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Abstract

Rare events play a crucial role in understanding complex systems. Characterizing and
analyzing them in scale-invariant situations is challenging due to strong correlations.
In this work, we focus on characterizing the tails of probability distribution functions
(PDFs) for these systems. Using a variety of methods, perturbation theory, functional
renormalization group, hierarchical models, large n limit, and Monte Carlo simulations,
we investigate universal rare events of critical O(n) systems. Additionally, we explore the
crossover from universal to nonuniversal behavior in PDF tails, extending Cramér’s se-
ries to strongly correlated variables. Our findings highlight the universal and nonuniver-
sal aspects of rare event statistics and challenge existing assumptions about power-law
corrections to the leading stretched exponential decay in these tails.
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1 Introduction24

The comprehension of rare events holds great significance in the study of complex systems25

encompassing diverse fields such as climate science, brain activity, societies, financial mar-26

kets, and earthquakes. The occurrence of exceptional and dramatic phenomena arises from27

emergent behaviors within these systems. When they occur in large stochastic systems, these28

rare events can have universal characteristics. This is typically the case for systems exhibiting29

scaling, a situation encountered for systems that are close to a second-order phase transition30

or that are generically scale-invariant, i.e. without fine-tuning of any parameter, as in the31

Kardar-Parisi-Zhang (KPZ) equation describing interface growth. Predicting and analyzing32

such events is generally difficult because of the strong correlations between the degrees of33

freedom involved.34

From an analytical point of view, the characterization of the rare events is contained in the35

tails of the probability distribution functions (PDF) of the normalized sum ŝ of the stochastic36

variables of the system. Generically, the presence of strong correlations in scale invariant37

systems makes it necessary to use special techniques such as the functional renormalization38

group to obtain a complete characterization of the PDF and of its tail. Most of the time, it is39

therefore difficult to have fully controlled results concerning these rare events. When there is40

scale invariance, typically the leading behavior of the decay of the tails is a power law ruled41

by a critical exponent and is therefore not too difficult to obtain. For instance, for the d-42

dimensional Ising model, the leading behavior of the tail of the PDF is exp(−aLdsδ+1) where43

a is a constant, L the linear dimension of the system and δ the critical isotherm exponent [2].44

However, this exponential decay can be accompanied by a nontrivial subleading term which45

is difficult to obtain, except when exact results are available.46

A full understanding of these tails is important for at least three reasons. The first and47

obvious reason is conceptual: we want to fully characterize the statistics of the rare events.48

The second reason is related to the consistency of the different behavior of the PDF according to49

the value of its argument. For instance, for KPZ in 1+1 dimension, there are different regimes50

depending on the behavior of the fluctuations of the height H of the interface as a function51

of the time t. For the typical height fluctuations, H behaves as t1/3 and the PDF of these52

typical fluctuations is given by the Tracy-Widom distribution. Atypical large height fluctuations53

correspond to H ∼ O(t) and satisfy other distributions [3]. Obviously, these different behavior54

should match, the large field behavior of one distribution being the small field behavior of the55

other. The matching between these different regimes has been proven for KPZ and it requires56

a detailed understanding of the tails of these distributions. The third reason is pragmatic:57

a quantitative fit of a PDF requires knowing it on the largest possible range which requires58

detailed knowledge of its tail, which has been argued to be mandatory for the Ising model in59

2



SciPost Physics Submission

s

P
(s

) s ∝ L−
β
ν L−

β
ν � s� 1 s ∝ O(1)

a) b) c)

Figure 1: Schematic representation of different regimes of the probability distribution
function of an O(n) critical system. The regime a) is the scaling regime where the
probability distribution is a universal function of sLβ/ν. This regime corresponds
to a generalization of the CLT to strongly correlated variables. The universal large
deviation regime b) appears for sLβ/ν � 1, where the PDF takes the form Eq. (1).
This region is the main focus of the present work. Finally, regime c) is the non-
universal large deviation regime. The cross-over from b) to c) is characterized by
universal corrections to scaling multiplied by non-universal amplitudes, see Sec. 4.

d = 3 [4].60

For all the reasons mentioned above, the universal statistics of the rare events have been61

much studied in the last decades, especially for the Ising model close to criticality. For the62

models in the Ising universality class, it has been argued that a power-law correction to the63

leading exponential decay should be present [5], i.e. at large s64

PL(ŝ = s)∝ sψe−aLd sδ+1
, (1)

with ψ = δ−1
2 on heuristic ground [6] or assuming some analytic properties of the free energy65

[1, 4, 7, 8]. This expression of the PDF has been argued in [1] to hold also out of equilibrium66

with ψ being again (δ − 1)/2 for a one-component degree of freedom x , say a position in67

space, if the PDF is a scaling function of x and t.68

Our objectives in this article are twofold. We first want to show that Eq. (1) is most likely69

valid for 3d O(n) models with periodic boundary conditions by a set of different methods:70

perturbation theory, functional renormalization group, hierarchical Ising model, large n limit,71

and Monte Carlo (MC) simulations. We also argue that the existence of a power-law prefactor72

as in Eq. (1) with ψ = nδ−1
2 is not necessarily present neither at nor out of equilibrium.73

We show it by considering the Ising model in d = 3 with free boundary conditions. The74

Equation (1) is then invalid because a subleading power-law term corrects the leading sδ+1
75

term and hides the sψ term. For out-of-equilibrium systems, using exact results for KPZ derived76

in [3], we show that the exponentψ is not necessarily (δ−1)/2 which invalidates the argument77

put forward in [1].78

Our second objective is to study the crossover between the universal tail of the PDF de-79

scribed by Eq. (1) which is valid for s ∼ L−β/ν with β and ν respectively the order parameter80

exponent and the correlation length exponent, and the nonuniversal behavior of the PDF which81

holds for s � L−β/ν. For independent and identically distributed (iid) random variables σ̂i ,82

this crossover which takes place for ŝ =
∑

i σ̂i/Ld ∼ 1, is given by the Cramér’s series. We83

argue that this Cramér’s series can be generalized to the case of strongly correlated variables84

and that it is given by a sum of contributions, each term of which corresponds to a correction-85

to-scaling exponent and its associated universal function. The non-universality of this series86

only appears in the amplitudes multiplying each of these contributions. Finally, this series has87
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a finite radius of convergence, and beyond this radius, the PDF is fully nonuniversal, that is, is88

strongly dependent on the joint probability distribution of the σ̂i .89

The manuscript is organized as follows. In Sec. 2 we recall the theory of large devia-90

tions and its connection to the Central Limit Theorem via Cramér’s series for independent and91

weakly dependent variables. We then discuss how this picture is modified for strongly cor-92

related variables in the context of second-order phase transitions. In Sec. 3, we characterize93

universal large deviations and show that Eq. (1) is obeyed for a variety of models. In Sec. 4,94

we discuss the connection between correction to scaling and Cramér’s series, and we discuss95

the generality of our results in Sec. 5.96

2 A short reminder on CLT and large deviations97

2.1 Central limit theorem and Cramér’s series for independent variables98

For the sum of N independent identically distributed (iid) random variables σ̂i , Ŝ =
∑

i σ̂i ,99

the Central Limit Theorem (CLT) and the Large Deviation Principle (LDP) allow for describing100

the typical fluctuations Ŝ ∼ pN and large deviations Ŝ ∼ N from the mean, respectively. (We101

assume that σ̂i has zero mean and finite variance to simplify the discussion.) On the one hand,102

independently of the probability distribution function (PDF) of the σ̂i , the CLT implies that in103

the limit N →∞, the typical fluctuations of Ŝ are Gaussian, with standard deviation scaling104

as
p

N . On the other hand, the LDP asserts that for large deviations, Ŝ of order N , the PDF105

takes the form106

P(Ŝ = Ns)'ÆN I ′′(s)/2π e−N I(s), (2)

where the rate function I(s) strongly depends on the probability distribution of σ̂i , i.e. it107

is non-universal in the language of critical systems. The derivation of this result, known as108

