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We introduce a new perspective on the connection between many-body physics and information
theory. We study phase transitions in models with randomness, such as localization in disordered
systems, or random quantum circuits with measurements. Utilizing information-based arguments
regarding probability distribution di�erentiation, rigorous results for bounds on critical exponents
in such phase transitions are obtained with minimal e�ort. This allows us to rigorously prove
bounds which were previously only conjectured for dynamical critical exponents in localization
transitions. In addition, we obtain new bounds on critical exponents in many-body Fock space
localization transition and localization in Coulomb-interacting models. Somewhat surprisingly, our
bounds are not obeyed by previous studies of these systems, indicating inconsistencies in previous
results, which we discuss. Finally, we apply our method to measurement-induced phase transition in
random quantum circuits, obtaining bounds transcending recent mapping to percolation problems.

I. INTRODUCTION

Over the years di�erent connections have been recognized between information theory and physics, going from the
Maxwell demon paradox [1], through using (quantum) information measures to bound renormalization group �ows [2],
to the black hole information problem [3]. Information theory concepts, such as complexity or entanglement, are used
in many-body physics as a marker or a characteristic of phases [4�7] and in the study of the classical representability
of many-body states [8�12]. Can one go further and use pure information or algorithmic complexity considerations to
deduce the behavior of physical problems? Here only scant few results exist (see, e.g., Ref. [15] for a recent example
in the context of the AdS/CFT duality). In our work, we propose a new approach for using information-theoretical
arguments to obtain physical results, bounding the behavior of randomness-based phase transitions � seemingly
unrelated to classical or quantum information.
The principal idea is as follows: We examine quantum phase transitions which rely on randomness, e.g., localization

transitions. A model is de�ned by a probability distribution PW , where W is proportional to P's width. A phase
transition occurs when W reaches a critical value Wc. We then ask: What is the required system size for the system
to �know� its phase? The answer may be based on the physical properties of the system, depending on the correlation
length characterizing the phase. It may also be based on information theory, requiring that the number of samples out
of PW would be su�cient to statistically determine W . Comparing both viewpoints gives an information-theoretical
bound on the critical exponents of the phase transition.
Our method generalizes the rigorous proof of the Harris bound [16] as obtained by Chayes et al. [17, 18]. The

generalization allows to apply the method to a vast range of models and obtain new bounds, as we demonstrate
below.
The rest of this paper is organized as follows: In Sec. II A, we present our method by applying it to a paradigmatic

phase transition, the Anderson localization (AL) transition [19�24]. We rederive the Harris bound as discussed
above [16�18], using a much more intuitive approach, which allows to extend its validity to any smooth dependence
of the disorder PW on W , thereby complementing the argument. We discuss the extension of the method to classical
temperature-driven phase transitions, the original realm of Harris's work, in Sec. II B. In Sec. II C, we adjust the
method to bound dynamical critical exponents, and demonstrate the extension on non-Anderson transitions in Weyl
and related systems, obtaining rigorous bounds which were previously only conjectured.
We then move to apply our method to interacting localization models, pointing at inconsistencies in previous results

in two separate cases: In Sec. IIIA we apply our method to many-body localization (MBL) phase transition [37�39],
studied in the setting of Fock space (FS) localization. We �nd discrepancies between our information-theoretic bounds
and numerical results in limited-sized systems. Such discrepancies were already observed in MBL in real space [40, 41],
and we observe an additional one in FS. This may be relevant to the ongoing discussion regarding the nature of MBL
in the thermodynamic limit [42�64]. In Sec. III B we apply our method to localization transitions with Coulomb
interactions and bound the dynamical critical exponent proposed for such a model [83]. Our bound is not obeyed by
previous theoretical estimates in Ref. [83], which calls for additional investigation.
In Sec. IV we study measurement-induced transitions in random quantum circuits [85�88]. Results for such phase

transitions have previously been obtained rigorously for a speci�c setting, namely, 1+1 dimensional circuit with Haar-
random unitaries, with zeroth Rényi entropy (Eq. (16)) as the order parameter. We obtain a generic bound for all
circuit settings, which is obeyed by existing numerical data. We summarize our conclusions and o�er future outlook
in Sec. V.
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II. INTRODUCTION OF THE METHOD

A. Warmup example: Anderson localization

First, we demonstrate our method by rederiving the Harris bound on Anderson localization transitions. A rigorous
proof equivalent to the following is presented in Appendix A, and here we give an intuitive overview.
We study a noninteracting tight-binding model with Hamiltonian H0 with added disorder, i.e., random potentials,

H = H0 +
∑
i

ϵic
†
i ci, (1)

where ci are annihilation operators, and {ϵi} are independent and identically distributed (i.i.d) variables drawn from
a probability PW (ϵ). W is called the disorder parameter, typically de�ned to be proportional to the P's width. We
focus on lattice systems in spatial dimension d.
When d > 2, the eigenstates of the system with energy E undergo a phase transition at a critical disorderWc(E) [22].

