent to the site 1. The first ancilla qubit at 1

2 will be acted by both KKW
1
2
,1, 3

2

and KKW
L− 1

2
,L, 1

2

.
The complete quantum circuit that implements the Kramers-Wannier duality is

0 1 2 L- 1 L

H H H HH …

…

(3.23)

where the boundary qubit is relabelled to be 1
2 → 0. Therefore, we finally arrive at the simplified

Kraus operator

KKW = P0

 L∏
j=0

Hj

L∏
j=1

CXj−1,j

CX0,LPL. (3.24)

In the end, the entire KW quantum process only introduces one ancilla qubit on the left end
by P0, and measures one final qubit on the right end by PL [19, 123]. This is reminiscent of
orbifolding in the conformal field theory, where the line operators are only inserted once along the
non-contractible loops. In particular, the unitary part of KKW (the quantum circuit part) maps

Z0ZLZ1 → X0, XL → ZLZL−1Z0 (3.25)

Therefore, Z0 controls the periodic or anti-periodic boundary condition for the original Ising model,
while ZL controls the boundary condition of the dual model, which are both set to Z = +1 by the
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projection operators P0 and PL, realizing periodic boundary conditions in both original and dual
Ising models.

Moreover, unitary part of KW maps the symmetry operator as follows,
L∏

k=1

Xk → ZL, Z0 →
L−1∏
k=0

Xk. (3.26)

These mappings describe how the original Z2 symmetry
∏L

k=1Xk disappears under gauging and
how the dual Z2 symmetry

∏L−1
k=0 Xk emerges at the same time. Physically, KW interchanges the

symmetry charge and defect charge. For example, let us consider the sector with
L∏

k=1

Xk = −1, Z0 = +1 (3.27)

of the original theory (defined on sites j = 1, · · · , L). Under the KW, it maps to,

ZL = −1,
L−1∏
k=0

Xk = +1 (3.28)

which is in the twisted Z2 even sector of the Z2 orbifold theory (defined on sites j = 0, · · · , L− 1).
This is consistent with the Z2 orbifold of Ising CFT that KW interchanges the sectors,

B Z2-even Z2-odd

untwisted 1, ϵ σ

twisted µ ψL, ψR

Z2-orbifold←→
B/Z2 Z2-even Z2-odd

untwisted 1, ϵ µ

twisted σ ψL, ψR

(3.29)

Pauli polynomial In general, it could be hard to keep track of the mapping of all operators
under the unitary transformations, as in (3.7), (3.14). The algebra method used in quantum
stabilizer codes becomes useful for this purpose. As reviewed in Appendix C, the tensor product
of Pauli matrices with translation invariance can be represented as a vector, where the coefficients
are Z2-valued. For example, the terms (independent sets of stabilizers) in the Ising model are

ZjZj+1 ⇝

(
0

1 + x

)
, Xj ⇝

(
1

0

)
. (3.30)

The unitary transformations will preserve the commutation relation of the stabilizers, and the
unitary transformations can be represented as symplectic transformations on the Pauli polynomials.
We introduce ancilla qubits with X̃j+ 1

2
= +1, j ∈ Z, which amounts to adding X̃j+ 1

2
to each

stabilizer set by appending another column of Pauli polynomials in correspondence to X̃j+ 1
2
,

(
0

1 + x

)
→


0 0

0 1

1 + x 0

0 0

 ,

(
1

0

)
→


1 0

0 1

0 0

0 0

 (3.31)
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where each row now corresponds to (Xj , X̃j+1/2;Zj , Z̃j+1/2) respectively. The unitary maps Ugauge

in (3.14) and Ucond in (3.7) are represented as the following symplectic transformations

Tgauge =


1 1 0 0

0 1
x + 1 0 0

0 0 1 0

0 0 1
x+1

1
x+1

 , Tcond =


1 0 0 0

0 0 0 1

0 0 1 1 + x
1
x + 1 1 0 0

 (3.32)

Note that Tgauge is a sequential quantum circuit, while Tcond is a finite depth local unitary circuit,
which can be obtained by combining the elementary transformations,

Tcond = TCZ
j− 1

2 ,j
·TCZ

j,j+1
2

·TH
j+1

2

=


1 0 0 0

0 1 0 0

0 x 1 0
1
x 0 0 1

 ·


1 0 0 0

0 1 0 0

0 1 1 0

1 0 0 1

 ·


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 (3.33)

Then the symplectic transformation of KW is

TKW = Tcond · Tgauge =


1 1 0 0

0 0 1
x+1

1
x+1

0 0 0 1
1
x + 1 0 0 0

 . (3.34)

It is straightforward to check the KW transformation on the local operators Xj , Zj is,

(Xj , Zj)⇝


1 0

0 0

0 1

0 0

 TKW−−→


1 0

0 1
1+x

0 0
1
x + 1 0

 Gauss law−−−−−−→

(
0 1

1+x
1
x + 1 0

)
⇝
(
Z̃j− 1

2
Z̃j+ 1

2
, X̃j+ 1

2
X̃j+ 3

2
· · ·
)

(3.35)
where the Gauss law is imposed in the last step to set Xj = +1, j ∈ Z, effectively removing the
integer sites from the system. After site relabeling of j + 1

2 → j, the symplectic transformation

T eff
KW =

(
0 1

1+x
1
x
+1 0

)
(3.36)

corresponds to the effective KW transformation, under which the operators transform as

(Xj , Zj)⇝

(
1 0

0 1

)
T eff
KW−−→

(
0 1

1+x
1
x + 1 0

)
⇝(Zj−1Zj ,

∏
j′≥j

Xj′). (3.37)

In the Kraus operator representation, the KW transformation can be formulated as a quantum
process, implemented by the Kraus operator in an infinite system KKW = · · ·

∏
j Hj

∏
j CXj−1,j · · · ,

such that XjKKW = KKWZj−1Zj and ZjKKW = KKW
∏

j′≥j Xj′ . This matches the quantum
circuit description in (3.22), after adding boundary terms and projection operators for finite-sized
systems.
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4 Warm-up with a twist: Z2 × Z2 twisted gauging in quantum spin chain

In this section, we will elaborate on twisted gauging and its connection with “applying an SPT
entangler then untwisted gauging”. This twisted gauging generates a non-local mapping between
local Hamiltonians, in particular, the gapped phases. We will postpone the in-depth discussion of
various duality, triality between gapped phases, and their combination later in this section.

To illustrate the twisted gauging on the lattice, we start with the concrete Hamiltonians that
respect Z2 × Z2 symmetry and describe gapped phases. To be specific, the Z2 × Z2 spontaneous
symmetry breaking phase is described by,

HSSB =
∑
j

Z2j−1Z2j+1 + Z2jZ2j+2. (4.1)

where Xj , Zj are Pauli matrices. The SSB Hamiltonian has Ze
2×Zo

2 symmetry, which is generated
by ηe =

∏
j X2j , η

o =
∏

j X2j−1 for even (e) and odd (o) sublattices respectively. The Ze
2 × Zo

2

symmetric states include the cluster state in the SPT phase

HSPT =
∑
j

Z2j−1X2jZ2j+1 + Z2jX2j+1Z2j+2, (4.2)

and the symmetric trivial product state in the disordered phase,

HSYM =
∑
j

X2j +X2j+1. (4.3)

Lattice perspective The Ze
2×Zo

2 defect moving operator is given by λ(g1,g2)j = Xg1
2jX

g2
2j+1, where

g1 = 0, 1 (g2 = 0, 1) labels the group element of Ze
2 (Zo

2). Different from the previous Z2 case,
φ ∈ H2(Ze

2 × Zo
2, U(1)) = Z2 has non-trivial element explicitly given by φ(g, h) = (−1)g1h2 . This

non-trivial element cannot be trivialized by redefining the symmetry operator Ug → eiν(g)Ug no
matter how the phase factor ν(g) is chosen. Therefore, the Ze

2 × Zo
2 Gauss law operator has two

choices of φ(g, h),
φ(g, h) = 1, φ(g, h) = (−1)g1h2 , (4.4)

for g = (g1, g2), h = (h1, h2) ∈ Ze
2 × Zo

2. The corresponding untwisted Gauss law operator with
φ(g, h) = 1 is,

Ge
j = X̃2j− 3

2
X2jX̃2j+ 1

2
, Go

j = X̃2j− 1
2
X2j+1X̃2j+ 3

2
, (4.5)

and the twisted Gauss law operator with φ(g, h) = (−1)g1h2 is given by,

twGe
j = X̃2j− 3

2
Z̃2j− 1

2
X2jX̃2j+ 1

2
, twGo

j = X̃2j− 1
2
Z̃2j+ 1

2
X2j+1X̃2j+ 3

2
(4.6)

The twisted Gauss law operator is directly computed using (2.10), and the ZN × ZN version is
derived in Appendix A. Note that the twisted Gauss law operators are dressed by the operator
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acting on the other Z2 gauge field, but the twisted Gauss law operators all commute with each
other as they should.

