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We discuss a class of selection rules which i) do not come from group actions on fields, ii) are
exact at tree level in perturbation theory, iii) are increasingly violated as the loop order is raised,
and iv) eventually reduce to selection rules associated with an ordinary group symmetry. We start
from basic field-theoretical examples in which fields are labeled by conjugacy classes rather than
representations of a group, and discuss generalizations using fusion algebras or hypergroups. We
also discuss how such selection rules arise naturally in string theory, such as for non-Abelian
orbifolds or other cases with non-invertible worldsheet symmetries.
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1 Introduction and Summary
Selection rules are the most elementary manifestation of a group-like symmetry in any quantum
system, including in quantum field theory. Indeed, there are results in algebraic quantum field
theory which effectively say that any conservation law which holds non-perturbatively in four
or more spacetime dimensions comes from group actions on fields [DR90]. There are, how-
ever, many known “selection rules” which are not directly associated with group-like symmetries.
These are obeyed at low orders in perturbation theory, but are violated at higher loop order.1

In this paper, we introduce a general class of selection rules in quantum field theories which
do not come from group actions on fields. These selection rules arose from the authors’ study of

1Readers might recall the restrictions on allowed helicities in gluon scattering [PT86, Wit03] or the two-loop
vanishing of the electron dipole moment in the Standard Model [Sha78, Don78, CK96].
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the spacetime manifestation of non-invertible symmetries on the worldsheet in perturbative string
theory. Without further ado, let us describe our selection rules.

To discuss ordinary selection rules for a symmetry described by a group G, each field ϕi is
labelled by a particular representation Ri of G, such that (ϕi)

∗ belongs to Ri. Then a process
involving incoming fields ϕ1,2,...,n and outgoing fields ϕn+1,n+2,...,m is non-vanishing only when

id ⊂ R1R2 · · ·RnRn+1Rn+2 · · ·Rm (1.1)

where id is the identity representation.
The simplest examples of our more general selection rules still involve a group G, but now

each field ϕi is labeled by a conjugacy class [gi] of G, such that (ϕi)
∗ belongs to [gi] = [g−1

i ]. We
will then be interested in theories for which every interaction in the Lagrangian ϕ1 . . . ϕn ⊂ L
satifies g̃1 . . . g̃n = e for some g̃i ∈ [gi], where e ∈ G is the identity. As we will see below, this
constraint on the Lagrangian extends to a constraint on tree-level processes. In particular, a tree-
level process involving incoming fields ϕ1,2,...,n and outgoing fields ϕn+1,n+2,...,m is non-vanishing
only when we have

g̃−1
1 g̃−1

2 · · · g̃−1
n g̃n+1g̃n+2 · · · g̃m = e (1.2)

for some suitably chosen g̃i ∈ [gi]. This selection rule holds for arbitrary number of external fields
at tree-level. However, it is violated at loop order (see (2.10)), and at sufficiently high loop order
it reduces to standard selection rules coming from a symmetry group Ab[G] := G/[G,G], the
abelianization of G.

More generally, our selection rules will involve a fusion algebra A with fusion rules ab =∑
cN

c
abc. We label our fields ϕi by elements ai of this algebra, and demand that all terms appearing

in the Lagrangian are consistent with the fusion rules, namely that e ≺ a1 . . . an, meaning that the
coefficient of the identity e in the decomposition of the right-hand side is non-zero. As before, this
constraint extends to a constraint on tree-level processes. Indeed, labelling the incoming fields by
a1, . . . , an and the outgoing fields by an+1, . . . , am, the non-vanishing tree-level processes will be
seen to satisfy

e ≺ a1a2 · · · anan+1an+2 · · · am . (1.3)

This selection rule holds at tree-level for arbitrary number of external fields, but is increasingly
violated at higher loop order (see (2.33)), eventually stabilizing to the selection rules coming from
a certain Abelian group, to be specified below. This class of examples includes as a subset the ones
described in the previous paragraph, where we make use of the subalgebra of the group algebra
generated by conjugacy classes.

Some string theorists will immediately recognize our first example (1.2) as the selection rules
for an orbifold by a non-Abelian group G; in the modern language, the worldsheet theory of a
non-Abelian orbifold by G has a non-invertible symmetry given by Rep(G).2 Our general case
corresponds to the spacetime selection rules coming from a more general non-invertible symmetry
on the worldsheet.

2Moreover, the fact that such selection rules can get modified beyond tree level was already mentioned in a
footnote of one of the original papers about interactions on orbifolds [HV87].
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The rest of this paper is organized as follows. In Section 2, we introduce and discuss the details
of our selection rules, first by studying selection rules dictated by conjugacy classes of groups, and
then by generalizing to the case of more general fusion algebras. In Section 3, we present various
concrete examples of our selection rules in the context of perturbative string theory, including
non-Abelian orbifolds, worldsheet theories having Ising symmetry, strings propagating on S1/Z2,
and worldsheet theories having TY(Z3) symmetry.

We also provide three appendices. In Appendix A we provide a review of the theory of finite
hypergroups, which slightly generalize fusion algebras. This material is not new, but is included
for the reader’s convenience. In Appendix B, we give a detailed discussion of the selection rules
for fields whose fusion rules are dictated by a WZW fusion category. Finally, in Appendix C
we give examples of low-rank fusion algebras whose selection rules are (partially) preserved at
one-loop, and are completely broken only at higher-loop order.

