
Prepared for submission to JHEP

Orbifolds of chiral fermionic CFTs and their duality

Kohki Kawabataa and Shinichiro Yahagia

aDepartment of Physics, Faculty of Science, The University of Tokyo,

Bunkyo-Ku, Tokyo 113-0033, Japan

Abstract: We consider chiral fermionic conformal field theories (CFTs) constructed from

lattices and investigate their orbifolds under reflection and shift Z2 symmetries. For lat-

tices based on binary error-correcting codes, we show the duality between reflection and

shift orbifolds using a triality structure inherited from the binary codes. Additionally, we

systematically compute the partition functions of the orbifold theories for both binary and

nonbinary codes. Finally, we explore applications of this code-based construction in the search

for supersymmetric CFTs and chiral fermionic CFTs without continuous symmetries.
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1 Introduction

Orbifold is a powerful tool to construct new consistent two-dimensional quantum field theories

from a given theory by gauging a global symmetry [1–3]. A notable example for us is the

construction of the chiral bosonic CFT with the Monster group symmetry, which elucidates

the Monstrous moonshine phenomenon [4, 5]. The Monster CFT is constructed by two

orbifolds of the chiral bosonic CFT based on a lattice by the reflection Z2 symmetry G

generated by X → −X and the shift Z2 symmetry H generated by X → X + πδ, where

X is an n-dimensional periodic free boson and δ is a vector specifying the half shift of the

periodicity. These procedures rule out continuous symmetry in the original theory and lead

to a consistent chiral CFT with the Monster group symmetry.

This paper aims to study the reflection and shift orbifolds of chiral fermionic CFTs based

on odd self-dual lattices. The chiral fermionic CFTs are characterized by a half-integer spin

operator in the spectrum. When the lattice is odd self-dual, the corresponding set of vertex

operators contains half-integer spin operators and gives rise to the Neveu-Schwarz (NS) sector

of a chiral fermionic CFT. The Ramond (R) sector is given by the vertex operators based

on the shadow of the lattice, a kind of half-shift of the lattice. For a non-anomalous Z2

symmetry, we find two ways of Z2 orbifold denoted by ± that change the NS sector of the

original theory T . The shift orbifolds can be interpreted as a modification of the original

lattice and the theories (T /H)± after orbifolding are still a lattice CFT. On the other hand,

the reflection orbifold theories (T /G)± are not a lattice CFT after orbifolding.

One of the main results of this paper is the duality between the reflection and shift

orbifolds in chiral fermionic CFTs, when a lattice is constructed from a binary error-correcting

code. This result expands the previous one for the bosonic theories constructed from error-

correcting codes [6, 7]. A binary error-correcting code C ⊂ Fn2 is a vector space over a finite

field F2 = {0, 1} and yields an odd self-dual lattice Λ(C) ⊂ Rn by uplifting codewords to

lattice vectors by the so-called Construction A. Finally, this lattice Λ(C) gives rise to a chiral

fermionic CFT T of central charge n [8]. In this case, at least one shift Z2 symmetry H is

present and becomes non-anomalous when n ∈ 8Z. The shift orbifold is a modification of

the original lattice Λ(C) to another one Λ̃(C). Since the original theory T always contains

SU(2) current algebras inherited from codewords in the binary code, we can construct the

permutation of three generators in SU(2) called the triality. Using the triality, we show the

equivalence between the reflection and shift orbifolds:

T /G ∼= T /H , (C: binary code) , (1.1)

where we denote them by T /G and T /H since the two types of orbifold (±) coincide in

the binary construction. We can proceed to the orbifold of the shift orbifold T /H by the

reflection symmetry, which leads to the new theory T /H/G. We show the whole picture

of the equivalence between the orbifolds in chiral fermionic CFTs based on binary codes in
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Code Lattice CFT

C

Λ(C)

Λ̃(C)

T

T /H/G

T /G ∼= T /H

Figure 1: The duality between orbifolds of the reflection Z2 symmetry G and the shift Z2

symmetry H in a chiral fermionic CFT from a binary code. For the code-to-lattice arrows,

the straight line shows Construction A and the wavy line does its half shift. For the lattice-to-

CFT arrows, the straight lines represent lattice CFT construction and the wavy lines do their

reflection orbifold. The theory T is constructed by the previous work [8], and the reflection

and shift orbifold together yield three theories from a binary code.

Fig. 1. We also explicitly present their torus partition functions, which allows us to compute

their spectra and identify the profiles of chiral fermionic CFTs.

We extend our analysis to the shift orbifolds of chiral fermionic CFTs constructed from

nonbinary Zk codes C ⊂ Znk where Zk is a ring of integers modulo k ∈ Z≥2. We generalize the

previous works [8, 9] constructing chiral fermionic CFTs from Fp codes for a prime number

p to Zk codes for a positive integer k ≥ 2. When the code is not binary, the equivalence

between reflection and shift orbifolds does not hold in general. However, we can choose a

shift Z2 symmetry independent of the code C, which enables a systematic study of the shift

orbifolds. We obtain the formula for computing the orbifold partition functions on a torus

from the weight enumerators of nonbinary codes.

With the general construction in hand, we provide various chiral fermionic CFTs based on

binary and nonbinary codes and their orbifolds. By applying our construction to binary codes

of length 16, we reproduce the classification result ([10–12]) of chiral fermionic CFTs with

central charge 16. Up to equivalence, there are only five binary singly-even self-dual codes.

We leverage these codes to six odd self-dual lattices and seven chiral fermionic CFTs. This

provides the relationship between code, lattice, and CFTs (see Fig. 5 for the results). Also,

we find evidence that the reflection and shift orbifolds preserve supersymmetry by checking

that some necessary conditions for supersymmetry hold in orbifold theories if the original

theory T satisfies them. Finally, we search for more theories of interest with central charges

above 24. At c = 24, we construct the “Beauty and the Beast” superconformal field theory

(SCFT) [13] and the Baby Monster CFT [14] from binary codes, both of which have sporadic

group symmetries. At c = 32, 40, we give an example of chiral fermionic CFT with spectral

– 3 –



gap ∆ = 2. This implies that there do not exist spin-one currents generating continuous

symmetry in this theory and only discrete symmetry can exist.

The organization of this paper is as follows. In section 2, we review general aspects of

chiral fermionic CFTs with a global Z2 symmetry. We introduce two types (±) of orbifolds by

composing the topological operations and present the general prescription for Z2-orbifolds.

Section 3 is devoted to the reflection and shift orbifolds of chiral fermionic CFTs based

on binary codes. We give a detailed analysis of the shift orbifolds and their interpretation

as the lattice modification. We also show the computation of torus partition functions of

the reflection orbifold. In section 4, we construct chiral fermionic CFTs from Zk codes

through lattices, which is a generalization of the previous works [8, 9]. The main purpose

of section 5 is to show the equivalence between the reflection and shift orbifolds in chiral

fermionic CFTs based on binary codes. We also extend our analysis to nonbinary codes and

give the formula for computing the orbifold partition functions in section 6. In section 7, we

present various examples of chiral fermionic CFTs and their orbifolds as an application of our

general construction. Finally, we conclude in section 8 and discuss future directions.

2 Fermionic CFTs and Z2 orbifolds

The main interest of this paper is a 2d chiral fermionic CFT with a Z2 symmetry. Since

the theory is chiral, its spectrum consists of only the left-moving sector and the right-moving

sector is trivial. A fermionic CFT contains an operator with a half-integer spin in its spectrum.

Any fermionic CFT has a fermion parity symmetry Zf2 generated by (−1)F , which acts on

fermionic operators as sign flip and on bosonic operators trivially. We assume the presence of

an additional bosonic Z2 symmetry G = {1, g}. By a bosonic symmetry, we mean a symmetry

that does not change a spin structure by the insertion of the corresponding symmetry defect.

Namely, we are working on a 2d theory T with Zf2 × Z2 symmetry.

Our spacetime is a manifold M that admits a spin structure. Typically we consider

a Riemann surface. To define a fermionic theory, we need to specify the choice of a spin

structure, labeled by the holonomies around the different cycles of M . We denote by ZT [γ]

the partition function onM equipped with a spin structure γ. Furthermore, we can introduce

a background Z2 connection α ∈ H1(M,G) associated with the bosonic Z2 symmetry G. We

denote by ZT [γ;α] the partition function on a Riemann surface with spin structure γ and Z2

connection α.

In this paper, we mostly set our spacetime as a torus T 2. The cylindrical coordinate

is w = x1 + ix0, identified with w ∼ w + 1 ∼ w + τ where τ is a modulus of the torus.

We set x1 as a spatial direction and x0 as a temporal one. The additional structure on a

torus (e.g., spin structure and background Z2 configuration) can be fixed by the periodicities

along spatial and temporal cycles. For each cycle, the Neveu-Schwarz (NS) sector sets the

anti-periodic boundary condition ψ → −ψ and the Ramond (R) sector does the periodic
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boundary condition ψ → ψ where ψ denotes a fermionic field. We can summarize a spin

structure on a torus as γ = (s0, s1), si ∈ {0, 1} by denoting NS ↔ 0 and R ↔ 1. Similarly,

the Z2 connection on a torus can be specified by α = (a0, a1), ai ∈ {0, 1} where ai represents

the periodicity ϕ→ gai · ϕ for a field ϕ.

The partition function on a torus with a spin structure γ = (s0, s1) and a background Z2

connection α = (a0, a1) can be written as

ZT [s0, s1; a0, a1] = TrHρ(s1),ι(a1)

[
ga0 (−1)s0F qL0− n

24

]
, (2.1)

where the partition function of a chiral CFT depends only on q = e2πiτ . For notation con-

venience, we define ρ : {0, 1} → {NS,R} such that ρ(0) = NS, ρ(1) = R and ι(a) = ga for

a ∈ {0, 1}. Here, Hρ(s1),ι(a1) is the Hilbert space quantized on the periodicity twisted by the

bosonic Z2 element ι(a1) ∈ Z2 under spin structure ρ(s1) ∈ {NS,R}. We often omit the

second index for the untwisted sector and simply denote HNS,1 = HNS or HR,1 = HR.

In what follows, we consider the orbifold of a chiral fermionic CFT by a bosonic Z2

symmetry G. To define the orbifold theory consistently, we need to ensure the vanishing

’t Hooft anomaly. In a 2d chiral theory, there occurs a gravitational anomaly characterized

by νgrav = −2c where c is the central charge.1 However, as we want to see the effects of

orbifolding, we will focus on an ’t Hooft anomaly of Zf2 × G symmetry below. Note that we

need to care about Zf2 × G rather than only the bosonic symmetry G because the orbifold

theory has to possess the fermion parity symmetry Zf2 .

The ’t Hooft anomaly of Zf2×G symmetry is classified by ν ∈ Z8 [15]. The mod 8 anomaly

ν can be constructed from the three layers (ν1, ν2, ν3):

ν = ν1 + 2 ν2 + 4 ν4 mod 8 , (2.2)

where each layer takes a mod 2 value

ν1 ∈ H1(Z2,Z2) ∼= Z2 , ν2 ∈ H2(Z2,Z2) ∼= Z2 , ν3 ∈ H3(Z2,U(1)) ∼= Z2 . (2.3)

The three layers ν1, ν2, and ν3 are called the Majorana layer, the Gu-Wen layer [16], and

the bosonic layer, respectively. These layers admit a clear physical and geometric interpre-

tation [17]. Concretely, each layer gives a way to encode rules to place SPT phases with no

bosonic symmetries on facets of triangulation by G-symmetry lines. For example, the Ma-

jorana layer specifies a way of placing a 2-dimensional Arf theory, which is the non-trivial

fermionic SPT phase without bosonic symmetry, on two-dimensional facets. See [17, 18] for

more details.

We can diagnose the ’t Hooft anomalies of symmetry G in terms of torus partition func-

tions using modular transformation [9, 17, 19]. The mod 8 anomaly ν ∈ Z8 can be read off

1The gravitational anomaly of a chiral CFT with central charge c always can be canceled by coupling 2c

Majorana-Weyl fermions to the anti-holomorphic sector.
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from the eigenvalue eiπν/4 of the modular transformation ST 2S−1 on the relative partition

function ZT [0, 0; 1, 0]/ZT [0, 0; 0, 0]:

ST 2S−1 :
ZT [0, 0; 1, 0]

ZT [0, 0; 0, 0]
−→ e

iπν
4
ZT [0, 0; 1, 0]

ZT [0, 0; 0, 0]
, (2.4)

where we take the relative to cancel the contribution from the gravitational anomaly of a

chiral CFT. Since this procedure uses only the NS-NS partition functions ZT [0, 0; 1, 0] and

ZT [0, 0; 0, 0], we can compute the anomalies only if we know the action of symmetry in the

NS sector. Below we assume the vanishing anomaly ν = 0 mod 8, which allows us to gauge

the Z2 symmetry G.

Let us consider the orbifold of the fermionic CFT by a non-anomalous bosonic Z2 symme-

try G. Orbifolding is one of the topological manipulations since it does not change the local

structure such as the chiral algebra and only modifies its global structure like the partition

function. By combining topological manipulations, we arrive at various theories associated

with a global symmetry G. Here, we focus on the bosonic operations, which map our fermionic

theory to another fermionic theory. The bosonic operations on a fermionic theory with Zf2×Z2

are known to be generated by the three following operations [18]:

• The shift of the spin structure by the Z2 gauge field

πF : ZT [s0, s1; a0, a1] 7→ ZT [s0 + a0, s1 + a1; a0, a1] . (2.5)

• The stacking of the Arf theory

SF : ZT [s0, s1; a0, a1] 7→ (−1)s0s1 ZT [s0, s1; a0, a1] . (2.6)

• The orbifold of the bosonic Z2 symmetry

O : ZT [s0, s1; a0, a1] 7→
1

2

∑
c0,c1∈Z2

(−1)a0c1−a1c0 ZT [s0, s1; c0, c1] . (2.7)

We can combine the three topological manipulations to construct new consistent theories

from the original fermionic theory with a non-anomalous Z2 symmetry G. These operations

generate 9 independent fermionic theories up to stacking invertible phases [9]. Among them,

we focus on the theories that differ in the NS sector: the original theory T , the orbifold

(+) theory (T /G)+, and the orbifold (−) theory (T /G)−, which are related by the following

topological manipulations:

Z(T /G)+ [s0, s1; a0, a1] = O · ZT [s0, s1; a0, a1] ,

Z(T /G)− [s0, s1; a0, a1] = (SF O πF SF πF ) · Z(T /G)+ [s0, s1; a0, a1] .
(2.8)

In terms of the Hilbert space, these theories are related by swapping the sectors as in table 1.

The other theories generated by the topological manipulations are different in the R sector
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untwisted twisted

NS R NS R

g-even
boson A E I M

fermion B F J N

g-odd
boson C G K O

fermion D H L P

(a) original theory T

untwisted twisted

NS R NS R

ǧ-even
boson A E C G

fermion B F D H

ǧ-odd
boson I M K O

fermion J N L P

(b) orbifold theory (T /G)+

untwisted twisted

NS R NS R

g-even
boson A M I E

fermion B N J F

g-odd
boson L H D P

fermion K G C O

(c) orbifold theory (T /G)−

Table 1: The sectors in the original, orbifold (+), and orbifold (−) theory.

from the three theories T , (T /G)+ and (T /G)−. Since the original theory T has two global

symmetries Zf2 and G, its Hilbert spaces are extended to twisted sectors with respect to the

two symmetries. In total, the extended Hilbert spaces consist of HNS, HR, HNS,g and HR,g.

Furthermore, each Hilbert space is graded by the charges of the Zf2 × Z2 symmetry, which

finally leads to 16 sectors (A, B, · · · , P) on the top in table 1.

Orbifolding (+) swaps the original Hilbert space into the middle in table 1. After orb-

ifolding (+), the bosonic Z2 symmetry becomes trivial because it acts trivially on any local

operator. Instead, a dual Z2 symmetry Ǧ arises in the orbifold (+) theory and the orbifold

Hilbert space can be graded by the new Z2 symmetry [20, 21]. On the other hand, the orb-

ifold (−) theory is still graded by the original Z2 symmetry G since its NS sector includes the

sectors K,L, which are odd under the Z2 symmetry G before gauging. Note that the sectors

O,P do not appear in the untwisted sector for both orbifold theories.
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3 Z2 orbifolds in lattice CFTs

Up to this point, we have described a general discussion about fermionic CFTs and their

orbifolds by Z2 symmetry. From this section, we restrict our attention to the orbifolds of

chiral fermionic CFTs based on lattices (lattice CFTs). In section 3.1, we give a brief review

of lattice CFTs. In section 3.2 and 3.3, we analyze their orbifolds by the shift symmetry H

and the reflection symmetry G in detail.

3.1 Lattice CFTs

Let us recall some definitions associated with lattices following [22] to introduce lattice CFTs.