The Hamiltonians are also extended to include link variables. The untwisted gauging is similar
to the previous Z2 example. We are focusing on the twisted gauging in the following discussion.
The twisted Gauss law operators can be diagonalized by the unitary transformation, whose explicit
form is given by the following finite depth local unitary,

twUcond =
∏
j

CX2j,2j+ 1
2
CX2j,2j− 3

2
CZ2j,2j− 1

2

∏
j

CX2j−1,2j− 1
2
CX2j−1,2j− 5

2
CZ2j−1,2j− 3

2

∏
j

H2j− 1
2
H2j+ 1

2

(4.7)
Pictorially, it is given by,

-1 -1 / 2-3 -5 / 2 1 3 / 2

H H H

0 1 / 2-2 -3 / 2 2 5 / 2

H H H

......

(4.8)

where the numbers # correspond to 2j+#. The corresponding symplectic transformation is given
by,

twTcond =



1 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0

0 0 1 0 0 0 0 0
1
x 0 0 0 0 0 0 1

0 0 0 x 1 1 + x 0 0
1
x + 1 1 0 0 0 0 0 0

0 1 0 0 0 0 1 1 + x

0 0 1
x + 1 1 0 0 0 0


, (4.9)

whose basis is (X2j−1, X̃2j− 1
2
, X2j , X̃2j+ 1

2
, Z2j−1, Z̃2j− 1

2
, Z2j , Z̃2j+ 1

2
). Its action on the gauged sta-

bilizers is,(
Z2jZ̃2j+ 1

2
Z2j+2, Z2j−1Z̃2j− 1

2
Z2j+1

)
→
(
X̃2j+ 1

2
, X̃2j− 1

2

)
(4.10)

(X2j , X2j+1)→
(
Z̃2j− 3

2
X̃2j− 1

2
X2jZ̃2j+ 1

2
, Z̃2j− 1

2
X̃2j+ 1

2
X2j+1Z̃2j+ 3

2

)
(4.11)(

Z2jZ̃2j+ 1
2
X2j+1Z2j+2, Z2j−1Z̃2j− 1

2
X2jZ2j+1

)
→
(
Z̃2j− 1

2
X2j+1Z̃2j+ 3

2
, Z̃2j− 3

2
X2jZ̃2j+ 1

2

)
(4.12)

22



Its action on the Gauss law operators is as desired,

(X̃2j− 3
2
Z̃2j− 1

2
X2jX̃2j+ 1

2
, X̃2j− 1

2
Z̃2j+ 1

2
X2j+1X̃2j+ 3

2
)→ (X2j , X2j+1) (4.13)

We then impose the Gauss law, Xj = 1, and the twisted gauging maps these gapped phases to
each other as,

TG : SYM
SPT

SSB (4.14)

For the partial SSB phases,

TG : SSBe ↔ SSBo, SSBdiag invariant (4.15)

TG generates an order-6 non-local mapping among gapped phases,

(TG)3 = T (4.16)

where T is translation by 1 lattice constant (as j → j + 1), which will permute the Ze
2 and Zo

2

symmetries.

Quantum process perspective The minimal coupling between the local fields and the addi-
tional ancilla again can be obtained by unitary transformation as Ugauge in the previous Z2 case.
However, the twisted Gauss law operator requires a modified sequential quantum circuit,

-1 / 2 1 3 / 2

H

1 / 2 2 5 / 2

H

(4.17)

where (−1/2, 1, 3/2) ∼ (2j − 5/2, 2j − 1, 2j − 1/2) and (1/2, 2, 5/2) ∼ (2j − 3/2, 2j, 2j + 1/2). Its
corresponding symplectic transformation is,

twTgauge =



1 1 0 0 0 0 0 0

0 1
x + 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 1
x + 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 1 1
x+1

1
x+1 0 0

0 0 0 0 0 0 1 0

0 1
x 0 0 0 0 1

x+1
1

x+1


(4.18)
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It is straightforward to check the combined action on local operators, the effective symplectic
transformation with Gauss law constraint is,

twTcond · twTgauge
project−−−−→


0 1 1

1+x 0
1
x 0 0 1

1+x
1
x + 1 0 0 0

0 1
x + 1 0 0

 ≡ TTG (4.19)

which acts on (X2j−1, X2j ;Z2j−1, Z2j) basis. It is easy to verify that the symplectic transformation
TG is equivalent to first doing the SPT entangler and then doing Kramers-Wannier duality on even
and odd sites separately,

TTG = TKWe ·TKWo ·TSPT =


0 0 1

x+1 0

0 1 0 0
1
x + 1 0 0 0

0 0 0 1

·


1 0 0 0

0 0 0 1
x+1

0 0 1 0

0 1
x + 1 0 0

·


1 0 0 0

0 1 0 0

0 1 + x 1 0
1
x + 1 0 0 1


(4.20)

The quantum circuit for the twisted gauging is

-1 1 3 2 L - 3 2 L - 1

H H H H H

…

…

0 2 4 2 L - 2 2 L

H H H H H

…

…

(4.21)
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or expressed as the following Kraus operator

KTG = USPTKKWoKKWe ,

USPT =

 2L∏
j=2

CZj−1,j

CZ2L,1,

KKWo = P−1

L−1∏
j=0

H2j−1

L−1∏
j=0

CX2j−1,2j+1

CX−1,2L−1P2L−1,

KKWe = P0

L−1∏
j=0

H2j

L−1∏
j=0

CX2j,2j+2

CX0,2LP2L.

(4.22)

The twisted gauging TG already induces a cyclic permutation among the three gap phases: SYM,
SPT, and SSB, given that their Hamiltonians are related by the Kraus map:

HSYMKTG = KTGHSPT, HSPTKTG = KTGHSSB, HSSBKTG = KTGHSYM. (4.23)

The slogan for the twisted gauging is,

Twisted gauging = SPT entangler then gauging (S2S1T) (4.24)

where T corresponds to applying the SPT entangler SPT and S1 (S2) corresponds for the Kramers-
Wannier duality KWe (KWo) by gauging each of the two Z2 symmetries.

We note that the Kennedy-Tasaki (KT) duality is twisted gauging and then applying an SPT
entangler. The Kennedy-Tasaki (KT) duality maps Z2×Z2 symmetry-protected topological (SPT)
phase to Z2 × Z2 spontaneously symmetry breaking (SSB) phase. The HSYM is invariant under
the KT duality, which is the KT non-invertible symmetry-protected gapped phase.

Kennedy-Tasaki duality = Twisted gauging Z2 × Z2 then an SPT entangler (TS2S1T) (4.25)

4.1 (S3 × S3)⋊ Z2 action on Z2 × Z2 gapped phases

As discussed in the previous section, the twisted gauging of Z2×Z2 is not an order-3 map yet, since
TG3 = T , where T is the lattice translation symmetry, and it will swap the Ze

2 and Zo
2. However,

under the TTG map, the SPT phase, symmetric phase and completely SSB phase are permuted,
while the partially SSB phases remain invariant,

TTG :
SYM

SPT

SSB SSBe

SSBdiag

SSBo
(4.26)
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The left and right triangles are related by KWe.

KWe :

SYM

SPT

SSB SSBe

SSBdiag

SSBo

(4.27)

Moreover, the combination (KWe)† ◦ TTG ◦ KWe maps,

(KWe)† ◦ TTG ◦ KWe :
SYM

SPT

SSB SSBe

SSBdiag

SSBo
(4.28)

In general, the untwisted gauging KWeo = KWe ◦ KWo, together with twisted gauging TG and
KWe generate the maps corresponding to the element in (S3 × S3)⋊ Z2

3.
This can be understood from the symmetry topological field theory (SymTFT) perspective.

The SymTFT of Z2×Z2 symmetric Hamiltonian is Z2×Z2 toric code, which contains 16 anyons.
The different gapped phases are given by condensing different Lagrangian algebras. The anyons
with self-boson statistics can be organized as follows, such that each column and row are mutual
bosons,

e1 1e ee

1m m1 mm

em me ff

(4.29)

The table has (S3×S3)⋊Z2 symmetry, where the S3×S3 permutes the columns and rows, and Z2

reflects the table along the diagonal (like matrix transpose). This is exactly the anyon permutation
symmetry of the Z2 × Z2 toric code. Depending on condensing which row or column, there are 6
gapped phases,

Condensible algebra A Gapped phase

11 + e1 + 1e+ ee Z2 × Z2 SSB

11 + 1m+m1 +mm Z2 × Z2 SYM

11 + em+me+ ff Z2 × Z2 SPT

11 + e1 + 1m+ em Ze
2 SSB

11 + 1e+m1 +me Zo
2 SSB

11 + ee+mm+ ff Zdiag
2 SSB

(4.30)

3We reserve the term G-ality for every elements in G corresponding to (un)twisted gauging [56]. Since in this
case the Z2 × Z2 SPT entangler is a unitary, it differs from other order-2 elements that corresponds to (un)twisted
gauging and combining them won’t have the proper fusion rule.
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The bulk (S3 × S3) ⋊ Z2 anyon permutation symmetry generates corresponding maps between
theories [9],

TTG : SPT→ SSB→ SYM→ SPT (4.31)

KWeo : SYM↔ SSB, (TTG)†KWeo : SPT↔ SYM, (TTG)†KWeo(TTG) : SPT↔ SSB (4.32)

KWe : SYM↔ Ze
2 SSB, SSB↔ Zo

2 SSB, SPT↔ Zdiag
2 SSB, (4.33)

If we label the symmetry group as (S
(1)
3 × S

(2)
3 )⋊ Zc

2, and the generators satisfy,

(a(i))3 = (b(i))2 = (b(i)a(i))2 = 1, c2 = 1, ca(i)c = a(̄i), cb(i)c = b(̄i) (4.34)

where a(i), b(i) are the generators of S(i)
3 , and c is the generator for Zc

2. 1̄, 2̄ = 2, 1 respectively.
The corresponding maps are related as,

TTG ∼ a(1),KWeo ∼ b(1),KWe ∼ c. (4.35)

Then it is clear about the relations of other group elements.
However, the mappings in this Z2×Z2 case are not on equal footing. In particular, the element

that corresponds to b(1)a(1) is SPT entangler which doesn’t involve any gauging, therefore, it
corresponds to invertible mapping with quantum dimension 1. In the following, we will specify the
G-ality as that each element corresponds to (un)twisted gauging, so that it can have a consistent
fusion rule. We will discuss triality (G = Z3) and p-ality (G = Zp) in the subsequent sections.
The S3-ality is discussed in [56].