Cramér’s theorem in the large deviation literature, is standard, see for instance [9]. It follows109

from a saddle-point approximation of the integral representation of the PDF110

P(Ŝ = Ns) = 〈δ(Ŝ − Ns)〉,
=

∫ a+i∞

a−i∞
dh
2iπ

e−Nhs〈ehŜ〉, (3)

where the average 〈. . .〉 is over the joint probability of the σ̂i . The integral over h is performed111

on the Bromwich contour, i.e. along a vertical line h = a in the complex plane. The real112

number a is chosen so that the line h = a lies to the right of all singularities. Notice that113

〈ehŜ〉 is the moment generating function of Ŝ, and w(h) = N−1 ln〈ehŜ〉 its cumulant generating114

function. For iid variables, we of course have that w(h) = ln〈ehσ̂i 〉, where the average is over115

σ̂i only. Then116

P(Ŝ = Ns) =

∫ a+i∞

a−i∞
dh
2iπ

e−N(hs−w(h)),

'ÆN/2πw′′(h∗)e−N(h∗s−w(h∗),

(4)

where we have performed a saddle-point approximation (including Gaussian fluctuations) in117

the limit N →∞, and h∗ is found as suph∈R(hs− w(h)) (note that the minimum of hs− w(h)118

along the Bromwich contour is a maximum for h real). Here, the Bromwich contour has been119

deformed to go through its real saddle point, the existence of which is ensured by the fact120

that the PDF is real. Assuming that w(h) is analytic, then h∗ is such that w′(h∗) = s. We121

introduce the average m(h) = w′(h), and U(m) = suph∈R(hm − w(h)), which have a clear122
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interpretation in statistical physics (see below). In the case of iid, we thus recover Eq. (2) with123

I(s) = U(m = s), using the fact that U ′′(m(h)) = w′′(h)−1. Note that by construction U(m) is124

always convex, while I(s) needs not to be in general. Therefore, and this will be important125

below, the identification I(s) = U(m= s) can only work in the regions where the rate function126

is convex.127

In the present setting, the CLT can be reframed as128

P(Ŝ =
p

Ns̃)' e−I ′′(0)s̃2/2p
2π/I ′′(0)

(5)

for s̃ of order 1. The Gaussian distribution is universal (up to a non-universal “amplitude”129

1/
p

I ′′(0) characterizing the typical fluctuations of σ̂i , i.e. the width of the PDF). CLT and130

LDP are related by noting that131

P(Ŝ =
p

Ns̃)' e−I ′′(0)s̃2/2p
2πI ′′(0)

e
s̃3p
N
λ(s̃/
p

N) (6)

for s̃ = o(
p

N), i.e. for small deviations of Ŝ from its mean. Here λ(z) =
∑

k=0 akzk is re-132

lated to the so-called Cramér’s series, which has a convergent series expansion around z = 0133

corresponding to the series expansion of I(s) with s = s̃/
p

N . The coefficients ak are related134

to the moments of the iid variables and are thus non-universal. Then λ(z) plays the role of135

“finite size corrections” to the Gaussian distribution, with universal power-laws in N but non-136

universal amplitudes. We refer to the mathematical literature for more rigorous statements,137

see e.g. [10, Chap. 8]. As the scale of s̃ increases to O(
p

N), the probability distribution138

crosses over into the fully non-universal regime. This happens because it becomes dominated139

by the Cramér’s expansion, as it effectively reconstructs the rate function I(s), which strongly140

depends on the microscopic distribution of the random variable.141

2.2 Weakly dependent random variables142

The above discussion can be straightforwardly generalized to dependent variables, where the143

joint probability distribution P[σ̂] of the random variables does not factorize. This is for144

instance the case of the high-temperature phase of Ising spins σ̂i = ±1 on a d-dimensional145

hypercubic lattice of linear size L (N = Ld) with nearest-neighbor interactions. Weak cor-146

relation amounts to 〈Ŝ2〉 = Nχ , with finite susceptibility χ , which is ensured by the finite147

correlation length ξ. As the number of spins increases the PDF of the rescaled variables Ŝ/
p

N148

tends to a Gaussian: it is attracted to the (universal) high-temperature fixed point. In par-149

ticular, the derivation presented above applies directly, as long as L � ξ which ensures that150

limN→∞ N−1 ln〈ehŜ〉 is well defined and analytic for all h.151

In this context, w(h) is (minus) the Helmoltz free energy, while U(m) is the Gibbs free152

energy, with m = 〈Ŝ〉/N the average magnetization. In the high-temperature phase, the rate153

function is convex, and I(s) = U(m= s) for all s. This corresponds to the equivalence of ensem-154

bles in the thermodynamic limit, between a free energy I(s) at fixed magnetization s (canonical155

ensemble) and a free energy U(m) at fixed average magnetization m (grand canonical ensem-156

ble).157

Large deviations are non-universal, depending on the shape of I(s) at s ∼ 1, strongly158

dependent on the microscopic distribution of the random variable (e.g. Ising vs soft spins).159

The Cramér’s series in this case corresponds to correction to scaling to the high-temperature160

fixed point, with universal scaling form s̃3+i/N1+i , i ∈ N, and non-universal prefactors (which161

depend on the derivatives of I(s) at s = 0).162
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2.3 Strongly correlated variables163

When the variables are strongly correlated, such as is the case close to a second-order phase164

transition, the CLT breaks down. A signature of the breakdown is seen in the fact that the165

typical fluctuations of the variables scale differently than predicted by the CLT. The typical166

fluctuations of the normalized total spin ŝ= Ŝ/Ld at criticality are of order L−(d−2+η)/2 instead167

of L−d/2 (we use bold symbols for O(n) spins). Here η is the anomalous dimension of the field,168

and we will often use β/ν = (d − 2+ η)/2 with β and ν the magnetization and correlation169

length critical exponents respectively.170

For |̂s| of order L−β/ν, using the O(n) symmetry, the PDF of ŝ takes the scaling form171

PL(ŝ= s) = Lnβ/νp(sLβ/ν). (7)

Here p(s̃) is a n-dependent universal scaling function. The normalization of p(s̃) is such that172 ∫∞
0 ds̃ s̃n−1p(s̃) = 1 and

∫∞
0 ds̃ s̃n−1s̃2p(s̃) = 1. The second condition fixes the (non-universal)173

scale of the field and ensures that p(s̃) is fully universal (does not depend on non-universal174

amplitudes). It is highly non-Gaussian, with a shape that depends strongly on how the limits175

T → Tc and L →∞ are taken [11] (we will consider only the case T = Tc , L →∞ here for176

simplicity), as well as the boundary conditions [12] (we assume periodic boundary conditions177

unless specified otherwise). However, the fact that p(s̃) is universal (for a given universality178

class) can be interpreted as a generalization of the CLT to strongly correlated variables (at179

least those corresponding to second-order phase transitions). This regime corresponds to the180

region a) of Fig. 1.181

The critical PDF p(s̃) is typically non-monotonous for s̃∝ O(1), as has been observed in182

simulations [7, 8, 12–14], perturbative and non-perturbative renormalization group analysis183