Note added: While this paper was nearing completion, we learned of another work [HMM+24]
that will explore the spacetime interpretation of non-invertible symmetries on the string world-
sheet.

2 Basics

2.1 From conjugacy classes of groups
Assumptions: Let us begin by studying selection rules based on conjugacy classes of groups.
Fix a finite group G, and consider a perturbative quantum field theory where each field ϕi is
labeled by a conjugacy class [gi], a particular element of which is gi ∈ G. We assume that the
conjugate field (ϕi)

∗ is labeled by the class [g−1
i ]. We use this operation to regard every incoming

line labeled by [gi] as an outgoing line labeled by [g−1
i ].

Our fundamental assumption is that every bare interaction term in the Lagrangian,

O = ϕ1ϕ2 · · ·ϕn , (2.1)

satisfies the condition that there exists g̃i ∈ [gi] such that

g̃1 · · · g̃n = e . (2.2)

Here and below, we omit Lorentz indices or spacetime derivatives, which play no role in this
paper. We also note that the above condition does not depend on the ordering of fields ϕ1, . . . , ϕn

within O, since
g̃ig̃i+1 = g̃i+1(g̃

−1
i+1g̃ig̃i+1) = g̃i+1ĝi (2.3)

where once again ĝi ∈ [gi].

When G is Abelian: Note that when G is Abelian, each conjugacy class contains a single el-
ement, and therefore labeling fields by conjugacy classes is the same as labeling fields by group
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[g1]

[g2]
...

[ga−1]

[h2]

[h3]
...

[hb]

[ga] = [h−1
1 ]

Figure 1: The (k + 1)-vertex (a+ b− 2)-point diagram appearing in our inductive argument.

elements. Therefore, in that case, we simply have a theory whose symmetry is G (or if one is
more mathematically inclined, the Pontryagin dual Ĝ of G). Such selection rules are well-known
to be preserved at all-loop order. This means that our main interest lies in the case when G is
non-Abelian.

Tree-level properties: We begin by showing that any nonzero tree diagram generated from
these bare interaction terms must satisfy the same condition (2.2), where each g̃i is associated to
an external leg of the diagram. We prove this by means of mathematical induction on the number
of vertices.

When there is only one vertex, there is nothing to prove. So let us assume that we have shown
the property to k vertices. Now, any tree diagram with k + 1 vertices can be cut into two tree
diagrams with less than k + 1 vertices. Let us say that one part of the diagram has external lines
labeled by [g1], . . . , [ga] and the second part of the diagram has those labeled by [h1], . . . , [hb]. By
the inductive hypothesis, we have

g̃1g̃2 · · · g̃a = e , h̃1 · · · h̃b = e , (2.4)

where g̃i ∈ [gi] and h̃i ∈ [hi]. Let us say that the two external lines labeled by [ga] and [h1] arose
from the cut, so that g−1

a ∈ [h1], c.f. Figure 1. Then g̃−1
a ∈ [h̃1], and so there is an x ∈ G such that

g̃−1
a = xh̃1x

−1. Now define ĥi := xh̃ix
−1 ∼ hi ∈ [hi], which satisfy

ĥ1 · · · ĥb = e . (2.5)

We then have
g̃1 · · · g̃a−1ĥ2 · · · ĥb = (g̃1 · · · g̃a−1g̃a)(ĥ1ĥ2 · · · ĥb) = e , (2.6)

which is what we wanted to prove.

Loop order: When we have loops in the diagram, the selection rule no longer holds in the form
given above. Consider an L-loop diagram with a external lines labeled by [g1], . . . , [ga]. We can
cut it in L places to obtain a connected tree diagram with 2L additional external lines, labeled by
[h1], [h−1

1 ], . . . , [hL], [h−1
L ]; for a concrete example, see Figure 2. We have already shown that

there exist g̃i ∈ [gi], h̃j ∈ [hj], and k̃−1
j ∈ [h−1

j ] such that

(g̃1 · · · g̃a)(h̃1k̃
−1
1 ) · · · (h̃Lk̃

−1
L ) = e , (2.7)
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[g1]

[gn]

[ga]

[gn+1]

[g1]

[h1]
[h2]

...
[gn]

[ga]...
[gn+1]

[h−1
1 ]

[h−1
2 ]

Figure 2: An example of a two loop diagram with external legs labelled by [g1], . . . , [ga]

(left). Upon cutting the diagram in two places (red), we get a connected tree diagram with
four additional external legs labelled by [hi] and [h−1

i ] for i = 1, 2 (right).

or equivalently,
g̃1 · · · g̃a = (k̃Lh̃

−1
L ) · · · (k̃1h̃−1

1 ) . (2.8)

We now note that there exists an xj ∈ G such that k̃j = xjh̃jx
−1
j . Then k̃jh̃

−1
j = xjh̃jx

−1
j h̃−1

j =

[xj, h̃j] is the commutator of two elements xj and h̃j . Denoting by Com(G) the set of all com-
mutators of G and by Com(G)L the set of products of L commutators, we thus find that for an
L-loop diagram,

g̃1 · · · g̃a ∈ Com(G)L . (2.9)

In other words, we have the following result,

The L-loop scattering amplitude with n legs labeled by [g1], . . . , [gn] is non-zero only when

g̃1 · · · g̃n ∈ Com(G)L for some g̃i ∈ [gi] . (2.10)

This is clearly less restrictive than the tree-level selection rule, which required that g̃1 · · · g̃n = e

for some g̃i ∈ [gi].
For large enough L, Com(G)L stabilizes and becomes the commutator subgroup [G,G] ⊂ G.