A lattice Λ ⊂ Rn is a discrete subgroup of Rn, which spans a vector space. For a lattice Λ

with the standard inner product x · y =
∑n

i=1 xi yi for x, y ∈ Rn, the dual lattice is defined by

Λ∗ =
{
λ′ ∈ Rn | λ · λ′ ∈ Z for all λ ∈ Λ

}
. (3.1)

A lattice Λ is called integral when Λ ⊂ Λ∗ and self-dual when Λ = Λ∗. Moreover, an integral

lattice is called even when λ · λ ∈ 2Z for all λ ∈ Λ, and odd otherwise.

Let Λ ⊂ Rn be an odd self-dual lattice. It can be divided into two disjoint subsets:

Λ = Λ0 ⊔ Λ2 where

Λ0 =
{
λ ∈ Λ | λ2 ≡ 0 mod 2

}
, Λ2 =

{
λ ∈ Λ | λ2 ≡ 1 mod 2

}
. (3.2)

The shadow of Λ is defined by

S(Λ) = Λ∗
0 \ Λ . (3.3)

It is convenient to introduce a characteristic vector. A lattice vector χ ∈ Λ is called

characteristic if λ·λ ≡ χ·λ mod 2 for all λ ∈ Λ. The shadow can be written as S(Λ) = Λ+χ
2 for

any characteristic vector χ ∈ Λ, or equivalently, S(Λ) = {χ2 | χ : a characteristic vector of Λ}.

For a self-dual lattice Λ, one can construct a CFT by giving the set of vertex operators

from Λ (see, for example, [23, 24]). We construct a chiral fermionic CFT T with central charge

n from the lattice Λ ⊂ Rn by specifying a set of vertex operators in the Neveu-Schwarz (NS)

and Ramond (R) sectors as

Vλ(z) = : eiλ·X(z) : , λ ∈ Λ (NS sector) (3.4)

Vξ(z) = : eiξ·X(z) : , ξ ∈ S(Λ) (R sector) (3.5)

where the colon denotes the normal ordering and X(z) is an n-dimensional chiral scalar boson

whose mode expansion is

Xj(z) = qj − ipj ln z + i
∑
n̸=0

αjn
n
z−n . (3.6)
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Here, q is a position operator that only appears in eiλ·q and acts as eiλ·q |µ⟩ = |λ+ µ⟩ where
|µ⟩ denotes a momentum eigenstate (µ ∈ Λ). Since the NS sector consists of local operators,

it is required to satisfy the mutual locality

Vλ(z)Vµ(w) = ε Vµ(w)Vλ(z) , (3.7)

where ε = −1 if both of the operators are fermionic, and ε = +1 otherwise: ε = (−1)λ
2µ2 .

To respect this condition, we need to introduce a “cocycle” factor σλ satisfying

σ̂λ σ̂µ = ε (−1)λ·µ σ̂µ σ̂λ , (3.8)

where we conventionally take σ̂λ = σλ e
iλ·q [25]. Thus, the precise definition of vertex opera-

tors satisfying the mutual locality is

Vλ(z) = : eiλ·X(z) : σλ . (3.9)

The cocycle factor satisfies the following multiplication rule

σ̂λ σ̂µ = ϵ(λ, µ) σ̂λ+µ , (3.10)

where ϵ(λ, µ) ∈ C. The coefficient ϵ has to satisfy some conditions. First, the condition (3.7)

related to the mutual locality requires

ϵ(λ, µ) = (−1)λ·µ+λ
2µ2 ϵ(µ, λ) . (3.11)

Second, since λ = 0 represents the identity operator, we have the condition

ϵ(λ, 0) = ϵ(0, λ) = 1 . (3.12)

Finally, the associativity of vertex operators: (VαVβ)Vγ = Vα(VβVγ) imposes the condition

ϵ(α, β) ϵ(α+ β, γ) = ϵ(α, β + γ) ϵ(β, γ) , (3.13)

which means that ϵ is a 2-cocycle of Λ as an additive group.

Taking the cocycle factors into account, we consider the operator product expansion

(OPE) between vertex operators Vλ(z)Vµ(w) where λ2 = µ2 = 2 since this type of OPE

appears in a later section. The singular terms appear only when λ · µ = −1,−2 because

λ2 = µ2 = 2. When λ · µ = −2, we have µ = −λ and the OPE becomes

Vλ(z)Vµ(w) ∼
ϵ(λ,−λ)
(z − w)2

[ 1 + i (z − w)λ · ∂X(w) ] , (3.14)

where we used the multiplication rule (3.10) of the cocycle factor. When λ ·µ = −1, the OPE

is given by

Vλ(z)Vµ(w) ∼
ϵ(λ, µ)

z − w
Vλ+µ(w) . (3.15)
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From the state-operator mapping, the Hilbert space of the NS sector HNS(Λ) is spanned

by
n∏
i=1

∞∏
m=1

(αi−m)
Nim |λ⟩ , λ ∈ Λ , (3.16)

where αim, i = {1, . . . , n}, m ∈ Z is the oscillator that satisfies [αim, α
j
k] = mδm,−kδ

i,j and

Nim ∈ Z≥0 is the occupation number for each mode. The fermion parity (−1)F acts on states

as (−1)λ
2
, which equals (−1)χ·λ for any characteristic vector χ ∈ Λ.

Similarly, the Hilbert space of the R sector HR(Λ) is spanned by

n∏
i=1

∞∏
m=1

(αi−m)
Nim |ξ⟩ , ξ ∈ S(Λ) . (3.17)

For the R sector, there is ambiguity in the fermion party (−1)F and in this paper we fix a

specific characteristic vector χ ∈ Λ and define (−1)F |ξ⟩ = (−1)χ·λ |ξ⟩ where ξ = λ+ χ
2 , λ ∈ Λ.

Let us consider the torus partition functions. For a fermionic CFT, the torus has spin

structures specified by spatial and timelike boundary conditions. With the notation intro-

duced in section 2, the partition functions of the CFT T constructed from the lattice Λ ⊂ Rn

are

ZT [0, 0] = TrHNS

[
qL0− n

24

]
=

1

η(τ)n

∑
λ∈Λ

q
1
2
λ2 ,

ZT [1, 0] = TrHNS

[
(−1)F qL0− n

24

]
=

1

η(τ)n

∑
λ∈Λ

(−1)χ·λq
1
2
λ2 ,

ZT [0, 1] = TrHR

[
qL0− n

24

]
=

1

η(τ)n

∑
λ∈Λ

q
1
2
(λ+χ

2
)2 ,

ZT [1, 1] = TrHR

[
(−1)F qL0− n

24

]
=

1

η(τ)n

∑
λ∈Λ

(−1)χ·λq
1
2
(λ+χ

2
)2 ,

(3.18)

where L0 is the Virasoro generator, η(τ) is the Dedekind eta function, and χ is a characteristic

vector. Note that there is the ambiguity of the overall sign in ZT [1, 1], which comes from

that of the fermion parity (−1)F . Using the lattice theta function ΘΛ(τ) =
∑

λ∈Λ q
λ2/2, the

NS-NS partition function can be written as ZT [0, 0] = ΘΛ(τ)/η(τ)
n.

In the rest of this section, we discuss two types of orbifolds for the lattice CFT: the shift

orbifold by h : X → X + πδ and the reflection orbifold by g : X → −X.

3.2 Shift orbifold

This section is devoted to the orbifold of a fermionic lattice CFT by a shift Z2 symmetry

H = {1, h} generated by a half shift h : X → X + πδ. In section 3.2.1, we describe the

Hilbert space extended by the shift Z2 symmetry H. The extended Hilbert space consists of
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the untwisted and twisted sectors as in the top of table 1. The shift orbifold theory T /H
is given by swapping those sectors. In lattice CFTs, we can interpret the shift orbifold as a

modification of lattice, which will be explained in section 3.2.2.

3.2.1 Z2-extended Hilbert space

Let Λ ⊂ Rn be an odd self-dual lattice and δ ∈ Λ a vector that is not a characteristic

vector and satisfies 1
2δ /∈ Λ. We consider the theory on the orbifold obtained by the shift

h : X → X + πδ. Note that if δ is a characteristic vector, then the orbifold theory can be

constructed by simply swapping four sectors (NS/R and boson/fermion) as described in [26],

and if 1
2δ ∈ Λ, then the shift h is trivial.

Under the shift Z2 symmetry, the vertex operators are classified into Z2 even and odd

sectors. In terms of the momentum lattice Λ, the inner product with δ specifies the Z2 grading

of the corresponding operators. It is convenient to define

Λδ-even = {λ ∈ Λ | δ · λ ∈ 2Z} , Λδ-odd = {λ ∈ Λ | δ · λ ∈ 2Z+ 1} . (3.19)

The vertex operators Vλ(z) are even when λ ∈ Λδ-even and odd when λ ∈ Λδ-odd. Since the

oscillator excitations are bosonic, the untwisted NS Hilbert space can be decomposed into

HNS(Λ) = H+h
NS ⊕H−h

NS where

H+h
NS =

{
n∏
i=1

∞∏
m=1

(αi−m)
Nim |λ⟩

∣∣∣∣∣ λ ∈ Λδ-even

}
,

H−h
NS =

{
n∏
i=1

∞∏
m=1

(αi−m)
Nim |λ⟩

∣∣∣∣∣ λ ∈ Λδ-odd

}
.

(3.20)

We define Z2 grading for the vertex operators in the untwisted R sector by h : Vλ+χ
2
(z) →

(−1)δ·λ Vλ+χ
2
(z) and the R sector decomposes into HR(Λ) = H+h

R ⊕H−h
R where

H+h
R =

{
n∏
i=1

∞∏
m=1

(αi−m)
Nim |λ+ χ

2 ⟩

∣∣∣∣∣ λ ∈ Λδ-even

}
,

H−h
R =

{
n∏
i=1

∞∏
m=1

(αi−m)
Nim |λ+ χ

2 ⟩

∣∣∣∣∣ λ ∈ Λδ-odd

}
.

(3.21)

Let us detect its ’t Hooft anomaly by using the technique introduced around (2.4). From

direct calculation using the expression

ZT [0, 0; 1, 0] =
1

η(τ)n

∑
λ∈Λ

(−1)λ·δq
1
2
λ2 , (3.22)

the phase from the modular transformation ST 2S−1 on ZT [0, 0; 1, 0]/ZT [0, 0; 0, 0] is e
2πiν/8

with ν = 2δ2. Thus, we can conclude that the shift orbifold theory is non-anomalous if and

– 11 –



only if δ2 ∈ 4Z. This condition is required to be satisfied for a consistent definition of the

orbifold theory.

As mentioned earlier, we take δ that is not a characteristic vector and satisfies 1
2δ /∈ Λ.

Equivalently, δ satisfies δ
2 /∈ (Λ ⊔ S(Λ)). Combining with the condition δ2 ∈ 4Z for non-

anomalous δ, we call the gauging condition ( δ2 /∈ (Λ ⊔ S(Λ)) and δ2 ∈ 4Z).

For the shift symmetry, we can construct the twisted sector by shifting the original

momentum lattice Λ with the half lattice element δ/2. The vertex operators in the twisted

NS sector can be expressed as

Vλ+ δ
2
(z) = : ei(λ+

δ
2
)·X(z) : (λ ∈ Λ) . (3.23)

Note that the cocycle factor is omitted in this section as it does not affect the results. The

operators are identified to be in the twisted sector by considering the operator product ex-

pansion with Vλ′(w) in the untwisted NS sector and circling one operator around the other.

Then we obtain the phase

Vλ+ δ
2
(z)Vλ′(w) → (−1)δ·λ

′
Vλ+ δ

2
(z)Vλ′(w) . (3.24)

This implies that the vertex operators Vλ+ δ
2
(z) are lying on a line operator implementing

the shift Z2 symmetry, from which we can see that they are operators in the twisted sector.

Again, since the oscillators are bosonic, the twisted NS sector is spanned by

n∏
i=1

∞∏
m=1

(αi−m)
Nim |λ+ δ

2⟩ , (3.25)

where Nim is the occupation number for each mode. As in the untwisted case, the twisted

R sector consists of vertex operators with momenta shifted by the half characteristic vector

χ/2. Thus, the vertex operators in the twisted R sector take the form

Vλ+ δ
2
+χ

2
(z) = : ei(λ+

δ
2
+χ

2
)·X(z) : (λ ∈ Λ) . (3.26)

Here, we can rewrite λ+ χ
2 by using an element ξ of the shadow S(Λ): ξ = λ+ χ

2 . The twisted

R sector is spanned by

n∏
i=1

∞∏
m=1

(αi−m)
Nim |ξ + δ

2⟩ , (3.27)

where ξ ∈ S(Λ) and Nim is the occupation number for each mode.

To define the orbifold, we need to specify the action of the fermion parity and the Z2

symmetry in the twisted Hilbert space. As in the untwisted sector, we define the Z2 symmetry

on the vertex operators in the twisted sector by

h : Vλ+ δ
2
(z) 7→ (−1)δ·(λ+

δ
2
) Vλ+ δ

2
(z) , Vλ+ δ

2
+χ

2
(z) 7→ (−1)δ·(λ+

δ
2
) Vλ+ δ

2
+χ

2
(z) , (3.28)
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untwisted twisted

NS R NS R

Vλ(z) Vλ+χ
2
(z) Vλ+ δ

2
(z) Vλ+ δ

2
+χ

2
(z)

shift symmetry h (−1)δ·λ (−1)δ·λ (−1)δ·(λ+
δ
2
) (−1)δ·(λ+

δ
2
)

fermion parity (−1)F (−1)χ·λ (−1)χ·λ (−1)χ·(λ+
δ
2
) (−1)χ·(λ+

δ
2
)

Table 2: The action of the shift symmetry H = {1, h} and the fermion parity (−1)F for the

vertex operators in each sector.

untwisted twisted

NS R NS R

h-even
boson Z n

8 + Z Z n
8 + Z

fermion 1
2 + Z n

8 + Z 1
2 + Z n

8 + Z

h-odd
boson Z n

8 + Z 1
2 + Z 1

2 + n
8 + Z

fermion 1
2 + Z n

8 + Z Z 1
2 + n

8 + Z

Table 3: The spin selection rule for the shift symmetry H = {1, h} in lattice CFT.

where λ ∈ Λ. Note that (−1)δ·(λ+
1
2
δ) = (−1)δ·λ from δ2 ∈ 4Z. Additionally, we assume that

the fermion parity acts on the twisted Hilbert space as

(−1)F : Vλ+ δ
2
(z) 7→ (−1)χ·(λ+

δ
2
) Vλ+ δ

2
(z) , Vλ+ δ

2
+χ

2
(z) 7→ (−1)χ·(λ+

δ
2
) Vλ+ δ

2
+χ

2
(z) . (3.29)

In table 2, we summarize the action of the shift symmetry and the fermion parity.

To get the spin selection rule for each sector, we take a characteristic vector χ ∈ Λ of the

original momentum lattice Λ such that

χ · δ
2

=
δ2

4
mod 2 . (3.30)

This is always possible since for a characteristic vector χ, a vector χ + 2λo (λo ∈ Λδ-odd) is

also characteristic, but it has a different mod 2 value of the inner product with δ
2 . Then, we

obtain the spin selection rule for each sector extended by the shift symmetry in lattice CFTs

in table 3. Note that using the fact that a characteristic vector χ of a self-dual lattice Λ ⊂ Rn

satisfies χ2 ≡ n mod 8 [27, 28], we obtain the spin of the R sector s ∈ n/8 + Z except for

s ∈ 1
2 + n

8 + Z for the h-odd states in the twisted R sector.

3.2.2 Shift orbifold as lattice CFT

Let us consider the orbifold by the shift symmetry H = {1, h}.

By following table 1, two orbifold theories (T /H)± can be obtained. We will see that

they are interpreted as CFTs constructed from other lattices. The NS sectors of the orbifold
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untwisted twisted

NS R NS R

Λ S(Λ) Λ+ δ
2 S(Λ)+ δ

2

δ-even Λδ-even Λδ-even +
χ
2 Λδ-even +

δ
2 Λδ-even +

δ
2 + χ

2

δ-odd Λδ-odd Λδ-odd +
χ
2 Λδ-odd +

δ
2 Λδ-odd +

δ
2 + χ

2

(a) original

untwisted twisted

NS R NS R

Λorb+
δ S(Λorb+

δ ) Λorb+
δ +λo S(Λorb+

δ )+λo

2λo-even Λδ-even Λδ-even +
χ
2 Λδ-odd Λδ-odd +

χ
2

2λo-odd Λδ-even +
δ
2 Λδ-even +

δ
2 + χ

2 Λδ-odd +
δ
2 Λδ-odd +

δ
2 + χ

2

(b) orbifold (+)

untwisted twisted

NS R NS R

Λorb−
δ S(Λorb−

δ ) Λorb−
δ + δ

2 S(Λorb−
δ )+ δ

2

δ-even Λδ-even Λδ-even +
δ
2 + χ

2 Λδ-even +
δ
2 Λδ-even +

χ
2

δ-odd Λδ-odd +
δ
2 Λδ-odd +

χ
2 Λδ-odd Λδ-odd +

δ
2 + χ

2

(c) orbifold (−)

Table 4: The shift orbifold in terms of lattices. After orbifolding, the shift vector 2λo for

(T /H)+ and δ for (T /H)− is the generator of the dual symmetry. Note that even or odd

refers to the action of h (ȟ) on the vertex operator, not the inner product itself.

theories consist of

(+) : h-even untwisted NS + h-even twisted NS ,

(−) : h-even untwisted NS + h-odd twisted NS ,
(3.31)

thus the momentum lattices are

Λorb+
δ = Λδ-even ⊔

(
Λδ-even +

1
2δ
)
, Λorb−

δ = Λδ-even ⊔
(
Λδ-odd +

1
2δ
)
. (3.32)

The Hilbert spaces of the NS and R sectors and the torus partition functions with the spin

structure can be described with these lattices and their shadows as in section 3.1.