[11,15–18]. This implies that the rate function I(s) is non-convex for s of order L−β/ν, and the184

relation I(s) = U(m = s) breaks down. This is due to the fact that for s ∼ L−β/ν, the typical185

magnetic field is of order L−d+β/ν while the free energy scales as w(h̃L−d+β/ν) = L−d f (h̃) for186

h̃ of order 1 (here f (h̃) is a universal scaling function). Thus, the exponent Ld(sh− w(h)) in187

the integral representation of the PDF is of order one (i.e. the factor Ld disappears), and the188

saddle-point approximation breaks down.189

On the other hand, for L−β/ν � s � 1, one expects to recover the thermodynamic limit190

behavior typical of critical scaling [2]191

PL(ŝ= s)∝ e−aLd sδ+1
, (8)

withδ = d+2−η
d−2+η the critical isotherm exponent and a a constant. Note that since (δ+1)β/ν = d,192

Eqs. (7) and (8) are consistent provided that p(s̃) ∝ e−ãs̃δ+1
for s̃ � 1. Here ã is universal193

and related to a by a non-universal amplitude related to the scale of s. This behavior has194

been proven rigorously for the two-dimensional Ising model [19, 20] and for the hierarchical195

model [21], and is a natural consequence of the (functional) renormalization group [11]. It196

can be understood by realizing that in the thermodynamic limit L →∞ and s fixed but not197

too large (i.e. much smaller than one), we can use the saddle-point approximation once again,198

using that w(h)∝ h1+1/δ in this universal regime.199

Note that the PDF in Eq. (8) takes a large deviation form, i.e. its logarithm scales with the200

volume, that is universal. On the contrary, for s of order 1, the probability distribution is non-201

universal and depends on the microscopic details of the system. Therefore, contrary to what202

happens for iid variables, large deviations can be universal (if not too large) or non-universal,203

see regime b) and c) of Fig. 1. As we will discuss in Sec. 4, the equivalent of Cramèr’s series that204

connects those two regimes are the finite-size effects associated with corrections to scaling.205

Finally, let us give an argument for the O(n) universality class that a better description206

of universal large deviation than Eq. (8) is Eq. (1), with ψ = nδ−1
2 . Since L−β/ν � |ŝ| � 1207
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corresponds to large fields where both the rate function I(s) and the Gibbs free energy U(m)208

are convex, the same saddle-point argument as above implies that209

PL(ŝ= s)' (Ld U ′′(s)/2π)1/2(Ld U ′(s)/s2π) n−1
2 e−Ld U(s), (9)

where the first prefactor comes from the longitudinal fluctuations with respect to s and the210

second comes from the n− 1 transverse fluctuations. Assuming no logarithm in U(m) (which211

has not yet been proven so far) and scaling (U(m)∝ mδ+1 at large m) we obtain the prefactor212

sψ of the Eq. (1), with ψ = nδ−1
2 , generalizing the Ising result to O(n).213

3 Universal large deviations214

We now characterize the universal large deviations for a variety of models close to a second-215

order phase transition belonging to the O(n) universality class, and show that they are consis-216

tent with Eq. (1) with ψ = nδ−1
2 .217

3.1 Exactly solvable models218

3.1.1 Hierarchical model219

The hierarchical model is one of the few models where explicit and rigorous results can be220

obtained at criticality. We refer to [22] for a review of the model and the derivations of the221

recursion relation of the PDF. The model describes a hierarchy of block-spins of size 2k with222

interaction strength
� c

4

�k
. The PDF P(k)(s̃) of a block-spin at the k-th level of the hierarchy,223

with s̃ =
� c

4

�k/4
s the rescaled block-spin, obeys the recursion relation224

P(k+1)(s̃)∝ e
β
2 s̃2

∫
d x P(k)

�
s̃p
c
+ x
�

P(k)

�
s̃p
c
− x
�

. (10)

For c ∈]1,
p

2[, if the initial condition P(0) is properly fine-tuned (at fixed β), then P(k) reaches225

asymptotically a once-unstable non-trivial fixed point P⋆. It is convenient to extract a Gaussian226

part from the probability and to introduce227

g(k)(s̃) = eA⋆ s̃
2
P(k)(s̃), (11)

with A⋆ =
β c

2(2−c) . (The Gaussian PDF P⋆ = e−A⋆ s̃
2

is a twice-unstable fixed point.) The fixed228

point equation for g then reads229

g⋆(s̃)∝
∫

d xe−2A⋆x2
g⋆

�
s̃p
c
+ x
�

g⋆

�
s̃p
c
− x
�

. (12)

Let us now show that the critical PDF of the hierarchical model does take the form Eq. (1)230

in the critical rare events regime. A first simple argument goes as follows. Since the integral231

over x is cut by the Gaussian weight, we expect that for sufficiently large s̃ the functions g⋆ (or232

more appropriately their logs) can be expanded in x . Keeping the leading term (i.e. neglecting233

their x dependence), one obtains [23,24]234

g⋆(s̃)∝ g⋆

�
s̃p
c

�2
, (13)

which is solved by235

g⋆(s̃)∝ e−as̃δ+1
, (14)

7
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with δ + 1 = 2/ ln2 c. This behavior has been demonstrated rigorously for c = 21/3 in [21].236

Inserting Eq. (14) into Eq. (12), it is straightforward to see that the integral over x generates237

a prefactor s̃− δ−1
2 , which must be compensated for by requiring238

g⋆(s̃)∝ s̃
δ−1

2 e−as̃δ+1
. (15)

We now give a more systematic analysis of the problem. Write g⋆(s̃) = e−u⋆(s̃) and assume239

that for s̃� 1, u(n)⋆ (s̃)� u(n+1)
⋆ (s̃) with u(n)⋆ the n-th derivative of u⋆ (this assumption turns out240

to be self-consistent). Expanding in x in the integrand of Eq. (12), and keeping the first two241

terms in the asymptotic expansion, we obtain (up to a constant)242

u⋆(s̃) = 2u⋆(s̃/
p

c) +
1
2

ln
�
2A⋆ + u(2)⋆ (s̃/

p
c)
�
+ · · · , (16)

where the neglected terms are of order u(2n)
⋆ (s̃/

p
c)/(u(2)⋆ (s̃/

p
c))n. At leading order we recover243

u⋆(s̃) = 2u⋆(s̃/
p

c), again solved by u⋆(s̃) = as̃δ+1. This implies that u(2)⋆ (s̃/
p

c)∝ s̃δ−1 is much244

larger than A⋆. Keeping the leading term from the log, we find u⋆(s̃)' as̃δ+1− δ−1
2 ln s̃ up to a245

constant, while the next term implies a subdominant power-law behavior s̃−δ+1. Note that the246

neglected terms in Eq. (16) are of order at most s̃−δ−1. The results obtained here are consistent247

with the rigorous large deviation analysis of [25].248

3.1.2 Large n limit249

The large n limit of the O(n) model is another exactly solvable model, see [26] for a review.250