WhenW > Wc(E), the system is in a localized phase [24]: eigenstates with absolute values of energy> |E| are localized
around a small group of lattice sites, their amplitude decaying exponentially with the distance from these sites. This
phase is characterized by a localization length ξE . When W < Wc (E) the system enters a di�usive phase at energy
E [24, 25], in which particles with absolute values of energy < |E| scatter accross the lattice with distribution similar
to that of a classical random walker, with a correlation length ξdi�E . Assuming that the phase transition is second
order, we de�ne the critical exponent ν:

ξE , ξ
di�
E ∼ |W −Wc(E)|−ν

, (2)

which governs the behavior in both phases due to renormalization group arguments [24].
We now introduce our method. Consider the following hypothetical setting: A classical computer receives an input

composed of a model as in Eq. (1) above. The input also contains the values of E, Wc(E), ν, and all the coe�cients
necessary in order to describe the behavior of the system near criticality, up to any desired accuracy. The source of
this prior knowledge is unimportant (e.g., a preliminary numerical computation using any amount of resources).
In the setting above, the classical computer is given a task: The computer is presented with a blackbox, emiting

values distributed by PWc(1±δ), where δ is small and given. It is then required to determine the sign, ±.
A possible strategy for solving the task is to determine the physical phase de�ned by PWc(1±δ). The computer

samples N values from the blackbox, and uses them to de�ne local potentials {ϵi}. It then simulates the behavior of a
particle in a d-dimensional lattice of size N in the studied model with energy E (see Appendix A for technical details).
Based on the simulation, the phase of the system is determined, and in turn, the sign ±. The required system size

for determining the phase is N ∼
[
max(ξE , ξ

di�
E )

]d ∼ δ−νd. The strategy proposed above is illustrated in Fig. 1.
We denote by Nopt the optimal number of samples required for di�erentiating the two probability distributions

PWc(1±δ). The information-theoretical requirement on Nopt is

lim
δ→0

Nopt ∝ δ−2. (3)

Eq. (3) can be understood intuitively, following Chebyshev's inequality. A more formal statement is provided in
Appendix A.
It is required that Nopt ≤ N . Therefore,

δ−2 = O(δ−νd) ⇒ν ≥ 2

d
. (4)

We see that a bound on the critical exponent was obtained based solely on information-theoretical arguments, with
minimal use of physical assumptions. We stress that while the setting above might be challenging to obtain, it is
technically possible, which is su�cient to obtain a proof on the bound. The argument is based only on comparing
number of samples in both hypothetical cases, rather than protocol complexity. The rigorous claim we make is the
following: If the phase transition occurs and is described by Eq. (2), then necessarily ν ≥ 2/d. Note that the method
only deals with the limit δ → 0, which corresponds to the thermodynamic limit , N → ∞. A summary of the approach
is presented in Fig. 2.
We note that usually, numerically-studied systems are simulated with a uniform disorder distribution rather than

a smooth distribution. In this case, the bound obtained by our method is ν ≥ 1/d (see Appendix A). Nevertheless,
smooth and uniform distributions should behave similarly, since the latter may be considered a limiting case of the
former. Indeed, numerical results obey the tighter bound, ν ≥ 2/d. We also note that one could use other quantities
to distinguish the two phases, e.g., the localization properties of the eigenstate closest in energy to E, see Appendix
B. This would parallel the Fock space discussion in Sec. III A below.
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FIG. 1. Illustration of the protocol run (hypothetically) by the classical computer to distinguish the probability distributions
PWc(1±δ). The top sketch illustrates the simulated graph. A clean wire of length L (orange nodes with negative indices) is
coupled to the center (pink node, denoted by |(0, 0)⟩) of a d-dimensional lattice (blue nodes with positive indices (n1, n2)). An
initial state of a free wave with energy E is de�ned on the wire. Random potentials are added to the lattice sites with positive
indices. The evolution of the state in time is simulated, and based on the amplitude of the state after a long time, the algorithm
determines whether the system is in a localized (W =Wc(1 + δ)) or delocalized (W =Wc(1− δ)) phase. Note that for clarity
of the sketch, we use d = 2. However, the phase transition only occurs at d > 2.

B. Harris bound for classical thermal phase transitions

One may also extend our argument to the systems originally considered by Harris [16], namely the classical
ferromagnetic Ising model in d space dimensions, with a small random addition ∆J to the exchange coupling J .
Let us brie�y recall Harris' argument. If the system is at a dimensionless temperature distance δT ≡ (T − Tc)/Tc
from the clean critical temperature Tc, the correlation length is ξ ∼ |δT |−ν in the clean case. Spins in regions of
size ∼ ξd ∼ |δT |−νd are thus correlated. The average disorder in such a region will be of order ξ−d/2, leading to a
correspondingly large shift in δT . This shift is small with respect to the staring value of δT , making the criticality
robust to small disorder, only if ν ≥ 2/d.
We may rederive this result using our approach: Making the realistic assumption that small disorder shifts Tc

with some smooth dependence on the disorder distribution width, one may assume that near criticality, Tc(1 ± δT )
correspond, respectively, to disorder distribution width W (1 ± δ) for some δ ∼ δT . A decision problem may be
de�ned to distinguish two probability distributions of widths W (1 ± δ). A classical computer may then sample

N ∼ δ−νd ∼ δ−νd
T values from the distribution and determine the phase it corresponds to by calculating the partition

function to su�cient accuracy, either by brute force or by, e.g., a Monte Carlo simulation running for a long enough
time (recall that the only thing that matters to our argument is the number of disorder samples, not the calculation
time). From the phase, the computer determines the distribution width and solves the decision problem. Comparing
with Nopt ∼ δ−2, the Harris bound ν ≥ 2/d is recovered.