As a result, for sufficiently large L, the condition above reduces to

g̃1 · · · g̃a ∈ [G,G] , (2.11)

or equivalently,
g1 · · · ga = e ∈ Ab[G] := G/[G,G] , (2.12)

where Ab[G] = G/[G,G] is the abelianization of G and g is the projection of g ∈ G to Ab[G] =

G/[G,G]. This means that, upon accounting for arbitrarily high loop orders, the selection rules
obtained are equivalent to those coming from the abelian group Ab[G] = G/[G,G].3

3A very similar result in a slightly different context can be found in [McN21].
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Commutator length, i.e. at which loop order do our selection rules reduce to ordinary ones:
A natural question which arises is the following: given a non-Abelian finite group G, at which
loop order L do our selection rules based on conjugacy classes of G reduce to ordinary selection
rules based on the Abelian group Ab[G] = G/[G,G]? Mathematically, this is equivalent to asking
for the smallest L for which Com(G)L = [G,G]. Such an L is known as the commutator length
of the finite group G.4

Let us denote the commutator length of a group by cl(G). Note that cl(G) = 1 is equivalent
to [G,G] = Com(G), i.e. the set of commutators forms a subgroup. By scanning over non-
Abelian finite groups with increasingly large |G|, it has been found that the smallest groups with
cl(G) = 2 are two non-isomorphic groups with |G| = 96, see [KM07]. That simple non-Abelian
finite groups G always have cl(G) = 1 is the famous conjecture of Ore,5 which was proven
using the classification of finite simple groups [LOST10]. In general, it is known that

∣∣∣[G,G]
∣∣∣ ≥

(cl(G) + 1)!(cl(G) − 1)!, as shown in [Bon08]. Furthermore, for any integer L, it is known that
there is a G for which cl(G) ≥ L.6

2.2 String theory realization: non-Abelian orbifolds
Let us recall that the structure described above, coming from the conjugacy classes of a finite
group G, naturally arises when we consider a non-Abelian orbifold by G in string theory [HV87].
The point is that in perturbative string theory on a non-Abelian orbifold M/G, each twisted sector
is labeled by a conjugacy class [g] for g ∈ G. A tree-level amplitude with n insertions is then
nonzero only when there is a consistent worldsheet configuration on the sphere with insertions of
[g1], . . . , [gn]. This requires us to have elements g̃i ∼ gi such that

g̃1g̃2 · · · g̃n = e , (2.13)

which is exactly the condition encountered above.
At L loop order, the worldsheet is a genus-L surface, and the holonomy on the worldsheet is

required to satisfy
g̃1g̃2 · · · g̃n = [x1, y1][x2, y2] · · · [xL, yL] (2.14)

where xi, yi are the holonomies around the i-th A-cycle and i-th B-cycle, respectively. Again,
this is exactly the structure we found in (2.8). In Section 3 we will illustrate these results more
explicitly by means of some concrete examples of non-Abelian orbifolds.

4Commutator lengths of individual elements of [G,G] can be similarly defined. The asymptotic behavior of the
commutator lengths of elements of infinite discrete groups is an active area of mathematical research, see e.g. [Cal08].
The authors thank the tweet https://twitter.com/skein_relation/status/1717954828301996053 for this information.

5Apparently the conjecture does not really go back to Ore, see https://mathoverflow.net/questions/77398/.
6This math stackexchange answer https://math.stackexchange.com/a/7885 by Derek Holt constructs an explicit

example as follows. Fix a prime p, and consider a group G generated by ai for 1 ≤ i ≤ n and bij for 1 ≤ i < j ≤ n,
all of order p, with the relation [ai, aj ] = bij where bij are all central. The group G satisfies |G| = pn(n+1)/2 and∣∣∣[G,G]

∣∣∣ = pn(n−1)/2. Now note that [ax, by] = [a, b] for x, y in the center of G. Therefore, Com(G) contains at

most (pn)2 elements, and so cl(G) ≥ (n− 1)/4.
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2.3 Using fusion algebras
We now generalize the construction in the last subsection to more general fusion algebras.7

2.3.1 The setting

Assumptions: Consider an algebra A with a finite set A = {e, x, y, . . .} of basis elements 8,
with an associative multiplication law

xy =
∑
z∈A

N z
xyz (2.15)

with e as the unit. Each element a ∈ A can be expanded in terms of basis elements x ∈ A as

a =
∑
x∈A

axx , (2.16)

and we use the notation x ≺ a to indicate that the expansion coefficient ax is positive. More
generally, we define 0 ≺ a to mean that 0 ≤ ax for all x, and b ≺ a to mean 0 ≺ a− b.

We will assume the existence of an involution A → A, which we denote by a 7→ a, with the
condition that, for simple elements x, y, we have e ≺ xy (i.e. N e

xy ̸= 0) if and only if y = x. To be
slightly more general, we may demand that only x, but not b, is a simple element, in which case
we have the property that e ≺ xb if and only if x ≺ b.