The PDF of the O(n) model is defined by251

PL(ŝ= s) =N
∫

Dϕ̂δ (s− ŝ)exp(−H[ϕ̂]), (17)

with N a normalization constant, ŝ = L−d
∫

x ϕ̂(x), and the model is described by the Hamil-252

tonian253

H[ϕ̂] =
∫

x

�
(∇ϕ̂)2

2
+ V
�
ϕ̂2/2
��

. (18)

Here, V (x) is the potential, such that V (nx)/n is independent of n, typically of the form254

V (x) = r0 x +
u0

6n
x2. (19)

The delta-function can be exponentiated (see [27] for a similar calculation using a different255

exponentiation of the delta-function), δ(z)∝ limM→∞ e− M2
2 z2

, such that256

PL(ŝ= s) = lim
M→∞N ′
∫

Dϕ̂ e−H[ϕ̂]− M2
2 (s−ŝ)2 . (20)

Introducing two auxiliary fields λ(x) and ρ̂(x) such that 1=
∫
DλDρ̂ exp
n
−i
∫

xλ
�
ϕ̂2

2 − ρ̂
�o

,257

the PDF is rewritten as258

PL(s) =

lim
M→∞N ′
∫

Dϕ̂DλDρ̂ e
−∫x� (∇ϕ̂)22 +iλ ϕ̂2

2

�
−∫x(V (ρ̂)−iλρ̂)− M2

2 (s−ŝ)2
.

(21)

Writing the field ϕ̂ = (σ̂, π̂), with σ̂ along the direction of s, and integrating out the π̂ fields,259

we finally obtain260

PL(s) = lim
M→∞N ′
∫

Dσ̂DλDρ̂ e−Heff[σ̂,λ,ρ̂], (22)

8
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with261

Heff[σ̂,λ, ρ̂] =

∫
x

�
(∇σ̂)2

2
+ iλ

σ̂2

2

�
+

∫
x
(V (ρ̂)− iλρ̂)

+
M2

2

�
L−d

∫
x
(σ̂− s)

�2
+

n− 1
2

Tr log(g−1
π ),

(23)

and the correlation function gπ of the π̂-fields satisfying (−∇2+iλ(x)+M2)gπ(x,y) = δ(x−y).262

Assuming that σ̂ ∼pn, the functional integral can be evaluated by a the saddle-point analysis263

as n→∞, and the PDF reads264

PL(s) = lim
M→∞N ′e−Heff[σ̂0,λ0,ρ̂0], (24)

where σ̂0,λ0, ρ̂0 minimize the effective Hamiltonian Heff. Assuming that the saddle is at265

constant field configurations, the limit M →∞ imposes σ̂0(x) = s, and we obtain266

iλ0 = V ′(ρ̂0),

s2

2
= ρ̂0 − n

2Ld

∑
q6=0

1
q2 + iλ0

.
(25)

Writing log(PL(s)) = −Ld I(ρ) with ρ = s2/2, one shows that at the saddle-point, iλ0 = I ′(ρ).267

In the scaling regime, e.g. for ρ small enough such that I ′(ρ)� u2/(4−d)
0 for the potential268

given in Eq. (19) (with the Ginzburg length u−1/(4−d)
0 much smaller than L), we obtain the269

self-consistent equation270

ρ = −n∆− n
2Ld

∑̃
q 6=0

1
q2 + I ′(ρ) , (26)

where
∑̃

means that it has been regularized at large momenta and ∆ is the distance to the271

critical point (∆ > 0 corresponding to the disordered phase in the thermodynamic limit).272

Following [26], this equation can be rewritten as273

ρ = −n∆+
n

Ld−2
Fd

�
L2 I ′(ρ)

4π

�
, (27)

where274

Fd(z) = −1
2

∫ ∞
0

du
4π

�
e−uz(ϑd(u)− 1)− u−d/2

�
, (28)

with ϑ(u) =
∑

k∈Z e−uπk2
is a Jacobi theta function.275

Looking for universal rare events at criticality (∆ = 0) corresponds to L−2β/ν� ρ/n� u
d−2
4−d
0 ,276

with β/ν = (d − 2)/2 in large n, and L2 I ′(ρ)� 1. The large z behavior of Fd(z) reads277

Fd(z) = Adz
d−2

2 +
1

8πz
+O
�
e−2
p
πz
�

, (29)

with Ad = − Γ (1−d/2)
8π > 0, where the first term corresponds to the result in the thermodynamic278

limit, while the second one comes from the subtraction of the q = 0 term in the sum, and is279

subdominant in the limit L→∞. Thus the self-consistent equation for its solution I⋆ reads280

ρ/n' Ad

�
I ′⋆

4π

� d−2
2

+
1

2Ld I ′⋆
, (30)
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Figure 2: Rate function of the three-dimensional O(n) model with its leading pow-
erlaw behavior subtracted, Ld I(ρ̃)− aρ̃

δ+1
2 , as a function of ρ, obtained from FRG

for n= 1,2,3 (top to bottom). Here ρ = s2/2 and ρ̃ = L2β/νρ, with 2β/ν = (d − 2)
and δ = 2d/(d − 2) at LPA. The dashed lines correspond to −nδ−1

4 log(ρ̃) (note the
log-scale of the abscissa).

which is solved by281

I ′⋆(ρ)' 4π
�
ρ

nAd

� 2
d−2 − n

Ld(d − 2)ρ
. (31)

Integrating with respect to ρ, we obtain282

I⋆(ρ)' cρ
d

d−2 − n
Ld(d − 2)

ln(ρ), (32)

up to a constant. Recalling thatρ = s2/2, we thus obtain that for rare events L−β/ν� s/
p

n� u
d−2

2(4−d)
0 ,283

PL(s)∝ sn δ−1
2 e−aLd sδ+1

, (33)

with δ = d+2
d−2 in large n.284

On the other hand, in the limit ρ � u
d−2
4−d
0 , the universal term Fd is subdominant and we285

recover I(ρ) = V (ρ), corresponding to the non-universal regime of rare events,286

PL(s)∝ e−Ld V (s2/2). (34)

3.2 Perturbative results in dimension d = 4− ε287

The rate function at T = Tc can also be computed in perturbation theory using the ε = 4− d288

expansion, which reads [15,18,28]289

Ld I(x) =

n+ 8
9

2π2

ε
x4 +π2 x4
�
γ+ log2π− 3

2
+ log(x2)
�

+
1
2
∆4

�
2x2
�

+ (n− 1)
�
π2

9
x4
�
γ+ log2π− 3

2
+ log
�

x2

3

��
+

1
2
∆4

�
2x2

3

��
+O(ε)

(35)
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with x =pg∗Lβ/νs with β/ν = 1+O(ε) and g∗ = 3ε
n+8 +O(ε2) is the fixed point value of the290

interaction to leading order in ε. Here ∆d(z) = θd(z)− θd(0) with291

θd(z) = −
∫ ∞

0

ds
e−sz

s

�
ϑd(s)− 1− (1/s)d/2� , (36)

is the integral of Fd(z) up to a factor 4π and the subtraction of a term that diverges in d = 4.292

In particular, ∆4(z)' − log(z) at large z.293

At large field, x � 1, the leading behavior of the rate function is294

Ld I(x)' n+ 8
9

2π2

ε
x4
�
1+ ε log(x) +O(ε2)