Note that SPT phase is invariant under the Kramers-Wannier duality, while the SYM phase is
invariant under the Kennedy-Tasaki transformation. They both admit non-invertible symmetry,
and they are corresponding non-invertible symmetric gapped phase with a unique ground state.

5 Twisted gauging of ZN × ZN

It is straightforward to generalize the twisted gauging of Z2 × Z2 to ZN × ZN . We first introduce
the ZN generalized Pauli matrices, also known as shift and clock matrices. Let X,Z be N × N
matrices, acting on the states as X |n⟩ = |n− 1⟩ , Z |n⟩ = ωn |n⟩, where ω = e

2πi
N . They satisfy

XZ = ωZX. Using these ZN Pauli matrices, we can define controlled gates for the ZN case:

COi,j =
1

N

N∑
a=1

N∑
b=1

ω−abZa
i Ob

j , (5.1)

where i is the controlled site and j is the action site, and the operator O will be replaced by either
X or Z to indicate either CX or CZ gate. We can also define the projection operator to the Z = 1

state (i.e. the state |n = 0⟩) on the site j as

Pj =
1

N

N∑
a=1

Za
j . (5.2)
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These operators will enable us to construct Kraus operators for ZN × ZN twisted gauging.
The ZN × ZN SPT is classified by H2(ZN × ZN , U(1)) = ZN , which is given by,

HSPTa =
∑
j

Za
2jX2j+1Z

−a
2j+2 + Z−a

2j−1X2jZ
a
2j+1 + h.c. (5.3)

This Hamiltonian is symmetric under the Ze
N×Zo

N symmetry which is generated by ηe =
∏

j X2j , η
o =∏

j X2j−1 on the even (e) and odd (o) sublattices respectively. The SPT Hamiltonian can be ob-
tained from the trivial symmetric phase HamiltonianHSYM ≡ HSPT0 =

∑
j Xj+h.c. by the unitary

transformation SPT entangler USPTa =
∏

j CZ
−a
2j−1,2jCZ

a
2j,2j+1, as HSPTa = U †

SPTaHSYMUSPTa .
Here, SPTa denotes the ath order SPT entangler, which effectively attaches the SPT root state to
the system by a times. Another important gapped phase is the spontaneous symmetry breaking
phase, which is stabilized by HSSB =

∑
j Z2j−1Z

−1
2j+1 + Z2jZ

−1
2j+2 + h.c..

The defect moving operator is given by λg1,g2j = Xg1
2jX

g2
2j+1. The phase associated with the

defect fusion junction is given by φ(g, h) = ωbg1h2 ∈ H2(ZN × ZN , U(1)), where every integer
b ∈ ZN labels a twisted gauging, called b-twisted gauging. Then, following the general formula of
(2.10), the associated b-twisted Gauss law operators for Ze

N and Zo
N are given by

bGe
j = X̃2j− 3

2
Z̃b
2j− 1

2

X2jX̃
−1
2j+ 1

2

, bGo
j = X̃2j− 1

2
Z̃−b
2j+ 1

2

X2j+1X̃
−1
2j+ 3

2

. (5.4)

The detailed derivation of the twisted Gauss law operator is in Appendix A. Under the twisted
gauging, the stabilizers for the gapped phase become,(

Z2jZ
−1
2j+2, Z2j−1Z

−1
2j+1

)
→
(
X̃2j+ 1

2
, X̃2j− 1

2

)
(5.5)

(X2j , X2j+1)→
(
Z̃2j− 3

2
X̃−b

2j− 1
2

Z̃−1
2j+ 1

2

, Z̃2j− 1
2
X̃b

2j+ 1
2

Z̃−1
2j+ 3

2

)
(5.6)(

Za
2jX2j+1Z

−a
2j+2, Z

−a
2j−1X2jZ

a
2j+1

)
→
(
Z̃2j− 1

2
X̃a+b

2j+ 1
2

Z̃−1
2j+ 3

2

, Z̃2j− 3
2
X̃−a−b

2j− 1
2

Z̃−1
2j+ 1

2

)
(5.7)

Using the symplectic transformation representation, the b-twisted gauging is given by,

bTgauge =



1 −1 0 0 0 0 0 0

0 1− 1
x 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 1− 1
x 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 −b 1
1−x

1
1−x 0 0

0 0 0 0 0 0 1 0

0 b
x 0 0 0 0 1

1−x
1

1−x


(5.8)

whose basis is (X2j−1, X̃2j− 1
2
, X2j , X̃2j+ 1

2
, Z2j−1, Z̃2j− 1

2
, Z2j , Z̃2j+ 1

2
). And the unitary transforma-
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tion that diagonalizes the Gauss law operator is given by,

bTcond =



−1 0 0 0 0 0 0 0

0 0 −b 0 0 1 0 0

0 0 1 0 0 0 0 0
b
x 0 0 0 0 0 0 1

0 0 0 −bx −1 1− x 0 0
1
x − 1 −1 0 0 0 0 0 0

0 −b 0 0 0 0 1 −1 + x

0 0 1
x − 1 −1 0 0 0 0


(5.9)

The twisted gauging is given by,

bTcond · bTgauge
project−−−−→ TTGb =


0 −b 1

1−x 0
b
x 0 0 1

1−x
1
x − 1 0 0 0

0 1
x − 1 0 0

 (5.10)

which acts on (X2j−1, X2j , Z2j−1, Z2j). One can check (5.5) in the Pauli polynomial representation,
the SSB, SYM and SPT stabilizers transform as


0 0 0 1 x 0

0 0 1 0 0 1

0 1− x 0 0 0 ax− a
1− x 0 0 0 a− ax 0

 T
TGb−−−→


0 1 −b 0 0 −a− b
1 0 0 b

x a+ b 0

0 0 0 1
x − 1 1− x 0

0 0 1
x − 1 0 0 1

x − 1


(5.11)

As a non-local mapping among ZN × ZN symmetric SPT Hamiltonians (and their corresponding
phases), TGb maps SPTa to SPT(−a−b)−1 when N is a prime number, where the inverse should be
understood as the modular multiplicative inverse with respect to N . One can easily convert the
twisted gauging to a quantum process,

TGb = KWe ◦ KWo ◦ SPTb, (5.12)

where the KWe/KWo corresponds to ZN Kramers-Wannier duality on even and odd sites, and SPTb

corresponds to attaching b multiples of the ZN × ZN SPT root state. At the level of symplectic
transformation of Pauli polynomials, (5.12) means (multiplication order goes from right to left as
the operator mapping reads vP → T · vP , where vP denotes the vector encoding of Pauli operator
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P ),

TTGb = TKWe · TKWo · TSPTb ,

TKWe =


1 0 0 0

0 0 0 1
1−x

0 0 1 0

0 1
x − 1 0 0

 ,

TKWo =


0 0 1

1−x 0

0 1 0 0
1
x − 1 0 0 0

0 0 0 1

 ,

TSPTb =


1 0 0 0

0 1 0 0

0 −b(1− x) 1 0

b( 1x − 1) 0 0 1

 .

(5.13)

At the level of the Kraus operator, (5.12) is explicitly realized as (multiplication order goes from
left to right as the operator mapping is given by O ⇒ K†OK)

KTGb = USPTbKKWoKKWe ,

USPTb =

 L∏
j=1

CZ−b
2j−1,2jCZ

b
2j,2j+1

CZb
2L,1,

KKWo = P−1

L−1∏
j=0

H2j−1

L−1∏
j=0

CX2j−1,2j+1

CX−1,2L−1P2L−1,

KKWe = P0

L−1∏
j=0

H2j

L−1∏
j=0

CX2j,2j+2

CX0,2LP2L.

(5.14)

Under the Kraus map of TGb, the SPT Hamiltonians with prime N (5.3) are related by

HSPTaKTGb ∼ KTGbHSPT(−a−b)−1 , (5.15)

where ∼ denotes that the Hamiltonians on both sides are in the same SPT phase.

6 Non-local mapping among gapped phases with ZN × ZN symmetry

In this section, we use the (un)twisted gauging to study the nonlocal mapping among different
gapped phases. For ZN ×ZN symmetric Hamiltonians, the possible low energy gapped phases are
disorder phase (SYM = SPT0), symmetry-protected topological phases (SPTa) and spontaneously
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symmetry breaking phases (SSB). We will consider the b = 1 and b = −2 twisted gauging. The
twisted gauging combined with global symmetry transformation generates the triality and p-ality
(p is a prime number) mapping between gapped phases.

