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Characteristic features of an active polar filament pushing a load
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Abstract

We present the structural and dynamical behavior of an active polar filament, which is
pushing loads of different magnitudes and sizes using overdamped Langevin dynamics
simulations. By changing the bending rigidity and the connectivity between the fila-
ment and the load, we smoothly vary the filament’s boundary conditions from pivoted
to clamped. For the pivot boundary conditions, the active polar filament buckles and
displays various fascinating dynamical phases: snake-like motion, rotational motion,
bent shape conformations, and helical structures. However, in clamped boundary con-
ditions, the helical phase disappears, and the filament attains either an extended state
or a bent state. The transition from the extended-state conformation to the helical state
is demarcated using the global helical order parameter in the parameter space of active
force and a quantity associated with the boundary condition. We have obtained various
power laws relating to the curvature radius of the helical phase, effective diffusivity, and
rotational motion of the monomers with the active force. Additionally, we demonstrate
that the filament’s effective diffusivity in the helical phase shows a non-monotonic trend
with the active force, increasing linearly followed by a sharp reduction at a high strength
of the active force.
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1 Introduction

Thin filamentous macromolecules play an indispensable role in the living matter [1–9], notably
motility of the cells [10], movement of sperms [7, 8], bacterium [9, 11], transport of vesicles
[12], muscle contraction [13], shape change in neurons, sensing and recasting of mechanical
stresses into an electrical signal in vestibular sensing cells [14], division of cells [7,8,15,16],
etc. Such filaments experience mechanical forces, different from thermal origin, generated
by various enzymes and motor proteins while performing biological functions. These stresses
can induce substantial conformational changes [7–9]. Consequently, fascinating structural
and dynamical phases emerge, viz. the beating and rotary motion of the cilia and flagellum,
helical twisting of the chromosomes while replication [17–19], bending of stereocilia, beating
and buckling of actin bundles, etc. With these insights, considerable progress has been made
in unraveling the conformational dynamics of the active filaments in previous works [5,8,20,
21,21,22,22–31].

Active polymers have been modeled predominantly via two distinct approaches, one as-
suming the active noise on the monomer exhibits the Ornstein-Uhlenbeck process [5, 21, 32–
42], while the other one assumes the active process is quenched on the backbone of the poly-
mer, imposing force along the polymer’s conformational specifically unidirectionally along its
every tangent-bond vector. The second category of active polymers are also referred as an
active polar linear polymer (APLP) [8,23,43–47]. The former one leads to the non-monotonic
behavior of the polymer [32, 41], while the latter model results in fascinating behavior with
a coil-to-globule-like transition with a significant compression [23,43,44], for the case of the
flexible polymer in the limit of large activity. A quite similar model has revealed a few aspects
of very complex systems, such as the formation of chromatin compartments, enhanced seg-
mental dynamics of chromatin, and macro-scale coherent motion of the chromatin [48–50].
On the other hand, a clamped active polar filament exhibits rotational and beating motion,
and its structure [20,22,51,52], is more like a rotating flagellum while freely moving, attains
various structures such as strong bending, circular-shape and helical coiling [23,44,53].

The present work primarily assesses the variation of the boundary conditions of the load
(front bead), the bending rigidity of the front bead with the rest of the filament (see Fig.1),
the size of the monomer, and the strength of the compressive active force etc. These variations
can result in novel configurations, especially the emergence of the dynamically stable helical
state for the active polar filaments. Such helical structures are intriguing, as they appear in
numerous biological functions; a few striking examples in living matter are listed here: the
double-strand DNA, actin filaments, viral capsids [54], sub-units of proteins as α-helices [55],
helical organization of bacterial chromosomes [17–19], etc. A long straight filament can ac-
quire a helical buckled state under compressive flow or in a viscosity gradient [56,57]. Under-
standing the kinetics and thermodynamic stability of the helices is crucial, and it can provide
valuable insights into various biological functions.