�
, (37)

which corresponds to the expected behavior Ld I(x)∝ xδ+1 with δ = 3+ε+O(ε2), expanded295

to order ε. This log behavior is an artifact of the ε-expansion and can be dealt with using RG296

improvement to resum the large logs [15,18,29]. On the other hand, the contribution of∆4(x)297

at large x gives a log correction −n log(x), which corresponds to the power-law prefactor sψ298

with ψ = n+O(ε) which is indeed equal to nδ−1
2 to leading order.299

3.3 Functional renormalization group300

Recently, we have shown that the critical rate function of the Ising model can be computed301

from the Functional Renormalization Group (FRG) [11], see e.g. [30] for a review of FRG. Us-302

ing the simplest non-trivial approximation, the so-called Local Potential Approximation (LPA),303

we were able to compute the PDF at criticality, in good agreement with Monte Carlo simu-304

lations. This is easily generalized to the O(n) model [31]. We implement Wilson’s idea of305

integration of the microscopic degrees of freedom by modifying the Hamiltonian in Eq. (17),306

H[ϕ̂]→H[ϕ̂]+∆Hk[ϕ̂]. One then obtains an equation for a scale-dependent rate function Ik.307

Following the standard procedure of FRG [30], we choose∆Hk[ϕ̂] =
1

2Ld

∑
q Rk(q)ϕ̂(q).ϕ̂(−q),308

where k is the RG momentum scale and Rk(q) is a regulator function that freezes the low309

wavenumber fluctuations (q � k) while leaving unchanged the high wavenumber modes310

(q� k). It is chosen such that: (i) when k is of order of the inverse lattice spacing, Rk(q)→∞,311

and all fluctuations are frozen; (ii) Rk=0(q) ≡ 0, all fluctuations are integrated out, and312

PL(s)∝ e−Ld Ik=0(s2/2).313

The flow equation at LPA reads314

∂k Ik =
1

2Ld

∑
q 6=0

∂kRk(q)
� 1

q2 + Rk(q) + I ′k + 2ρI ′′k

+
n− 1

q2 + Rk(q) + I ′k

�
.

(38)

In practice, we use the method described in [11] to numerically solve the flow equation and315

obtain the critical PDF at Tc for the O(n) universality classes, see however Appendix A for316

a discussion of the technical subtleties. The LPA implies a vanishing anomalous dimension,317

and thus we should obtain a compressed exponential tail with δ + 1 = 2d
d−2 and a power-law318

prefactor with ψ = n 2
d−2 . Note that the LPA is exact in the large n limit [32] and we recover319

the results discussed above in this limit.320

Fig. 2 shows the rate functions of the O(n) model where the leading power-law behavior321

asδ+1 is subtracted, in d = 3 for n= 1,2, 3. We observe a behavior consistent with a subleading322

logarithmic term (appearing as a straight line in log-linear scale), with prefactor nδ−1
2 . At large323

field, we find a deviation from this behavior, which we ascribe to the numerical resolution of the324

flow equation (App. A). In particular, increasing the resolution of the grid used to numerically325

integrate the flow pushes this deviation to larger and larger fields.326
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3.4 Monte Carlo simulations of the 3D Ising model327

We now proceed to show that there is a power-law prefactor in the PDF of the 3d Ising model328

on the cubic lattice with periodic boundary conditions. For this purpose, we use Monte Carlo329

simulations based on a specially modified version of the Swendsen-Wang (SW) cluster algo-330

rithm [33], similar in spirit to that of [34,35].331

SW cluster algorithm is a very efficient tool for simulations of the critical Ising model [36].332

One step of the algorithm to get from one spin configuration to the next goes as follows: it333

first connects parallel spins into nC clusters (with nC a random variable). Then all spins of a334

given cluster are flipped with 50% probability, giving rise to a new spin configuration. Calling335

Sa = ±1 the new direction of the spins of cluster Ca (made of |Ca| spins), the total magnetiza-336

tion after that step is then M =
∑nC

a=1 Sa|Ca|. Note that for a given cluster configuration {Ca},337

a given spin configuration is just one instance of 2nC equally probable configurations (corre-338

sponding to the 2nC possible values of {Sa}). Therefore, an improved estimator to increase the339

statistics of the magnetization configurations is to take into account the 2nC possible values of340 ∑nC
a=1 Sa|Ca| (with corresponding weights).341

In [34,35], an analytic method for such purpose was proposed for the quantum Heisenberg342

model. Here, we follow a different route, using the fact that most clusters are of very small343

size, meaning that the sum over a typical configuration of the Sa of such clusters will average344

out to zero by the law of large numbers.1 In particular, a configuration where most of those Sa345

points in the same direction will have a negligible weight and can be ignored. We, therefore,346

choose to sample exactly the orientation of the k largest clusters (with k fixed) and choose347

randomly the orientations of the nC − k other clusters. Each configuration has a weight of348

2−k. Our estimator is in principle less optimal than that of [34,35], though much better than349

a naive one considering only one orientation of the nC clusters, but works very well for the350

present purpose.351

In practice, we use the SW algorithm to construct the clusters, and a variation of the352

Hoshen-Kopelman method [38] to identify all the clusters for a given configuration. We typi-353

cally generate 107 cluster configurations. We then compute the magnetization for all possible354

orientations of the k = 10 largest clusters and update the PDF accordingly. To sample the tail of355

the distribution, we also introduce an external magnetic field to bias the system to larger than356

typical magnetization, using the ghost spin construction [33]. We then use multi-histogram357

reweighting to combine the data at various magnetic fields at zero field [39]. This allows us358

to probe the PDF to extremely rare events with probability as low as e−200.359

The results for the 3d Ising model with periodic boundary conditions are given in Fig. 3. As360

for the FRG results, we have subtracted the leading powerlaw behavior from the rate function,361

see App. A for details. We recall that in this case, β/ν ' 0.518149 and δ ' 5.78984 [40]. The362

figure shows conclusively the logarithmic correction (corresponding to a power-law prefactor363

for the PDF). However, determining the exponent ψ is extremely sensitive to finite size effects364

which are still apparent for L = 128 (see Appendix A).365

This leads us to comment on the strong finite-size effects observed in the universal rare366

events regime. As discussed above, this regime corresponds to L−β/ν � s� 1. Note that for367

the maximum size that we have, L = 128, L−β/ν ∼ 0.08 and we do not even have a range368

of one decade in s to observe this regime. The situation is even worse in d = 2, where the369

power-law is very strong since δ + 1 = 16, and β/ν = 1/8. This indicates that it is almost370

1At criticality, the average number Nl of clusters of size l obeys the scaling law Nl = Ld l−τ f (l/LdF ), with
τ= 1+d/dF and fractal dimension dF =

d+2−η
2 , see e.g. [37]. There are thus an extensive number of small clusters,

which contribute to the magnetization per site as a Gaussian variable of zero mean and standard deviation∼ L−d/2.
These contributions do not need to be taken into account, in the sense that after binning of the magnetization data,
with a bin size that is a fraction of the typical magnetization L−(d−2+η)/2, all these contributions fall into the same
bin.
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Figure 3: Rate function with its leading power law behavior subtracted,
Ld I(s̃)− as̃δ+1, as a function of s̃ = Lβ/νs, obtained from Monte Carlo simulations of
the 3D Ising model of size L = 16, 32, 64,128 (from light to dark blue) at criticality.
The black line corresponds to −δ−1

2 log(s̃) (note the log-scale of the abscissa). Inset:
I(s̃)/s̃δ+1 as a function of s̃ (linear scale). The dashed line corresponds to the con-
stant a ' 0.034 extrapolated to infinite system size.