6.1 Tri = TCeTG1 as the triality map

For general N > 2, the twisted gauging with b = 1 maps,

SPT0 =SYM
SPTN−1

SSB (6.1)

which looks like an order-3 triality map. However, these 3 gapped phases are symmetric under the
TCe symmetry, where T is the translation and Ce is the charge conjugation on the even sites. If
considering partially SSB phases, the TG1 generates an order-12 map. In particular,

(TG1)3 = TCe. (6.2)

Note that the translation symmetry effectively swaps the even and odd Ze
N × Zo

N symmetry. In
particular, under the (TG1)3 map, the partially symmetry breaking phase becomes,

HSSBe =
∑
j

Za
2jZ

−a
2j+2 +X2j+1 + h.c.

(TG1)3−−−−→ HSSBo =
∑
j

Z−a
2j−1Z

a
2j+1 +X2j + h.c. (6.3)

It is straightforward to modify the order-12 non-local mapping to an order-3 triality map Tri

by combining the TCe symmetry action to TG1. Since the symmetry action TCe commutes with
the twisted gauging TG1,

Tri ≡ TCeTG1, (Tri)3 = (TCeTG1)3 = 1. (6.4)

This can also be seen from the Pauli polynomial representation acting on (X2j−1, X2j , Z2j−1, Z2j),

TTri =


−1 0 0 x

x−1

0 −1 1
1−x 0

0 −1 + x 0 0
1
x − 1 0 0 0

 , (6.5)

and T 3
Tri = 1. According to (5.5), the twisted gauging TG1 combining with the TCe symmetry

action maps the stabilizers of SPTs as,

Tri = TCeTG1 :
(
Za
2jX2j+1Z

−a
2j+2, Z

−a
2j−1X2jZ

a
2j+1

)
→
(
Z̃2jX̃

−a−1
2j+1 Z̃

−1
2j+2, Z̃

−1
2j−1X̃

−a−1
2j Z̃2j+1

)
(6.6)

For N is prime number, any number x with 1 ≤ x ≤ N − 1, has the greatest common divisor
(x,N) = 1, therefore, x has unique inverse x−1, such that x−1x = 1 mod N . The stabilizers after
mapping are equivalent to,(

Z̃
(−a−1)−1

2j X̃2j+1Z̃
−(−a−1)−1

2j+2 , Z̃
−(−a−1)−1

2j−1 X̃2jZ̃
(−a−1)−1

2j+1

)
(6.7)
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N G Tri = TCeTG1 mapping among the gapped phases

2 Z2 × Z2 SYM

SPT

SSB

3 Z3 × Z3 SYM

SPT2

SSB SPT1

5 Z5 × Z5 SYM

SPT4

SSB SPT1

SPT2

SPT3

7 Z7 × Z7 SYM

SPT6

SSB SPT1

SPT3

SPT5 SPT2 SPT4

Table 2: Non-local mapping Tri acts on the gapped phases. For N = 3 and N = 1 mod 3, there
are symmetric gapped phases invariant under Tri. The other gapped phases are permuted by Tri

in disjoint orbits.

where x−1 is understood as the modular multiplicative inverse of x modulo N . It is obvious that
there is an order-3 map among

Tri : SPT0 =SYM
SPTN−1

SSB (6.8)

The mapping among other SPTs depends on a and N ,

Tri : SPTa → SPT(−a−1)−1
(6.9)

It is interesting to notice that, the SPTa is invariant under the triality if and only if,

a(a+ 1) + 1 = 0 mod N. (6.10)

We will consider N as a prime number in the following. The equation has solutions if N = 1

mod 3 for general prime N > 3. Since (6.10) is a quadratic equation, it has at most two solutions.
If the two solutions are a1, a2, then by Vieta’s relations,

a1a2 = 1 mod N, a1 + a2 = −1 mod N (6.11)

For example, N = 3, the SPT1 is invariant under the triality. For N = 7, both SPT2 and SPT4

are invariant under the triality. More examples of the triality invariant SPTs are summarized in
Tab. 2. The first few Tri-ality invariant SPTs are given as follows,

{SPT1
3}, {SPT2

7, SPT4
7}, {SPT3

13, SPT9
13}, {SPT7

19, SPT11
19}, {SPT5

31, SPT25
31}, (6.12)
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where the SPT phases are labelled by SPTa
N . Other ZN ×ZN SPTs are permuted by order 3 cycles

under the Tri-ality map,

N 5 7 11 13

Cycles (1, 2, 3) (1, 3, 5) (1, 5, 9)(2, 7, 4)(3, 8, 6) (1, 6, 11)(2, 4, 5)(7, 8, 10)
(6.13)

To summarize, the gapped phases of ZN × ZN are invariant under Tri if and only if N = 3 or
N = 1 mod 3, and for the latter case, there are at least 2 gapped SPTs that are Tri invariant. The
Tri maps other gapped phases by order 3 permutations as the consequences of Tri being a triality
map. The Tri invariant theories admit triality fusion category symmetry. More detailed analysis
of triality fusion category symmetry protected topological phases relies on the study of its fiber
functors and we leave it for future study.

The ordinary SPTs cannot be smoothly connected without breaking the protecting symmetry.
Similarly, the triality fusion category symmetry-protected topological phases will undergo a phase
transition between them, the critical theory can also be triality fusion category symmetric. For
example, when N = 7,

H7
tri =

∑
j

λ(Z2
2jX2j+1Z

−2
2j+2 + Z−2

2j−1X2jZ
2
2j+1) + (1− λ)(Z4

2jX2j+1Z
−4
2j+2 + Z−4

2j−1X2jZ
4
2j+1) + h.c.

(6.14)
The transition occurs at λ = 1

2 , which is pinned by the duality transformation TKWeKWo. The
whole phase diagram is invariant under the triality and admits triality fusion category symmetry.
In particular, the non-invertible line operators Q that corresponds to Tri = TCeTG1 with quantum
dimension N has the fusion rules with invertible lines in ZN × ZN ,

Q⊗Q =
⊕

g∈ZN×ZN

g, g ⊗Q = Q⊗ g = Q, g ⊗ h = gh (6.15)

g ⊗Q = Q⊗ g = Q, Q⊗Q = NQ (6.16)

where g, h ∈ ZN × ZN and thus Q⊗Q⊗Q = N
⊕

g∈ZN×ZN
g. The details of this triality fusion

category will discussed in Sec. 7. The quantum dimension of Q can also be counted by the Kraus
operator that implements such triality transformation. The KWeo effectively adds 1 lattice site
which corresponds to quantum dimension N , while translation T , charge conjugation Ce and SPT

are unitary transformations that will not change the quantum dimension of the defect line.

6.2 P = TCeTG−2 as the p-ality map for Zp × Zp with prime p

Another special non-local map is an p-ality map, which is given by,

P = TCeTG−2 : TP =


2 0 0 x

x−1

0 2 1
1−x 0

0 x− 1 0 0
1
x − 1 0 0 0

 (6.17)
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One can find its action on the stabilizers in the Hamiltonian straightforwardly. Interestingly, n
times P transformation yields,

(TP)
n =


n+ 1 0 0 nx

x−1

0 n+ 1 n
1−x 0

0 n(x− 1) −n+ 1 0

n( 1x − 1) 0 0 −n+ 1

 (6.18)

Therefore, for Zp × Zp system with prime p, Pp = 1 mod p and P generates an order p non-local
mapping. The p-ality P maps the SPT phases as,

P : SPTa → SPT(−a+2)−1
(6.19)

where the x−1 should be understood as the modular multiplicative inverse of x modulo p. There-
fore, for any prime number p, there exists only one p-ality invariant SPT phase, which is given
by,

a2 − 2a+ 1 = 0⇒ a = 1. (6.20)

Then the p-ality P maps the gapped phases as,

P : SPT1 SSB→ SYM→ SPT2−1 → · · · → SPT2 → SSB, (6.21)

where the sequence of SPT phases follows (6.19) with the understanding that SPT0 = SYM and
“SPT∞” = SSB. For the first few prime numbers, the p-ality mapping is given in Tab. 3. We note
that for p = 2 the p-ality coincides with the duality with off-diagonal bicharacter, i.e. Rep(D8),
and for p = 3, the p-ality coincides with the triality Tri. The detailed mathematical structures and
continuum field theory applications of p-ality are discussed in [56].

From this lattice perspective, we see that the p-ality always has a symmetric gapped phase,
which is given by SPT1. In general, if a theory is invariant under the p-ality, it admits the p-ality
fusion category symmetry. We note that there are distinct p-ality fusion category symmetric gapped
phases that cannot be continuously deformed to each other without breaking the non-invertible
symmetry, similar to [24]. The p-ality non-invertible lines Pi, i = 1, · · · , p − 1 have quantum
dimension p which follows the same argument as that in triality, namely, only the KWeKWo part
will contribute quantum dimension p, the other actions correspond to quantum dimension 1. The
fusion rules for Pi are,

g ⊗ Pi = Pi ⊗ g = Pi, Pi ⊗ Pj =


⊕

g∈Zp⊗Zp
g, i = −j ,

pPi+j , otherwise .
(6.22)
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p G p-ality P = TCeTG−2 mapping among the gapped phases

2 Z2 × Z2 SPT SSB↔ SYM

3 Z3 × Z3 SPT1 SSB→ SYM→ SPT2 → SSB

5 Z5 × Z5 SPT1 SSB→ SYM→ SPT3 → SPT4 → SPT2 → SSB

7 Z7 × Z7 SPT1 SSB→ SYM→ SPT4 → SPT3 → SPT6 → SPT5 → SPT2 → SSB

Table 3: Non-local mapping P acts on the Zp×Zp gapped phases. For all prime numbers p, SPT1

is P invariant. The other p gapped phases are permuted under P.