This article presents a minimal model for the active polar filament in three dimensions
(3D) with the active force imposed onto its backbone, which offers the appearance of dy-
namical structures and avoids self-trapping into the spiral form at two dimensions [8,23,58].
The sensitivity of the structural dynamics on the boundary conditions of the front monomer
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Figure 1: A schematic of an active filament with a load. Arrows indicate the direction
of the active forces on monomers. The front monomer (blue) and its connection are
shown differently. The connectivity of the front monomer with filament depicts that
it can rotate depending on the boundary conditions.

and its load has already been pointed out in the case of polar semi-flexible and flexible poly-
mers [20, 44, 59]. Using computer simulations, we comprehensively study an active filament
under compressive force. A smaller bending rigidity (more flexibility) of the load with filament
provides a higher drag. We observe a monotonic shrinkage of the filament with active force. A
stable helical structure of the filament spontaneously emerges at a higher load and sufficiently
high active force. This structure is stable up to a certain bending rigidity, which disappears at
a higher bending connection (smaller load).

We demarcate structural transition using various physical parameters such as tangent-
tangent correlation function, bending energy, and global helical order parameter (H4). The
correlation exhibits oscillatory behavior, and the helical order parameter also displays the
monotonic transition from the extended state to the helical phase. Moreover, the curvature
radius of the twist decreases with the activity. Further, we also analyzed the dynamical behav-
ior of the filament using mean-squared displacement (MSD) and computed the self-diffusion
coefficient of the filament. Strikingly, the effective diffusion coefficient of the active filament
shows a non-monotonic behavior with the Péclet number. Surprisingly, for very large Péclet
numbers, the effective diffusivity of the active filaments abruptly drops, and it nearly attains
the passive limit. More importantly, the internal dynamics of the monomers reveal that in the
helical phase, the motion of monomers is oscillatory, where they rotate along the axis of the
helix, and the rotation frequency grows with a power-law on Péclet number given as Pe7/4.
The oscillation frequency’s power-law variation is described using a straightforward scaling
relation in terms of the curvature radius.

The manuscript is organized as follows: the model of the active filament and its description
of the load and parameters are provided in the Model Section. The structural transition of the
filament, helical order parameter, and dynamical quantities are identified and discussed in the
Results Section. Furthermore, we summarise our study in the Conclusion Section.

2 Model

We model an active filament as a linear polymer of N spherical Brownian monomers linearly
connected through harmonic springs. These monomers interact among themselves via ex-
cluded volume interactions. In addition, the bending potential to control the stiffness of the
backbone of the filament is also incorporated. Thus, the total energy of the filament can be
written as U = Us+Ub+ULJ . Here, Us, Ub, and ULJ are spring, bending, and excluded volume
potentials, respectively. The spring potential Us of the filament is written as

Us =
ks

2

N−1
∑

i=1

(|ri+1 − ri| − ℓ0)2, (1)

3



SciPost Physics Submission

where ks and ℓ0 are the spring constant and the equilibrium bond length, respectively, and ri
is the position vector of the i th monomer.

The bending potential Ub provides stiffness to the backbone of the filament is given as

Ub =
κB

2

N−2
∑

i=1

(Ri−1 −Ri)
2. (2)

Here Ri is i th bond vector, Ri = r i+1 − r i and κB is the bending rigidity of the filament. The
stiffness of a filament is defined in terms of persistence length ℓp which can be expressed in
terms of κB as ℓp = κBℓ

3
0/(kB T ), with kB T being thermal energy.

The excluded volume potential, ULJ , is implemented via the repulsive part of the Lennard-
Jones potential. More specifically, for a distance Ri j < 21/6σ between two monomers i and
j

ULJ =
N
∑

i> j

4ε

�

�

σ

Ri j

�12

−
�

σ

Ri j

�6

+
1
4

�

, (3)

and ULJ = 0 for Ri j ≥ 21/6σ. Here, σ and ε are the LJ diameter of a monomer and the LJ
interaction energy between monomers, respectively.

The dynamics of the active filament is governed by the over-damped Langevin equation

γi ṙi(t) = −∇iU + F i
a(t) + F i

t (t). (4)

Here γi is the viscous drag coefficient, F i
a is the active force, and F i

t is the thermal noise with
zero mean. The second moment of the thermal noise obeys the fluctuation-dissipation relation
(FDT)

〈F i
t (t) · F

j
t (t
′)〉= 6kB Tγiδi jδ(t − t ′). (5)

The active force acts along the bond direction, for the i th bond vector is given as faRi/|Ri|= fa t̂i ,
where t̂i is the i th unit bond vector and fa is magnitude of active force. Thus, active force on i th

monomer, presented as F i
a in Eq. 4, has contributions shared by i th and (i − 1)th bonds. This

can be expressed by adding contribution from both bonds, which yields F i
a =

1
2 fa(t̂i + t̂i−1).