C. Dynamical critical exponents

Our approach may also be used to bound dynamical critical exponents, i.e., critical exponents that govern the
behavior as a function of energy. We demonstrate it on the non-Anderson disorder-driven transitions in Weyl-like
systems [30].
We focus on noninteracting Hamiltonians with short-range correlated random potential, such as the ones studied in

Refs. [27�30]. It was shown there that a disorder-driven phase transition occurs in such systems even if localization is
forbidden by topological or symmetry constraints. The transition is then manifested, e.g., by a change in the density
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FIG. 2. A brief summary of the approach. We start with a disorder-driven phase transition assumed to be second order. A
hypothetical decision problem is then considered, distinguishing between two probability distributions corresponding to two
sides of the transition with a distance δ from the critical point. The δ-dependence of the required system size in order to
solve the problem is obtained in two ways: from physical considerations, based on the localization/correlation length, and from
information theory, based on Eq. (3). The two requirements are compared to obtain a bound on the critical exponent.

of states (DoS) � the DoS at low energies vanishes when W < Wc, and becomes �nite at larger disorder. The

correlation length near the phase transition is governed by a critical exponent ξ ∼ |W −Wc|−ν
. The Harris bound

on ν may be obtained similarly to the bound on the Anderson transition above.
The phase transition may also be approached by tuning the energy E instead of the disorder, around a critical

value Ec, which is �xed to the Weyl or Dirac nodes in the corresponding systems. Tuning the energy, we de�ne the
dynamical critical exponent z as

ξ ∼ |E − Ec|−z
. (5)

Near Wc and approaching Ec, the DoS ρ is expected to behave as

ρ ∼ |E − Ec|
d
z−1

. (6)

We adjust our approach to bound 1/z: Consider a disordered model with a critical energy Ec. One may present
a hypothetical decision problem di�erentiating between two probability distributions with the same width, Wc, but
di�erent means: E [P0] = 0, E [P−δ] = −δ. Again, the required number of samples from P for di�erentiating the cases
is Nopt = O

(
δ−2
)
.

A classical computer may sample Ld values from the probability distribution and use it to de�ne a disordered
Hamiltonian. The computer may then calculate, e.g., the �nite-size energy gap ∆ in the spectrum around Ec. If
the probability distribution is P0 the critical value is Ec, whereas for P−δ the spectrum shifts to lower energies and
therefore the probed energy has a �nite DoS. The expected behavior of ∆ in the two phases is

∆ ∼

{
L−z E = Ec,

L−dρ−1(δ) E = Ec(1 + δ).
(7)

The �rst (critical) case in Eq. (7) is derived from the de�nition of z, while the second is consistent with a �nite DoS.
The required number of samples, N , may be extracted by comparing the cases above, obtaining a requirement on the
minimal L needed to distinguish between the phases. By substituting N = Ld and ρ from Eq. (6), we obtain:

L−z ∝ L−dρ−1(δ) ⇒ N ∝ δ−
d
z , (8)

and from the requirement N ≥ Nopt, the Harris bound

1/z ≥ 2/d (9)

is obtained, which was conjectured and empirically found to hold in Ref. 29.
Considering the numerical results obtained for z [31�36], an interesting point arises: Unlike the real-space critical

exponent ν, z tends to saturate (or come very close to saturating) the bound in Eq. (9). This implies that the
(hypothetical) protocol above is equivalent to the optimal way of di�erentiating distributions. Put di�erently, it
means that no information on E [P] is �thrown out� when computing the DoS or the energy gap ∆. It would be
interesting to characterize what makes this phase transition information-e�cient.
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III. LOCALIZATION TRANSITIONS IN INTERACTING MODELS

A. Fock space localization

We turn to obtaining new results on Fock space (FS) localization transition. The bound is not obeyed by previous
numerical results [78], and we discuss this discrepancy below.
Adding interaction to Anderson-localized single-particle models may reintroduce ergodicity to the system. However,

for a given interaction strength, it is widely believed that there is still a critical disorder value above which the system
is in a many-body localized (MBL) phase, at least in 1D [37�39]. The interacting nature of MBL, combined with
the fact that it occurs at excited states, limits heavily the accessible system size for numerical simulations of MBL.
The study of MBL is thus required to navigate plausible theoretical arguments suitable for in�nite-sized systems, and
numerical results, limited to small-sized systems. This gap leads to challenges in the understanding of MBL and fuels
a debate about whether such a phase even exists [42�49, 56�64]. We note that another such debate arose about
whether the Harris bound is obeyed by the real space MBL length [40, 41], and that our approach lends a more
rigorous support to its applicability.
A recent enlightening angle on MBL originates from studying it in FS: the system can be thought of as a single

particle scattered across the graph de�ned by the disordered Hamiltonian in FS. The study of MBL as FS localization
allows to use single-particle techniques, and may shed light on MBL behavior [65�69]. In FS, the Hamiltonian can
be written as a disordered tight-binding Hamiltonian with correlated local potentials: the number of sites in FS is
N = dNsingle where dsingle is the Hilbert space size of a single site, but their random local potentials depend only on
the N parameters in real space.
A FS localization measure for an eigenstate |ψ⟩ may be de�ned by [70�75]:

Sq (|ψ⟩) =
1

1− q
ln

( N∑
α=1

|⟨ψ |α⟩|2q
)
. (10)

Using �nite-size scaling, the behavior of Sq's disorder average, Sq, is predicted near the critical point [74�76]:

Sq (|ψ⟩) =

{
lnN + bq,erg Ergodic (delocalized)

Dq lnN + bq,MBL MBL
, (11)

where bq,erg is an emergent scale that goes to zero near the critical point, Dq is a multifractal dimension, which goes
to a critical value, Dq,c, at Wc, and bq,MBL is an emergent scale which remains constant near the phase transition:

Dq −Dq,c ∼ δdβq ,

bq,erg ∼ δ−dαq ,

bq,MBL ∼ const., (12)

introducing two critical exponents, αq, βq.
In Refs. 74, 77, a FS localization length is de�ned and assumed to scale with the same critical exponents as the

real space localization length, in order to bound the FS behavior using the Harris criterion. We obtain an equivalent
bound without relying on any such assumption. Near the critical point, Sq varies continuously in the MBL phase
while the ergodic phase displays a jump in Dq, as can be seen, e.g., in Ref. 75. We therefore focus on the requirement
on the ergodic size to obtain a Harris-like bound is on the ergodic phase critical exponent αq:

αq ≥ 2/d, (13)

see Appendix B for details.
Interestingly, The FS transition has been studied in Ref. 78, for a one-dimensional 1/2-spin system with a uniformly

distributed disorder and q = 2. The obtained critical exponent α2 was α2 ≈ 0.5, which violates our rigorous bound
(13). This implies either that the phase transition does not obey the expected form, or that the numerical results
su�er from �nite size e�ects. The discrepancy we uncover thus points at an overlooked mechanism, which may
explain the inconsistency between the behavior in �nite- vs. in�nite- sized systems. The result above is in line with
recent real-space numerical works which provide evidence that current numerically accessible system sizes might be
too small [79�82], perhaps due to the avalanche mechanism [42�49, 56�64]; The latter implies Kosterlitz-Thouless
scaling for the real-space correlation/localization length, corresponding to ν → ∞. This or another unaccounted-for
mechanism might be necessary for a full physical picture of the FS behavior, which may result in a di�erent behavior
than the one in Eqs. (11), (12).
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B. Localization transition with Coulomb interaction

We apply our method to disordered models with long-range Coulomb interaction, uncovering an additional
inconsistency in a previous result, as discussed below. The phenomenology of localization in this case is di�erent
than the standard MBL [83]. Particularly, it is found that in the delocalized regime (but not in the localized one) a
dephasing length for excitations Lϕ appears, which might be shorter than the correlation length ξ. Near and above
the critical energy Ec, the dephasing length of an excitation at energy E behaves as

Lϕ ∼ (E − Ec)
− 1

z , (14)

where z is the dynamical critical exponent. For E < EC , in the localized regime, Lϕ = ∞, i.e., no inelastic decay.
The localization length ξ scales as ξ(E)/ξ(E = 0) ∼ (|EC − |E||/EC)

−ν , with the noninteracting exponent ν. For
νz > 1 one has ξ > Lϕ. Hence, the localized/delocalized phases are distinguishable already in systems of size ∼ Lϕ.
We now bound the dynamical exponent: We introduce a hypothetical decision problem of di�erentiating two

probability distributions with the same width and di�erent means, E [P±] = ±δ/2. The distributions may be
distinguished by sampling N ∼ Ld

ϕ values from the distribution and using them to de�ne a system with Coulomb
interaction and random disorder. If P± = P+, E is in the delocalized regime and vice versa. The phase of the system
may then be determined, e.g., by simulating the time evolution of an excitation of energy Ec. From this the sign of
the critical energy shift, and therefore the probability distribution, could be identi�ed. We now substitute Eq. (14)
into the requirement N ≥ Nopt ∼ δ−2 and obtain

1/z ≥ 2/d, (15)

provided that νz > 1, as explained above.
Intriguingly, the theoretical estimate provided for zϕ in Ref. 83 at d = 3 obeys the condition νz > 1 but violates

Eq. (15). This may result from the inadequacy of using the Fermi golden rule to estimate the dephasing length in
this regime [84].

IV. MEASUREMENT-INDUCED PHASE TRANSITION IN RANDOM QUANTUM CIRCUITS

We proceed to obtain new bounds on measurement-induced phase transition in quantum circuits. Apart from the
role played by randomness, these models are unrelated to localization, demonstrating the generality of our approach.
Quantum circuits subject to random measurements [85�88] provide a generic model for open systems interacting with
an environment, motivated both by quantum technology and many-body physics.
As a basic model, consider the following: The system is composed of a register of Ld qubits, organized as a d-

dimensional lattice of length L. t layers of spatially local random 2-qubit unitary gates are then applied to the qubits,
where in between each layer, each qubit is measured with probability p in the {|0⟩ , |1⟩} basis. For p close to 1, the
qubits decay frequently into pure states, and the resulting state has little entanglement, typically an area-law. For
small values of p, the system is close to not being measured at all, with a volume-law entanglement in the average
case [85, 86]. A phase transition occurs at a critical value pc.
The two phases are characterized by the entanglement between two parts of the system, denoted by A and A. A

standard measure of entanglement is the von Neumann entropy, S(ρA) = −Tr (ρA log ρA), where ρA = TrA (ρ) is the
reduced density matrix of A. Due to the numerical and analytical inaccessibility of the von Neumann entropy, Rényi
entropies are also introduced,

Sn(ρA) = log (Tr (ρnA)) /(1− n), (16)

which obey limn→1 Sn(ρA) = S(ρA). The Rényi entropies are entanglement monotones, and for n > 0 they are
continuous and re�ect small changes in the entanglement accurately.
We follow Ref. 86 and de�ne the characteristic length scale ξ and time (circuit depth) scale τ by

Sn (ρA(L, t, p))− Sn (ρA(L, t, pc)) = f

(
Ld

ξd
,
t

τ

)
, (17)

where f is a scaling function. We then assume a second order phase transition:

ξ ∼ δ−ν , τ ∼ δ−zν , (18)

where z = 1 in the space-time symmetric case.
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When n = 0, d = 1, and the unitary gates are Haar-random, the problem can be described as a graph percolation
problem, each measurement becoming a cut in the circuit graph [86, 89]. This allows to leverage on the large body
of knowledge on percolation problems [90]. We note in particular that a percolation phase transition must obey the
Harris criterion.
The behaviors of Rényi entropies for other values of n near the phase transition were studied numerically for 1 + 1

dimensions [86], and they seem to obey the Harris criterion as well, although to the best of our knowledge, so far its
validity had not been argued for theoretically. Note that the critical value pc extracted for n ̸= 0 is di�erent from the
one extracted for n = 0 (which matched the percolation critical value, pc = 1/2), suggesting that percolation might
indeed not be a good model for the behavior of general Rényi entropies.
We now bound the critical exponents de�ned in Eqs. (18). The (hypothetical) decision problem may be

di�erentiating two probability distributions over {0, 1}, where P(1) = pc(1 ± δ). In order to di�erentiate the
distributions, a classical computer may simulate a random circuit of size Ld and depth t, with N = tLd possible
spontaneous measurements, and compute S or Sn. It is required that L ≫ ξ and t ≫ τ , i.e., N = tLd ≫ τξd ∼
δ−ν(d+z). The requirement N ≥ Nopt leads to

ν(d+ z) ≥ 2. (19)

The obtained bound is obeyed numerically [86, 91�93]. As opposed to existing analytical results, it is not limited to
d = 1, n = 0, or Haar-random unitaries, but is completely general.

V. CONCLUSION AND FUTURE OUTLOOK

We introduced a rigorous approach for obtaining critical exponent bounds in randomness-driven phase transitions,
combining information bounds with physical phenomena. Due to its generality and the minimal amount of physical
assumptions it requires, the bounds obtained by the approach are robust. By applying the method to several
localization transitions, as well as measurement-induced phase transitions, we were able to obtain surprizing results
in some models, and rigorous support to the previous conjectures in others.
Our approach may be applied to additional phase transitions, such as ones driven by correlated disorder or

interdependent networks [96�102]. It can be readily applied to models with random hopping terms [17], spin glass
models [103�105], localization critical exponents in Bethe lattices [106], and other aspects of the measurement-induced
transition, such as the puri�cation transition [91, 94] or the learnability transition [95]. Hopefully, the minimal e�ort
required for obtaining such bounds, along with their robustness and potential for meaningful results, would encourage
the wide use of our approach in further studies.
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Appendix A: Re-obtaining the Harris bound for Anderson localization � Rigorous proof

In this section, we provide the full details of the proof made in Sec. II A in the main text, concentrating on the
Anderson localization transition as a simple but paradigmatic example. We review in more details the physics of the
system in Sec. A 1, then proceed to our argument in Sec. A 2. For the readability of this Appendix, some of the
equations in the main text are repeated here.

1. The Anderson localization transition and the Harris bound

We start by introducing the model we focus on, which is a tight-binding model on a lattice with local disorder:

H =
∑
⟨i,j⟩

[
c†i cj + h.c

]
+
∑
i

ϵic
†
i ci, (A1)
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where {⟨i, j⟩} are pairs of nearest-neighbor sites on the graph and {ϵi} are local random potentials. {ϵi} are
independent and identically distributed (i.i.d) variables drawn from a probability distribution PW (ϵ), where ⟨ϵ⟩PW

can be taken as 0. W is called the disorder parameter or strength, and is typically de�ned to be proportional to the
standard deviation of P. The spatial dimension of the lattice is denoted by d.
By scaling arguments, Ref. [22] shows that when d > 2, the eigenstates of the system with energy E undergo

a localized-di�usive phase transition at a critical disorder parameter Wc(E). When W > Wc(E), the system is in
a localized phase [24], and eigenstates with absolute values of energy > |E| are localized around a small region in
the lattice with an exponentially-decaying amplitude with the distance from this region. This results in a di�usive
behavior only over a small localized area of the lattice, its volume of order ξdE , where ξE is called the localization

length. Assuming that the phase transition is second order, we de�ne the critical exponent ν of the localization phase
transition:

ξE ∼ δ−ν , (A2)

where δ =W −Wc(E), characterizing the phase transition as it is approached from above Wc(E).
WhenW < Wc (E) the system enters a di�usive phase at energy E [24, 25]: Eigenstate with absolute value of energy

< |E| divide the lattice into 'boxes' of size
[
ξdi�E

]d
, each appearing locally as if the state is localized at the center of

the box, with amplitudes overlapping at the boxes' edges. Due to this overlap, particles scattered across the lattice
with energy expectation value < |E| in absolute value (assuming a su�ciently narrow energy spread) may di�use
from one box to another across the entire lattice, with distribution similar to that of a classical random walker. The
probability distribution on the graph for such a process, starting at site i, is, to a �rst approximation, the Rayleigh
distribution,

EPW

[∣∣⟨i| e−iHt |j⟩
∣∣2] ∝ 1

(D (E) t)
d/2

e−
|r⃗j−r⃗i|2
4D(E)t , (A3)

where D(E) ∼
[
ξdiffE

]−(d−2)
is called the di�usion coe�cient, which is proportional to the conductivity, and r⃗i, r⃗j are

the positions of sites i, j, respectively. Approaching the phase transition from within the di�usive phase, the phase
transition is again characterized by the same critical exponent ν due to renormalization group arguments [24],

ξdi�E ∼ δ−ν . (A4)

The original argument leading to the Harris criterion [16] does not apply for the Anderson transition, but the
criterion itself, namely

ν ≥ 2

d
, (A5)

can be shown to hold using the mathematically rigorous approach of Refs. [17, 18]. The latter does not, however, lend
itself straightforwardly to generalizations, as opposed to the information-theoretical view we present below.
We note that in the case that the critical exponents are not equal on both sides of the phase transition (i.e., the

critical exponents in Eqs. (A2, A4) are di�erent), the original bound, as well as the bound we obtain below, applies
for the larger critical exponent among the two.