7 Noninvertible symmetry from (un)twisted gauging

Given the partition function of the continuum field theory, the discrete gauging is specified by a
bicharacter χ : G × Ĝ → U(1) and the possible discrete torsion α(g, h) = φ(g, h)φ(h, g)−1. We
assume G is abelian for simplicity. Suppose the original partition function has global symmetry
G, which is tracked by the background gauge field A. We promote the background gauge field
A to the dynamical gauge field labeled by a. After gauging, there is a dual symmetry Ĝ with
background gauge field Â,

Z̃[X, Â] =
1

|G|g
∑

a∈H1(X,G)

Z[X, a] exp

(
2πi

∫
χ(a, Â) + α(a)

)
(7.1)

where X is the 2-dimensional base manifold, a ∈ H1(X,G) and Â ∈ H1(X, Ĝ). The bicharacter χ
gives the identification between the original global symmetry and the dual symmetry. For Ze

2×Zo
2,

if χ((A1, A2), (Â1, Â2)) = A1∪Â1+A2∪Â2 is diagonal pairing, then intuitively the dual symmetry
is still Ze

2×Zo
2. However, if χ((A1, A2), (Â1, Â2)) = A1 ∪ Â2+A2 ∪ Â1 is off-diagonal pairing, then

the two Z2s get swapped. In particular,

KWeo ∼ diagonal pairing ∼ Rep(H8) = TY(Z2 × Z2, χdiag,+1) (7.2)

TKWeo ∼ off-diagonal pairing ∼ Rep(D8) = TY(Z2 × Z2, χoffdiag,+1) (7.3)

where KWeo = KWe ◦KWo as before and the last column gives the emerged infrared non-invertible
symmetry if the theory is self-dual under gauging the Z2×Z2 symmetry with different bicharacters
[61, 83, 84]. The translation T will permute the even and odd sites, resulting in exchanging Ze

2

and Zo
2.

In general, if the theory is invariant under gauging an abelian symmetry A, then it admits
the Tambara-Yamagami category symmetry TY(A,χ, ϵ), where χ is the bicharater in the gauging,
and ϵ ∈ H3(Z2, U(1)) is the Frobenius-Schur indicator. The simple objects in TY(A,χ, ϵ) are
group-like line operators g ∈ A and a non-invertible line N with quantum dimension

√
|A|. These

35



simple lines satisfy the following fusion rules,

g ⊗ h = gh , g ⊗N = N ⊗ g = N , N ⊗N =
⊕
g∈A

g . (7.4)

The only non-trivial F -symbols are

[F gNh
N ]N ,N = [FNgN

h ]N ,N = χ(g, h), [FNNN
N ]g,h =

ϵ√
|A|

χ(g, h)−1 , (7.5)

where ϵ = ±1 is the Frobenius-Schur indicator for N , which is classified by ϵ ∈ H3(Z2, U(1)) = Z2,
and χ : A×A→ U(1) is a non-degenerate symmetric bicharacter, which satisfies

χ(g, h) = χ(h, g) , χ(gh, k) = χ(g, k)χ(h, k) , χ(g, hk) = χ(g, h)χ(g, k) . (7.6)

For general ZN × ZN , the untwisted gauging with diagonal and off-diagonal bicharacters are,

KWeo : Z[A1, A2]→ Z[Â1, Â2] =
1

|G|g
∑
a1,a2

Z[a1, a2]ω
a1∪Â1+a2∪Â2 (7.7)

TKWeo : Z[A1, A2]→ Z[Â1, Â2] =
1

|G|g
∑
a1,a2

Z[a1, a2]ω
a1∪Â2+a2∪Â1 (7.8)

The twisted gaugings TG1,Tri = TCeTG1 and P = TCeTG−2 discussed in the previous section
correspond to,

TG1 = KWeoSPT : Z[A1, A2]→ Z[Â1, Â2] =
1

|G|g
∑
a1,a2

Z[a1, a2]ω
a1∪a2ωa1∪Â1+a2∪Â2 , (7.9)

Tri = TCeKWeoSPT : Z[A1, A2]→ Z[Â1, Â2] =
1

|G|g
∑
a1,a2

Z[a1, a2]ω
a1∪a2ωa1∪Â2−a2∪Â1 . (7.10)

When N = 2, Tri transformation reduces to the triality in [61]. It is straightforward to verify
(TG1)3 : Z[A1, A2]→ Z[A2,−A1] and (Tri)3 = 1 using a∪b = −b∪a and

∑
a ω

a∪b = δb,0. One can
also compute such partition function on a torus, the cup product becomes A∪B = AxBy−AyBx,
where Ax,y denote the gauge fields along the cycles in the x, y-direction. The partition functions
for the gapped phases are given by,

ZSPTa [A1, A2] = ωaA1∪A2 , ZSSB[A1, A2] = δA1,0δA2,0. (7.11)

And the partially SSB phases are given by δA,0, where A is some combination of A1, A2 that
corresponds to the diagonal subgroup. Lastly, the p-ality transformation P = TCeKWeoSPT−2 is
give by,

P : Z[A1, A2]→ Z[Â1, Â2] =
1

|G|g
∑
a1,a2

Z[a1, a2]ω
−2a1∪a2ωa1∪Â2−a2∪Â1 . (7.12)

The better way to check the transformation on the boundary partition function is to examine the
symmetry of bulk SymTFT as discussed in Appendix D.
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For a theory that is invariant under the Tri or P transformation, it admits the triality or p-ality
fusion category symmetry. Similar to the TY category, the pairing between the original symmetry
and the dual symmetry relates to the F -symbols of the form of F gDh

D , where g, h ∈ ZN × ZN and
D is the triality or p-ality non-invertible defect. However, different from the TY category, the
symmetry fractionalization class of triality or p-ality fusion category symmetry is in general not
trivial, then, for example, FDD̄g

h and F gDD̄
h will be non-trivial [60, 99, 100].

7.1 Triality fusion category symmetry

If the ZN ×ZN symmetric theory is invariant under the triality Tri transformation, then it admits
the triality fusion category symmetry. Similar to the Tambara-Yamagami category, the triality
fusion category can be viewed as an Z3 extension of VecZN×ZN

. The simple lines in the triality
fusion category are group-like lines g ∈ ZN × ZN and non-invertible lines Q,Q with quantum
dimension N ,

g ⊗ h = gh, g ⊗Q = Q⊗ g = Q, g ⊗Q = Q⊗ g = Q (7.13)

Q⊗Q = NQ, Q⊗Q =
⊕

g∈ZN×ZN

g. (7.14)

which implies Q ⊗ Q ⊗ Q = N
⊕

g∈ZN×ZN
g. In the following, we try to determine the triality

fusion category that is realized in the ZN × ZN spin model. The triality fusion category of this
particular twisted gauging Tri with corresponding transformation on the partition function(7.10)
can be a group theoretical fusion category,

C((Za
N × Zb

N )⋊ Z3, ωκ,Za
N , 1), (7.15)

where

(Za
N × Zb

N )⋊ Z3 = ⟨a, b, c|aN = bN = c3 = 1, ab = ba, cac−1 = a−1b, cbc−1 = a−1⟩ . (7.16)

where Z3 is the subgroup of the automorphism group of Za
N × Zb

N , Aut(Za
N × Zb

N ) = GL(2,ZN )

assuming N is prime. ωκ relates to the Frobenius-Schur (FS) indicator of Q, and its explicit form
is given in [56]. For this triality fusion category, the non-trivial FS indicator forbids a symmetric
gapped phase. Therefore, in the case that has Tri invariant gapped phase, the triality fusion
category is necessarily anomaly-free with a trivial FS indicator. Hence, for N = 3 and prime
N = 1 mod 3, the triality fusion category is C((Za

N × Zb
N )⋊ Z3, 1,Za

N , 1).
The group theoretical fusion category suggests that the triality transformation can be obtained

by gauging the subgroup Za
N of (Za

N × Zb
N ) ⋊ Z3. One starts with the theory that is symmetric

under (Za
N × Zb

N )⋊ Z3, then gauges the Za
N subgroup, the Z3 symmetry transformation becomes

triality transformation as illustrated in [56].
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In particular, we consider the Ze
N×Zo

N spin model, there are 3 particular partially spontaneously
symmetry breaking phases,

HSSBe = −
∑
j

Z2jZ
−1
2j+2 +X2j+1 + h.c. (7.17)

HSSBo = −
∑
j

Z2j−1Z
−1
2j+1 +X2j + h.c. (7.18)

HSSBdiag = −
∑
j

Z2j−2Z
−1
2j−1Z

−1
2j Z2j+1 +X2j−2X2j−1 + h.c. (7.19)

The Z3 invertible symmetry permutes these 3 partially SSB phases, while it becomes triality Tri

non-invertible symmetry under the conjugation of KWe or gauging Ze
N ,

SSBe

SSBdiag

SSBo
KWe
←−→ SYM

SPT−1

SSB (7.20)

In partition function formalism, the Z3 symmetry acts as,

Z3 : Z[A1, A2]→ Z[−A1 +A2,−A1] (7.21)

where A1, A2 are the background gauge fields of Ze
N , Zo

N . We define the Ze
N gauged partition

function,

Ẑ[A1, A2] =
1

|G|g
∑
a1

Z[a1, A2]ω
a1∪A1 (7.22)

Then the Z3 acts on the gauged theory as,

Ẑ3 : Ẑ[A1, A2] =
1

|G|g
∑
a1

Z[a1, A2]ω
a1∪A1 −→ 1

|G|g
∑
a1

Z[−a1 +A2,−a1]ωa1∪A1 (7.23)

=
1

|G|g
∑
a1,a2

Ẑ[a2, a1]ω
−a1∪A1+a2∪a1+a2∪A2 =

1

|G|g
∑
a1,a2

Ẑ[a1, a2]ω
a1∪a2ωa1∪A2−a2∪A1 (7.24)

which agrees with the transformation in (7.10).