The strength of the active force on a monomer can be expressed in terms of a dimensionless
number called Péclet number, which is defined as the ratio of the active force with thermal
energy, Pe = faℓ0/(kB T ).

Additionally, the front monomer is considered different from other monomers of the fila-
ment, therefore the front monomer’s bending rigidity (κh

B), the size (σh), and friction coeffi-
cient (γh

t ) are taken independent parameters. In the case of the polar filament, the front/head
monomer acts as a load. Alignment of the load with the rest of the filament can be tuned
by changing the bending stiffness (κh

B) of the bond connected to the front-most monomer;
random alignment of the head from the rest of the filament acts higher load to the filament,
therefore by tuning the bending (κh

B) we can change the strength of the load. This is measured
in terms of the ratio of the dimensionless parameter ρ = κh

B/κB as the control parameter that
changes the boundary condition through which the load is attached to the front of the fila-
ment. The boundary condition from pivot (ρ = 0) to clamped (ρ = 1) is varied by ρ. For
ρ = 0, it allows the load to freely rotate from the filament’s axis, whereas the fluctuations out
of the axis are suppressed for ρ ≥ 1. The model restores to the tangentially propelled filament
for the case of ρ = 1, except for the front bead, which does not experience the active force.

Aside from changing the stiffness of the load, the size of the load, α= σh/σ, is also varied
while keeping the bending stiffness same as the rest of filament, i.e., κh

B = κB. Here, α is the
control parameter, which varies the diameter of the load, while doing so, we make sure that the
equilibrium bond length corresponding to the load also changes as follows: ℓh0 = 0.5(σ+σh).
The results corresponding to this aspect are discussed at the end of the manuscript.
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(d)

(b)

(c)

(a)

Figure 2: Various snapshots of the active polar filament for (a) Pe = 10, (b) Pe = 40,
and (c) and (d) Pe = 160 at, for ρ = 0. Notably, the front monomer is presented in
red color.

All the physical parameters in this manuscript are scaled in the units of the bond length ℓ0,
the diffusion coefficient of a monomer D0, and thermal energy kB T . Simulations parameters
are chosen as ks = 1000kB T/ℓ20,σ = ℓ0,ε/(kB T ) = 10, time is in units of τ = ℓ20/D0, and the
stiffness parameter κB is in units of kB T/ℓ20 and is fixed to be 1000 unless otherwise mentioned.
All the simulations are performed in a three-dimensional space. The Euler integration method
is used with a time-step in the range of 10−4τ to 10−5τ throughout to ensure the stability of
the simulation. For good statistics, each data set is averaged over at least ten independent
runs for all the results presented in this manuscript.

3 Results

We first investigate the structural behavior of a tangentially driven active polar filament, focus-
ing on the head monomer, which serves as a load, by systematically varying its connection to
the filament as well as its friction and size. We analyze how these changes affect the filament’s
conformation and dynamics. The boundary condition between the head and the filament is
controlled by the bending rigidity (κh

B) of the bond connecting the load, which differs from the
bending rigidity of the other bonds (κB). We express this difference as a ratio of the bending
parameters defined ρ = κh

B/κB. For ρ = 0, the bond acts as a pivot between load and filament,
allowing the head monomer to rotate freely relative to the rest of the filament; we refer to this
as the pivot boundary condition. Conversely, when ρ ≥ 1, the load is tightly coupled to the
filament’s orientation, which will be called as the clamped boundary condition.

3.1 Helical Transition

A long, straight filament under a compressive active force tends to buckle, which can result
in either correlated buckling or uncorrelated folding of the filament [44]. We observe that
the filament transitions through various structures, from rod-like to helical conformations, as
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Figure 3: a) Average global helical order parameter H4 as a function of Pe for dif-
ferent ρ. b) The variation of the local order parameter H2 as a function of Pe for
various ρ as indicated in the legend.

illustrated in Fig. 2. We calculate the helical order parameters to quantify structural transitions.
For this we follow the approach of Ref. [60–62] to compute the global (H4) and local (H2)
helical order parameters

H4 =

�

1
N − 2

N−1
∑

i=1

t̂i

�2

,

H2 =
1

N − 3

N−2
∑

i=2

t̂i · t̂i+1. (6)

The H4 measures the global twist of the filament; conversely, H2 characterizes the local twist
of the filament.