In explicit examples, the structure constants N z
xy are often non-negative integers, motivating

one to call such a structure a fusion algebra. For the developments in this paper though, we will
not actually need the condition N z

xy ∈ Z≥0, but rather only that N z
xy ≥ 0. In these cases the

structure in question is more often called a hypergroup, as originally introduced in [Dun73].9 For
the reader’s convenience, we have included a short Appendix A providing an overview of the basic
theory of finite hypergroups. A simple consequence of N z

xy ≥ 0 is that if a ≺ b and c ≺ d, we
have ac ≺ bd.

We now consider a perturbative quantum field theory whose fields ϕi are labeled by basis
elements xi ∈ A. We assume that the conjugate fields (ϕi)

∗ are labeled by xi. We further assume
that the bare interaction terms

O = ϕ1ϕ2 · · ·ϕn (2.17)

satisfy the condition
e ≺ x1x2 · · ·xn . (2.18)

7Fusion algebras are sufficient to describe the scattering of point-like operators. If one wants to generalize to
scattering between objects of different dimensionalities, then one presumably needs to use a higher fusion algebra
instead.

8We remark that, as long as there are a finite number of fields in the Lagrangian, even if A (e.g. Rep(G)) were
infinite, we would still only use a finite number of elements as labels.

9The term hypergroup can refer to a weaker structure depending on the literature, where one considers the mul-
tiplication as a map m : A × A → {S | S ⊂ A} satisfying a certain associativity condition. A hypergroup in
this weaker sense can be obtained from the one above by taking m(x, y) = {z | Nz

xy ̸= 0}. This weaker notion
of hypergroups does not play any role in this paper, but keeping these two definitions in mind could help the reader
looking through the literature.
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Here, the ordering of the fields within an interaction in (2.17) is not usually meaningful. As such,
we assume that the fusion algebra A controlling the condition (2.18) is commutative in the rest of
the paper.10

Conjugacy classes as fusion algebras: Before proceeding, let us pause to note that the con-
struction here generalizes the one discussed above based on the conjugacy classes of a finite
group G. To see this, let A = Conj(G) be the set of conjugacy classes of G. We now introduce a
product structure on A by embedding it into the group algebra C[G] via

Conj(G) ∋ [g] 7→
∑
g′∼g

g′ ∈ C[G] . (2.19)

Its images are well-known to form a basis of the center and therefore a subalgebra of C[G]. The
conjugation is given by [g] := [g−1], with

N
[e]
[g],[h] =

{
#[g] if [h] = [g−1],

0 otherwise.
(2.20)

The properties we derive below for general fusion algebras reproduce the results discussed in
Sec. 2.1 for the conjugacy classes of G, as we will explicitly demonstrate in Sec. 2.3.3 below.

An artificial field theory for an arbitrary finite hypergroup: Let us point out that the con-
siderations here allow us to write down a scalar field theory (albeit a rather artificial one) for an
arbitrary finite hypergroup A = {e, x, y, . . .} with n elements. To do so, we simply take n scalar
fields ϕ1 ,. . . , ϕn as above, and consider a Lagrangian with a cubic interaction term czxyϕxϕyϕz

with nonzero czxy for all x, y, z such that N z
xy ̸= 0. Note that this construction does not require the

integrality of N z
xy, and therefore applies to hypergroups which are not fusion algebras.

2.3.2 Selection rules

Tree-level properties: Repeating our previous analysis for conjugacy classes at the level of
fusion algebras, it is easy to prove that a tree diagram with fields labeled by elements x1, . . . , xn

is a valid scattering process if and only if it satisfies the same condition as for a single vertex.
Indeed, we may again proceed by induction. As before, the case of a tree diagram with one vertex
is trivial. We next assume that we have proven the statement for k vertices. This means that
the external fields ϕi with i = 1, . . . , n + 1 coming into the k vertices are labelled by elements
x1, x2, . . . , xn+1 of the fusion algebra satisfying

e ≺ x1x2 . . . xn+1 . (2.21)

10 In a large-N field theory, the fields within an interaction such as (2.17) are naturally cyclically ordered, since
they are effectively inside a trace. In such cases it would be meaningful to consider selection rules dictated by fusion
algebras which are not commutative.
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We now consider a diagram with k + 1 vertices. We may split such a diagram into a subdiagram
with k vertices and an additional subdiagram with one vertex, connected by the leg xn+1, say. We
call the external legs of the former xi as before, and the external legs of the latter y1, y2, . . . , ym.
Consistency of the final vertex tells us that

e ≺ y1y2 . . . ymxn+1 . (2.22)

We now use the property that xn+1 is a single element, so that the product of the remaining
external legs y1, . . . ym must contain the conjugate of the internal leg xn+1, that is

xn+1 ≺ y1y2 . . . ym . (2.23)

On the other hand, from (2.21) we also have

xn+1 ≺ x1x2 . . . xn . (2.24)

Combining these two equations, we see that

e ≺ xn+1xn+1 ≺ x1x2 . . . xny1y2 . . . ym , (2.25)

and hence the property is proven for k + 1 vertices. By induction, our statement holds for tree
diagrams with any number of vertices.