2. Information-theoretical bound on the critical exponent

We consider a model undergoing an Anderson localization phase transition. Near criticality, the required system
size in order to distinguish the localized and delocalized phases is set by ξ. This size is then compared with the
minimal number of samples from the disorder distribution, to obtain a bound on ν.
The rigorous argument goes as follows. As a thought experiment, consider the following setting: We are given a

model of the form of Eq. (A1) on a lattice of dimension d > 2. Suppose that we are also given the values of some
energy E, the critical disorder Wc(E), and the critical exponent ν, all up to any desired accuracy. PW (ϵ) is de�ned by
W = Wc(E) (1± δ), where δ is small and given, and the sign ± is unknown. Lastly, we know the di�usion constant
D(E) and correlation length ξdi�E for such a model for W =Wc(1− δ), the localization length ξE for W =Wc(1 + δ),
and the coe�cients necessary in order to turn Eqs. (A2),(A3) into equalities.
For some models,Wc(E) and ν have been found analytically [24]. However, in our approach the source of knowledge

is unimportant (it can be obtained, for example, by a preliminary numerical computation which uses an arbitrarily
large amount of resources). We stress that it is by no means required that this setting is actually implemented in real



9

life, as it may require much more prior knowledge than one might have in practice. It is rather su�cient that the
setting is in principle possible to realize for our information-theoretical bound to hold, and it is from this requirement
that the Harris bound is extracted.
In the hypothetical setting, a classical computer is given a decision problem: Given a sampling access to the

distribution PWc(1±δ), determine whether the sign ± is positive or negative. The task is, in fact, di�erentiating
between two possible distributions, PWc(1±δ).
Viewed from a di�erent angle, the question is whether the system de�ned by PW (ϵ) is in the localized or delocalized

phase. One may consider a solution protocol that relies on the fact that the two distributions lie on two sides of a
phase transition, and utilizes the prior knowledge on the model: The computer simulates a d-dimensional lattice as
in the studied model. An initial state is chosen to be arbitrarily close to an eigenstate with energy E, by adding a
disorder-free wire (long enough so that its level spacing is smaller than that of the disordered system) entering the
lattice and �xing the initial state to be close enough in energy to E on this wire (see Fig. 1 in the main text). The
computer then chooses constants C,C ′ ≫ 1, c ≲ 1, independent of δ, and computes the time T ∼ ξE it would take
a particle to reach a distance CξE from the entry point with probability c in the di�usive case in a system of size
(C ′ · C · ξ)d.
Then, using N = (C · C ′ · ξE)d actual samples of PW as the local potentials, the computer de�nes a disordered

model. The computer simulates the time evolution of the initial state up to time T in the disordered lattice. After
the simulation, the probability of the particle to be at a distance ≥ CξE from the initial site is calculated. If the
probability is high enough, that is, above c, it can be deduced that the simulated system is in the di�usive phase and
δ < 0, and vice versa. The algorithm is sketched in Fig. 1 in the main text and presented rigorously in Table I.
Let us analyze the dependence of N on δ. The evolution is simulated only up to a �nite time T . T was chosen

such that the number of sites on which the wavefunction amplitude become non-negligible during the evolution in the
di�usive case is proportional to ξdE , so only ∼ ξdE sites, that is, N ∼ ξdE samples, need to be considered.
We now analyze the information-theoretic requirement on N . Nopt denotes the required sample size in order to

solve the decision problem. It is expected that

lim
δ→0

Nopt ∝ δ−2. (A6)

The above can be understood intuitively: The required task is to estimate W , which is proportional to
〈
ϵ2
〉
PW

, up

to an estimation error proportional to δ; Eq. (A6) follows from Chebyshev's inequality. It may also be obtained
rigorously as follows: In the asymptotic case of δ → 0, it was shown [26]:

N ∝ d−2
H

(
PWc(1+δ),PWc(1−δ)

)
, (A7)

where dH(p, q) is the Hellinger distance between the distributions p, q:

dH(p, q) =

√∫
1

2

(√
p(x)−

√
q(x)

)2
dx. (A8)

For a small enough δ and a smooth distribution PW , the Hellinger distance is linearly dependent on δ to �rst order,
and Eq. (A6) is obtained.
Comparing with Eq. (A6), we obtain the result

lim
δ→0

N ≥ lim
δ→0

Nopt

⇒ ξdE ∼ δ−νd ≥ δ−2 (A9)

⇒ ν ≥ 2

d
, (A10)

which completes the proof. Note again that the time and memory complexity required for the system simulation is
ignored, as the result relies only on sample complexity.
The rigorous statement we obtain is the following: If the phase transition occurs, and is a second-order phase

transition which obeys Eqs. (A2), (A4), then it is required that ν ≥ 2/d. If this requirement is not obeyed by some
numerical or plausible theoretical argument, one may deduce either that the assumptions regarding the nature of the
phase transitions were false, or that the results were inaccurate, due to, e.g., too small system sizes used numerically
or the inadequacy of some plausible argument.
It is worthwhile to mention that for the most part, numerically-studied systems are simulated with a uniform

distribution rather than a smooth distribution. A single sample in the range ± [Wc(1− δ),Wc(1 + δ)] would be
enough for di�erentiating the distributions, and therefore the number of required samples in this case is Nopt ∼
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Wc(1+δ)
2Wcδ

= O
(
δ−1
)
, as the Hellinger distance would indeed show. Thus, the bound obtained by our method would be

ν ≥ 1/d. However, it seems that numerical results for the uniform distribution still obey the tighter bound, ν ≥ 2/d.
This is not surprizing, since a uniform distribution may be thought of as the limit of a smooth distribution, and the
physical behavior is expected to be similar.