The computed values of H4 are presented in Fig. 3-(a) for various ρ as a function of P’eclet
number (Pe). For ρ ≤ 1, H4 ≈ 0 suggests that the filament does not exhibit a global twist.
If the bending rigidity of the filament with the load is the same or greater, the polar filament
does not support global buckling. Furthermore, as ρ decreases, there is a sharp increase in
the values of H4. As shown in the plot, H4 suddenly rises from zero to a large value as Pe
increases. In the limit of large Pe, H4 nearly saturates to a common value for all ρ < 0.3.
The appearance of non-zero values in H4 indicates a transition point for a given ρ. It is also
interesting to note that for larger values of ρ ≥ 1, the filament does exhibit local bending
despite its H4 ≈ 0, the local bending can be measured in terms of H2 which increases with
Pe, as shown in Fig. 3-(b). Despite the local bending, the filament does not attain the helical
shape and global order parameter H4 ≈ 0. Moreover, for ρ < 1, H2 also sharply rises and
reaches a common plateau value for all ρ. The difference between H4 and H2 is that in the
extended phase, H4 ≈ 0 while H2 is non-zero and grows with Pe for all ρ, see Fig. 3-(b).

3.2 Bending Energy

The helical buckling of the filament is achieved under compressive force, which exhibits higher
bending energy than a linearly extended filament. The structural transition of the filament can
also be marked by the bending energy of the filament. For this, we present the average bending
energy Ub of the filament in Fig. 4 as a function of Pe for various values of ρ.

The bending energy remains unchanged for small Péclet numbers Pe < 10, for the range of
ρ covered. Beyond Pe > 10, a systematic monotonic increase in the bending energy appears
as Fig. 4 displays for ρ = 0. For ρ > 0 values, the plateau range extends beyond Pe > 10.
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Figure 4: The variation of the bending energy (Ub) as a function of Pe for various ρ
as indicated in the legend. The dashed line illustrates the power law behavior of the
bending energy (Ub ∼ Pe4/3) with an exponent 4/3 in the helical phase.
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Figure 5: a) The variation of the average end-to-end distance Re as a function of the
Péclet number Pe. b) The average radius of gyration Rg of the filament as a function
of Péclet number Pe for various ρ as displayed in the plot.

Importantly, a sharp transition in bending energy is observed at a critical Péclet number for
ρ > 0. At this juncture, bending energy curves merge on the behavior of ρ = 0. A sharp
upsurge in the bending energy forρ < 1 at the critical Péclet number indicates that the filament
undergoes structural transition from the extended-state to a more curved state, in this case,
a helical state, as Fig. 3-(a) also displays the spontaneous emergence of non-zero values of
H4. It’s important to emphasize here that the transition from the extended state to the helical
state for the ρ = 0 is gradual rather than sudden as for ρ > 0. The bending energy in the
helical phase displays a power law variation with Ub ∼ Pe4/3, as a dashed line illustrates this
variation for Pe > 10.

The transition point, where an upsurge in the bending energy is observed, shifts towards
higher Pe with an increase in ρ. Notably, we observe two universal bending energy curves,
one corresponding to the helical shape and the other one corresponding to the extended-state
or folded conformations. A change in the bending rigidity of the load oversees the transition
from lower bending energy to higher bending energy state. This reveals that despite higher
bending energy, the helical state appears to be more stable conformations under compressive
active force; these conformations are stabilized by the compensation of compressive force with
the viscous drag.
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Figure 6: Tangent-tangent correlation (C(s)) of the active polar filament for different
Pe strengths at a) ρ = 0 and b) ρ = 1, here, s = 0 and s = N corresponds to tail and
head monomers of the filament, respectively.

3.3 Structural Properties

We illustrate the change in the structure of active polar filament using average end-to-end
distance (Re) and radius of gyration (Rg) read as

Re = 〈
Æ

(r1 − rN )2〉,

Rg =

*

√

√

√

√

1
N

N
∑

i=1

(ri − rcm)2

+

. (7)

Here, rcm is the center of mass of the filament, and angular brackets represent the ensemble
average. Figure 5 displays the computed values of Re and Rg on the parameter space of Pe
and ρ.