To ensure the consistency of the orbifold theory, we show that Λorb±
δ is an odd self-dual

lattice. This guarantees that the orbifold partition functions covariantly transform under the

modular transformation.
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Proposition 3.1

Let Λ ⊂ Rn be an odd self-dual lattice and δ ∈ Λ a vector satisfying the gauging condition:
δ
2 /∈ (Λ ⊔ S(Λ)) and δ2 ∈ 4Z. Then Λorb±

δ defined in (3.32) is odd self-dual.

Proof. The self-orthogonality is obvious from

λe · (λ+ 1
2δ) ≡

1
2λe · δ ≡ 0 mod 1

(λ+ 1
2δ) · (λ

′ + 1
2δ) ≡

1
2(λ+ λ′) · δ + 1

4δ
2 ≡ 0 mod 1

(3.33)

where λe ∈ Λδ-even and λ, λ′ are in Λδ-even for Λorb+
δ and in Λδ-odd for Λorb−

δ . By combining

with the fact that the volume of the fundamental region of Λorb±
δ is equal to that of Λ from

the construction, i.e., d(Λorb±
δ ) = d(Λ) = 1, the self-orthogonality leads to the self-duality.

Next, we prove that there exists λ ∈ Λδ-even s.t. λ2 ≡ 1 mod 2. If any λe ∈ Λδ-even
satisfies λ2e ≡ 0, then there exists λ′ ∈ Λδ-odd s.t. λ′2 ≡ 1 since the lattice Λ is odd. By using

this λ′, any λo ∈ Λδ-odd can be written as λo = λ′+λe, λe ∈ Λδ-even, thus its norm is odd from

λ2o ≡ λ′2 + λ2e ≡ 1. However, this means that δ is a characteristic vector, which contradicts

our assumption δ
2 /∈ S(Λ).

From Λδ-even ⊂ Λorb±
δ , we can conclude that Λorb±

δ is odd self-dual.

It is clear from the definition that Λorb±
δ = Λorb±

δ+2λe
(double sign in same order) for any

λe ∈ Λδ-even and thus the orbifold theories by the shift δ and δ + 2λe are equivalent. It can

be easily checked that when δ satisfies the gauging condition, so does δ + 2λe. Similarly,

Λorb±
δ+2λo

= Λorb∓
δ for any λo ∈ Λδ-odd since Λδ-even + λo = Λδ-odd.

To define the fermion parity as the original theory, the characteristic vector must be

fixed. We take χorb+ = χ for Λorb+
δ and χorb− = χ + δ for Λorb−

δ , which is justified by the

following proposition.

Proposition 3.2

We adopt the same conventions as in Proposition 3.1. Given a characteristic vector χ of Λ

that satisfies (3.30), then the vectors

χorb+ = χ , χorb− = χ+ δ (3.34)

are characteristic vectors of Λorb+
δ and Λorb−

δ , respectively.

Proof. For Λorb+
δ , any λe ∈ Λδ-even satisfies

λ2e ≡ χ · λe mod 2 ,

(λe +
1
2δ)

2 ≡ λ2e +
1
4δ

2 ≡ χ · λe + 1
2χ · δ ≡ χ · (λe + 1

2δ) mod 2 .
(3.35)
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For Λorb−
δ , any λe ∈ Λδ-even, λo ∈ Λδ-odd satisfies

λ2e ≡ χ · λe ≡ (χ+ δ) · λe mod 2 ,

(λo +
1
2δ)

2 ≡ λ2o +
1
4δ

2 + 1 ≡ χ · λo + 1
2χ · δ + 1 ≡ (χ+ δ) · (λo + 1

2δ) mod 2 .
(3.36)

In table 1, the fermion parity is flipped for states in h-odd sectors of (T /H)−. In terms

of lattices, this comes from δ in χorb−.

It can be easily shown that (Λorb+
δ )orb+2λo

= Λ for any λo ∈ Λδ-odd and (Λorb−
δ )orb−δ = Λ,

thus the shifts by 2λo for (T /H)+ and δ for (T /H)− can be regarded as the dual operations ȟ.

In the orbifold theories, these vectors and the characteristic vectors also satisfy the condition

(3.30) as

χorb+ · 2λo
2

≡ (2λo)
2

4
mod 2 ,

χorb− · δ
2

≡ δ2

4
mod 2 . (3.37)

Therefore, the orbifolded theories have the same spin selection rule as in the original theory.

From (3.32), (3.34) and δ ∈ Λδ-even, the shadows can be expressed as

S(Λorb+
δ ) = Λorb+

δ + 1
2χ

orb+ =
(
Λδ-even +

1
2χ
)
⊔
(
Λδ-even +

1
2(χ+ δ)

)
, (3.38)

S(Λorb−
δ ) = Λorb−

δ + 1
2χ

orb− =
(
Λδ-even +

1
2(χ+ δ)

)
⊔
(
Λδ-odd +

1
2χ
)
. (3.39)

We have seen that the original and orbifold theories are lattice CFTs and consist of sets

of vertex operators. The corresponding momentum lattices are summarized in table 4.

For later convenience, we write general expressions of the shadow including the case where

the fixed characteristic vector χ of Λ does not satisfy the condition (3.30):

S(Λorb+
δ ) =

{(
Λδ-even +

1
2χ
)
⊔
(
Λδ-even +

1
2(χ+ δ)

) (
1
2χ · δ ≡ 1

4δ
2 mod 2

)(
Λδ-odd +

1
2χ
)
⊔
(
Λδ-odd +

1
2(χ+ δ)

)
(otherwise)

(3.40)

=

{
S(Λ)δ-even ⊔

(
S(Λ)δ-even +

1
2δ
) (

1
4δ

2 ≡ 0 mod 2
)

S(Λ)δ-odd ⊔
(
S(Λ)δ-odd +

1
2δ
)

(otherwise)
(3.41)

S(Λorb−
δ ) =

{(
Λδ-even +

1
2(χ+ δ)

)
⊔
(
Λδ-odd +

1
2χ
) (

1
2χ · δ ≡ 1

4δ
2 mod 2

)(
Λδ-even +

1
2χ
)
⊔
(
Λδ-odd +

1
2(χ+ δ)

)
(otherwise)

(3.42)

=

{(
S(Λ)δ-even +

1
2δ
)
⊔ S(Λ)δ-odd

(
1
4δ

2 ≡ 0 mod 2
)

S(Λ)δ-even ⊔
(
S(Λ)δ-odd +

1
2δ
)

(otherwise)
(3.43)

where S(Λ)δ-even(odd) = {ξ ∈ S(Λ) | δ · ξ is even(odd)}.
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3.3 Reflection orbifold

This section is devoted to the orbifold of lattice CFT by the reflection symmetry g : X → −X.

In the bosonic case, the reflection orbifold in lattice CFTs was carefully analyzed in [29].

Our interest is chiral fermionic CFTs constructed from odd self-dual lattices. The reflection

symmetry G = {1, g} acts as

g αjn g
−1 = −αjn , g |λ⟩ = |−λ⟩ , (3.44)

where αjn is a bosonic oscillator and |λ⟩ denotes a momentum eigenstate (λ ∈ Λ). Under this

Z2 symmetry, we can decompose the NS sector as HNS(Λ) = H+g

NS ⊕H−g

NS where the Z2 even

and odd sectors are

H+g

NS =
{
αj1−n1

· · ·αj2k−n2k
(|λ⟩+ |−λ⟩)

}
∪
{
αj1−n1

· · ·αj2k+1
−n2k+1

(|λ⟩ − |−λ⟩)
}
,

H−g

NS =
{
αj1−n1

· · ·αj2k+1
−n2k+1

(|λ⟩+ |−λ⟩)
}
∪
{
αj1−n1

· · ·αj2k−n2k
(|λ⟩ − |−λ⟩)

}
.

(3.45)

Similarly, the R sector is decomposed into HR(Λ) = H+g

R ⊕H−g

R where

H+g

R =
{
αj1−n1

· · ·αj2k−n2k
(|ξ⟩+ |−ξ⟩)

}
∪
{
αj1−n1

· · ·αj2k+1
−n2k+1

(|ξ⟩ − |−ξ⟩)
}
,

H−g

R =
{
αj1−n1

· · ·αj2k+1
−n2k+1

(|ξ⟩+ |−ξ⟩)
}
∪
{
αj1−n1

· · ·αj2k−n2k
(|ξ⟩ − |−ξ⟩)

}
,

(3.46)

for ξ ∈ S(Λ).

Before proceeding to the gauging of this Z2 symmetry, we need to diagnose whether this

symmetry is anomalous or not. We consider the g-graded partition function

ZT [0, 0; 1, 0] = TrHNS(Λ)

[
g qL0− n

24

]
=

q−
n
24∏∞

m=1(1 + qm)n
. (3.47)

To compute its modular transformation, it is useful to rewrite it as

ZT [0, 0; 1, 0] =
η(τ)n

η(2τ)n
=

(
2η(τ)

θ2(τ)

)n
2

, (3.48)

where θi(τ) (i = 2, 3, 4) are the Jacobi theta functions. The modular transformation ST 2S−1

acts on ZT [0, 0; 1, 0]/ZT [0, 0; 0, 0] with the eigenvalue e2πin/8. Thus, the non-anomalous con-

dition is n ∈ 8Z. This condition is required to be satisfied for a consistent definition of the

orbifold theory.

The theory can be quantized under the periodicity twisted by the Z2 symmetry g. Then,

a chiral bosonic field Rj(z) under the twisted periodicity admits the mode expansion

Rj(z) = i
∑

r∈Z+1/2

cjr
r
z−r . (3.49)
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The oscillators with half-integer modes satisfy the commutation relation

[cir, c
j
s] = rδi,jδr+s,0 . (3.50)

As in the straight lattice construction, we have vertex operators defined by

V T
λ (z) =: eiλ·R(z) : γλ , (3.51)

where γλ is a cocycle factor to respect the mutual locality.

Since a vertex operator V T
λ (z) acts on a twisted ground state |a⟩ as γλ |a⟩, the twisted

ground states form a representation Υ(Λ) of gamma matrices γλ (λ ∈ Λ) satisfying the algebra

γλ γµ = ε (−1)λ·µ γµγλ , (3.52)

where ε = −1 if both λ, µ have an odd norm, and ε = +1 otherwise, so it can be written as

ε = (−1)λ
2µ2 . While this algebra is infinite-dimensional, the non-trivial part is given by Λ/2Λ

since γλ for λ ∈ 2Λ commutes with any element. Since the central elements of the algebra

are only γλ (λ ∈ 2Λ), following [29, Appendix C], we can show that the gamma matrices

can be represented from the Dirac gamma matrices and thus it has a unique irreducible

representation of dimension 2
n
2 . We denote its basis as |a⟩ = |± ± · · · ±⟩.

By the oscillator excitation, the twisted NS Hilbert space HNS,g is spanned by

n∏
i=1

∞∏
r=1/2

(ci−r)
Nir |a⟩ , |a⟩ ∈ Υ(Λ) , (3.53)

where Nir is occupation number for each mode.

Under the anti-periodic boundary condition, the ground states acquire the vacuum energy

E0 = n/48 on the cylindrical coordinate. Correspondingly, the Virasoro generators are

Lm =
1

2

∞∑
r=1/2

cm−r · cr +
n

16
δm,0 . (3.54)

This implies that the twisted ground states have the conformal weight h = n/16. Therefore,

a general state (3.53) has

h =
n∑
i=1

∞∑
r=1/2

rNir +
n

16
. (3.55)

The partition function for the twisted NS sector is given by

ZT [0, 0; 0, 1] = TrHNS,g

[
qL0− n

24

]
=

2
n
2 q

n
48∏∞

m=1(1− qm− 1
2 )n

=

(
2η

θ4

)n
2

. (3.56)
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This partition function can be reproduced from (3.47) by applying the modular S transfor-

mation.

We define the Z2 grading and the fermion parity in the twisted NS sector under the non-

anomalous condition n ∈ 8Z for the reflection symmetry. Concretely, we propose to define

the Z2 action g on the twisted NS sector by

g cir g
−1 = −cir , g |a⟩ =

{
+(−1)

n
8 |a⟩ (a : +± · · ·±)

−(−1)
n
8 |a⟩ (a : −± · · ·±) .

(3.57)

Half of the ground states are even and the others are odd. Combining the oscillator excitation,

we obtain the Z2 even and odd sectors in the twisted NS sector. For example, in the case of

n ∈ 16Z, each Hilbert space is given by

H+g

NS,g =
{
cj1−r1 · · · c

j2k
−r2k |+± · · ·±⟩

}
∪
{
cj1−r1 · · · c

j2k+1
−r2k+1

|− ± · · · ±⟩
}
,

H−g

NS,g =
{
cj1−r1 · · · c

j2k+1
−r2k+1

|+± · · ·±⟩
}
∪
{
cj1−r1 · · · c

j2k
−r2k |− ± · · · ±⟩

}
.

(3.58)

Since the even and odd sectors have the same energy spectrum, the partition functions for

the g-even and odd states are

TrH±g
NS,g

[
qL0− n

24

]
=

1

2

(
2η

θ4

)n
2

. (3.59)

In other words, ZT [0, 0; 1, 1] = 0. Also, we need to introduce the fermion parity in the

twisted NS sector. By using the modular transformation depicted in Fig. 2, we can see that

ZT [1, 0; 0, 1] is vanishing and ZT [1, 0; 1, 1] ∝ (2η/θ3)
n
2 up to a phase factor. The results

suggest that, under the fermion parity, half of the twisted ground states are odd, and the

others are even. Furthermore, the diagonal action (−1)F g acts as a constant on the twisted

ground states. Thus, the fermion parity on the twisted NS sector can be defined by

(−1)F |a⟩ =

{
+ |a⟩ (a : +± · · ·±)

− |a⟩ (a : −± · · ·±) ,
(3.60)

and the bosonic oscillators are invariant under the action of the fermion parity.

Now we move onto the Z2 grading and the fermion parity on the twisted R sector. Since

we have the partition function ZT [0, 1; 0, 1] through the modular transformation from (3.47)

ZT [0, 1; 0, 1] =

(
2η(τ)

θ4(τ)

)n
2

= q
n
48

(
2

n
2 + 2

n
2 n

√
q + . . .

)
. (3.61)

We see that there are 2
n
2 twisted R ground states |Ωj⟩ (j = 1, 2, · · · , 2

n
2 ) with conformal

weight h = n
16 . The twisted R sector consists of the excited states by the bosonic oscillators

n∏
i=1

∞∏
r=1/2

(ci−r)
Nir |Ωj⟩ , (3.62)
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Figure 2: The schematic illustration for the modular transformation of the partition

functions. The above and below show the modular T transformation of ZT [0, 0; 1, 1] and

ZT [0, 0; 0, 1], respectively. The blue (black dashed) line represents the insertion of the Z2

action g (the fermion parity) on the torus.

where j = 1, 2, · · · , 2
n
2 . From ZT [0, 1; 1, 1] ∝ (2η/θ3)

n
2 up to a phase factor, we propose to

define the Z2 symmetry g acts as

g |Ωj⟩ = (−1)
n
8 |Ωj⟩ , (j = 1, 2, · · · , 2

n
2 ) . (3.63)

On the other hand, the fermion parity acts as +1 on half of the twisted R ground states and

as −1 on the other half. Otherwise, the partition function ZT [1, 1; 1, 1] is no longer invariant

under the modular transformation T and does not have a proper modular transformation

rule. Thus, we can always set

(−1)F |Ωj⟩ =

{
+ |Ωj⟩ (j ≤ 2

n
2
−1) ,

− |Ωj⟩ (j > 2
n
2
−1) .