7.2 p-ality fusion category symmetry

In the following discussion, p is a prime number. If the Zp × Zp symmetric theory is further
invariant under the p-ality P transformation, then it admits the p-ality fusion category symmetry.
We then try to determine the p-ality fusion category that is realized in the Zp × Zp spin models.
The fusion rules of the simple lines are given by,

g ⊗ h = gh, g ⊗ Pi = Pi ⊗ g = Pi, Pi ⊗ Pj =


⊕

g∈Zp⊗Zp
g, i = −j ,

pPi+j , otherwise .
(7.25)
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The complete classification of the p-ality fusion category is not known. However, one particularly
interesting one is the group theoretical fusion category [56],

P+,m = C(Za
p × Zb

p × Zc
p, ω+,m,Za

p × Zb
p, 1) , (7.26)

where ω+,m(ai1bj1ck1 , ai2bj2ck2 , ai3bj3ck3) = e
2πi
p

i1j2k3+
2πim
p2

k1(k2+k3−[k2+k3]p). The second part in
ω+,m is a type I anomaly of Zc

p and it relates to Frobenius-Schur indicator of Pi. In this p-ality
fusion category, the non-trivial FS indicator obstructs the symmetric trivial gapped phase. Our
interested models have SPT1 as the p-ality invariant theory, therefore, the FS indicator must be
trivial. To realize non-trivial FS indicators, one needs to stack SPT corresponding to the non-trivial
element in H3(Zp, U(1)) [21].

The group theoretical fusion category suggests the p-ality is obtained by gauging Za
p × Zb

p

subgroup of global symmetry Za
p×Zb

p×Zc
p with type III anomaly. The type III anomaly is used to

bootstrap the conformal field theory of the multicritical point between the SPT phases [58]. For
p = 2, this analysis coincides with study of Rep(D8) ∼= C(Z2 × Z2 × Z2, ω+,0,Z2 × Z2, 1) [101]. In
particular, [24] uses the Kennedy-Tasaki transformation to convert the Rep(D8) to Z2×Z2×Z2 with
the type III anomaly, and then analyze the different symmetry breaking patterns to construct the
symmetric gapped phases (fiber functors) of Rep(D8). Parallel analysis can yield other symmetric
gapped phases of this p-ality fusion category.

To be specific, we consider the Ze
p × Zo

p spin system as in the previous section, where the
symmetry is generated by ηe =

∏
j X2j , η

o =
∏

j X2j−1. The Zc
p symmetry is generated by

ηc =
∏
j

CZ−1
2j−1,2jCZ

1
2j,2j+1, (7.27)

which permutes the SPTa → SPTa+1 but leaves the SSB phase invariant,

Zc
p : SSB SYM→ SPT1 → SPT2 → · · · → SPTp−1 → SYM. (7.28)

Following the group theoretical fusion category, the p-ality fusion category is obtained by gauging
Ze
p × Zo

p. Note that stacking Ze
p × Zo

p SPTs will not change the fusion category since the type
III anomaly will assimilate the SPT. In the following, we consider the TS1S2T

−1 transformation,
which is the Zp generalization of Kennedy-Tasaki transformation, SPT KWe,o SPT−1. Note that
this is an order 2 non-local mapping,

SSB TST−1

←−−−→ SPT1, SPTa TST−1

←−−−→ SPT1−(a−1)−1
(7.29)

where the inverse should be understood as mod p. This matches with the (6.21),

P : SPT1 SPT2 → SSB→ SYM→ · · · → SPT3·2−1 → SPT2 (7.30)
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We follow the procedure in the previous section and [56] to derive the p-ality action on the partition
function. Because of the type III anomaly, the Zc

p symmetry acts on the partition function as,

Zc
p : Z[A1, A2]→ Z[A1, A2]ω

A1∪A2 (7.31)

where A1, A2 tracks the global symmetry Ze
p and Zo

p. We define the Ze
p × Zo

p gauged partition
function following the TS1S2T

−1 transformation,

Ẑ[A1, A2] =
1

|G|g
∑
a1,a2

Z[a1, a2]ω
−a1∪a2+a1∪A1+a2∪A2+A1∪A2 (7.32)

Then the Zc
p symmetry acts on the gauged theory as,

Ẑc
p : Ẑ[A1, A2] =

1

|G|g
∑
a1,a2

Z[a1, a2]ω
−a1∪a2+a1∪A1+a2∪A2+A1∪A2 (7.33)

→ 1

|G|g
∑
a1,a2

Z[a1, a2]ω
a1∪a2ω−a1∪a2+a1∪A1+a2∪A2+A1∪A2

=
1

|G|g
∑

a1,a2;b1,b2

Ẑ[b1, b2]ω
−b1∪b2+b1∪a1+b2∪a2+a1∪a2ωa1∪A1+a2∪A2+A1∪A2 (7.34)

=
1

|G|g
∑
b1,b2

Ẑ[b1, b2]ω
−2b1∪b2+b1∪A2−b2∪A1 (7.35)

This matches with (7.12).
Furthermore, another group theoretical fusion category P−,m in [56] involves type II anomaly,

and it is also compatible with the fusion rules in (7.25). In this case, the non-trivial FS indicator can
still have a symmetric trivial gapped phase, since the type II anomaly will “cancel” the obstruction.
It is also interesting to construct various symmetric gapped phases of this p-ality fusion category
P−,m.

8 Conclusion

In this paper, we studied the (un)twisted gauging on a 1d lattice incorporating the analogous data
from continuous theory. The non-local duality mapping is translated into the gauging procedure,
and the general (un)twisted gauging leads to novel non-local mapping of the local Hamiltonians,
which preserves the locality of symmetric operators but maps charged operators to non-local oper-
ators. The dual symmetry is explicit in this construction and could be fusion category symmetry
under the (un)twisted gauging. We elaborate the (un)twisted gauging on lattice using both lattice
operator algebra and Kraus operator in the quantum process. We detailed study the triality for
ZN × ZN symmetric Hamiltonians and p-ality mapping for the Zp × Zp symmetric Hamiltonians
with prime p, we found the mapping among different gapped phases. Under certain conditions,
there exist triality or p-ality invariant gapped phases. For theories that are invariant under the
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triality or p-ality, they admit corresponding non-invertible symmetry. We analyze their corre-
sponding group theoretical fusion category construction. The data of the non-invertible symmetry
contains additional information of the triality or p-ality defects, which can be extracted from the
lattice defect Hamiltonians as in [21]. For the non-invertible symmetric gapped phases with unique
ground state, there are distinguishable cousins which cannot be smoothly connected to each other.

There are several directions to pursue in the future:

• Since we know the triality and p-ality fusion category admit symmetric gapped phases with
unique ground state under certain algebraic condition, it is interesting to have the classifica-
tion of these symmetric gapped phases. For group theoretical fusion category, the condition
is known in [56, 59, 60]. The lattice construction of these trivial symmetric gapped phases
is leaving for future study. One approach is to import the fusion category data to the tensor
network formalism as developed in [120].

• It would be interesting to generalize the lattice twisted gauging as an ingredient to compare
and generate other interesting non-local mapping with respect to non-abelian symmetry,
fermionic symmetry, non-invertible symmetry and higher form symmetry. Many related
works on duality mappings for various cases are reviewed in the introduction.

• It is also interesting to extract more fusion category data and the data of fiber functors from
the lattice (defect) Hamiltonian [21, 24, 61, 93, 143].