impossible to be in the universal rare event regime, since L−β/ν ' 0.08 even for L = 109. This371

casts doubts on the analyses performed on much smaller sizes in previous MC calculations for372

Ising 2d [8,41–44].373

4 Non-universal large deviations374

We finally address how the RG allows us to understand how to relate universal and non-375

universal large deviations by generalizing the concept of the Cramérs’ series, see also [45] for376

an early discussion about the connection between large deviation and RG. We discuss the Ising377

case here to simplify the notations, for which |s| ≤ 1, without loss of generality.378

Standard RG arguments imply that the rate function I(s) takes a scaling form I(s) = L−d Ĩ⋆(sLβ/ν)379

for s small enough and with Ĩ⋆ a universal function. We know that (at least in d = 3), the rate380

function is somewhat similar to the fixed point effective potential Ũ⋆ of the FRG [11]. Further-381

more, there are corrections to scaling which are of the form
∑

m am L−ωmδ Ĩm(sLβ/ν).382

By analogy with the connection between the fixed point potential and the rate function, we383

expect that the corrections to scaling δ Ĩm take a form similar to that of the irrelevant perturba-384

tionsδũn to the fixed point with eigenvalueωn. It is important to note thatδũn(ϕ̃)∝ cnϕ̃
(d+ωn)ν/β385

at large field, while Ũ⋆(ϕ̃) ∼ c⋆ϕ̃
dν/β for ϕ̃→∞. Note however that δ Ĩn cannot be equal to386

δũn (or Ĩ⋆ to Ũ⋆) since the former is universal while the latter depends on the RG scheme (e.g.387

the regulator function Rk in FRG).388

Thus, we predict that the rate function behaves for small enough s as389

I(s) = L−d Ĩ⋆(sLβ/ν) +
∑

n

an L−d−ωnδ Ĩn(sLβ/ν). (39)

Let us stress here that the functional forms of Ĩ⋆ and δ Ĩn, as well as ωn, are universal (i.e.390

described by the Wilson-Fisher fixed point) up to a non-universal amplitude associated with391

a characteristic scale of the random variables σ̂. All other microscopic details associated with392

the joint probability distribution P[σ̂] are encoded in an.393

For large enough L, we see that the PDF takes the form394

PL(ŝ = s)' e− Ĩ⋆(sLβ/ν)−∑m am L−ωmδ Ĩm(sLβ/ν). (40)
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We see that the typical fluctuations of ŝ are of order L−β/ν = L−(d−2+η)/2, instead of the stan-395

dard L−d/2 for iid variables, i.e. they are stronger by a factor L1−η. Furthermore, we see that396

Ĩ⋆(s̃) does play the role of the universal distribution function of this generalized CLT, while397 ∑
m am L−ωmδ Ĩm(s̃) is a generalization of Cramér’s series.398

Much in the same way that the CLT breaks down for N−1/2
∑

i σ̂i of order
p

N , we find399

that the generalized CLT breaks down for sLβ/ν = O(Lβ/ν) (i.e. s of order 1). Indeed, using400

the large field behavior of the fixed point solution and its eigenperturbations, we find that in401

this regime402

Ĩ⋆(sLβ/ν) +
∑

m

am L−ωmδ Ĩm(sLβ/ν)'
Ldsdν/β (c⋆ +
∑

m

amcmsωmν/β ),
(41)

which shows that for s of order 1, all “corrections” are of the same order and the expansion403

breaks down. Therefore, to see the universal feature of the tail of the PDF (in particular,404

the expected stretched exponential decay exp(−c⋆L
dsdν/β )), one needs to be in the regime405

L−β/ν� s� 1.406

All these aspects can be seen explicitly in the large n limit, as we show now. If the system407

size is sufficiently large such that the finite-size corrections are negligible, we have seen in408

Sec. 3.1.2 that the rate function takes a universal form I⋆, solution of Eq. (26) at ∆ = 0. Then409

Ĩ⋆ defined above is just Ld I⋆.410

To compute the correction to scaling, we restart from Eq. (25), which we can rewrite as411

ρ =
n

Ld−2
Fd

�
L2 I ′(ρ)

4π

�
−∑

m≥2

m am(I
′(ρ))m−1, (42)

where we assume ∆ = 0 and the series
∑

m≥2 m am(I ′(ρ))m−1 comes from the inversion of412

I ′ = V ′(ρ̂0) in Eq. (25) (the factor −m and the power m − 1 are chosen for later conve-413

nience). The amplitudes am are non-universal and depend on the potential V . For instance,414

am = −δm,2
3n
2u0

for the potential in Eq. (19). Assuming that I = I⋆ +δI , using that415

ρ =
n

Ld−2
Fd

�
L2 I ′⋆(ρ)

4π

�
, (43)

we have416

n
4πLd−4

F ′d
�

L2 I ′⋆(ρ)
4π

�
δI ′(ρ) =
∑
m≥2

m am(I
′
⋆(ρ))

m−1, (44)

where we have neglected higher order terms in δI ′ and neglected subdominant terms in the417

scaling limit (e.g. δI ′/u0 compared to δI ′/Ld−4). Furthermore, using that418

I ′′⋆ (ρ)
n

4πLd−4
F ′d
�

L2 I ′⋆(ρ)
4π

�
= 1, (45)

we obtain δI ′(ρ) =
∑

m≥2 m am(I ′⋆(ρ))m−1 I ′′⋆ (ρ), which implies419

δI(ρ) =
∑
m≥2

am(I
′
⋆(ρ))

m. (46)

Finally, using the fact that I ′⋆(ρ) = L−2Gd(Ld−2ρ) with Gd(ρ̃)∝ Ĩ ′⋆(ρ̃) a universal function of420

ρ̃ = Ld−2ρ = L2β/νρ, we obtain that421

Ld I(ρ) = Ĩ⋆(ρ̃) +
∑
m≥2

am L−(2m−d) Gm
d (ρ̃), (47)
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from which we recover Eq. (40) with δ Ĩm(ρ̃) = Gm
d (ρ̃) and ωm = 2m− d, which are indeed422

the correct critical exponents for the irrelevant perturbation to the Wilson-Fisher fixed point423

in large n [32,46]. The large field behavior of Gd(ρ̃) is proportional to ρ̃2/(d−2), see Eq. (29),424

which implies that425

δ Ĩm(ρ̃)∝ ρ̃(d+ωm)ν/2β , (48)

in agreement with Eq. (41).426

To finish this discussion, we can comment on the basin of attraction of this Generalized427

CLT. Focusing on the Ising universality class, we expect that a huge manifold in theory space428

of co-dimension 1 should be attracted to this universal distribution. In particular, assume that429

we know one model (say a ϕ̂4 theory) that can be fine-tuned to criticality. Then we expect430

that we can smoothly modify the initial distribution while still being critical as long as one431

parameter is fine-tuned. While it is surely possible to modify the initial Boltzmann weight in432

such a way that the critical point disappears (say, by making the transition first order), we433

expect the basin of attraction to occupy a large part of the relevant domain of theory space.434

For the three-dimensional Ising universality class and provided there is a unique fixed point435

associated with its critical behavior –which is commonly accepted– the parameter space at the436

phase transition, which is of codimension one in the full parameter space, is divided into two437

parts: the space where the transition is second order (II) and the space where it is first order438