Finally, we note that the (hypothetical) protocol suggested above and in Table I may fail if, by some rare event, the
local potentials drawn from PW (1±δ) results locally in the opposite phase from the one expected, that is, delocalization
if δ > 0 or vice versa. However, repeating the process would decrease the probability for it up to an arbitrarily small
one, exponentially fast in the number of repetitions, such that the relation N ∼ δ−νd remains valid for arbitrarily
small probability of failure.

Let us �nally note that here, we used the scattering of a wavepacket as the test property for distinguishing between
the phases. However, a variety of properties may be used instead, e.g., the localization properties of the eigenstate
closest in energy to E. We make use of this in the derivation of the Fock space localization critical exponent in
Appendix B below.

Appendix B: Harris-like bound for Fock space localization transition

Here we bring the full details of the bound obtained for the critical governing the approach of the Fock space (FS)
MBL from within the ergodic phase, discussed in Sec. IIIA in the main text. First, we review the model and the
phase transition, as done in the main text, in Sec. B 1. We then derive the bound on the critical exponent in Sec.
B 2, and �nally discuss the discrepancy between our bound and the numerical results of Refs. [75, 78] in Sec. B 3.

1. Fock space localization transition

We consider a disordered model such as in Eq. A1, with added interactions between the particles. The interactions
may destroy the localization that emerges in the noninteracting case, but it is still widely believed that for a high
enough disorder, an ergodic-localized phase transition occurs.

We study this system in FS rather than real space. Here the state of the interacting system may be viewed as
that of a single particle scattering across the FS. In FS, the Hamiltonian can be written as Eq. (A1) with correlated
local potentials: The number of sites in FS is N = dNsingle, where dsingle is the Hilbert space of a single site, but their

random local potentials depend only on the N parameters {ϵi}Ni=1. Due to the long-range correlations of the random
potentials, the localized phase in real space behaves as a critical phase in FS.

In analogy to previous treatment of Anderson localization [70], and following Refs. [71�74], Ref. [75] introduces a
FS localization measure for an eigenstate |ψ⟩ of the system, brought in Eqs. (10), (11), and (12) in the main text. In
the next section, we bound the behavior of the critical exponent αq of Eq. (12), which governs the behavior in the
ergodic phase, W > Wc.

2. Bounding the Fock space localization transition

As in the Anderson localization case, a classical computer may be hypothetically required to di�erentiate two
probability distributions, PWc(1±δ)(ϵ) (again, in a thought experiment in which all prior knowledge of the model is
accessible, disregarding the space and time computational costs). The problem may be solved by performingN samples
from the distribution P and using them to de�ne an N -site interactive disordered Hamiltonian. The Hamiltonian is
then diagonalized and Sq is computed. The cases Wc(1± δ) are distinguished based on the proximity of Sq extracted
from the simulated system and its expected value for both cases as in Eq. (11). The protocol is presented more
rigorously in Table II.

We analyze the requirements for the success of the protocol presented in Table II. ∆Sq is de�ned to be the deviation

of Sq from Sq. The protocol is successful if

∆Sq ≪
∣∣Sq,erg − Sq,MBL

∣∣ . (B1)
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Initialization(E, d, δ):
0 ← starting_site
c← small constant ≲ 1
C ←large constant ≫ 1
C′ ←large constant ≫ 1
ε←small constant ≪ C−d

Choose ancillary constants.

k ← cos−1 E
2

L←
⌈(
δνdε

)−1
⌉

|ψ0⟩ ← 1√
n

∑0
j=−L sin(kj) |j⟩

Hwire ←
∑0

j=−L (|j⟩ ⟨j + 1|+ h.c)

n←
∑0

j=−L sin2(kj)

ξE ← localization_length (E, δ)
Hclean ←

∑
⟨i,j⟩i,j∈1...(CC′ξE)d |i⟩ ⟨j|+ h.c.

H ← Hwire +Hclean

Construct the Hamiltonian of a clean
d-dimensional lattice of size (C′Cξ)d,
and attach to it a clean wire which is
long enough such that its level spacing
near E is smaller. The initial state
is con�ned to the wire, with energy
expectation value close to E. The
system is illustrated in Fig. 1 in the
main text.

T ← min

{
t|EPWc(1−δ)

∑
j s.t. |rj−r0|≥⌈CξE⌉

[∣∣∣∣〈ψ0

∣∣∣∣ ei(H+
∑(CC′ξ)d

i=1 ϵi|i⟩⟨i|)t
∣∣∣∣ j〉∣∣∣∣2

]
≥ c

} Choose a time T long enough for a
di�usive particle on a d-dimensional
lattice to reach a distance of CξE from
the 0 site with probability c, assuming
the system is di�usive (that is, W =
Wc(1− δ)).

Pexp,d = EPWc(1−δ)

[∑
j s.t. |rj−r0|≥⌈CξE⌉

∣∣∣∣∣
〈
ψ0

∣∣∣∣∣ ei
(
H+

∑(CC′ξ)d
i=1 ϵi|i⟩⟨i|

)
T

∣∣∣∣∣ j
〉∣∣∣∣∣

2]

Pexp,l = EPWc(1+δ)

[∑
j s.t. |rj−r0|≥⌈CξE⌉

∣∣∣∣∣
〈
ψ0

∣∣∣∣∣ ei
(
H+

∑(CC′ξ)d
i=1 ϵi|i⟩⟨i|

)
T

∣∣∣∣∣ j
〉∣∣∣∣∣

2] Based on Eq. (A3), �nd the expected
probability that a particle reached a
distance CξE in the localized and
delocalized phases, respectively.

return C,H, T, Pexp,d, Pexp,l, ξE

determine_delta_sign(E, d, δ, P):
C,H, T, Pexp,d, Pexp,l, ξE ←Initialization(E, d, δ)
for i in

{
1 . . . (CC′ξ)

d
}
do

ϵi ← Sample (P)
H ← H + ϵi |i⟩ ⟨i|

Construct a Hamiltonian of a
subsystem of volume (C′)

d
= O

(
δ−νd

)
.