• The (1+1)d symmetric gapped phases with domains can be used to encode the logical qubits
and using non-local mapping as the quantum gate to implement the quantum computing.
This corresponds to the boundary perspective of the dynamic automorphism codes [144–148].
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A Twisted Gauss law operator

For ZN × ZN , the non-trivial element in H2(ZN × ZN , U(1)) is φ(g, h) = ωbg1h2 , where b ∈ ZN .
The general Gauss law operator is given by,

G
(g1,g2)
j =

∑
a,b∈G

(
φ(ag−1, g)†

∣∣ag−1
〉
⟨a|
)
⊗ λgj ⊗ (φ(g, b) |gb⟩ ⟨b|)

=
∑

(a1,a2),(b1,b2)

(
ω−b(a1−g1)g2 |a1 − g1⟩ ⟨a1|

)
j− 1

2

⊗ (|a2 − g2⟩ ⟨a2|)j− 1
2
⊗ (Xe

j )
g1(Xo

j )
g2

⊗ (|g1 + b1⟩ ⟨b1|)j+ 1
2
⊗
(
ωbg1b2 |g2 + b2⟩ ⟨b2|

)
j+ 1

2

=(Z̃e
j− 1

2

)−bg2(X̃e
j− 1

2

)g1(X̃o
j− 1

2

)g2(Xe
j )

g1(Xo
j )

g2(X̃e
j+ 1

2

)−g1(X̃o
j+ 1

2

)−g2(Z̃o
j+ 1

2

)bg1 (A.1)

where (a1, a2), (b1, b2), (g1, g2) ∈ Ze
N × Zo

N and |a⟩j− 1
2
= (|a1⟩ ⊗ |a2⟩)j− 1

2
. Let (g1, g2) = (1, 0) and

(0, 1), we have,

G
(1,0)
j = X̃e

j− 1
2

(Xe
j )

g1(X̃e
j+ 1

2

)−1(Z̃o
j+ 1

2

)b, G
(0,1)
j = (Z̃e)−b

j− 1
2

X̃o
j− 1

2

Xo
j (X̃

o
j− 1

2

)−1 (A.2)

B Useful identities for ZN generalized Pauli matrices

As defined in the main text,

COm,n =
1

N

N∑
α=1

N∑
β=1

ω−αβZα
mOβ

n. (B.1)

Under the CZa transformation,

XI → XZa, IX → ZaX, ZI → ZI, IZ → IZ, (B.2)

whose symplectic transformation is,

TCZa =


1 0 0 0

0 1 0 0

0 a 1 0

a 0 0 1

 (B.3)

Under the CXa transformation,

XI → XXa, IX → IX, ZI → ZI, IZ → Z−aZ, (B.4)

whose symplectic transformation is,

TCXa =


1 0 0 0

a 1 0 0

0 0 1 −a
0 0 0 1

 (B.5)
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We can also define the generalized Hadamard gate and its corresponding symplectic transformation,

H =
1√
N
ω−(i−1)(j−1), TH =

(
0 1

−1 0

)
(B.6)

C Practical review of algebraic methods for quantum codes on lattice

In this section, we give a practical review of the algebraic methods for quantum codes on lattice
developed in [79, 80] and the nice review [81]. The basic idea is that the Pauli operators can be
mapped to vectors in the symplectic vector spaces to keep the commutation relation but forget the
phases in front of the Pauli operators. The elements in the Clifford group, which maps any Pauli
operator to a Pauli operator, are represented as matrices that preserve the symplectic structure.

First, let’s consider a quNit, with local Hilbert space CN , spanned by |n⟩ , n ∈ ZN . We define
the generalized Pauli operator as in the main context, X |n⟩ = |n− 1⟩ , Z |n⟩ = ωn |n⟩, where
ω = ei

2π
N . And XZ = ωZX. The general Pauli operator is given by ηXξZζ , where ξ, ζ ∈ ZN and

η is the phase factor. Two Pauli operators have the commutation relation,

ηXξZζη′Xξ′Zζ′ = ωξζ′−ξ′ζη′Xξ′Zζ′ηXξZζ (C.1)

And they commute up to a phase ωm, where

m = ξζ ′ − ξ′ζ mod N =
(
ξ ζ

)( 0 1

−1 0

)(
ξ′

ζ ′

)
mod N (C.2)

The Pauli operator ηXξZζ is represented by the vector ( ξ ζ )⊺. And the commutation relation
between two Pauli operators is encoded by,(

ξ ζ
)( 0 1

−1 0

)(
ξ′

ζ ′

)
mod N (C.3)

Any transformation that preserves the commutation relation is a symplectic transformation on the
vector, for the symplectic transformation A is a 2× 2 matrix with values in ZN ,

A⊺

(
0 1

−1 0

)
A =

(
0 1

−1 0

)
(C.4)

For example, the elementary transformations are,(
1 0

a 1

)
,

(
0 1

−1 0

)
,

(
a 0

0 a−1

)
(C.5)

where a ∈ Z×
N . They correspond to the phase gate, Hadamard gate, and the Kd =

∑
i |−i⟩ ⟨i| gate

[149]. For m quNit system, the Pauli operator is represented as 2m-vector,
m∏
l=1

(X l)ξ
l
(Z l)ζ

l
⇝
(
ξ1 · · · ξm | ζ1 · · · ζm

)⊺
(C.6)
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where X l acts on the l-th quNit, similar for Z l. We neglect the phase factors in front of the Pauli
operators since they are irrelevant for the commutation relation. Then the symplectic transforma-
tion is given by 2m× 2m matrix with values in ZN and satisfies,

A⊺

(
0 I

−I 0

)
A =

(
0 I

−I 0

)
, A ∈ GL(2m,ZN ) (C.7)

where I is m×m identity matrix. The symplectic transformations correspond to CZ and CX are
listed in Appendix B.

It is interesting and useful to incorporate the translation invariance in the algebraic method. In
one spatial dimension, the translation symmetry is Z and generated by x. xi represents translation
by i sites (unit cells). Then the Pauli operator

∏
iX

ξi
i Z

ζi
i , where Xi, Zi act on the site (unit cell)

i, is represented as, (∑
i ξix

i |
∑

i ζix
i
)⊺

(C.8)

And the dual vector is given by x→ x−1,(∑
i ξix

−i |
∑

i ζix
−i
)

(C.9)

The commutation relation between two Pauli operators is encoded by,

xtr

[(∑
i ξix

−i
∑

i ζix
−i
)( 0 1

−1 0

)(∑
i ξ

′
ix

i∑
i ζ

′
ix

i

)]
(C.10)

where xtr[xi] = 1 if i = 0 and 0 otherwise. For example, the Ising coupling ZiZ
−1
i+1 is represented

as, (
0 | xi − xi+1

)⊺
≃
(
0 | 1− x

)⊺
(C.11)

The ≃ is because of the translation invariance. For m quNit system on 1-dimensional lattice with
translation invariance, the general Pauli operator is given by

∏m
l=1

∏
i(X

l
i)

ξli(Z l
i)

ζli , where X l
i acts

on l-th quNit and site i. It is represented as,
m∏
l=1

∏
i

(X l
i)

ξli(Z l
i)

ζli ⇝
∑
i

xi
(
ξ1i · · · ξmi | ζ1i · · · ζmi

)⊺
(C.12)

Any transformation A(x) that preserves the commutation relation is given by,

A(x−1)⊺

(
0 I

−I 0

)
A(x) =

(
0 I

−I 0

)
(C.13)

where A(x) is a polynomial of x with coefficients as 2m × 2m matrices with values in ZN . For
example, on the 1d lattice with one quNit per site, some interesting unitary is given by,

∏
j

CZj,j+1 ⇝

(
1 0

x−1 + x 1

)
,
∏
j

CXj,j+1 →

(
1

1−x 0

0 −x−1 + 1

)
(C.14)
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where the second one is acting CXj,j+1 sequentially and it does not preserve locality. For local
Hilbert space with m quNit, some elementary symplectic transformations are given by,

• Hadamard H̃i: rowi = rowj , rowj = −rowi for 1 ≤ i ≤ m.

• controlled-NOT C̃i→j(a): rowi += a(x)× rowj , rowj+m += −a(x−1)× rowi+m for 1 ≤ i ̸=
j ≤ m.

• controlled-Phase: rowi+m += f × rowi where f ∈ ZN for 1 ≤ i ≤ m

where a(x) is a polynomial of x with coefficients in ZN .
For example, the stabilizers for the ZN × ZN symmetric phase (1,2-column), SSB phase (3,4-

column) and SPT phase (5,6-column) with minimal coupling to the ZN ×ZN gauge field is repre-
sented as, 

SYM SSB SPT Gauss law
0 1 0 0 x 0 0 x

0 0 0 0 0 0 0 1− x
1 0 0 0 0 1 x 0

0 0 0 0 0 0 1− x 0

0 0 0 1− x 0 ax− a 0 0

0 0 0 1 0 −a bx 0

0 0 1− x 0 a− ax 0 0 0

0 0 1 0 a 0 0 −b



(C.15)

where the basis is (X2j−1, X̃2j− 1
2
, X2j , X̃2j+ 1

2
, Z2j−1, Z̃2j− 1

2
, Z2j , Z̃2j+ 1

2
) and the last two columns

correspond to the twisted Gauss law operators (5.4). To find the unitary that transforms the
twisted Gauss law operator (5.4) into the form of single X, one applies the elementary symplectic
transformations to (C.15),

H̃4 ◦ H̃1 ◦ C̃4→1(bx) ◦ C̃2→1(x) ◦ C̃2→1(−1) ◦ C̃3→2(−b) ◦ C̃3→4(−x−1) ◦ C̃3→4(1) ◦ H̃1 ◦ H̃2 (C.16)

which corresponds to the matrix form in (5.9). Certainly, there are different paths lead to the same
unitary transformation. It is an interesting question to find the minimal one. Under the unitary
transformation, the resulting stabilizers are,

0 −1 0 0 −x 0 0 −x
−b 0 0 1 0 −a− b 0 0

1 0 0 0 0 1 x 0

0 b
x 1 0 a+ b 0 0 0

0 0 0 0 0 0 0 0

0 1
x − 1 0 0 1− x 0 0 0

0 0 0 0 0 0 0 0
1
x − 1 0 0 0 0 1

x − 1 0 0


(C.17)
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D Bulk symmetry TFT

The ZN × ZN symmetric theory in (1+1)d can be viewed as the boundary of (2+1)d ZN × ZN

quantum double. Using the Chern-Simons theory representation,

L =
1

4π
KIJa

I ∧ daJ , K = N


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 (D.1)

the charge vector is (e1, e2,m1,m2)
⊺. The above Chern-Simons theory is a continuum description

of the ZN × ZN Dijkgraaf-Witten theory [150–152]. The non-local mappings of the boundary
theories correspond to the global symmetry of the bulk theory [153, 154]. In particular, the bulk
global symmetry of Zm

N quantum double is generated by V ,

{V ∈ GL(2m,ZN ) | V

(
0 I

I 0

)
V ⊺ =

(
0 I

I 0

)
} (D.2)

where I is m ×m identity matrix. Such a group is called a split orthogonal group. There are 3
types of bulk global symmetry, and they correspond to different actions on the boundary theory
[153].