(I). In I, the correlation length is finite at the transition and the system is therefore weakly439

correlated: the CLT applies under the standard form. In II, the RG flow is attracted towards the440

Wilson-Fisher FP and the rate function is nontrivial as well as its finite size corrections, Eq. (40).441

Thus, the basin of attraction of the GCLT is huge and corresponds to all models displaying a442

continuous phase transition belonging to the Ising universality class. The exception to the rule443

above is the border between I and II, which is of codimension 2 in the full parameter space.444

It is associated with multicritical behavior. Generically, on this multicritical hypersurface, the445

long-distance behavior is tricritical which is driven by the Gaussian fixed point in d = 3. This446

hypersurface has itself a boundary which is therefore of codimension three in the full parameter447

space where the behavior is quadricritical, also driven by the Gaussian fixed point in d = 3.448

The process never stops and there are infinitely many multicritical behaviors associated with449

attractive hypersurfaces of higher and higher codimensions. Notice that in d = 2 and for the450

Ising model, all multicritical behaviors are associated with nontrivial fixed points that are all451

different and thus must show a nontrivial PDF.452

5 Discussion and Conclusion453

We have shown that in critical systems at equilibrium, rare events are described by a large454

deviation principle, having both a universal and non-universal regime. This is in contrast with455

weakly dependent or independent variables, for which rare events are described by a non-456

universal rate function. The universal regime is described by Eq. (1), with exponentψ = nδ−1
2 ,457

as explicitly shown in a variety of models at a second-order phase transition. The transition458

to the non-universal regime is described by finite-size correction to scaling, and character-459

ized by the universal critical exponents corresponding to irrelevant perturbations of the fixed460

point describing the transition. This is the equivalent of Cramér’s series for strongly correlated461

variables (at least when described by a Wilson-Fisher-like fixed point).462

An important question concerns the generality of the results presented here. It has been463

argued in [1] that Eq. (1) with exponent ψ = δ−1
2 (for one-component degree of freedom)464

also holds generically for out-of-equilibrium systems presenting anomalous diffusion. While465

the general argument presented in [1] is flawed, see Appendix B, it is also possible to find466
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Figure 4: Rate function obtained from Monte Carlo simulations for the 3d Ising with
L = 64 at Tc , but with free boundary conditions. Note that we have subtracted
the same leading contribution as̃δ+1 that we found for periodic boundary conditions
(shown in Fig. 3). The dashed line corresponds to a quadratic behavior at small
magnetization, while the dotted-dashed line corresponds to a surface correction term.

counter-examples where ψ 6= δ−1
2 . One such example is the PDF of the fluctuation height H467

at time t of the KPZ universality class. For typical fluctuations, H ∼ t1/3 and the PDF takes the468

form469

Pβ (H, t)' t−1/3 fβ (Ht−1/3), (49)

where β = 1 (β = 2) corresponds to the flat (droplet) initial condition and fβ (z) is the Tracy-470

Widom distribution, see [3] and its supplementary materials for details. For large deviations,471

Ht−1/3� 1, the Tracy-Widom distribution takes the asymptotic form472

fβ (z)∝ z(2−3β)/4e−
2β
3 z3/2

, (50)

from which we read δ = 1/2 and ψ = 2−3β
4 . While for β = 1, we indeed have ψ = −1

4 =
δ−1

2 ,473

this is not the case for β = 2 where ψ = −1. Therefore, while there is indeed a power-law474

prefactor in front of the universal compressed exponential term, the two powers need not be475

generically related to each other.476

Coming back to critical systems at equilibrium, it might also be possible that the power-law477

prefactor could become extremely difficult to observe for instance in cases where there exist478

corrections to the leading behavior that are stronger than it. This could happen for critical479

systems with free boundary conditions, where the leading bulk term in the PDF, Ldsδ+1, might480

be corrected by subdominant but scaling surface term ∝ Ld−1s ys . From the condition that481

this term obeys scaling, we find ys = (δ + 1) d−1
d . This would modify the leading behavior of482

Eq. (8) in terms of the scaling variable s̃ = sLβ/ν to483

PL, f (ŝ= s)∝ e−as̃δ+1−bs̃(δ+1)(d−1)/d+···. (51)

It is thus clear that in the region of rare events, the surface term would be far more important484

than a power law prefactor (which might nevertheless be there). We expect such a surface485

term to be present in a critical system with free boundary conditions. Figure 4 shows the486

dimensionless rate function of the 3d Ising model with free boundary conditions, obtained487

from Monte Carlo simulations at L = 64. Note that the same leading behavior as̃δ+1 as that488

in Fig. 3 has been subtracted, since we do not expect the bulk coefficient to be modified. We489

see that after a region where the rate function appears quadratic, it crosses over into a region490

that could be compatible with a surface term. In comparison with Fig. 3, we see that there491
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is little chance of seeing a logarithmic behavior unless the surface term as well is removed,492

which is quite a formidable task. We do not doubt that analogous relevant examples could493

also be found out of equilibrium.494
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A Extraction of the ψ exponent numerically505

In Sections 3.3 and 3.4, we show that the correction to the leading order behavior of the rate506

function is consistent with a logarithmic behavior, corresponding to a power-law prefactor in507

the PDF.508

Determining the critical exponentψ remains challenging in numerical analyses of the rate509

function, whether obtained from solving the partial differential equation (FRG) or through510

simulations at finite sizes (MC). We discuss in this appendix these aspects in more detail.511

A.1 Extracting ψ in FRG512

First of all consider the solution of Eq. (38). Here, we used the exponential regulator Rk(q) = αk2e−q2/k2
513

with α ' 4.65 corresponding approximately to the optimized (point of least dependence of514

the critical exponent on the regulator) value for all cases of n, the number of components515

of spin, that we consider in the present work. The numerical resolution of this problem was516

considered in detail in [11], from which we summarize the main steps. If one is interested in517

the universal scaling function Ld I , one can start the flow from a fixed point initial condition,518

at some initial scale k∗, corresponding to the solution of a dimensionless version of Eq. (38) in519

the thermodynamic limit. For a large L � k−1∗ , the flow is initially virtually vanishing. How-520

ever as k decreases, the flow starts differing from the thermodynamic-limit flow, and the flow521

essentially terminates for kL∝O(1).522

The ρ dependence of the rate function is discretized on a grid, with mesh ∆ρ and max-523

imum range ρM . We use grid parameters that are sufficient to describe the initial condition524

correctly. We run the flow in terms of dimensionless quantities (using for instance the variable525

ρk−2β/ν, with β/ν = (d−2)/2 at LPA, down to an RG scale kd (typically 4L−1–10L−1), before526

switching to dimensionful quantities. Note that this means that the maximum value of ρ has527

been shrunk by a factor of typically L−2β/ν, but ensures that the grid is fine enough to capture528

the behavior of the rate function for field values of order L−2β/ν. However, this also implies529

that to capture correctly the tail of the rate function, we need to start with a big enough range,530

and increasing it allows for recovering larger and larger sections of the tail.531
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Figure 5: Subleading behavior of the rate function as a function of ρ̃ = L2β/νρ from
FRG for n = 1 for various maximum ranges of the field ρM , keeping the grid mesh
∆ρ = 0.00075 fixed. The black line shows the expected −δ−1

2 log ρ̃. Increasing the
ρM allows for seeing the log behavior for larger and larger fields.
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Figure 6: Subleading behavior of the rate function as a function of ρ̃ = L2β/νρ from
FRG for n = 1 for various grid mesh of the field ∆ρ, keeping the maximum range
ρM = 0.6 fixed. The black line shows the expected −δ−1

2 log ρ̃. Decreasing the ∆ρ
allows for seeing the log behavior for larger and larger fields.