For the pivot boundary conditions ρ = 0, as expected, conformations are nearly unper-
turbed for the small activity Pe < 10; therefore, Re and Rg remain unchanged. However,
beyond a critical Pe > 10, Re and Rg monotonically decrease, see Fig. 5 (a) and (b), respec-
tively. The filament is substantially compressed for larger values of Pe, as Rg and Re show a
significant reduction from its equilibrium value in the presented Pe range.

Furthermore, an increase in the ρ yields the crossover from a plateau to compression
of Re and Rg for larger values of Pe. Importantly, the compression of the filament appears
abrupt in nature, as also seen in the sharp variation of the bending energy and helical order
parameter. For sufficiently large Pe, it merges with the behavior of the ρ = 0. In the limit
of the clamped boundary condition ρ ≥ 1, where the head/load is connected rigidly with the
filament, the structure of the active filament is nearly unchanged in the presented simulation
window, indicating that the filament remains in the extended state. Therefore, no structural
transition is observed here. In the limit ρ > 1, the active force can lead to bending without
helical phase; thereby, compression is observed [8,44].

3.4 Bond Correlation

The monotonic compaction of Re and Rg and the helical order parameter indicate that the
filament acquires folded/buckled conformations and exhibits fascinating structural transitions
as snapshots and supporting media files (see Movie 1, 2, and 3) to corroborate our claim.

We look into spatial correlation along the contour to compute the curvature of the fila-
ment. For this, tangent-tangent correlation is a useful metric. The correlation at separations
of arc length s = |i − j|ℓ0 can be computed as C(s) =< t̂i .t̂ j >. Specifically, the correlation
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Figure 7: Radius of curvature (Rβ) of the filament obtained from Eq. 8 as a function
of the Péclet number Pe for various values of ρ. The dashed line shows the power law
behavior of the curvature radius Rβ ∼ Pe−β with an exponent β = 3/4. Inset displays
the curvature radius Rβ as a function of Pe for various chain lengths at ρ = 0.

is computed from the rear end of the filament towards the front load, i.e., from i = 1, ...N ,
and N is the load/head monomer. In equilibrium, the tangent correlation exponentially dimin-
ishes, providing the filament’s persistence length ℓp, as correlation obeys exponential behavior,
C(s) ∼ exp(−s/ℓp). The exponential behavior is nicely captured in Fig. 6 for Pe = 0, particu-
larly for those Pe below the critical Pe for all ρ [41].

The tangential correlation diminishes substantially upon augment of Péclet numbers, indi-
cating the lateral fluctuations along the contour are increased [44]. Interestingly, for Pe ≥ 40,
an exponential to damped oscillatory correlation behavior emerges. The oscillation in C(s)
becomes more prominent for large Pe and continues along its backbone. The transition from
exponential behavior to sinusoidal oscillations with Pe is a signature of the underlying helical
folding of the filament [44,63].

For the stiffer boundary conditions (clamped), i.e., ρ ≥ 1, Fig. 6-(b) illustrates that the
sinusoidal oscillation in the correlation is absent, even in the limit of very high Péclet numbers
Pe > 100. Rather, a two-step decay in the correlation function with a kink, which becomes
more prominent for larger Pe and shifts towards the tail, i.e., smaller values of s. This implies
that the filament attains a sharp fold, more like a hairpin. Seemingly, a similar behavior for the
flexible active polar polymers has been observed, where tangent-tangent correlation exhibits
negative correlation or the polymer is relatively more compressed near the head-side than the
tail-side [34,46,47].

The oscillatory behavior of correlation can provide an approximate measure of the cur-
vature radius of the filament. To estimate this, we examine the behavior of tangent-tangent
correlations by fitting a damped oscillatory function using the following function,

C(s) = aβ exp(−s/ℓp) cos(2πs/Rβ). (8)

Here, aβ is a constant, ℓp is the persistence length of the filament, and Rβ is the character-
istic length scale associated with the radius of curvature of the filament in the helical phase.
Figure 7 displays the curvature-radius (Rβ) obtained by fitting above Eq. 8 to the correlation
function C(s). The obtained curvature radius decreases with activity; more importantly, it fol-
lows a power law behavior, with a universal curve for all ρ as Fig. 7 displays a superimposed
curve for all ρ. The obtained curvature radius exhibits a power law behavior Rβ ∼ Pe−β with
an exponent β ≈ 3/4. This characteristic feature of the curvature radius is also consistent
for larger lengths, as illustrated in the inset of Fig. 7. The curvature radius is independent of
the polymer length; a similar feature has also been reported for the passive filament under