(3.64)

Up to this point, we have defined the states in each sector and the action of the reflection

g and the fermion parity (−1)F on them. The partition functions can be summarized as

follows:

ZT [s0, s1; 0, 0] = ZT [s0, s1]

ZT [0, 0; 1, 0] = ZT [1, 0, 1, 0] = (2η/θ2)
n
2

ZT [0, 0; 0, 1] = ZT [0, 1; 0, 1] = (2η/θ4)
n
2

ZT [1, 0; 1, 1] = ZT [0, 1; 1, 1] = (−1)
n
8 (2η/θ3)

n
2

ZT [0, 1; 1, 0] = ZT [1, 1; 1, 0] = ZT [1, 0; 0, 1]

= ZT [0, 0; 1, 1] = ZT [1, 1; 0, 1] = ZT [1, 1; 1, 1] = 0

(3.65)

where ZT [s0, s1] is given by (3.18).
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untwisted twisted

NS R NS R

g-even
boson Z Z Z Z
fermion 1

2 + Z Z 1
2 + Z Z

g-odd
boson Z Z 1

2 + Z 1
2 + Z

fermion 1
2 + Z Z Z 1

2 + Z

Table 5: Spin selection rule for the reflection symmetry g in lattice CFT. We assume the

non-anomalous condition (n ∈ 8Z). Including the twisted sector, the theory only contains

operators with an integral and half-integral spin.

We can obtain the spin selection rule as summarized in table 5. The spin selection rule

in the untwisted sector is ordinary: The NS sector consists of local operators satisfying the

spin-statistics theorem. The spin of the R sector is at least a multiple of 1/16. For a generic

central charge n, the twisted sector contains operators with a fractional spin s /∈ Z/2. The

non-anomalous condition n ∈ 8Z ensures that the twisted NS sector consists of s ∈ Z (boson)

and s ∈ Z+ 1
2 (fermion). After orbifolding, those operators join in the spectrum of the theory.

The selection rule can be obtained through the modular T transformation. For example, to

give the spin selection rule for g-even and bosonic states in the twisted NS sector, we consider

TrHNS,g

[
1 + (−1)F

2

1 + g

2
qL0− n

24

]
=

1

4
(ZT [0, 0; 0, 1] + ZT [0, 0; 1, 1] + ZT [1, 0; 0, 1] + ZT [1, 0; 1, 1])

=
1

4

(
2η

θ4

)n
2

+
1

4
(−1)

n
8

(
2η

θ3

)n
2

.

(3.66)

The modular T transformation gives an eigenvalue eπin/24 when n ∈ 16Z and −eπin/24 when

n ∈ 8 + 16Z. Since the T transformation acts on a state with spin s by an eigenvalue

e2πi (s−n/24), we obtain the spin selection rule s ∈ Z.

As another example, we can compute the spin selection rule for the g-even/odd and

bosonic states in the twisted R sector from

TrHR,g

[
1 + (−1)F

2

1± g

2
qL0− n

24

]
=

1

4

(
2η

θ4

)n
2

± 1

4
(−1)

n
8

(
2η

θ3

)n
2

, (3.67)

which gives the phase ±(−1)
n
8 e

πin
24 by the T transformation. Therefore, the g-even sector

consists of operators with s ∈ Z, while the odd sector contains only operators with s ∈ 1/2+Z.
This means that a consistent orbifold theory cannot include the g-odd states in the twisted

R sector of the original theory.

As in the case of the shift symmetry, two orbifold theories can be constructed for the

reflection symmetry. In this case, it is clear from the construction that their spectra are
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identical. For example, the NS sectors of the orbifold theories are

Horb+
NS (Λ) = H+g

NS ⊕H+g

NS,g , Horb−
NS (Λ) = H+g

NS ⊕H−g

NS,g (3.68)

and the difference lies only in the choice of the ground states |a⟩ in HNS,g as shown in (3.58).

Indeed, from table 1 and (3.65), the NS-NS and R-R partition functions of (T /G)+ are

Z(T /G)+ [0, 0] =
1

2
(ZT [0, 0; 0, 0] + ZT [0, 0; 1, 0] ) +

1

2
(ZT [0, 0; 0, 1] + ZT [0, 0; 1, 1] )

=
ΘΛ(τ) + (θ3θ4)

n
2 + (θ2θ3)

n
2

2η(τ)n
, (3.69)

Z(T /G)+ [1, 1] =
1

2
(ZT [1, 1; 0, 0] + ZT [1, 1; 1, 0] ) +

1

2
(ZT [1, 1; 0, 1] + ZT [1, 1; 1, 1] )

=
1

2
ZT [1, 1] , (3.70)

and the same functions are obtained for (T /G)−.

Let V1/2(T ) be the space of the operators with the weight h = 1/2 in the NS sector of

T . From (3.69), the dimension of the space in the reflection orbifold theory becomes

|V1/2((T /G)±)| =
1

2
|V1/2(T )|+ 8 δn,8 . (3.71)

It is known that a chiral CFT can be decomposed into Majorana-Weyl fermions ψ and a

sector without h = 1/2 operators [30], thus this means that the number of Majorana-Weyl

fermions is halved except for n = 8. In the case of n = 8, the only chiral fermionic theory is

16ψ with |V1/2(16ψ)| = 16 and then T ∼= (T /G)± ∼= 16ψ, which is consistent with (3.71).

4 Chiral fermionic CFTs from Zk codes

In this section, we introduce the construction of chiral fermionic CFTs from classical Zk codes
where Zk is the ring of integers modulo k with k ≥ 2. Starting with Zk codes, we give lattice

CFTs based on odd self-dual lattices. This is a generalization of the construction from ternary

codes (k = 3) [9] and p-ary codes (k = p : a prime number) [8].2

A Zk code C of length n is an additive abelian subgroup of Znk . For a code C ⊂ Znk with

the standard inner product c · c′ =
∑n

i=1 cic
′
i ∈ Zk for c, c′ ∈ Znk , the dual code is defined by

C⊥ =
{
c′ ∈ Znk | c · c′ = 0 for all c ∈ C

}
. (4.1)

A code C is called self-dual when C = C⊥. In particular, when k is even, a self-dual code is

called Type II when c2 ∈ 2kZ for all c ∈ C and Type I when it is not Type II. In the case of

binary codes, Type I codes are called singly-even.

2Recently, the construction of CFTs from classical and quantum codes through lattices has been developed

(see [31–50] for recent progress in this direction).
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For c ∈ Znk and a ∈ Zk, wta(c) = | {i ∈ {1, . . . , n} | ci = a} | is called the weight and

satisfies
∑

a∈Zk
wta(c) = n. In the binary case k = 2, we simply denote wt1(c) by wt(c)

and the error correction ability of a code C ⊂ Znk is represented by the minimum weight

d(C) = min {wt(c) | c ∈ C, c ̸= 0}.

The complete weight enumerator of a subset D ⊂ Znk is

WD({xa}) =
∑
c∈D

∏
a∈Zk

xwta(c)
a . (4.2)

The simplest way to construct a lattice from a code C ⊂ Znk is the method called Con-

struction A:

Λ(C) =

{
c+ km√

k
∈ Rn

∣∣∣∣ c ∈ C, m ∈ Zn
}
. (4.3)

It is known that Λ(C) is odd self-dual if and only if C is Type I when k ∈ 2Z and self-dual

when k ∈ 2Z+1 [22]. Once an odd self-dual lattice is obtained, we can construct a fermionic

CFT according to the method in section 3.1. In the following, we show the expression of the

partition functions using the weight enumerator for even/odd k.

k : even A Type I code C ⊂ Znk for even k can be divided into two disjoint subsets

C = C0 ⊔ C2 where

C0 = {c ∈ C | c2 ∈ 2kZ} , C2 = {c ∈ C | c2 ∈ 2kZ+ k} . (4.4)

The shadow of C is defined by

S(C) = C⊥
0 \ C . (4.5)

We choose a specific element s ∈ S(C) and define

C1 = C0 + s , C3 = C2 + s , (4.6)

which satisfy S(C) = C1 ⊔ C3. Note that C1 and C3 can be interchanged depending on the

choice of s ∈ S(C). For later convenience, we define

W̃C({xa}) =WC1({xa})−WC3({xa}) . (4.7)

A characteristic vector of Λ(C) can be written as

χ =
2√
k
(s+ km) , s ∈ S(C) , m ∈ Zn . (4.8)

Using the theta function

Θa,l(τ) =
∞∑

m=−∞
ql(m+ a

2l)
2

, (4.9)
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the partition functions of the CFT T constructed from Λ(C) can be expressed as

ZT [0, 0] =
1

η(τ)n

(
WC0({Θa, k

2
}) +WC2({Θa, k

2
})
)
=

1

η(τ)n
WC({Θa, k

2
}) , (4.10a)

ZT [1, 0] =
1

η(τ)n

(
WC0({Θa, k

2
})−WC2({Θa, k

2
})
)
, (4.10b)

ZT [0, 1] =
1

η(τ)n

(
WC1({Θa, k

2
}) +WC3({Θa, k

2
})
)
=

1

η(τ)n
WS(C)({Θa, k

2
}) , (4.10c)

ZT [1, 1] =
1

η(τ)n

(
WC1({Θa, k

2
})−WC3({Θa, k

2
})
)
=

1

η(τ)n
W̃C({Θa, k

2
}) , (4.10d)

where C1 and C3 are defined by s ∈ S(C) when the fermion parity is determined by the

characteristic vector χ = 2√
k
(s + km), m ∈ Zn. In the binary case, Θ0,1(τ) = θ3(2τ) and

Θ1,1(τ) = θ2(2τ).

k : odd For a self-dual code C ⊂ Znk for odd k, the vector χ =
√
k(1, . . . , 1) ∈ Λ(C) is

always the characteristic vector of Λ(C) and we choose this χ to determine the fermion parity

in R sector.

By using a slightly modified version of [8] (3.36) :

fα,βa,k (τ) =
∑
m∈Z

(−1)α(km+a) q
k
2 (m+β 1

2
+ a

k )
2

, (4.11)

the partition functions are

ZT [α, β] =
1

η(τ)n
WC

(
fα,β0,k (τ), f

α,β
1,k (τ), · · · , f

α,β
k−1,k(τ)

)
(4.12)

where α, β ∈ {0, 1}. In concrete calculations, relations such as f1,10,k (τ) = 0 and fα,βa,k (τ) =

(−1)αβfα,β−a,k(τ) are useful.

5 Triality structure from binary codes

In this section, we discuss the equivalence between the reflection orbifold and the shift orbifold

for the binary codes. We first compute the partition functions of the lattice CFT from binary

codes and then show the equivalence between the reflection and shift orbifolds.

5.1 Shift orbifold for binary codes

As discussed in section 3.2, we can define the shift orbifold of the lattice CFT based on an

odd self-dual lattice Λ and the shift vector δ that is not a characteristic vector and δ/2 /∈ Λ.

The non-anomalous condition of the shift symmetry H is δ2 ∈ 4Z.

In the rest of this subsection, we focus on the shift orbifold of the lattice CFT constructed

from a binary code C ⊂ Zn2 and compute their explicit partition functions. For a singly-even
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self-dual code C ⊂ Zn2 , we can construct an odd self-dual lattice Λ(C) by the Construction

A (4.3). Correspondingly, we can construct a chiral fermionic CFT T based on the lattice

Λ(C). By the shift symmetry H, the original theory T is graded into two parts. In terms of

the momentum lattice Λ(C), this grading is given by Λ(C) = Λδ-even ⊔ Λδ-odd where

Λδ-even = {λ ∈ Λ | λ · δ ∈ 2Z} ,
Λδ-odd = {λ ∈ Λ | λ · δ ∈ 2Z+ 1} .

(5.1)

Following the general prescription (3.32), the momentum lattices of the orbifold theories

(T /H)± are given by

Λorb+
δ = Λδ-even ⊔

(
Λδ-even +

1
2δ
)
,

Λorb−
δ = Λδ-even ⊔

(
Λδ-odd +

1
2δ
)
.

(5.2)

In the binary case, we set the shift symmetry H generated by the shift vector

δ =
1√
2
(1, 1, · · · , 1) . (5.3)

The shift vector is not a characteristic vector and δ/2 /∈ Λ(C). The non-anomalous condition

leads to n ∈ 8Z.

For the shift vector δ, we can write down

Λδ-even =

(
C0 + 2Zn+√

2

)
⊔
(
C2 + 2Zn−√

2

)
,

Λδ-odd =

(
C0 + 2Zn−√

2

)
⊔
(
C2 + 2Zn+√

2

)
,

(5.4)

where C0 and C2 are the set of doubly-even and singly-even codewords, respectively (C =

C0 ⊔ C2). Here, we use the notation

Zn+ =
{
m ∈ Zn | m2 ∈ 2Z

}
,

Zn− =
{
m ∈ Zn | m2 ∈ 2Z+ 1

}
.

(5.5)

On the other hand, the two parts of the shifted lattice Λ + δ/2 are given by

(Λ + δ
2)δ-even =

(
C0 + 2Zn+√

2
+
δ

2

)
⊔
(
C2 + 2Zn−√

2
+
δ

2

)
,

(Λ + δ
2)δ-odd =

(
C2 + 2Zn+√

2
+
δ

2

)
⊔
(
C0 + 2Zn−√

2
+
δ

2

)
.

(5.6)

The twisted ground states with conformal weight h = n/16 are in the first terms in the above

two equations. The total number of the twisted ground states is 2n/2. We can see that half

of them are even, and the other half are odd under the Z2 symmetry given by δ.
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In what follows, we compute the NS-NS partition function of the shift orbifold theory

(T /H)±. Since the theory after orbifold is still a lattice CFT, the NS-NS partition function

is given by

Z(T /H)± [0, 0] =
1

η(τ)n
ΘΛorb±

δ
(q) , (5.7)

where ΘΛorb±
δ

(q) is the theta function of the shifted lattice Λorb±
δ :

ΘΛorb±
δ

(q) =
∑

λ∈Λorb±
δ

qλ
2/2 . (5.8)

From (5.2), we are required to have the theta function of Λδ-even, Λδ-even+δ/2 and Λδ-odd+δ/2.

To this purpose, we show the following propositions:

Proposition 5.1

For a singly-even self-dual code C ⊂ Zn2 , the theta functions of Λδ-even and Λδ-odd are

ΘΛδ-even
(q) =

ΘΛ(C)(q) + (θ3(q)θ4(q))
n/2

2
,

ΘΛδ-odd
(q) =

ΘΛ(C)(q)− (θ3(q)θ4(q))
n/2

2
,

(5.9)

where θi(q) are the Jacobi theta functions.

Proof. The essential ingredient of the proof is the equality∑
c∈K

∑
m∈Zn

+

q(m+
c
2 )

2

=
∑
c∈K

∑
m∈Zn

−

q(m+
c
2 )

2

(5.10)

This holds for any subset K ⊂ Zn2 that does not contain the all-zeros vector: 0n /∈ K since if

ci = 1, we can transform into mi → −mi − 1, which only exchanges Zn+ and Zn− of the region

where m runs. Now we apply this equality for proof.

Let us consider

ΘΛ(C)(q) = ΘΛδ-even
(q) + ΘΛδ-odd

(q) , (5.11)

where

ΘΛδ-even
(q) =

∑
c∈C0

∑
m∈Zn

+

q(m+
c
2 )

2

+
∑
c∈C2

∑
m∈Zn

−

q(m+
c
2 )

2

, (5.12)

ΘΛδ-odd
(q) =

∑
c∈C0

∑
m∈Zn

−

q(m+
c
2 )

2

+
∑
c∈C2

∑
m∈Zn

+

q(m+
c
2 )

2

. (5.13)
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Since the equality (5.10), the last terms in (5.12) and (5.13) are the same. On the other hand,

the first terms are not due to the all-zeros vector c = 0n, which contributes to ΘΛ(C)(q) as∑
m∈Zn

qm
2
= θ3(q

2)n . (5.14)

Therefore, after using (5.10), we can write

ΘΛ(C)(q) = θ3(q
2)n + 2

∑
c∈C0−{0n}

∑
m∈Zn

+

q(m+
c
2 )

2

+ 2
∑
c∈C2

∑
m∈Zn

−

q(m+
c
2 )

2

= −θ4(q2)n + 2ΘΛδ-even
(q) ,

(5.15)

where we have used 2
∑

m∈Zn
+
qm

2
= θ3(q

2)n + θ4(q
2)n. Lastly, we can use the identity

θ4(q
2) =

√
θ3(q)θ4(q).

Proposition 5.2

For a singly-even self-dual code C ⊂ Zn2 , the theta functions of Λδ-even+
δ
2 and Λδ-odd+

δ
2 are

ΘΛδ-even+δ/2(q) = ΘΛδ-odd+δ/2(q) =
(θ2(q)θ3(q))

n/2

2
. (5.16)

Proof. Let us consider

ΘΛδ-even+δ/2(q) =
∑
c∈C0

∑
m∈Zn

+

q(m+
c
2+

1
4 )

2

+
∑
c∈C2

∑
m∈Zn

−

q(m+
c
2+

1
4 )

2

. (5.17)

To evaluate the above equation, we utilize the equality∑
m∈Zn

±

q(m+
c
2+

1
4 )

2

=
∑

m∈Zn
±

q(m+
1
4)

2

, (5.18)

where wt(c) ∈ 2Z. To see this, suppose that the first l components of c are 1 and the others

are 0 where l is even due to wt(c) ∈ 2Z. Then, we change the variable m by mi → −mi − 1

(i = 1, 2, · · · , l) and mi → mi (i = l + 1, · · · , n). Since l ∈ 2Z, this change of variables does

not affect the region where m runs and(
m1 +

1
2 + 1

4 , · · · ,ml +
1
2 + 1

4 ,ml+1 +
1
4 , · · · ,mn +

1
4

)
→

(
−m1 − 1

4 , · · · ,−ml − 1
4 ,ml+1 +

1
4 , · · · ,mn +

1
4

)
.