Loop order: We now consider the fate of our selection rules at non-zero loop order. For a
diagram with L loops and with external fields labeled by

x1, x2, . . . , xn , (2.26)

the first step is again to make L cuts such that we reduce to a connected tree diagram with 2L new
external fields:

y1, y1, y2, y2, . . . , yL, yL . (2.27)

Then from the consistency of the tree diagram we find that

e ≺ x1x2 . . . xn(y1y1)(y2y2) . . . (yLyL) . (2.28)

This means in particular that we can pick a zi ≺ yiyi such that

e ≺ x1x2 . . . xnz1 · · · zL , (2.29)

which further implies that we have an element w ≺ zLzL−1 · · · z1 such that

w ≺ x1x2 . . . xn . (2.30)

We can then summarize the condition for a non-zero scattering amplitude at L loops in the
following manner. Let

Com(A) := {z | z ≺ yy for some y ∈ A} (2.31)

and
Com(A)L := {w | w ≺ z1 · · · zL for some z1, . . . , zL ∈ Com(A)} . (2.32)

We then have the following result,
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x2

x1

xn
xn−1

xn−2

xn

x1

w
y

Figure 3: At tree-level (left), scattering amongst x1, . . . , xn is allowed only when the product
x1 . . . xn contains the identity e, as would be the case for a single vertex. At one-loop (right)
on the other hand, the process is allowed as long as the product x1 . . . xn contains an element
w that is contained in yȳ for some y. As far as our selection rules are concerned, we may
always use the associativity of the hypergroup to draw each loop with a single segment and a
single outgoing leg, as done above.

The L-loop scattering amplitude with n legs labeled by x1, . . . , xn is non-zero only when

w ≺ x1 . . . xn for some w ∈ Com(A)L . (2.33)

This result can be understood intuitively as follows. First, note that insofar as the selection
rules are concerned, we may use the associativity of the hypergroup to rearrange loop diagrams
such that each loop is composed of a single segment, and has a single outgoing leg. The result of
such a rearrangement is shown for one-loop in the right panel of Figure 3. In this presentation, it
is clear that, whereas at tree-level the process is only allowed when the product x1 . . . xn contains
the identity e, at one-loop level the process is allowed as long as the product x1 . . . xn contains an
element w that is contained in yȳ for some y. Similar statements apply for higher loop orders.

The selection rule at large enough loop order: As Com(A) ⊂ Com(A)2 ⊂ · · · , we see that
the conditions for nonzero scattering amplitudes become increasingly more relaxed at higher loop
orders. Since A is a finite set, this chain eventually stabilizes to

Com(A)∞ := {w | w ≺ z1 · · · zk for some z1, . . . , zk ∈ Com(A) for some k} , (2.34)

and the all-loop order condition for a non-zero scattering amplitude is given by

w ≺ x1x2 · · ·xn for some w ∈ Com(A)∞ . (2.35)

We call the smallest L such that Com(A)L = Com(A)∞ the conjugate pair length cl(A), in
analogy with the commutator length of a group.

As we explain in more detail in Appendix A, the condition (2.35) can be drastically simplified.
Let us say that x ∼ y for x, y ∈ A if and only if there exists w ∈ Com(A)∞ such that x ≺ wy.
Roughly, this means that the particle of type x can be transformed into a particle of type y if we
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allow loop processes at arbitrary loop order. We can show that this relation ∼ is an equivalence
relation. We then define Gr[A] := A/ ∼, and denote its elements by [x] ∈ Gr[A]. It is known that
we can introduce an honest product structure on Gr[A] via

[x][y] = [z] if and only if N z
xy ̸= 0 , (2.36)

which can be shown to make Gr[A] into a group. We will call Gr[A] the “groupification” of the
hypergroup (or fusion algebra) A. As reviewed in Appendix A, Gr[A] is the universal maximal
group for which the relation (2.36) holds.

In our case, as we start from a commutative A, the resulting group Gr[A] is an Abelian group.
Then the condition (2.35) is equivalent to

[e] = [x1][x2] · · · [xn] , (2.37)

i.e. the selection rules at arbitrary loop order reduce to ones coming from the finite Abelian group
Gr[A].

We emphasize that the selection rules obtained here hold for arbitrary theories satisfying the
constraints in (2.17) and (2.18). We do not expect any accidental restoration of the tree-level se-
lection rules. It could be the case that fields carrying hypergroup labels needed to violate selection
rules at loop level are absent in the theory, but we do not consider such “unfaithful” labelings here.
Let us also mention that it for any particular theory of the type studied here, it may be possible
to derive additional, more stringent selection rules, that are independent of the tree-level selection
rules, though we do not describe this here.