9



SciPost Physics Submission

10
0

10
1

10
2

Pe

10
1

10
2

10
3

10
4

D
p
/D

0

p

ρ = 0

ρ = 0.05

ρ = 0.1

ρ = 0.2

ρ = 0.3

ρ = 0.4

ρ = 1.0

ρ = 1.5
~Pe

Figure 8: The scaled effective diffusion coefficient (Dp/D
0
p) as a function of Pe for

various ρ. The dashed line indicates the linear behavior of scaled effective diffusivity
Dp/D

0
p as a function of Pe.

compressive flow [56].

3.5 Dynamics

The dynamics of an active filament is characterized by mean-squared displacement (MSD) of
the center of the mass. In addition, insight into the internal dynamics can also be gained by
probing monomers’ MSD. First, we compute the MSD of the center of mass of the filament
given as < ∆r 2

cm(t) > = < [rcm(t)− rcm(0)]2 >, here angular bracket stands for the ensem-
ble average. The MSD of an active filament exhibits a ballistic regime in a short time scale,
< ∆r 2

cm(t) >∼ t2, is superseded by the diffusive linear regime, < ∆r 2
cm(t) >= 6Dp t at long

time scales.
Figure 8 displays the filament’s effective diffusivity (Dp) scaled with the diffusivity of the

passive filament (D0
p) estimated from the linear regime of the MSD. The effective diffusion

coefficient, as expected, grows linearly with Pe, in the extended state of the filament for ρ ≥ 1.
This linear behavior of the effective diffusivity has been addressed for the case of active polar
linear polymer (APLP) in the simulations and theory [43–45]. Here, the effective diffusivity
can be expressed in the following form, Dp = D0

p(1+ aρPe), where D0
p is the diffusivity of the

filament in the passive limit, and aρ is some model dependent constant.
For ρ < 1, the diffusivity also grows linearly, superimposing with the curves of ρ ≥ 1.

Aside from that, beyond a critical Pe, it deviates from the linear regime, followed by a sharp
descent with Pe. Furthermore, in the limit of large Pe > 200 and ρ < 0.3, effective diffusivity
reaches to the plateau value which is very close to the passive limit, as Fig. 8-(b) depicts.
The decrease in the Dp is due to the helical buckling of the filament, where the active force
acts along the curved conformations. This suppresses the large-scale directed motion of the
filament. Hence, effective diffusivity is substantially suppressed compared to those for the
elongated conformations. Thus, the helical shape polar filament diffuses much more slowly
than the extended state filament.

We analyze the internal dynamics of the filament using the MSD of monomers in the consid-
ered parameter regime. Figure 9 displays the MSD of the front monomer in the center-of-mass
reference frame. As expected, the MSD of the monomer grows superdiffusively before ap-
proaching the plateau for all Pe. The plateau regime of the MSD indicates that the monomers
can not diffuse beyond the scale of filament length.

Markedly, in the intermediate Pe regime, MSD demonstrates an oscillatory behavior just
before approaching the saturation limit. This intriguing oscillatory component of the MSD ap-
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Figure 9: a) Mean-squared-displacement (MSD) of the end monomer with respect to
the center of mass of the filament for various Pe at a given ρ = 0.05. b) The rotation
frequency computed from oscillations of MSD of the monomers for various ρ. The
dashed line displays the power variation of the frequency νδ ∼ Pe7/4.
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Figure 10: The global helical order parameter H4 as a function of Pe at ρ = 1 for
various load size α= 1,2, and 3.

pears in the helical phase, indicating the monomers are undergoing rotational motion around
the axis of the helical conformations. Thereby, the filament also rotates clockwise/anticlockwise
with a similar frequency. The rotational motion becomes more prominent for larger Péclet
numbers with larger values of oscillation frequency. The rotational motion of the monomer is
illustrated in the supporting movie-3.

Figure 9-(b) presents the oscillation frequency (νδ) of the monomer in the helical phase.
The frequency νδ increases with Péclet number with a power law given as νδ ∼ Peδ, with
an exponent δ ≈ 7/4. More importantly, νδ is independent of ρ likewise Rβ . The oscillation
frequency can be described by the following scaling arguments: the speed vm of a monomer in
the helical phase can be expressed as vm ≈ Rβνδ, where Rβ is curvature radius. Employing the
scaling relation of Rβ obtained in Fig. 7 and assuming the speed of the monomer grows linear
in Péclet number vm ∼ Pe, we can express νδ ≈ Pe/Rβ . Further, this can be expressed using
the scaling relation obtained for the curvature radius as νδ ≈ Pe7/4, which reveals a similar
exponent as in simulations, see Fig.9-(b).