(5.19)

Thus, we obtain (5.18). If one takes the sum over the subset K ⊂ Zn2 satisfying wt(c) ∈ 2Z
for any c ∈ K, we obtain the equality∑

c∈K

∑
m∈Zn

±

q(m+
c
2+

1
4 )

2

= |K|
∑

m∈Zn
±

q(m+
1
4)

2

, (5.20)
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where |K| is the number of elements in K ⊂ Zn2 .

By using (5.20), we obtain

ΘΛδ-even+δ/2(q) = |C0|
∑

m∈Zn
+

q(m+
1
4)

2

+ |C2|
∑

m∈Zn
−

q(m+
1
4)

2

,

=
|C|
2

∑
m∈Zn

q(m+
1
4)

2

=
(θ2(q)θ3(q))

n/2

2
,

(5.21)

where we used |C0| = |C2| = |C|/2 and the identity 2ρ0(q
2)2 = θ2(q)θ3(q) [51] where ρ0(q) is

the theta function of lattice Z+ 1
4 : ρ0(q) =

∑
m∈Z q

1
2 (m+

1
4)

2

. For the other Λδ-odd + δ/2, the

same argument can be made.

Combining the above two propositions, we obtain the theta functions of the momentum

lattices of the orbifold theory (T /H)±:

Proposition 5.3

For a singly-even self-dual code C ⊂ Zn2 , the theta functions of the shifted lattices are

ΘΛorb±
δ

(q) =
ΘΛ(C)(q) + (θ2θ3)

n/2 + (θ3θ4)
n/2

2
. (5.22)

Under the modular transformations, the theta functions of the shifted lattice transform

as (n ∈ 8Z due to the non-anomalous condition)

S : ΘΛorb±
δ

(q) → (−iτ)
n
2 ΘΛorb±

δ
(q) , (5.23)

T 2 : ΘΛorb±
δ

(q) → ΘΛorb±
δ

(q) . (5.24)

This implies that the theta functions of the shifted lattices are a modular form of weight n/2

for the subgroup Γ ⊂ SL(2,Z) generated by S and T 2. Therefore, from (5.7), the NS-NS

partition function of the orbifold theory

Z(T /H)± [0, 0] =
ΘΛ(C)(q) + (θ2θ3)

n/2 + (θ3θ4)
n/2

2η(τ)n
, (5.25)

properly transforms under modular transformation.

The above proposition states that the two orbifold theories (T /H)± have the same NS-

NS partition function. The following proposition ensures that the two orbifold theories are

equivalent since their momentum lattices are equivalent up to a reflection transformation.

Thus, in the rest of this paper, we denote the shift orbifold theory from binary codes by T /H
and its momentum lattice by Λorb

δ , omitting types of orbifold (±).
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Proposition 5.4

In the binary construction, the two shifted lattices are equivalent

Λorb+
δ

∼= Λorb−
δ . (5.26)

Proof. Let us construct an isomorphism between Λδ-even + δ
2 and Λδ-odd + δ

2 by reflection.

Any element in Λδ-even + δ
2 can be written as λ =

√
2(m + c

2 + 1
4) where (m ∈ Zn+ and c ∈

C0)⊔ (m ∈ Zn− and c ∈ C2). Given t ∈ C2, C2 = C0+ t. This can be used to write an element

of Λδ-even +
δ
2 as

λ =
√
2 (m+ c+t

2 + 1
4) , (5.27)

where (m ∈ Zn+ and c ∈ C2) ⊔ (m ∈ Zn− and c ∈ C0). For simplicity, suppose t = 1l0n−l ∈ C2

where l ∈ 2Z due to the self-orthogonality of C. We can rewrite (5.27) by mi → −mi− ci− 1

(i = 1, 2, · · · , l) and mi → mi (i = l + 1, · · · , n). Then, we obtain

λ = (−m1 − c1
2 − 1

4 , · · · ,−ml − cl
2 − 1

4 ,ml+1 +
cl+1

2 + 1
4 , · · · ,mn +

cn
2 + 1

4) . (5.28)

Note that this change of variables does not affect the region wherem runs because
∑l

i=1(−mi−
ci − 1) +

∑n
i=l+1mi =

∑n
i=1mi + c · t =

∑l
i=1mi mod 2. Here, we used l ∈ 2Z and c · t ∈ 2Z

by self-orthogonality. The above procedure just changes the representation of an element in

Λδ-even +
δ
2 .

Now we give a map between Λδ-even + δ
2 and Λδ-odd + δ

2 by the reflection of the first l

components. The reflection maps (5.28) to an element λ =
√
2(m + c

2 + 1
4) where (m ∈

Zn+ and c ∈ C2) ⊔ (m ∈ Zn− and c ∈ C0), which is the definition of Λδ-odd +
δ
2 . We can easily

check that the reflection preserves Λδ-even, so we conclude the equivalence between the two

shifted lattices.

5.2 Triality structure in chiral fermionic CFTs

Now we move on to the equivalence between the reflection orbifold and the shift orbifold

for the binary codes. For bosonic CFTs from binary codes, the equivalence between the

reflection and shift orbifolds was shown in [6, 7]. We extend this result to chiral fermionic

CFTs constructed from binary codes.

Our goal is the following proposition:

Proposition 5.5

Let T be a chiral fermionic CFT constructed from a singly-even self-dual code C. The

reflection orbifold (T /G)± and the shift orbifold T /H are isomorphic: (T /G)± ∼= T /H.

From the above proposition, we can deduce the equivalence (T /G)+ ∼= (T /G)− between

two types of orbifold in the binary construction. We can simply denote them by T /G.
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This equivalence is expected because the NS-NS partition function of the shift orbifold

(5.25) is the same as that of the reflection orbifold (3.69). By the equivalence between the two

orbifolds, we obtain the pyramid structure of the chiral fermionic CFTs from binary codes as

shown in Fig. 1.

To hold the equivalence, an SU(2) symmetry from binary codes is crucial. Following [13,

52], the equivalence between the reflection and shift orbifolds can be understood intuitively.

The original theory T has an SU(2) symmetry for each direction, generated by

J i1(z) =
i

2

(
V√2ei

(z) + V−
√
2ei

(z)
)
,

J i2(z) =
1

2

(
V√2ei

(z)− V−
√
2ei

(z)
)
,

J i3(z) =
i√
2
∂Xi(z) ,

(5.29)

where our notation is Xi(z)Xj(w) = −δij log(z − w). After the mode expansion J ia(z) =∑
n∈Z J

ai
n /z

n+1, these modes realize the commutation relations of su(2)n1 algebra

[Jaim , J
bj
n ] = i ϵabc δ

ij J icm+n +
m

2
δij δab δm+n,0 , (5.30)

where ϵabc denotes the completely antisymmetric tensor (ϵ123 = 1). Also, to compute the OPE

(3.14), we assumed the gauge ϵ(
√
2ei,−

√
2ei) = ϵ(−

√
2ei,

√
2ei) = −1, which is compatible

with (3.11). The reflection g ∈ G, the shift h ∈ H, and their product gh act on the SU(2)

symmetry as

g : J i1(z) → +J i1(z) , J i2(z) → −J i2(z) , J i3(z) → −J i3(z) ,
h : J i1(z) → −J i1(z) , J i2(z) → −J i2(z) , J i3(z) → +J i3(z) ,

gh : J i1(z) → −J i1(z) , J i2(z) → +J i2(z) , J i3(z) → −J i3(z) .
(5.31)

These actions are equivalent under the permutation S3 group that interchanges the SU(2)

symmetry generators. This triality symmetry suggests the equivalence between the Z2 orbifold

theories by G and H. For a compact boson theory with c = c̄ = 1, starting from the radius

with SU(2) symmetry, the triality gives the intersection point of the torus branch and orbifold

branch by the shift and reflection orbifold [53].

To relate the Z2 actions g and h, we need to consider an operator swapping the SU(2)

generators J i1(z) and J
i
3(z). The triality operator is given by

σi = exp

{
iπ√
2
(J1i

0 + J3i
0 )

}
. (5.32)

By taking the product σ =
∏n
i=1 σ

i, we can construct the operator that swaps the SU(2)

generators J i1(z) and J
i
3(z) for all directions:

σ J1i
m σ−1 = J3i

m , σ J2i
m σ−1 = −J2i

m , σ J3i
m σ−1 = J1i

m . (5.33)
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Let V +
δ-even ⊂ HNS be the space of states fixed by the action of g and h in the NS sector

of the theory T : for a state |ψ⟩ ∈ V +
δ-even, |ψ⟩ = g |ψ⟩ = h |ψ⟩. For a codeword c ∈ C, we

define operators that map V +
δ-even to itself:

V ±
ij (z) =

1√
2

(
: ei

√
2 (ei±ej)·X(z) : + : e−i

√
2 (ei±ej)·X(z) :

)
, (5.34)

Vζc(z) =
1√
2

(
: e

i c√
2
·X(z)

: + : e
−i c√

2
·X(z)

:
)
, (5.35)

where ei is the unit vector in direction i = 1, 2, · · · , n. From (5.4), any state in V +
δ-even is

generated by acting : ∂Xi(z)∂Xj(z) : , V ±
ij (z) and Vζc(z) (c ∈ C0: doubly-even codewords)

on |0⟩ and |λ⟩+ = |λ⟩+ |−λ⟩ where λ ∈ (C2 + 2Zn−)/
√
2.

Now we show the following proposition:

Proposition 5.6 (Generalization of Proposition 7.2 in [7])

The triality operator σ maps V +
δ-even to V +

δ-even.

Proof. The space V +
δ-even is divided into two parts V +

δ-even = V +, bos
δ-even ⊕ V +, ferm

δ-even . The bosonic

sector V +, bos
δ-even is generated by acting : ∂Xi(z)∂Xj(z) : , V ±

ij (z) and Vζc(z) (c ∈ C0) on the

vacuum |0⟩. The fermionic sector V +, ferm
δ-even is generated by acting the same operators on a

state |λ⟩+ where λ ∈ (C2 + 2Zn−)/
√
2. For the bosonic sector, the proposition has already

been shown in [7]. The only difference with our case is the presence of the fermionic sector

V +, ferm
δ-even in V +

δ-even.

The strategy of proof is to show that the operators σ : ∂Xi(z)∂Xj(z) : σ−1, σ V ±
ij (z)σ

−1

and σ Vζc(z)σ
−1 map V +

δ-even to itself and σ |λ⟩+ ∈ V +
δ-even. Once these are true, using σ |0⟩ =

|0⟩, we can conclude that σ maps V +
δ-even to itself. From Proposition 7.2 in [7], we know that

σ : ∂Xi(z)∂Xj(z) : σ−1, σ V ±
ij (z)σ

−1 and σ Vζc(z)σ
−1 are operators that map V +

δ-even to itself.

Thus, we only need to show that σ |λ⟩+ ∈ V +
δ-even for our proof.

Below, we show that σ |λ⟩+ ∈ V +
δ-even. This statement is equivalent to that the operator

σ (Vλ(z) + V−λ(z))σ
−1 maps V +

δ-even to itself since σ |0⟩ = |0⟩. Without loss of generality, we

assume an element λ ∈ (C2 + 2Zn−)/
√
2 by

λ =
1√
2
(1, · · · , 1,−1, · · · ,−1, 0, · · · , 0) ∈

C2 + 2Zn−√
2

, (5.36)

where the first 2ℓ+ 1 components are 1, the next 2ℓ+ 1 components are −1, and the others

are 0. Setting λ′ = λ−
√
2ei for i = 1, 2, · · · 2ℓ+1 and λ′ = λ+

√
2ei for i = 2ℓ+2, · · · , 4ℓ+2,

we have

[J1i
0 , Vλ(z)] =

i

2
ϵ(∓

√
2ei, λ)Vλ′(z) , [J1i

0 , Vλ′(z)] =
i

2
ϵ(±

√
2ei, λ

′)Vλ(z) ,

[J3i
0 , Vλ(z)] = ±1

2
Vλ(z) , [J3i

0 , Vλ′(z)] = ∓1

2
Vλ′(z) ,

(5.37)

– 31 –



where the upper and lower signs are for i = 1, 2, · · · 2ℓ+ 1 and i = 2ℓ+ 2, · · · , 4ℓ+ 2, respec-

tively. Since we are using the gauge ϵ(
√
2ei,−

√
2ei) = ϵ(−

√
2ei,

√
2ei) = −1, the cocycle con-

dition (3.13) tells us ϵ(−
√
2ei, λ) = −ϵ(

√
2ei, λ−

√
2ei) and ϵ(

√
2ei, λ) = −ϵ(−

√
2ei, λ+

√
2ei).

Thus, we have

σi

(
Vλ(z)

Vλ′(z)

)
(σi)−1 = exp

{
iπ

2
√
2

(
±1 i ϵ(∓

√
2ei, λ)

−i ϵ(∓
√
2ei, λ) ∓1

)}(
Vλ(z)

Vλ′(z)

)
,

=
i√
2

(
±1 i ϵ(∓

√
2ei, λ)

−i ϵ(∓
√
2ei, λ) ∓1

)(
Vλ(z)

Vλ′(z)

)
.

(5.38)

By taking the products with respect to i, we obtain

σ Vλ(z)σ
−1 = −2−|λ|2

∑
λ′∈∆(λ)

in(λ,λ
′) (−1)nR(λ,λ′) η(λ, λ′)Vλ′(z) , (5.39)

where ∆(λ) is the set of vectors obtained by the sign-flip of the components such that λj = ±1.

We denote by n(λ, λ′) the number of components such that λj ̸= λ′j . We define by IL and IR
the set of sign-flipped components from λ to λ′ in j = 1, 2, · · · , 2ℓ+1 and j = 2ℓ+2, · · · , 4ℓ+2,

respectively. Here, nR(λ, λ
′) = |IR| and

η(λ, λ′) =
∏
IL

ϵ(−
√
2ei, λ)

∏
IR

ϵ(
√
2ei, λ) . (5.40)

Similarly, we have

σ V−λ(z)σ
−1 = −2−|λ|2

∑
λ′∈∆(λ)

(−i)n(λ,λ
′) (−1)nR(λ,λ′) η(−λ,−λ′)V−λ′(z) , (5.41)

where

η(−λ,−λ′) =
∏
IL

ϵ(
√
2ei,−λ)

∏
IR

ϵ(−
√
2ei,−λ) . (5.42)

Now we would like to see σ (Vλ(z)+V−λ(z))σ
−1 by taking the sum of the above two equations.

Note that n(λ, λ′) + n(λ,−λ′) = 4ℓ + 2 and nR(λ, λ
′) + nR(λ,−λ′) = 2ℓ + 1. Also, we have

η(λ, λ′) = (−1)n(λ,λ
′) η(λ,−λ′) because of the complex conjugation ϵ(λ, µ)∗ = ϵ(−µ,−λ) ∈

{±1} and (3.11). Finally, we obtain

σ (Vλ(z) + V−λ(z))σ
−1 = −2−|λ|2

∑
λ′∈∆+(λ)

in(λ,λ
′) (−1)nR(λ,λ′) η(λ, λ′) (Vλ′(z) + V−λ′(z)) .

(5.43)

Here, ∆+(λ) is the subset of ∆(λ) satisfying n(λ, λ′) ∈ 2Z. The operators appearing in the

right-hand side are operators that map V +
δ-even to itself, which concludes the proof.
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In the rest of this subsection, we give a proof of Proposition 5.5. For this purpose, we

consider a CFT with weight-one operators P i(z) for i = 1, 2, · · · , n whose mode expansion is

P i(z) =
∑
m∈Z

αim
zm+1

, (5.44)

where the oscillators αim satisfy the commutation relations [αim, α
j
n] = mδijδm+n,0. Then, we

can introduce the following proposition, which has been shown in [7].

Proposition 5.7 (Proposition 6.4 in [7])

Let T be a conformal field theory with central charge n, whose simultaneous eigenvalues of

pi := αi0 form an integral lattice Λ such that rank(Λ) = n. Then, the CFT T is isomorphic

to the lattice CFT based on the lattice Λ.