Based on Eq. (A3) we see that
the amplitude on sites i for which
|ri − r0| ≥

√
D(E)T ∼ δ−νd decays

exponentially, and therefore considering
a graph of this size will result in a good
separation of the phases.

|ψ(T )⟩ = exp (−iHT ) |ψ0⟩
PCξE =

∑
j s.t. |rj−r0|≥⌈CξE⌉ |⟨ψ(T ) | j⟩|

2
Calculate the state e−iHT |ψ0⟩, and
from it deduce the probability for a
particle to be at a distance larger than
⌈Cξ⌉.

if |PCξE − Pexp,d| > |PCξE − Pexp,l| do
return δ < 0.

else do
return δ > 0.

If the particle has reached a distance
of ⌈Cξ⌉ or more with high probability,
we conclude that the simulated system
in the di�usive phase and δ < 0.
Otherwise, we conclude that δ > 0.

TABLE I. The suggested algorithm that utilizes the AL transition in order to di�erentiate the probability distributions. The
algorithm is presented on the left column, and on the right we provide explanations.

Dividing by lnN and substituting Eq. (12), we obtain the requirement

∆Sq/ lnN ≪
∣∣Sq,erg − Sq,MBL

∣∣ / lnN
=

∣∣∣∣1−Dq(δ) +
bq,erg(δ)

lnN
− bq,MBL(δ)

lnN

∣∣∣∣ . (B2)

The behavior presented in Eqs. (12),(11) is apparent for large system sizes, that is, lnN/bq,erg ≫ 1, lnN/bq,MBL ≫
1. Approaching the critical point from above (localized phase), Sq varies continuously to its critical value Sq,c, while
the ergodic (critical) phase one expects a jump in Dq as W is varied towards Wc, see, e.g., in Ref. [75]. The above
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implies that it is the ergodic phase which de�nes the size of the system in which the phases would be distinguishable.
This leads to the requirement

lnN ≫ bq,erg. (B3)

In addition, we need ∆Sq to obey Eq. (B2). Since the right hand side of Eq. (B2) is constant in the thermodynamic
limit, this requirement is met provided ∆Sq/ lnN decreases with increasing system size. This is found to be the case
numerically [78], as we further discuss below. Following Eqs. (12),(B3), the former requirement may be translated to
N ∼ δ−dαq . The requirement N ≥ Nopt results in a Harris bound on αq,

αq ≥ 2/d. (B4)

As mentioned above, this bound was already presented in Ref. [74], relying on the assumption that the real space and
Fock space phase transition displays the same behavior. Here we obtained the bound without such an assumption.

3. Fock space localization bound: Inconsistency with numerical results.

In the previous section, a Harris-like bound was obtained on the critical exponent αq all all values of q. The FS
localization transition has been studied in Refs. [75, 78], for a one-dimensional system with a uniformly distributed
disorder and q = 2. The obtained critical exponent α2 was α2 ≈ 0.5, and the �uctuations ∆S2/ lnN ∼ N−1/2. This
implies that N = δ−µ where α2 ≤ µ ≤ 1 may be su�cient to obey Eq. (B2) and di�erentiate the distributions, which
contradicts our argument: it implies that simulating a many-body system with disorder and determining its phase is
a better strategy for di�erentiating probability distributions than a standard statistical test. Note that even if the
behavior of the uniform disorder distribution is di�erent than that of smooth distributions, the requirement would be
α2 ≥ 1. The numerical results remain inconsistent with our bound even in this relaxed case. We put our result form
the previous section rigorously: If the Fock space transition occurs, it is described by Eqs. (11), (12), and ∆Sq/ lnN
is small for large enough N , then it follows that αq ≥ 2/d for all q.

Initialization(E, δ, µ):
0 ← starting_site c← const., 0 < c < 1 N ← ⌈δ−dαqc⌉
N ← dNsingle
H ← Hclean(N)
q ← const. > 1

Choose ancillary coe�cients. Choose a system size
N = δ−dαqc, where c is a positive constant smaller than
1, which guarantees that in the vicinity of the phase
transition, bq,erg

N
→ 0. Start with the N -particle disorder-

free Hamiltonian. dsingle denotes the Hilbert space size of
a single site. Choose q > 1 for the FS-locality measure,
Sq.

determine_delta_sign():
for i in 1..N do
hi ← Sample (P)
H ← H + hiσ

z
i

Add the disorder to the Hamiltonian by performing N
samples from the distribution.

|ψE⟩ ← eigenvector(H,E)

Sq ← − ln
(∑N

α=1 |⟨ψE |α⟩|2q
) Diagonalize H to obtain the eigenvector with eigenvalue

closest to E and calculate its Sq.

If
∣∣∣ Sq

lnN −
(
1 +

bq,erg(δ)

lnN

)∣∣∣ < ∣∣∣ Sq

lnN −
(
Dq(δ) +

bq,MBL(δ)

lnN

)∣∣∣ do
return δ < 0.

else do
return δ > 0.

Determine the phase of the simulated system based on
the calculated Sq.

TABLE II. The suggested algorithm that utilizes the FS localization transition in order to di�erentiate the probability
distributions. The algorithm is presented on the left column, and on the right we provide explanations.
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