From Eq. (1), we expect the rate function to behave as Ĩ(s̃) ≈ as̃δ+1 −ψ ln(s̃) for large532

enough s̃ = Lβ/νs = Lβ/ν
p

2ρ. We see that recovering the logarithmic tail on top of the533

leading power-law behavior requires determining the rate function to high precision. Typically534

the relative magnitude of the logarithmic term compared to the leading power-law behavior535

is 10−5 for s̃ ≈ 10.536

Extending the range where the logarithmic behavior is seen can be achieved by increasing537

the size of the grid in ρ, i.e. increasing ρM . It is illustrated in Fig. 5. Furthermore, for a given538

ρM , the range can be extended by refining the mesh∆ρ as seen in Fig. 6. The results presented539

here are for n = 1 but are representative. We also found that discretizing the derivatives540

following the recommendation of [47] also improves the large field behavior.541

Assuming that the PDF behaves as Eq. (1) at large enough fields, writing (recall that542

ρ = s2/2)543

PL(s)∝ e−Ld I(s),

∝ e− Ĩ(s̃),
(A.1)

the exponent ψ can be recovered in principle from the numerical data by computing the esti-544
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Figure 7: Estimator e(s̃), Eq. (A.2), as a function of s̃ for FRG at LPA and n = 1.
Same data as in Fig. 6. Depending on the mesh size∆ρ, the estimator can overshoot
the predicted plateau at ψ = δ−1

2 (equal to 2 at LPA, shown as red dashed line).
Decreasing ∆ρ improves the behavior of e(s̃).

mator545

e(s̃) =
s̃δ+2

(δ+ 1) ln(s̃)− 1
d
ds̃

�
Ĩ(s̃)
s̃δ+1

)

�
. (A.2)

Indeed, e(s̃)→ψ for s̃ large enough if Eq. (1) is obeyed. The behavior of e(s̃) does not depend546

on ρM as long as it is large enough, but it depends considerably on the mesh of the grid ∆ρ,547

as seen in Fig. 7.548

A.2 Extracting ψ in MC549

When we consider how well the exponent ψ is captured from the Monte Carlo data, the chal-550

lenges are different than in FRG determination. Here we are limited by the maximal L that551

can be reasonably studied with high enough statistics. The range in which the logarithmic552

correction to the rate function can be observed in principle is for L− βν � s � 1. We see that553

even with our largest lattice L = 128 in 3d, L− βν ≈ 0.08, it is quite hard to achieve this regime.554

We show in the inset of Fig. 3 that the leading power-law behavior aLsδ+1 is sensible555

to finite-size corrections as aL has an L-dependence. We have extrapolated its value in the556

thermodynamic limit a = limL→∞ aL to subtract asδ+1 from the rate function. Note that in557

this range of field, the leading behavior is of the order of 200 while the correction is of order 1.558

Fig. 8 shows e(s̃), defined in Eq. (A.2), as determined from the Monte Carlo data. We observe559

that while there is a minimum, it is still far from ψ = δ−1
2 due to finite size effects, even for560

L = 128.561

B Flaw in the argument of Ref. [1]562

We summarize the argument of Ref. [1] to relate ψ and δ and show why it is flawed. We also563

provide an explicit toy model to illustrate our point.564

Ref. [1] argues the generating function565

G(λ, t) =

∫
d xeλx p(x , t), (B.1)

for scaling systems, p(x , t) = t−ν f (x t−ν), must be well defined for t →∞ and λ→ 0, which566

implies that if p(z) is a stretched exponential with power-law zδ+1, then it must be of the form567
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Figure 8: Estimator e(s̃), Eq. (A.2), as a function of s̃ from MC data for
L = 16,32,64, 128 from light to dark blue. The dashed line corresponds toψ = δ−1

2 .
Finite-size corrections are still rather strong even for L = 128, while the maximum
range accessible in s̃ is also rather limited and might not be yet in the deep universal
rare event regime.

zψe−azδ+1
with ψ fixed to be equal to δ+1

2 . (They only consider one-component degrees of568

freedom, i.e. n= 1.)569

The argument goes as follows. Using the change of variable z = x t−ν,570

G(λ, t) =

∫
dzeλtνz p(z), (B.2)

and performing a saddle-point approximation, they find that if p(z) ∼ zψe−azδ+1
for a priori571

arbitrary ψ, then572

log G(λ, t)' λtνz̄ − az̄δ+1 +
2ψ+ 1−δ

2
log z̄ + · · · , (B.3)

where z̄ satisfy the saddle-point condition z̄∝ (λtν)1/δ. Note thatλtνz̄ ∼ z̄δ+1 ∼ (λtν)(δ+1)/δ.573

They then argue that “The term∝ log z̄ is the only one which actually allows us to split574

the λ and t dependencies into the sum of two separate terms. Therefore its presence would575

introduce a logarithmic singular dependence on λ in the whole t-independent part of log G,576

implying a divergence for λ = 0. For such reason, this dependence should be dropped by the577

above choice of [ψ = δ+1
2 ].” The flaw in this argument is that the presence of this logarithmic578

term does not imply a logarithmic divergence at λ = 0. Indeed, the saddle-point approxima-579

tion assumes that the product λtν is large. Thus one cannot simply take the limit λ → 0 in580

Eq. (B.3) without carefully taking the limit t → ∞ (note that the real object of interest is581
1
t log G(λ, t) which is well defined in the limit t →∞ at fixed λ provided δ = ν

1−ν).582

Thus, while it is true that in the limit t →∞, 1
t log G(λ, t)→ λ1/ν can have non-analytic583

derivatives at λ = 0, it is not true that the exponent ψ must be equal to δ−1
2 to prevent a584

logarithmic (non-physical) divergence at λ = 0.585

This is easily exemplified with the following toy model. Choose p(z) = e−z4
/2Γ (5/4), with586

Γ (z) the Gamma function, corresponding to δ = 3, ν = 3/4 and ψ = 0. The generating587

function can be computed exactly in terms of hypergeometric functions,588

G(λ, t) = 0F2

�
;

1
2

,
3
4

;
t3λ4

256

�
+
λ2 t3/2Γ
�3

4

�
0F2

�
; 5

4 , 3
2 ; t3λ4

256

�
8 Γ
�5

4

� . (B.4)
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Note that G(0, t) = 1 for all t by normalization of p(z), while589

lim
t→∞

1
t

log G(λ, t) =
3λ4/3

28/3
, (B.5)

where the limit is taken at fixed λ. In the limit t3/4λ� 1, we get590

log G(λ, t)' 3
28/3

λ4/3 t − log
�
λ1/3 t1/4
�
+ · · · . (B.6)

The leading term can be rewritten as (λt3/4)4/3 = (λtν)(δ+1)/δ while the second reads− log((λt3/4)1/3 = 2ψ+1−δ
2 log((λtν)1/δ),591

in agreement with saddle-point calculation Eq. (B.3).592

Therefore, the logarithmic term in Eq. (B.3) needs not to vanish in this regime (which593

would imply ψ = δ+1
2 , in contradiction with our choice of p(z)) for the generating function to594

be well defined at λ = 0, as asserted in Ref. [1].595
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