This proposition ensures that the CFT T , which is not a lattice CFT by definition, can

be isomorphic to a lattice CFT, when the simultaneous eigenvalues of T form an integral

lattice. Since the NS-NS partition function of a lattice CFT is invariant under modular S

transformation: τ → −1/τ only when the lattice is self-dual, a chiral fermionic CFT T , whose

NS-NS partition function is modular S invariant, should be isomorphic to a lattice CFT based

on a self-dual lattice.

Proof of Proposition 5.5. The proof is the same for the two types of orbifold (T /G)± and we

denote them by T /G below for simplicity. Let T be a chiral fermionic CFT constructed from

a singly-even self-dual code C. The shift orbifold T /H has the Cartan subalgebra
√
2J3i

0 for

each direction i = 1, 2, · · · , n, while the reflection orbifold T /G has the Cartan subalgebra√
2J1i

0 for each direction i = 1, 2, · · · , n. Both orbifold theories contain V +
δ-even because this is

fixed by reflection g and shift h. Correspondingly, for the shift orbifold T /H, the lattice of

simultaneous eigenvalues of
√
2J3i

0 contains Λδ-even.

Under the action of the triality operator σ, the Cartan subalgebra
√
2J3i

0 is mapped to√
2J1i

0 . For an eigenstate |λ⟩+ ∈ V +
δ-even of

√
2J3i

0 , the triality operator maps it to an eigenstate

σ |λ⟩+ ∈ V +
δ-even of

√
2J1i

0 from Proposition 5.6. Since the reflection orbifold includes the space

V +
δ-even, the lattice of simultaneous eigenvalues of

√
2J1i

0 in the reflection orbifold T /G contains

Λδ-even as a sublattice. Note that we have

(Λδ-even)
∗ = Λδ-even ⊔ Λδ-odd ⊔ (Λδ-even +

δ
2) ⊔ (Λδ-odd +

δ
2) . (5.45)

Thus, the lattice of simultaneous eigenvalues of the reflection orbifold T /G, which are a self-

dual lattice containing Λδ-even, is restricted to Λ(C) and Λorb
δ := Λorb+

δ
∼= Λorb−

δ . In the rest of

proof, we identify which lattice gives simultaneous eigenvalues in the reflection orbifold T /G.

One can distinguish the two lattices Λ(C) and Λorb
δ by the number of the weight-one

operators |V1(Λ(C))|, |V1(Λorb
δ )| where we denote by V1(Λ) the space of weight-one operators
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in the lattice CFT based on Λ. For the lattice CFT based on Λ(C), we have

|V1(Λ(C))| = 3n+ 16|C4| , n ∈ 8Z , (5.46)

where |C4| is the number of codewords c with wt(c) = 4. Here, 3n comes from the generators

of SU(2)n symmetry and 16|C4| comes from the vertex operators : exp{iλ · X(z)} : where

λ = ((±1)4, 0n−4)/
√
2. On the other hand, the corresponding number for the lattice CFT

based on Λorb
δ is

|V1(Λorb
δ )| = n+ 8|C4| , n ∈ 8Z≥3 , (5.47)

since after orbifolding, J i1(z) and J
i
2(z) are projected out and only the half of vertex operators

: exp{iλ ·X(z)} : where λ = ((±1)4, 0n−4)/
√
2 survive. This shows that |V1(Λorb

δ )| is strictly
smaller than |V1(Λ(C))| for n ≥ 24, and we can distinguish the two lattices by their spectra,

i.e., the partition functions. We can observe that the NS-NS partition function of the lattice

CFT with Λorb
δ (5.25) is the same as that of the reflection orbifold (3.69). Thus, the simulta-

neous eigenvalues of the reflection orbifold T /G form the lattice Λorb
δ . From Proposition 5.7,

we can conclude that, for n ≥ 24, the reflection orbifold T /G is isomorphic to the lattice

CFT based on Λorb
δ , which is the shift orbifold T /H.

To complete the proof, we separately consider n = 8 and n = 16. For n = 8, the odd self-

dual lattice is unique: Λ(C) = Λorb
δ = Z8. Thus, the simultaneous eigenvalues of the reflection

orbifold form the lattice Z8 and the equivalence is trivial. Next, consider n = 16 (see Fig. 5 for

the result). Compared with n ≥ 24, the weight-one operators for Λorb
δ additionally come from

the vertex operators : exp{iλ ·X(z)} : where λ = (±1,±1, · · · ,±1)/2
√
2 such that δ · λ ∈ 2Z.

The number of such operators is |C0|: the total number of doubly-even codewords. Thus, the

total number of the weight-one operators in the lattice CFT based on Λorb
δ is

|V1(Λorb
δ )| = n+ 8|C4|+ |C0| , n = 16 . (5.48)

When 3n+16|C4| for Λ(C) and n+8|C4|+|C0| for Λorb
δ are different, we can straightforwardly

show the equivalence between the reflection and shift orbifolds from the same argument

as n ≥ 24. There are five singly-even self-dual codes of length 16. Four of them satisfy

3n + 16|C4| ≠ n + 8|C4| + |C0|. For the last one, 3n + 16|C4| = n + 8|C4| + |C0|, and Λ(C)

and Λorb
δ cannot be distinguished from the number of weight-one operators. However, we

can show that Λ(C) = Λorb
δ = (D2

8)
+ where (D2

8)
+ is the extremal odd self-dual lattice with

minimum norm 2. Thus, the reflection orbifold T /G is isomorphic to the shift orbifold T /H
for n = 8, 16.

6 Shift orbifold for nonbinary codes

In this section, we give the expression of the NS-NS partition function Z(T /H)± [0, 0] and the

R-R partition function Z(T /H)± [1, 1] of the shift orbifold theory constructed from a code over
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Zk, using the weight enumerator of the code. The other partition functions can be obtained

in a similar method or by the modular transformation from Z(T /H)± [0, 0].

Let C ⊂ Znk be a Type I code with even k or a self-dual code with odd k, T a CFT

constructed from the lattice Λ := Λ(C), and H a shift Z2 symmetry generated by h : X →
X + πδ where δ ∈ Λ(C) will be specified later. From the construction, any vector in Λ(C)

can be written as

λ =
1√
k
(c+ km) , c ∈ C , m ∈ Zn . (6.1)

For δ ∈ Λ(C), we define

Cδ-even =

{
c ∈ C

∣∣∣∣ 1√
k
c · δ ∈ 2Z

}
, Cδ-odd =

{
c ∈ C

∣∣∣∣ 1√
k
c · δ ∈ 2Z+ 1

}
, (6.2)

Γδ-even =
{√

km ∈
√
kZn

∣∣∣ √km · δ ∈ 2Z
}
, Γδ-odd =

{√
km ∈

√
kZn

∣∣∣ √km · δ ∈ 2Z+ 1
}
,

(6.3)

which satisfy C = Cδ-even ⊔ Cδ-odd and
√
kZn = Γδ-even ⊔ Γδ-odd. Then, Λδ-even/odd can be

written as

Λδ-even =

(
1√
k
Cδ-even + Γδ-even

)
⊔
(

1√
k
Cδ-odd + Γδ-odd

)
,

Λδ-odd =

(
1√
k
Cδ-even + Γδ-odd

)
⊔
(

1√
k
Cδ-odd + Γδ-even

)
.

(6.4)

When we write

Γ′
δ-even = Γδ-even +

1

2
δ , Γ′

δ-odd = Γδ-odd +
1

2
δ , (6.5)

the momentum lattices of the orbifold theories are

Λorb+
δ =

(
1√
k
Cδ-even +

(
Γδ-even ⊔ Γ′

δ-even

))
⊔
(

1√
k
Cδ-odd +

(
Γδ-odd ⊔ Γ′

δ-odd

))
, (6.6)

Λorb−
δ =

(
1√
k
Cδ-even +

(
Γδ-even ⊔ Γ′

δ-odd

))
⊔
(

1√
k
Cδ-odd +

(
Γδ-odd ⊔ Γ′

δ-even

))
. (6.7)

Throughout this section, we do not care about the ambiguity of the fermion parity (−1)F ,

i.e. the choice of the characteristic vector χ, since it only causes the sign in the R-R partition

function Z(T /H)± [1, 1] for our results.

6.1 k : even

For a more detailed analysis, it is convenient to choose δ that does not depend on C. The

following proposition for codes is useful for this purpose.

Proposition 6.1

Every self-dual code C ⊂ Zn2m contains an all-m vector.
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Proof. For any c ∈ C,

c · (m, . . . ,m) ∈ 2mZ ⇔
n∑
i=1

ci ∈ 2Z ⇔
n∑
i=1

c2i = c2 ∈ 2Z (6.8)

holds and c2 ∈ 2Z is always satisfied from the self-orthogonality. Thus, the all-m vector is in

C⊥ = C.

In later discussions for even k = 2m, we consider δ = 1√
2m

(m, . . . ,m) ∈ Λ(C).

k ∈ 4Z+ 2

When k ∈ 4Z + 2, we can take δ = 1√
k
(k2 , . . . ,

k
2 ) only if n ∈ 8Z because of the condition

δ2 = 1
4kn ∈ 4Z. For other conditions, δ is not a characteristic vector since δ · λ ̸≡ λ2 mod 2

for λ =
√
k(1, 0, . . . , 0) ∈ Λ(C) and δ

2 /∈ Λ(C) is always satisfied from δ
2 /∈

1√
k
Zn.

The NS-NS partition function of the orbifold theory can be written as

Z(T /H)± [0, 0] =
1

η(τ)n

∑
λ∈Λ(C)

(
1 + (−1)λ·δ

2
q

1
2
λ2 +

1± (−1)λ·δ

2
q

1
2
(λ+ 1

2
δ)2
)

(6.9)

=
1

η(τ)n
1

2

(
WC({g0,0a,k}) +WC({g1,0a,k}) +WC({g0,1a,k})±WC({g1,1a,k})

)
(6.10)

where

gα,βa,k (τ) =
∑
m∈Z

(−1)
1
2
α(km+a)q

k
2 (m+ a

k
+β 1

4)
2

. (6.11)

From (3.34) and (3.41), the R-R partition function can be expressed as

Z(T /H)+ [1, 1]

=
1

η(τ)n

∑
ξ∈S(Λ)

(
1± (−1)ξ·δ

2
(−1)ξ·χ

orb+
q

1
2
ξ2 +

1± (−1)ξ·δ

2
(−1)(ξ+

δ
2
)·χorb+

q
1
2
(ξ+ δ

2
)2
)

(6.12)

=
1

η(τ)n

∑
ξ∈S(Λ)

1± (−1)ξ·δ

2
(−1)ξ·χ

(
q

1
2
ξ2 ± q

1
2
(ξ+ δ

2
)2
)

(6.13)

=
1

η(τ)n
1

2

(
W̃C({g0,0a,k})± W̃C({g1,0a,k})± W̃C({g0,1a,k}) + W̃C({g1,1a,k})

)
, (6.14)

where double signs are all + when n ∈ 16Z and − when n ∈ 16Z+ 8.

Similarly,

Z(T /H)− [1, 1] =
1

η(τ)n
1

2

(
W̃C({g0,0a,k})∓ W̃C({g1,0a,k})∓ W̃C({g0,1a,k})− W̃C({g1,1a,k})

)
, (6.15)

where double signs are all − when n ∈ 16Z and + when n ∈ 16Z+ 8.
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From simple calculations, gα,βa,k has properties such as

g0,0a,k = g0,0−a,k , g1,0a,k = (−1)ag1,0−a,k , g0,1a,k = g0,1−a− k
2
,k
, g1,1a,k = i

k
2 (−1)ag1,1−a− k

2
,k
. (6.16)

In particular, in the binary case (k = 2), the relations become

g1,00,2 = (θ3θ4)
1
2 , g1,01,2 = 0 , g0,10,2 = g0,11,2 =

(
θ2θ3
2

) 1
2

, g1,10,2 = ig1,11,2 =

(
θ2θ4
2

) 1
2

. (6.17)

Thus, the NS-NS partition function of the orbifold theory for a binary code is

Z(T /H)± [0, 0] =
1

η(τ)n
1

2

(
ΘΛ(C) + (θ3θ4)

n
2 + |C|

(
θ2θ3
2

)n
2

± (|C0| − |C2|)
(
θ2θ4
2

)n
2

)

=
1

2

(
ZT [0, 0] +

(θ3θ4)
n
2 + (θ2θ3)

n
2

η(τ)n

)
, (6.18)

which is consistent with Proposition 5.3. For the R-R partition function, the second term is

0 since 0⃗ /∈ S(C) and the third and fourth terms are also 0 since the contributions from C1

and C3 cancel each other out as shown using wt(s) = n/2 = 0 (mod 4), thus

Z(T /H)± [1, 1] =
1

2
ZT [1, 1] . (6.19)

k ∈ 4Z

When k = 4l, l ∈ Z, Γδ-odd is empty and Γδ-even = 2
√
lZn =: Γ.

Let C ⊂ Zn4l be a Type I code. We can take δ = 1√
4l
(2l, . . . , 2l) only if ln ∈ 4Z and

(l, . . . , l) /∈ (C ⊔ S(C)) because of the gauging conditions for δ. We assume these in the

following. In this case, since δ
2 = 1√

4l
(l, . . . , l) ∈ 1√

4l
Zn, the effect of the shift δ/2 can be

included in the code. In fact, from (6.6) and (6.7), we obtain

Λorb+
δ =

1
√
p
Cδ-even +

(
Γ ⊔ Γ′) = Λ(C+) ,

Λorb−
δ =

(
1
√
p
Cδ-even + Γ

)
⊔
(

1
√
p
Cδ-odd + Γ′

)
= Λ(C−) ,

(6.20)

where

C+ = Cδ-even ⊔ (Cδ-even + (l, . . . , l)) ,

C− = Cδ-even ⊔ (Cδ-odd + (l, . . . , l)) .
(6.21)

Thus, the orbifold theories can be constructed from other self-dual codes. Note that we can

show C± are Type I directly or from the odd self-duality of Λ(C±).

We want to express the weight enumerator polynomial of C± by that of C.
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Λ(C) Λ(C+) Λ(C−)

C C+ C−

Figure 3: The relation between codes C, C± over Z4l and their Construction A lattices.

The arrows mean C → Λ(C), C ⇝ Λ(C)orb+δ , and C 99K Λ(C)orb−δ where δ = 1√
4l
(2l, . . . , 2l).

Note that we do not define the orbifold theory by δ from C+ since (l, . . . , l) ⊂ C+.

For any subset D ⊂ Zn4l s.t. c2 ∈ 2Z for all c ∈ D, D can be divided into two subsets

Dδ-even =

{
c ∈ D

∣∣∣∣∣
n∑
i=1

ci ∈ 4Z

}
, Dδ-odd =

{
c ∈ D

∣∣∣∣∣
n∑
i=1

ci ∈ 4Z+ 2

}
, (6.22)

and then the corresponding weight enumerator polynomials are

WDδ-even/odd
({xa}) =

1

2
(WD({xa})±WD({iaxa})) . (6.23)

Using this, the complete weight enumerator of C± can be written as

WC±({xa}) =WCδ-even
({xa}) +WCδ-even/odd

({xa+l}) (6.24)

=
1

2

(
WC({xa}) +WC({iaxa}) +WC({xa+l})±WC({ia+lxa+l})

)
. (6.25)

The NS-NS partition function Z(T /H)± [0, 0] is given by substituting the theta functions as

(4.10a).

To calculate the R-R partition function, we need to identify C±
i , i = 0, 1, 2, 3 for C±.

The subsets C±
0 , C

±
2 of C± are defined by c2 ∈ 8lZ or 8lZ+ 4l, thus

C+
0 =

{
(C0)δ-even ⊔ ((C0)δ-even + (l, . . . , l)) (ln ∈ 8Z)
(C0)δ-even ⊔ ((C2)δ-even + (l, . . . , l)) (ln ∈ 8Z+ 4)

(6.26)

C+
2 =

{
(C2)δ-even ⊔ ((C2)δ-even + (l, . . . , l)) (ln ∈ 8Z)
(C2)δ-even ⊔ ((C0)δ-even + (l, . . . , l)) (ln ∈ 8Z+ 4)

(6.27)

C−
0 =

{
(C0)δ-even ⊔ ((C2)δ-odd + (l, . . . , l)) (ln ∈ 8Z)
(C0)δ-even ⊔ ((C0)δ-odd + (l, . . . , l)) (ln ∈ 8Z+ 4)

(6.28)

C−
2 =

{
(C2)δ-even ⊔ ((C0)δ-odd + (l, . . . , l)) (ln ∈ 8Z)
(C2)δ-even ⊔ ((C2)δ-odd + (l, . . . , l)) (ln ∈ 8Z+ 4)

(6.29)
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When we define C1, C3 and C±
1 , C

±
3 by s ∈ S(C) ∩ S(C±),

C+
1 =

{
(C1)δ-even ⊔ ((C1)δ-even + (l, . . . , l)) (ln ∈ 8Z)
(C1)δ-odd ⊔ ((C3)δ-odd + (l, . . . , l)) (ln ∈ 8Z+ 4)

(6.30)

C+
3 =

{
(C3)δ-even ⊔ ((C3)δ-even + (l, . . . , l)) (ln ∈ 8Z)
(C3)δ-odd ⊔ ((C1)δ-odd + (l, . . . , l)) (ln ∈ 8Z+ 4)

(6.31)

C−
1 =

{
(C1)δ-odd ⊔ ((C3)δ-even + (l, . . . , l)) (ln ∈ 8Z)
(C1)δ-even ⊔ ((C1)δ-odd + (l, . . . , l)) (ln ∈ 8Z+ 4)

(6.32)

C−
3 =

{
(C3)δ-odd ⊔ ((C1)δ-even + (l, . . . , l)) (ln ∈ 8Z)
(C3)δ-even ⊔ ((C3)δ-odd + (l, . . . , l)) (ln ∈ 8Z+ 4)

(6.33)

Therefore, the weight enumerator polynomial W̃ defined in (4.7) can be written as

W̃C+({xa}) =
1

2

(
W̃C({xa})± W̃C({iaxa})± W̃C({xa+l}) + W̃C({ia+lxa+l})

)
, (6.34)

W̃C−({xa}) =
1

2

(
W̃C({xa})∓ W̃C({iaxa})∓ W̃C({xa+l})− W̃C({ia+lxa+l})

)
, (6.35)

where double signs correspond to the cases t ∈ 8Z (above) and t ∈ 8Z+4 (below) respectively.