2.3.3 Comments

Conjugacy classes as fusion algebras: Let us first check that our general formulation using
fusion algebras reproduce the results derived in Sec. 2.1. For this, we use A = Conj(G) introduced
in (2.19) and (2.20) as the fusion algebra. At tree level, using the fusion algebra, the allowed
processes are those such that

[e] ≺ [g1][g2] · · · [gn] . (2.38)

Using (2.19) to embed the fusion algebra inside the group algebra R[G], the right-hand side is an
element

(
∑
g′1∼g1

g′1)(
∑
g′2∼g2

g′2) · · · (
∑
g′n∼gn

g′n) . (2.39)

Then the condition (2.38) is seen to be equivalent to the existence of group elements g′1 ∼ g1,
g′2 ∼ g2, . . . , g′n ∼ gn such that

e = g′1g
′
2 · · · g′n , (2.40)

which is exactly the condition (2.13) that we found in Sec. 2.1.
To see the agreement of the selection rules at the loop order, it suffices to show that Com(Conj(G))

contains exactly the conjugacy classes of commutators. This follows from the fact that [g] ∈
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Com(Conj(G)) means that there is an [h] such that [g] ≺ [h][h−1]. Expanding the definitions,
again using (2.19), we find that this means that

g = (k−1hk)(ℓh−1ℓ−1) (2.41)

for some k and ℓ. This in turn means that

g = h′ℓk(h′)−1k−1ℓ−1 = [h′, ℓk] , (2.42)

where h′ := k−1hk. This process can also be reversed to show that the conjugacy class of any
[g, h] is in Com(Conj(G)).

Mathematically, what we demonstrated here is that the Abelianization of G and the groupifi-
cation of the fusion algebra Conj(G) agree, i.e.

Gr[Conj(G)] = Ab[G] . (2.43)

Example for conjugate pair length: Beyond the conjugacy class example just discussed, one
may ask the following question: for any given fusion algebra, at which loop order does the symme-
try get reduced to that at arbitrary order? Since we are unaware of any math literature discussing
this topic, we give some concrete examples in Appendices B and C. The former appendix dis-
cusses some familiar WZW fusion algebras, while the latter focuses on low-rank fusion algebras
with conjugate pair length greater than one.

Representations as fusion algebras: Before proceeding, let us note that irreducible represen-
tations Ri of a group G also form a fusion algebra Rep(G) under the tensor product:

Ri ⊗Rj =
⊕
k

Nk
ijRk . (2.44)

Our analysis is therefore also applicable to field theories with ordinary G symmetry. But it is
important to note that we use only very crude information coming from the G symmetry in this
formalism—indeed, we use only the decomposition of the tensor product into irreducible sum-
mands, and not the Clebsch-Gordan coefficients, which dictate how the individual basis vectors
within representations combine.

For example, we can apply the analysis of the selection rules at large enough loop order to the
case of A = Rep(G). This results in an all-loop selection rule based on the Abelian group

Gr[A] = A/∼ = Rep(ZG) , (2.45)

where ZG is the center of G. This is not wrong, in that we definitely have the symmetry ZG ⊂ G

at all-loop order. But we also have the even larger G symmetry at all-loop order, meaning that the
selection rules at tree level are actually not reduced, even at all-loop order.
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2.4 String theory realization: worldsheet non-invertible symmetries
The structure identified in the previous section arises naturally in perturbative string theory. Say,
for example, that the internal worldsheet theory has a part described by a rational chiral algebra,
whose irreducible representations we denote by V1, V2, . . . . Here we only need to assume the
existence of the chiral algebra on the left-moving side of the worldsheet, say. It is well-known
that these irreducible representations satisfy a fusion algebra of the form

Vi⊗̂Vj =
⊕
k

Nk
ijVk , (2.46)

where ⊗̂ denotes the fusion product between modules. One-particle states of the theory are then
classified by Vi, and the tree-level amplitudes with n external particles labeled by Vi1 , . . . , Vin are
nonzero only when Vi1⊗̂ · · · ⊗̂Vin contains the identity representation. This is indeed the structure
we have found above.

In the previous paragraph we assumed the existence of a rational chiral algebra on the world-
sheet, but this is not actually necessary. All we need is a non-invertible symmetry in the worldsheet
theory T , described by a fusion category C.11 Then the states of the worldsheet theory T on S1

can be decomposed in terms of the Drinfeld double Z(C) of C, see e.g. [LOST22]. The simple
objects of Z(C) describe not only states in the untwisted sector, but also states in the sector twisted
by various simple objects of C. As perturbative string theory with a fixed worldsheet theory T in
the usual sense only uses the untwisted sector of T , we do not have to use all of the objects of
Z(C); we only need to use the simple objects of Z(C) which appear in the decomposition of the
untwisted sector.

For example, let us say that the worldsheet theory T has a fusion category symmetry C which
is actually a finite group G. For ease of description, let us assume that its worldsheet anomaly is
zero. Then Z(C) is the Drinfeld double of G, and the only part which appears in the decomposi-
tion of the untwisted sector is the subcategory Rep(G), which controls the selection rules of the
scattering amplitudes. This is just an extremely pretentious way of saying that when the world-
sheet theory has a finite group symmetry G, the one-particle states of the spacetime theory carry
an action of G and therefore are decomposed into representations of G.

Now let us instead take T ′ = T/G, the non-Abelian orbifold by G, as the worldsheet theory.
This theory T ′ has Rep(G) as the fusion category describing its non-invertible symmetry [BT17].
The Drinfeld double is Z(Rep(G)) = Z(G), but now the simple objects appearing in the un-
twisted sector of T ′ = T/G are actually the G-twisted sectors of T , and are labeled by Conj(G).
This indeed reproduces the fact we saw in Sec. 2.2 that the scattering amplitudes of a non-Abelian
orbifold theory are controlled by conjugacy classes of G.