R-type The R-type symmetry in the matrix form is,

R(U) =

(
U 0

0 U−1⊺

)
, A⊺ → U−1⊺A⊺ (D.3)

where A is the background gauge fields in the boundary theory that track the global symmetry.
Note that such bulk global symmetry corresponds to the automorphism of the boundary symmetry
group.

T-type The T-type symmetry is generated by,

Tn =

I
(

0 n

−n 0

)
0 I

 , Z[A1, A2]→ Z[A1, A2]ω
nA1∪A2 (D.4)

where I is the identity matrix and Z[A1, A2] is the partition function of the boundary theory. The
T-type bulk symmetry corresponds to applying an SPT entangler on the boundary theory.
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S-type The S-type symmetry is given by,

Si =

(
I − J J

J I − J

)
, Z[· · · , Ai, · · · ]→

∑
ai∈H1(X,ZN )

Z[· · · , ai, · · · ]ωai∪Ai (D.5)

where I is the identity matrix, Ji,i = 1 and 0 otherwise. Si is the EM duality between the i-th ZN

in the bulk and corresponds to gauging the i-th ZN symmetry on the boundary, i.e. Si corresponds
to the Kramers-Wannier duality of the i-th ZN on the boundary.

Note that both R-type and T-type correspond to action with finite depth local unitary on the
boundary theory. To classify the non-local mapping on the boundary theory, one should mod out
the R-type and T-type transformations [154].

In particular, the triality transformation Tri corresponds to the bulk symmetry,

VTri = R(U1) · S2 · S1 · T =


0 0 0 1

0 0 −1 0

0 1 −1 0

−1 0 0 −1

 (D.6)

where U1 =
(

0 1
−1 0

)
. It is easy to check V 3

Tri = 1.
The p-ality transformation P is given by,

VP = R(U1) · S2 · S1 · T−2 =


0 0 0 1

0 0 −1 0

0 1 2 0

−1 0 0 2

 (D.7)

where U1 =
(

0 1
−1 0

)
is the same as above. It is easy to check V p

P = 1 mod p, where p is a prime
number.

E Defect

One can obtain the Kramer-Wannier duality defect Hamiltonian using the half-gauging on the
lattice as illustrated in [21, 93]. We will show the defect Hamiltonian with various (un)twisted
half-gaugings.

E.1 Untwisted Half-gauging ZN × ZN

We consider half gauging the system < 2j + 1, then it creates the defect located at (2j, 2j + 1).
The defect Hamiltonian is closely related to the Kramer-Wannier duality defect and corresponds
to doing Kramer-Wannier duality on even and odd sites KWeKWo and then shift j → j − 1

2 ,

Z2jZ
−1
2j+2 → X2jZ

−1
2j+2, X2j → Z2j−2Z

−1
2j

Z2j−1Z
−1
2j+1 → X2j−1Z

−1
2j+1, X2j−1 → Z2j−3Z

−1
2j−1 (E.1)
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The defect terms for the SPTa are given by,

Z−a
2j−1X2jZ

a
2j+1 → Z2j−2X

−a
2j−1Z

−1
2j Z

a
2j+1

Za
2jX2j+1Z

−a
2j+2 → Xa

2jX2j+1Z
−a
2j+2 (E.2)

When N = 2, such defect Hamiltonian under the renormalization group flow will correspond
to inserting the duality defect of Rep(H8). A closely related duality defect of Rep(D8) is given by
TKWeKWo, whose ZN × ZN version is,

Z2jZ
−1
2j+2 → X̃2j+1Z

−1
2j+2, X2j → Z2j−1Z̃

−1
2j+1

Z2j−1Z
−1
2j+1 → X2jZ

−1
2j+1, X2j−1 → Z2j−2Z

−1
2j (E.3)

The defect terms for the SPTa are given by,

Z−a
2j−1X2jZ

a
2j+1 → Z2j−1X

−a
2j Z̃

−1
2j+1Z

a
2j+1

Za
2jX2j+1Z

−a
2j+2 → X̃a

2j+1X2j+1Z
−a
2j+2 (E.4)

There is an additional site in the Hilbert space and the dimension of the defect Hilbert space is
larger by N times. This corresponds to the quantum dimension of the duality defect.

E.2 Twisted half-gauging

The twisted half-gauging can be obtained by first applying SPT entangler to half of the space and
then applying untwisted half-gauging,

Z2jZ
−1
2j+2 → X2jZ

−1
2j+2, X2j → Z2j−2X

−b
2j−1Z

−1
2j

Z2j−1Z
−1
2j+1 → X2j−1Z

−1
2j+1, X2j−1 → Z2j−3X

b
2j−2Z

−1
2j−1 (E.5)

The defect terms for the SPTa are given by,

Z−a
2j−1X2jZ

a
2j+1 → Z2j−2X

−a−b
2j−1 Z

−1
2j Z

a
2j+1

Za
2jX2j+1Z

−a
2j+2 → Xa

2jX2j+1Z
−a
2j+2 (E.6)

Combined with the translation operator, the defect terms become,

Z2jZ
−1
2j+2 → X̃2j+1Z

−1
2j+2, X2j → Z2j−1X

−b
2j Z̃

−1
2j+1

Z2j−1Z
−1
2j+1 → X2jZ

−1
2j+1, X2j−1 → Z2j−2X

b
2j−1Z

−1
2j (E.7)

The defect terms for the SPTa are given by,

Z−a
2j−1X2jZ

a
2j+1 → Z2j−1X

−a−b
2j Z̃−1

2j+1Z
a
2j+1

Za
2jX2j+1Z

−a
2j+2 → X̃a

2j+1X2j+1Z
−a
2j+2 (E.8)

Again, the dimension of the defect Hilbert space is N times larger than the original Hilbert space.
This corresponds to the quantum dimension of the triality defect.
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E.3 Derivation of half gauging

E.3.1 Untwisted half-gauging

KWeKWo

Z2jZ̃2j+ 1
2
Z−1
2j+2 → X̃2j+ 1

2
Z−1
2j+2, X2j → Z̃2j− 3

2
Z̃−1
2j+ 1

2

Z2j−1Z̃2j− 1
2
Z−1
2j+1 → X̃2j− 1

2
Z−1
2j+1, X2j−1 → Z̃2j− 5

2
Z̃−1
2j− 1

2

(E.9)

The defect terms for the SPTa are given by,

Z−a
2j−1Z̃

−a
2j− 1

2

X2jZ
a
2j+1 → Z̃2j− 3

2
X̃−a

2j− 1
2

Z̃−1
2j+ 1

2

Za
2j+1

Za
2jZ̃

a
2j+ 1

2

X2j+1Z
−a
2j+2 → X̃a

2j+ 1
2

X2j+1Z
−a
2j+2 (E.10)

E.3.2 SPT entangler

U =
∏

j CZ
−b
2j−1,2jCZ

b
2j,2j+1 acts < 2j + 1, only the following terms will be modified

X2j → Z−b
2j−1X2j , (E.11)

Z−a
2j−1X2jZ

a
2j+1 → Z−a−b

2j−1 X2jZ
a
2j+1 (E.12)

E.3.3 Twisted half-gauging

Combining the SPT entangler and untwisted half-gauging, we have,

Z2jZ̃2j+ 1
2
Z−1
2j+2 → X̃2j+ 1

2
Z−1
2j+2, X2j → Z−b

2j−1X2j → Z−b
2j−1Z̃

−b
2j− 1

2

X2j → Z̃2j− 3
2
X̃−b

2j− 1
2

Z̃−1
2j+ 1

2

Z2j−1Z̃2j− 1
2
Z−1
2j+1 → X̃2j− 1

2
Z−1
2j+1, X2j−1 → Zb

2j−2X2j−1Z
−b
2j → Z̃2j− 5

2
X̃b

2j− 3
2

Z̃−1
2j− 1

2

(E.13)

The defect terms for the SPTa are given by,

Z−a
2j−1X2jZ

a
2j+1 → Z−a−b

2j−1 X2jZ
a
2j+1 → Z−a−b

2j−1 Z̃
−a−b
2j− 1

2

X2jZ
a
2j+1 → Z̃2j− 3

2
X̃−a−b

2j− 1
2

Z̃−1
2j+ 1

2

Za
2j+1

Za
2jZ̃

a
2j+ 1

2

X2j+1Z
−a
2j+2 → X̃a

2j+ 1
2

X2j+1Z
−a
2j+2 (E.14)
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