The R-R partition function Z(T /H)± [1, 1] is also given by substituting the theta functions as

(4.10d).

6.2 k : odd

Let C ⊂ Znk be a self-dual code with odd k.

As already mentioned, from (3.32), the orbifold theories by δ and δ + 2λe, λe ∈ Λδ-even
are the same. Thus, for any δ ∈ Λ(C) ⊂ 1√

k
Zn which satisfies the anomaly condition δ2 ∈ 4Z,

it is equivalent to consider kδ ∈
√
kZn. Moreover, for u =

√
kδ ∈ Zn, vectors{√

k (0i−1, 1, 0n−i) if ui ∈ 2Z
√
k (0i−1, 2, 0n−i) if ui ∈ 2Z+ 1

(6.36)

for i ∈ {1, . . . , n} are in Λδ-even and then we can always get a vector consisting of 0 and ±
√
k

by adding and subtracting even multiples of these vectors. Therefore, we can consider only

δ ∈ {0,±
√
k}n without loss of generality.

On the other hand, any χ ∈ {±
√
k}n is a characteristic vector of any Λ(C).

For simplicity, we assume δ ∈ {0,+
√
k}n where the number of

√
k is t ∈ 4Z (to satisfy

δ2 ∈ 4Z) and choose χ =
√
k(1, . . . , 1). Let us define

wt(1)a (c) = |{i ∈ {1, . . . , n} | ci = a and δi =
√
k}| ,

wt(0)a (c) = |{i ∈ {1, . . . , n} | ci = a and δi = 0}| ,
(6.37)
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for a ∈ Zk, which satisfy wta(c) = wt
(1)
a (c) + wt

(0)
a (c), and

WC({xa}, {ya}) =
∑
c∈C

∏
a∈Zk

xwt
(1)
a (c)

a ywt
(0)
a (c)

a . (6.38)

From (3.32), the NS-NS partition function of the orbifold theory is

Z(T /H)± [0, 0]

=
1

η(τ)n
1

2

(
WC({f0,0a,k}, {f

0,0
a,k}) +WC({f1,0a,k}, {f

0,0
a,k}) +WC({f0,1a,k}, {f

0,0
a,k})±WC({f1,1a,k}, {f

0,0
a,k})

)
.

(6.39)

From (3.40), the R-R partition function for Λorb+
δ is

Z(T /H)+ [1, 1]

=
1

η(τ)n

∑
λ∈Λ

(
1± (−1)λ·δ

2
(−1)(λ+

χ
2
)·χq

1
2
(λ+χ

2
)2 ± 1± (−1)λ·δ

2
(−1)(λ+

χ+δ
2

)·χq
1
2
(λ+χ+δ

2
)2
)

=
1

η(τ)n
1

2

(
WC({f1,1a,k}, {f

1,1
a,k})±WC({f0,1a,k}, {f

1,1
a,k})±WC({f1,0a,k}, {f

1,1
a,k}) +WC({f0,0a,k}, {f

1,1
a,k})

)
(6.40)

where double signs are all + when t ∈ 8Z and − when t ∈ 8Z+ 4. Technically, to define the

fermion parity, we chose χ when t ∈ 8Z and χ + 2λo where λo ∈ Λδ-odd s.t. λ2o ∈ 2Z when

t ∈ 8Z+ 4.

Similarly, from (3.42), we obtain the R-R partition function for Λorb−
δ

Z(T /H)− [1, 1]

=
1

η(τ)n
1

2

(
WC({f1,1a,k}, {f

1,1
a,k})∓WC({f0,1a,k}, {f

1,1
a,k})∓WC({f1,0a,k}, {f

1,1
a,k})−WC({f0,0a,k}, {f

1,1
a,k})

)
(6.41)

where double signs are all − when t ∈ 8Z and + when t ∈ 8Z+ 4.

Interpretation by codes Let C ⊂ Znk be a Type I code with even k or a self-dual code

with odd k. We define a code over Z4k with the same length n by

Ĉ = {ĉ ∈ Zn4k | ĉ ≡ 2c mod 2k , c ∈ C} , (6.42)

which is Type I and satisfies Λ(C) = Λ(Ĉ). After orbifolding by δ = 1√
k
(c+ km), c ∈ C, m ∈

Zn, which is not a characteristic vector and satisfies δ
2 /∈ Λ(C), δ2 ∈ 4Z, the theory can be

expressed as

Λ(C)orb+δ = Λ(Ĉ+) , Ĉ+ = Ĉδ-even ⊔
(
Ĉδ-even + c+ km̃

)
Λ(C)orb−δ = Λ(Ĉ−) , Ĉ− = Ĉδ-even ⊔

(
Ĉδ-odd + c+ km̃

) (6.43)

where m̃ ∈ {0, 1, 2, 3}n s.t. m̃ ≡ m mod 4. We can confirm the self-duality of Ĉ± explicitly.

Note that (c+ km̃)2 ∈ 4kZ is guaranteed from δ2 ∈ 4Z.
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7 Applications

This section is devoted to the applications of our code construction of chiral fermionic CFTs.

We first demonstrate the shift orbifolds of the lattice CFT based on Z8 using various types of

code including both binary and nonbinary ones. Next, we construct the reflection and shift

orbifold theories with central charge 16 from binary codes, which reproduces the classification

of lattices and CFTs. Finally, we give the method searching for supersymmetric CFTs and

provide several fermionic CFTs with c ≥ 24 of our interest.

7.1 Examples of shift orbifold with Z8

k = 2. There is only one odd self-dual lattice in dimension n = 8 : Z8. A singly-even

self-dual code C over Z2 is also unique, whose generator matrix is
1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

 . (7.1)

From the odd self-duality, the lattices Λ(C) and Λ(C)orb±δ must be Z8 up to rotations for

any δ ∈ Λ(C) satisfying the gauging condition. In particular, the case δ = 1√
2
(1, . . . , 1) is

illustrated in Figure 4. The weight enumerators of C are

WC(x0, x1) = (x20 + x21)
4 , W̃C(x0, x1) = 0 , (7.2)

and from (4.10) the NS-NS and R-R partition functions of the CFT T constructed from Λ(C)

are

ZT [0, 0] =
1

η(τ)8
WC(θ3(2τ), θ2(2τ)) =

θ3(τ)
8

η(τ)8
, ZT [1, 1] =

1

η(τ)8
W̃C(θ3(2τ), θ2(2τ)) = 0 .

(7.3)

From (6.18), (6.19), and the identity θ3(τ)
4 = θ2(τ)

4 + θ4(τ)
4, those of the shift orbifold

theory (T /H)± are

Z(T /H)± [0, 0] =
θ83 + (θ3θ4)

4 + (θ2θ3)
4

2η(τ)8
=
θ3(τ)

8

η(τ)8
, Z(T /H)± [1, 1] = 0 , (7.4)

which are indeed the same as the original theory T .

k = 3. A similar argument can be made for codes over other Zk. For k = 3, a self-dual code

C ′ over Z3 is also unique, whose generator matrix is
1 0 0 0 1 1 0 0

0 1 0 0 1 2 0 0

0 0 1 0 0 0 1 1

0 0 0 1 0 0 1 2

 . (7.5)
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If we choose δ =
√
3(1, 1, 1, 1, 0, 0, 0, 0), the modified weight enumerator of C ′ is

WC′({xa}, {ya}) = (x20y
2
0 + (x1 + x2)y0(x2y1 + x1y2) + x0(y1 + y2)(x1y1 + x2y2))

2 (7.6)

and by substituting fα,βa,3 according to (6.39), (6.40), and (6.41), we obtain the same result as

(7.4).

k = 4. For k = 4, we consider a self-dual code C ′′ over Z4 generated by
1 0 0 0 0 1 1 3

0 1 0 0 1 3 0 3

0 0 1 0 1 0 1 1

0 0 0 1 3 3 1 0

 . (7.7)

The weight enumerator is

WC′′({xa}) = x80 + x41x
4
2 + x71x3 + 6x21x

4
2x

2
3 + 7x51x

3
3 + 3x30x2(x1 + x3)

4

+ 6x20x
2
2(x1 + x3)

4 + 3x0x
3
2(x1 + x3)

4 + x42(x
4
2 + x43)

+ x31(4x
4
2x3 + 7x53) + x1(4x

4
2x

3
3 + x73) + x40(14x

4
2 + (x1 + x3)

4) .

(7.8)

By substituting xa = Θa,2/η, we arrive at (7.3). One can take the shift orbifold by δ =

(1, 1, · · · , 1) since this code satisfies n ∈ 4Z and (1, 1, · · · , 1) /∈ (C ′′ ⊔ S(C ′′)). The shift

orbifold theories (T /H)± are lattice CFTs constructed from new codes (C ′′)±, which are

generated by the following matrices, respectively:

G+ =


0 1 0 0 1 3 0 3

0 0 1 0 1 0 1 1

0 0 0 1 3 3 1 0

3 0 0 3 1 2 0 3

 , G− =


0 1 0 0 1 3 0 3

0 0 1 0 1 0 1 1

0 0 0 1 3 3 1 0

2 3 2 0 1 3 0 1

2 0 2 3 3 1 1 2

 . (7.9)

Note that after shift orbifolding, the Construction A lattices are Z8 again: Λ((C ′′)±) = Z8

since an 8-dimensional odd self-dual lattice is unique.

7.2 Classification at c = 16

There are 6 odd self-dual lattices in dimension n = 16 :

Z16 , E8 × Z8 , D+
12 × Z4 , (E2

7)
+ × Z2 , A+

15 × Z , (D2
8)

+ . (7.10)

Since norm 1 vectors exist only in Z, the lattices can be identified by the number of them

(32, 16, 8, 4, 2 and 0). For simplicity, it is denoted by N1 as N1(E8 × Z8) = 16.

For a lattice constructed from a code C over Z2, norm 1 vectors are generated from only

c ∈ C with wt(c) = 2. For example, if (1, 1, 0, . . . , 0) ∈ C, then 1√
2
(±1,±1, 0, . . . , 0) ∈ Λ(C).
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u1

u2

u3 = · · · = u8

Figure 4: The 3-dimensional slice of R8 with u3 = u4 = · · · = u8, where ui (i = 1, . . . , 8) are

the coordinates. Black circle: Λ(C)δ-even; Red circle: Λ(C)δ-odd; Black cross: Λ(C)δ-even +
δ
2 ;

Red cross: Λ(C)δ-odd +
δ
2 .

Let C(i) ⊂ Z16
2 , i = 1, . . . , 5 be the single-even self-dual codes with length n = 16 (the

index of the codes conforms to the order of [54]). The number of weight 2 codewords in

C(i) is 4, 2, 8, 1 and 0 respectively and N1(Λ(C(i))) is four times that. For the orbifold lattice

Λ(C(i))
orb±
δ by δ = 1√

2
(1, . . . , 1), from the discussion in section 5, the numbers of norm 1

vectors in Λ(C(i))δ-even and Λ(C(i))δ-odd are the same and that in Λ(C(i)) +
δ
2 is 0. Therefore,

N1(Λ(C(i))
orb±
δ ) = 1

2N1(Λ(C(i))).

The relation between codes and lattices are summarized in Figure 5. As for lattices to

CFTs, the straight construction is obvious from their names and Z corresponding to two

Majorana-Weyl fermions 2ψ. The theory (E8)2 × 1ψ is determined by the fact that the

number of ψ is halved after orbifolding, as discussed near (3.71). It is worth noting that this

theory cannot be directly constructed from the lattice.

The NS-NS partition functions can be obtained from (4.10a) using the weight enumerators

of the codes and the relation (6.18) between the original theory and the orbifold theory. For

example,

Z
(E8)2×1ψ

[0, 0] =
θ3(τ)

16

η(τ)16
− 31

θ3(τ)
4

η(τ)4
= q−

2
3 + q−

1
6 + 248q

1
3 + 4124q

5
6 +O(q

4
3 ) , (7.11)

Z
(D8)21

[0, 0] =
(θ3(τ)θ4(τ))

8 + (θ2(τ)θ3(τ))
8

η(τ)16
= q−

2
3 + 240q

1
3 + 4096q

5
6 +O(q

4
3 ) . (7.12)

Note that Z
(D8)21

[0, 0] is fixed solely by (6.18) since the theory (D8)21 returns to itself under

orbifolding. The R-R partition functions are all 0.

– 43 –



Z16 E8 × Z8 D+
12 × Z4 (E2

7)
+ × Z2 A+

15 × Z (D2
8)

+

C(3) C(1) C(2) C(4) C(5)

32ψ (E8)1 × 16ψ (D12)1 × 8ψ (E7)21 × 4ψ (A15)1 × 2ψ (E8)2 × 1ψ (D8)21

Figure 5: All singly-even self-dual codes over Z2, odd self-dual lattices, and chiral fermionic

CFTs at n = 16. The arrows in the first row mean C(i) → Λ(C(i)) and C(i) ⇝ Λ(C(i))
orb±
δ for

δ = 1√
2
(1, . . . , 1), and that in the second row mean →: the straight construction and ⇝: the

reflection orbifold. See [55] and [10] for the names of lattices and CFTs, respectively.

7.3 Search for supersymmetry

In [56, 57], three conditions that strongly suggest the existence of the N = 1 supersymmetry

are proposed. In this section, we discuss whether the orbifold theory satisfies these conditions.

In particular, we consider the shift orbifold with δ = 1√
2
(1, . . . , 1) for lattices constructed

from binary codes and the reflection orbifold for general self-dual lattices. The result from

the shift orbifold is contained within that from the reflection orbifold since T /H ∼= T /G in

Proposition 5.5; however, the considerations in both orbifolds provide different implications

regarding the structure of the theory.

Shift orbifold When k = 2, n ∈ 8Z and δ = 1√
2
(1, . . . , 1), from the fact that wt(s) =

n/2 = 0 (mod 4), S(C)δ-even = S(C) and S(C)δ-odd is empty. Thus, from (3.41) and (3.43),

S(Λorb+
δ ) =


1√
2
S(C) + (Γδ-even ⊔ Γ′

δ-even) (n ∈ 16Z)
1√
2
S(C) + (Γδ-odd ⊔ Γ′

δ-odd) (n ∈ 16Z+ 8)
(7.13)

S(Λorb−
δ ) =


1√
2
S(C) + (Γδ-odd ⊔ Γ′

δ-even) (n ∈ 16Z)
1√
2
S(C) + (Γδ-even ⊔ Γ′

δ-odd) (n ∈ 16Z+ 8)
(7.14)

In the following, in discussions that are valid for either Λorb+
δ or Λorb−

δ , we will simply

write Λorb
δ .

The first condition is that the NS sector contains a spin-32 Virasoro primary operator.

For a CFT constructed from an odd self-dual lattice Λ, this is equivalent to the existence of

λ ∈ Λ s.t. λ2 = 3. When Λ(C) contains such a vector, from Λ(C) ⊂ 1√
2
Zn, it should be

1√
2
(1, 1, 2, 0, . . . , 0) or

1√
2
(1, 1, 1, 1, 1,−1, 0, . . . , 0) (7.15)

up to permutation and signs. From
√
2Zn ⊂ Λ(C), vectors with different signs for arbitrary

elements are also in Λ(C) and among them there is always a vector in Λ(C)δ-even. (We chose
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(7.15) as such an example.) Since Λ(C)δ-even ⊂ Λ(C)δ-orb, we can conclude that if the original

theory contains a spin-32 primary operator, then the orbifold theory also does.