3 Case studies
In the previous section we described the general structure of our selection rules in an abstract
manner. In the current section we explore various explicit examples illustrating our results.

11Other results on the topic of worldsheet non-invertible symmetries can be found in [CR23, HMM+24].
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3.1 ADE orbifolds
We begin our study of concrete selection rules by analyzing some familiar non-Abelian orbifolds
in string theory, namely those of the form C2/Γ where Γ is a finite subgroup of SU(2). Such Γ’s
are well-known to have an ADE classification, and are double covers of finite subgroups of SO(3),
known as binary polyhedral groups. For more background information, see e.g. [TY07, Appendix
A]. As the A cases are abelian, we will concentrate on the D and E cases here.

The Dn+2 case: binary dihedral groups In this case the group has 4n elements, and is gener-
ated by a, b, c, satisfying an = b2 = c2 =: z, c = ab = ba−1, z2 = e. This is the double cover
of the dihedral group D2n of 2n elements, obtained by setting z = e. Somewhat confusingly, this
corresponds to Dn+2 in the ADE classification. There are n + 3 conjugacy classes, [e], [z], [a],
. . . , [an−1], [b], and [c]. For the case of n = 2, in which the group becomes the quaternion group
Q8, the product table is given by

e z a b c

z e a b c

I a 2e+ 2z 2c 2b

b b 2c 2e+ 2z 2a

c c 2b 2a 2e+ 2z

 , (3.1)

where by abuse of notation we denote each conjugacy classes by a representative element. The
case of more general n can be worked out analogously.

We denote the image of each generator in the abelianization by the corresponding uppercase
letter. Then the abelianization is given by Z = E, A2 = E, C = AB, and B2 = E or B2 = A

depending on whether n is even or odd. Therefore the result is Z2 × Z2 when n is even and Z4

when n is odd. The commutator length is 1, and therefore starting at one-loop order the preserved
symmetry is either Z2 × Z2 or Z4.

The E6 case: binary tetrahedral group In this case the group has 24 elements, and is generated
by a, b, c = ab, satisfying a3 = b3 = c2 =: z, z2 = e. The elements a, b, c correspond to rotations
around the center of a face, around a vertex, and around the center of an edge, of a tetrahedron.
The seven conjugacy classes are [e], [z], [a], [a2], [b], [b2], and [c]. The product table is as follows:

e z a a2 b b2 c

z e b2 b a2 a c

a b2 a2+3b 4z + 2c 4e+ 2c 3a2+b 3a+ 3b2

a2 b 4z + 2c 3a+b2 a+ 3b2 4e+ 2c 3a2+3b

b a2 4e+ 2c a+ 3b2 3a+b2 4z + 2c 3a2+3b

b2 a 3a2+b 4e+ 2c 4z + 2c a2+3b 3a+ 3b2

c c 3a+ 3b2 3a2+3b 3a2+3b 3a+ 3b2 6e+ 6z + 4c


. (3.2)

The commutator subgroup is of order 8, and is isomorphic to the quaternion group. The
abelianization is Z3, where C = Z = E and B = A−1. The commutator length is 1, and therefore
starting at one-loop order the preserved symmetry is Z3.
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We can explicitly see that the multiplication rule in (3.2) respects the Z3 symmetry which
assigns charge +1 to a, charge −1 to b, and charge 0 to e, z, c. At the same time, we see that this
multiplication table contains more detailed information about the tree-level scattering processes.

The E7 case: binary octahedral group In this case the group has 48 elements, and is generated
by a, b, c = ab, satisfying a4 = b3 = c2 =: z, z2 = e. The elements a, b, c correspond to rotations
around the center of a face, around a vertex, and around the center of an edge, of an octahedron.
The eight conjugacy classes are [e], [z], [a], [a2], [a3], [b], [b2], and [c], where the multiplication
table is omitted as it is not too enlightening. The commutator subgroup is of order 24, and is
isomorphic to the binary tetrahedral group. The abelianization is Z2, where B = Z = E, C = A,
and A2 = E. The commutator length is 1, and therefore starting at one-loop order the preserved
symmetry is Z2.

The E8 case: binary icosahedral group In this case the group has 120 elements, and is gen-
erated by a, b, c = ab, and z = c2 satisfying a5 = b3 = c2 =: z, z2 = e. The elements a, b,
c correspond to rotations around the center of a face, around a vertex, and around the center of
an edge, of an icosahedron. The nine conjugacy classes are [e], [z], [a], [a2], [a3], [b], [b2], and
[c]. The commutator subgroup is equal to the original group, and the abelianization is trivial. The
commutator length is 1, and therefore starting at one-loop order there is no preserved symmetry.

Summary In all cases the commutator length is 1, and hence the selection rule stabilizes al-
ready at one loop. Furthermore, the abelianization, which is always a rather small abelian group,
matches with the center of the corresponding ADE group, which is a manifestation of the McKay
correspondence.12 Nevertheless, there are many conjugacy classes which form a complicated
fusion algebra, leading to nontrivial selection rules at tree level.

3.2 The Ising theory
Next, let us consider an example of selection rules coming from a fusion algebra that does not
come from a group. Let us suppose that the internal worldsheet theory has a symmetry given by
the Ising fusion category. For simplicity of presentation, we assume that the internal worldsheet
theory is actually a direct product of the c = 1/2 Ising model and the rest, but the analysis below
is applicable to more general cases as well, such as Spin(7) compactifications of the heterotic
string [SV94].