3.6 Size of the Load

Now, we vary the size of the load while keeping κh
B same as κB, so we keep ρ = 1 in our

simulations. Figure 10 compares the filament’s mean helical order parameter H4 with Pe for
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three different sizes of loads as mentioned in Fig. 10. For the diameter σh/σ = 1, the filament
is the same as presented in Fig. 3-(a) for ρ = 1. In this case, we observe no helix formation,
thus a helical order parameter with nearly zero value of H4. For the load size of σh/σ = 2 and
σh/σ = 3, respectively. We observe a similar trend of H4 with Pe as we presented earlier for
the smaller values of ρ < 1. This indicates that the filament transitions to a helical structure as
the load size increases. Our analysis of the diffusion coefficient and radius of gyration supports
this observation, showing comparable trends to those discussed previously. Thus, the behavior
of the active polar filament with a larger load is nearly analogous to that of a filament with a
pivot boundary condition.

4 Summary and Conclusion

We have presented the conformational and dynamical features of an active polar filament
pushing against a load. Different emergent phases of the filament are attained by systemat-
ically varying the size of the load or by tuning the filament’s connectivity to the load. Our
findings reveal an intriguing structural transition; under sufficiently high active forces, the
filament adopts helical conformations despite the absence of torsional rigidity. These helical
structures emerge as stable conformations despite having a higher bending energy than the
extended state. The helical phase emerges in the broad regime of Péclet number and the bend-
ing parameter (ρ) of load. The transition from extended to helical conformations is marked
by non-zero values of the global helical order parameter (H4) and a sharp rise in the filament’s
bending energy. Compressive load induces helical buckling, even though this results in higher
bending energy due to the combined effects of active force and viscous drag [44,63].

In this study, we have modeled the load by changing the boundary condition slightly at
the microscopic level, which has led to a large-scale macroscopic influence on the filament’s
structure and dynamics. A smaller variation of the load’s bending rigidity allows more rota-
tional freedom. Hence, the load is less aligned with the filament; therefore, this acts as an
effectively higher drag/load on the filament against the compressive force, resulting in helical
buckling. As the bending stiffness at the front is raised, the fluctuations in the bond orienta-
tions of the first monomer are substantially suppressed, and rotation of the front monomer is
penalized; thus, the helical structure disappears in this parameter regime. At ρ ≥ 1, larger
bending stiffness at the front bead aligns with the filament; therefore, we do not witness a
significant change in the structure.

Furthermore, we determined the curvature radius of the filament in the helical phase that
decreased with compressive active force. The behavior of curvature radius is characterized
by a power law Rβ ∼ Pe−β where β ≈ 3/4. Furthermore, the filament displays fascinating
dynamical behavior, too. Strikingly, the effective diffusion coefficient of the active filament
shows a non-monotonic behavior with the Péclet number. Surprisingly, for very large Péclet
numbers, the diffusivity of the active filaments abruptly drops to very small values, nearly
attaining the passive limit despite a very large active force. A closer analysis of the internal
dynamics revealed that monomers are undergoing oscillatory motion into the helical phase
around its axis, which causes a sharp drop in the effective diffusivity. The rotational frequency
corresponding to that is described by a power-law on Péclet number given as νδ ∼ Pe7/4.

Additionally, we have looked into the effect of the variation in size while maintaining the
boundary condition. In this scenario, the filament also displays the transition from the ex-
tended state to the helical phase due to higher drag. Thus, a larger drag on the load, either by
the random orientation due to a change in boundary condition or a bigger load size, results
in the large-scale macroscopic structural and dynamical transition of the active filament. In
summary, the manuscript highlights how the structural and dynamic behavior of the active
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filament can be controlled by attaching a load with tunable size or connectivity. Such findings
provide valuable insights into both natural microswimmers and artificial swimmers pushing
a load [7,8,64]. The solvent-mediated hydrodynamic interactions among the monomers can
open up many more interesting questions and provide more valuable insights into such sys-
tems [7,8,37].
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