The second condition is that any primary operator in the R sector satisfies h ≥ n
24 where

h is the conformal weight. For the CFT from the lattice Λ, this is equivalent to any ξ ∈ S(Λ)

satisfying ξ2 ≥ n
12 . For S(Λ

orb
δ ), ξ ∈ 1√

2
S(C)+Γ′

δ-even/odd always satisfies it because the norm

is greater than or equal to ( 1
2
√
2
)2 n = n

8 for Γ′
δ-even and ( 1

2
√
2
)2(n − 1) + ( 3

2
√
2
)2 = n

8 + 1 for

Γ′
δ-odd. Since the other sector 1√

2
S(C) + Γδ-even/odd is in the shadow of the original lattice

S(Λ(C)), we can conclude that if the original theory satisfies h ≥ n
24 , then the orbifold theory

also does.

The third condition is that the R-R partition function is constant, which can already be

confirmed from (6.19). More precisely, in the original theory, the contribution from 1√
2
S(C)+

Γδ-even and 1√
2
S(C) + Γδ-odd are equal from (5.10) and thus both are half of ZT [1, 1]. In

addition, the contributions from 1√
2
C1+Γ′

δ-even(odd) and
1√
2
C3+Γ′

δ-even(odd) cancel each other

out from (5.18).

Thus, if the original theory has the N = 1 supersymmetry, then the orbifold theory

also satisfies all “SUSY conditions”, which strongly suggests the existence of the N = 1

supersymmetry. Note that for nonbinary cases, the SUSY conditions are not necessarily

preserved by the shift orbifolding.

Reflection orbifold Let Λ ⊂ Rn be an odd self-dual lattice. First, we assume that the

lattice CFT constructed from Λ satisfies the SUSY conditions and prove its reflection orbifold

theory also does.

For the first condition, the lattice Λ contains a vector λ ∈ Λ s.t. λ2 = 3, thus the

reflection orbifold theory has the state |λ⟩+ |−λ⟩ with the same spin.

For the second condition, the twisted R sector always satisfies the condition since the

conformal weights of the ground states |Ωj⟩ is h = n
16 from the discussion in section 3.3.

The untwisted R sector is contained in the original theory and therefore also satisfies the

condition.

The third condition is obvious from (3.70).

Next, we examine the converse direction: whether the original theory satisfies the SUSY

conditions given that the reflection orbifold theory does.

For the first condition, even if the orbifold theory includes a spin-3/2 operator in the NS

sector, it may come from the twisted sector. Since the weight of the twisted ground states is

h = n
16 , when n ≥ 32, the spin-3/2 operator must be in the untwisted sector. In the cases of

n = 8, 16 and 24, the complete classification of self-dual lattices is known [58], and it can be

directly verified that all such lattices contain vectors of norm 3. Consequently, the original

theory satisfies the condition.
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For the second condition, the R sector of the orbifold theory includes all states of the

form |χ⟩± |−χ⟩ , χ ∈ S(Λ) (+ for (T /G)+ and − for (T /G)−). Therefore, all states in the R

sector of the original theory, spanned by |χ⟩ and its descendants, satisfy the condition.

The third condition is also obvious from (3.70).

Thus, we conclude that the SUSY conditions for the original theory and those for the

reflection orbifold theory are equivalent.

7.4 Chiral fermionic CFTs with c = 24

In this subsection, we construct chiral fermionic CFTs with central charge 24 from singly-even

self-dual codes over Z2 and their orbifolds. As an example, we identify binary codes of length

24 that yield the “Beauty and the Beast” SCFT [13] and the Baby Monster CFT [14] with a

Majorana-Weyl fermion.

7.4.1 “Beauty and the Beast” SCFT

Let C ⊂ Z24
2 be a singly-even self-dual code generated by ([54])

1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1

0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 1

0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0

0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1 0

0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 1

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1



, (7.16)

which is the only code with the minimum weight d(C) = 6 at n = 24 up to permutations.

The lattice Λ(C) can be identified as the sixth lattice in Table 17.1a [22] since the neigh-

bors Λ(C0 ⊔ C1) and Λ(C0 ⊔ C3) are D
6
4 and A24

1 , which can be confirmed from the Coxeter

number (see Table 16.1 [22]) and the fact that there is no odd self-dual lattice s.t. its even

neighbors are A4
5D4 and A24

1 .

When we consider the shift orbifold theory from Λ(C) by δ = 1√
2
(1, . . . , 1), Λorb±

δ is the

odd Leech lattice O24, which is the only lattice with the minimum norm 3 at n = 24. This

can be shown from the fact that d(C) = 6 and vectors of norm 2 such as
√
2(1, 0, . . . , 0) are

in Λδ-odd ̸⊂ Λorb±
δ . Note that this lattice cannot be directly generated by Construction A

from codes over Z2. In addition, the reflection orbifold theory from the odd Leech lattice
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Code Lattice CFT

C

ΛA24
1

O24

T (ΛA24
1
)

B&B

T (O24)

# spin-32 minER ZT [1, 1]

4096 0 96

4096 0 48

4096 0 24

Figure 6: The “Beauty and the Beast” CFT constructed from the code C. O24 is the odd

Leech lattice and ΛA24
1

is the sixth lattice in Table 17.1a [22], which is associated with the

root system A24
1 . Here, “B&B” stands for “Beauty and the Beast” N = 1 supersymmetric

CFT [13]. We also show the number of spin-3/2 operators in the NS sector, the minimum

conformal weight in the R sector, and the R-R partition function for each theory.

is known to have the N = 1 supersymmetry [9] and is called “Beauty and the Beast” [13].

These relations are summarized in Figure 6.

Since the weight enumerators of the code C are

WC(x0, x1) = x240 + 64x180 x61 + 375x160 x81 + 960x140 x101 + 1296x120 x121

+ 960x100 x141 + 375x80 x
16
1 + 64x60 x

18
1 + x241 ,

W̃C(x0, x1) = 6x200 x41 − 24x160 x81 + 36x120 x121 − 24x80 x
16
1 + 6x40 x

20
1 ,

(7.17)

the partition functions of the theory T (ΛA24
1
) are

ZT (Λ
A24
1

)[0, 0] =
1

η(τ)24
WC(θ3(2τ), θ2(2τ)) = q−1 + 72 + 4096q

1
2 + 98580q +O(q

3
2 ) ,

ZT (Λ
A24
1

)[1, 1] =
1

η(τ)24
W̃C(θ3(2τ), θ2(2τ)) = 96 .

(7.18)

From (6.18) and (6.19), the partition functions of T (O24) and “B&B” must be

ZT (O24)[0, 0] = q−1 + 24 + 4096q
1
2 + 98580q +O(q

3
2 ) , ZT (O24)[1, 1] = 48 , (7.19)

and

Z“B&B”[0, 0] = q−1 + 4096q
1
2 + 98580q +O(q

3
2 ) , Z“B&B”[1, 1] = 24 , (7.20)

which are consistent with the known values (see Appendix C in [59] for “B&B”). In Figure 6,

the values corresponding to the SUSY conditions are shown: the number of spin-32 primary

operators in the NS sector, the minimum conformal weight in the R sector, and the partition

function ZT [1, 1]. As discussed in the previous section, since T (ΛA24
1
) satisfies the SUSY

conditions, T (O24) and “B&B” do as well.
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7.4.2 Baby Monster CFT

Let us consider a singly-even self-dual code C generated by ([54])

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1



. (7.21)

Note that for this code C = C0 ⊔ C2, both associated codes C0 ⊔ C1 and C0 ⊔ C3 turn out

to be the extended Golay code, which is the Type II self-dual code with minimum weight 8.

The weight enumerators of this code C are

WC(x0, x1) = x240 + x220 x21 + 77x180 x61 + 407x160 x81 + 946x140 x101 + 1232x120 x121

+ 946x100 x141 + 407x80 x
16
1 + 77x60 x

18
1 + x20 x

22
1 + x241 ,

(7.22)

and W̃C(x0, x1) = 0. The NS-NS partition function of the theory T is

ZT [0, 0] =
1

η(τ)24
WC(θ3(2τ), θ2(2τ))

= q−1 + 4 q−
1
2 + 72 + 5200 q

1
2 + 106772 q +O(q

3
2 ) .

(7.23)

The R-R partition function is vanishing due to W̃C(x0, x1) = 0. The Construction A lattice

Λ(C) can be decomposed into Z2 × Λ22. The lattice theta function of Λ22 is

ΘΛ22(τ) = 1 + 44 q + 4928 q
3
2 + 85404 q2 + 788480 q

5
2 + 4900896 q3 +O(q

13
4 ) , (7.24)

where this lattice can be identified with the last row in Table 16.7 [22]. The shift orbifold

T /H and reflection orbifold T /G has the NS-NS partition function

ZT /G[0, 0] = ZT /H [0, 0] = q−1 + 2 q−
1
2 + 24 + 4648 q

1
2 + 102676 q +O(q

3
2 ) . (7.25)

The odd self-dual lattice after orbifolding is Z × O23 where O23 is the shorter Leech lattice

whose lattice theta function is

ΘO23(τ) = 1 + 4600 q
3
2 + 93150 q2 + 953856 q

5
2 + 6476800 q3 +O(q

13
4 ) . (7.26)
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Code Lattice CFT

C

Λ22 × Z2

O23 × Z

T (Λ22)× 4ψ

Baby×ψ

T (O23)× 2ψ

Figure 7: The Baby Monster CFT constructed from the code C. O23 is the shorter Leech

lattice and Λ22 is the 22-dimensional odd self-dual lattice with 44 norm 2 vectors. Here,

“Baby×ψ” stands for the Baby Monster CFT [14] with a Majorana-Weyl fermion.

After taking both orbifolds, we obtain the NS-NS partition function

ZT /H/G[0, 0] = q−1 + q−
1
2 + 4372 q

1
2 + 100628 q +O(q

3
2 ) . (7.27)

This exactly agrees with the partition function of the Baby × ψ fermionic CFT [59], where

Baby denotes the Baby Monster CFT with c = 47/2 and ψ denotes the Majorana-Weyl

fermion. The Baby Monster CFT was constructed using the Monster CFT in [14]. The

partition function of the Baby Monster CFT is

ZBaby[0, 0] = q−
47
48 + 4371 q

25
48 + 96256 q

49
48 + 1143745 q

73
48 +O(q

97
48 ) . (7.28)

Each coefficient of the above can be decomposed into dimensions of irreducible representations

of the Baby Monster group since the first few of them are 1, 4371, 96255, 1139374, · · · . The

global symmetry of this CFT has been shown to be the direct product of the Baby Monster

group and the cyclic group of order 2 [60].

7.5 Chiral fermionic CFTs with c ≥ 32

We give examples of chiral fermionic CFTs with central charge c ≥ 32 constructed from binary

codes. Our starting point is a list of generator matrices of singly-even self-dual codes [54].

By taking the reflection and shift orbifolds, we construct chiral fermionic CFTs with large

energy gaps and show their torus partition functions.
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7.5.1 c = 32

Let us consider a singly-even self-dual code C generated by ([54])

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0 0 0 1
0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 1 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0 0 1 1
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 1



. (7.29)

The weight enumerators of this code are

WC(x0, x1) = x320 + x300 x21 + 19x260 x61 + 412x240 x81 + 2241x220 x101 + 7040x200 x121

+ 14123x180 x141 + 17862x160 x161 + 14123x140 x
18
1 + 7040x120 x

20
1

+ 2241x100 x221 + 412x80 x
24
1 + 19x60 x

26
1 + x20 x

30
1 + x321 ,

W̃C(x0, x1) = 0 .

(7.30)

This code contains only a codeword with wt(c) = 2 and no codewords with wt(c) = 4. The

NS-NS partition function of the theory T is

ZT [0, 0] =
1

η(τ)32
WC(θ3(2τ), θ2(2τ))

= q−
4
3 + 4 q−

5
6 + 96 q−

1
3 + 1584 q

1
6 + 110064 q

2
3 +O(q

7
6 ) ,

(7.31)

and the R-R partition function is vanishing. After an orbifold by the reflection symmetry G

or the shift symmetry H, the theory T /G ∼= T /H has the partition function

ZT /G[0, 0] = q−
4
3 + 2 q−

5
6 + 32 q−

1
3 + 792 q

1
6 + 88048 q

2
3 +O(q

7
6 ) . (7.32)

Further, we can take the orbifold and obtain the theory T /H/G whose partition function is

ZT /H/G[0, 0] = q−
4
3 + q−

5
6 + 396 q

1
6 + 77040 q

2
3 +O(q

7
6 ) . (7.33)

Since this theory contains an excitation of weight 1/2, we can decompose this theory into a

Majorana-Weyl fermion and the rest part TR with central charge c = 63/2 [30].

Dividing (7.33) by the contribution from a Majorana-Weyl fermion, the latter part has

the NS-NS partition function

ZTR [0, 0] = q−
21
16 + 395 q

3
16 + 76644 q

11
16 + 2099673 q

19
16 +O(q

27
16 ) . (7.34)
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This shows that any non-trivial operator in this theory has the conformal weight h ≥ 3/2.

Due to the absence of spin one operators, the theory cannot have continuous symmetry.

7.5.2 c = 40

Let us consider a singly-even self-dual code of length 40 generated by

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 0 0 1 1 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1 1



, (7.35)

which is the top matrix of F2, n = 40, d(C) = 8 without shadows with wt(s) = 4 in [54]. The

weight enumerators of this code are

WC(x0, x1) = x400 + 125x320 x81 + 1664x300 x101 + 10720x280 x121 + 44160x260 x141

+ 119810x240 x161 + 216320x220 x181 + 262976x200 x201 + 216320x180 x221

+ 119810x160 x241 + 44160x140 x261 + 10720x120 x281 + 1664x100 x301 + 125x80 x
32
1 + x401 ,

and W̃C(x0, x1) = 0. The NS-NS partition function of the theory T is

ZT [0, 0] = q−
5
3 + 120 q−

2
3 + 39180 q

1
3 + 1703936 q

5
6 +O(q

4
3 ) , (7.36)

and the R-R partition function is zero. After orbifolding, the theory T /G ∼= T /H has the

NS-NS partition function

ZT /G[0, 0] = q−
5
3 + 40 q−

2
3 + 19980 q

1
3 + 1376256 q

5
6 +O(q

4
3 ) . (7.37)

Finally, the theory T /H/G has the NS-NS partition function

ZT /H/G[0, 0] = q−
5
3 + 10380 q

1
3 + 1212416 q

5
6 +O(q

4
3 ) . (7.38)

The orbifold reduces the number of excitations with relatively small conformal weights. While

the original theory T and the orbifold T /G ∼= T /H have operators with h = 1, the theory

T /H/G does not have such operators, and the spectral gap becomes ∆ = 2.

– 51 –



8 Discussion

We have considered chiral fermionic CFTs based on lattices and investigate their orbifolds by

two Z2 symmetries: the reflection symmetry G and the shift symmetry H. We have shown the

equivalence between the reflection and shift orbifolds using a triality structure, when a lattice

is constructed from a binary error-correcting code. We have also systematically computed the

partition functions of the orbifold theories for binary and nonbinary codes. Finally, we have

provided applications to the code construction of supersymmetric CFTs and chiral fermionic

CFTs with no continuous symmetries.

As encountered in c = 16 chiral fermionic CFTs in Fig. 5, there is a coincidence between

the original theory and their orbifolds, i.e., the self-duality under Z2-gauging. It is known that

a theory that is self-dual under gauging admits a non-invertible duality defect [61]. The duality

defects in bosonic lattice CFTs based on E8 lattice and Dn lattice have been constructed

in [62, 63]. See also [64] for fermionic theories. It would be interesting to investigate the

duality defects in the chiral fermionic CFTs constructed from binary codes.

In section 5, we established the triality in chiral fermionic CFTs from binary codes

by explicitly giving the triality operator. The triality also appears in the case of bosonic

theories [6]. When constructing the Monster CFT from the extended Golay code through the

Leech lattice, the triality together with the automorphism of the Leech lattice (an extension

of Conway’s group) generates the whole global symmetry of the theory T /H/G, the Monster

group. A possible interesting direction is to extend this story to our construction. From

the automorphism of lattices through codes, we may give an alternative proof of the discrete

global symmetry of the “Beauty and the Beast” SCFT and the Baby Monster CFT, and

further identify the global symmetry of the orbifold theories with large central charges such

as we have constructed in section 7.5.

As discussed in section 7.3, we proposed the conditions that a CFT constructed from a

code must satisfy when it has N = 1 superconformal symmetry [8]. In [65], we examined the

modular transformation and the spectral flaw of the elliptic genus, i.e., the R-R partition

function graded by the U(1) current, of a CFT with N = 2 superconformal symmetry,

and organized the conditions under which the CFT constructed from a code satisfies these

properties. Although these conditions strongly suggest the existence of supersymmetry, they

are merely necessary conditions and do not guarantee the existence of the supercurrent with

appropriate OPEs. Deriving sufficient conditions for supersymmetry in CFTs constructed

from lattices and the orbifold theories discussed in this paper remains a goal for future work.
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