Recall that the Ising theory has Virasoro primaries 1, σ, and ϵ, whose dimensions are given by
(h, h̄) = (0, 0), (1/16, 1/16), and (1/2, 1/2), respectively. Correspondingly, the spacetime fields

12If we consider the compactification of IIB on C2/Γ, then the resulting 6D (2,0) SCFT has a 2-form defect group
that is also given by Ab[Γ] [DZHPR15], whose charged objects are non-dynamical surface defects coming from D3-
branes wrapping relative cycles in the resolved C2/Γ. In that context, the twisted sectors for strings on C2/Γ were
shown in [DM96] to correspond to exceptional divisors of C2/Γ, and the fact that their scattering admits an Ab[Γ]
charge conservation rule is required for the entire scattering process (at any loop order) to admit a consistent charge
pairing with the non-dynamical surface defects.
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Figure 4: At tree-level, the fusion algebra requires that diagrams with only external e- and
ϵ-sector particles must have an even number of the latter. On the other hand, at one loop
configurations with an odd number are allowed, due to the existence of the ϵσσ vertex.

can be decomposed into three sectors e, σ, and ϵ, whose fusion algebra A has the fusion rules
ϵ2 = e, ϵσ = σ, and σ2 = e+ ϵ. From this, we easily conclude that at tree level, interaction terms
of the form On := ϵn are allowed only when n is even.

What happens at loop order? Applying the analysis of Sec. 2.3, we see that Com(A) =

Com(A)∞ = {e, ϵ}, and therefore the all-loop selection rules are already realized at one loop, and
are those for the group Gr[A] = {[e], [σ]} with [σ]2 = [e], i.e. those for a Z2 symmetry.

Intuitively, the breakdown of the selection rules at loop level may be understood as in Figure 4.
Consider a tree-level diagram with external particles in the e or ϵ sectors. For any such diagram,
the fusion algebra gives a selection rule requiring that there be an even number of external ϵ
particles. But at one loop, the allowed ϵσσ vertex may be used to write diagrams violating this
selection rule. On the other hand, the fusion algebra does not allow us to draw diagrams with an
odd number of external σ particles at any loop order, which corresponds to the all-loop Gr[A] =

Z2 selection rule.
Thus far, we have obtained our selection rules by assigning elements of the fusion algebra to

spacetime sectors. An alternative way to obtain selection rules is to study the action of the Ising
category on the worldsheet fields. Recall that each primary of the Ising model has a corresponding
Verlinde line operator, which we denote by Le, Lσ, and Lϵ, whose fusion algebra is given by
L2
ϵ = Le, LϵLσ = Lσ, and L2

σ = Le + Lϵ. The action of these line operators on the primaries is
given in the following table:

e σ ϵ

Le +1 +1 +1

Lσ

√
2 0 −

√
2

Lϵ +1 −1 +1

, (3.3)

as readily follows from the S matrix of this modular tensor category. In this point of view, the
all-loop Z2 symmetry we found before can be understood as being the selection rule coming from
the Z2 symmetry generated by Lϵ.

We should emphasize the distinction between the two approaches above. In the first approach,
we label the spacetime sectors by representations of the categorical symmetry C, i.e. by elements
of a fusion algebra A ⊂ Z(C), which gives constraints on the spacetime action in the way dis-
cussed in Sec. 2. In the second approach, we use the action of C on the worldsheet fields to obtain

16



constraints on scattering amplitudes, which are in turn translated to constraints on the spacetime
action. In general, the constraints obtained via these two approaches are not completely equiv-
alent, as already follows from the discussion of ordinary G symmetry at the end of Sec. 2.3. In
the Ising case studied above, the all-loop results following from the first approach were seen to be
equivalent to the selection rules coming from the invertible subgroup of C (generated by Le) in
the second approach.

A similar equality holds whenever the worldsheet theory has a modular tensor category M
as the symmetry. Indeed, the first approach leads to spacetime sectors controlled by the fusion
algebra M of M, which gives rise to tree-level selection rules as in Sec. 2.3. The all-loop selection
rule is then given by the groupification M → Gr[M ] = M/∼. On the other hand, in the second
approach we consider the group Inv(M) formed by invertible line operators of M. As M is
braided, Inv(M) is an Abelian group, and the spacetime sectors can be labeled by its Pontryagin
dual ̂Inv(M). It is known [EGNO15, Corollary 8.22.8] that

̂Inv(M) = Gr[M ] , (3.4)

i.e. the all-loop selection rule arising from the fusion algebra of the sectors is simply the selection
rule coming from the invertible subgroup of the full non-invertible symmetry.

3.3 Selection rules for S1/Z2

We now discuss bosonic string theory on S1
R/Z2, where the subscript R specifies the radius of the

circle, and the Z2 acts by flipping the coordinate. This turns out to be a nice illustration of both
the selection rules for non-Abelian orbifolds, as well as those for the Ising category.

3.3.1 As Abelian orbifolds

We first discuss the standard presentation of S1
R/Z2 as an Abelian orbifold by Z2 = {e, g}. The

closed string sector is decomposed into the untwisted sector (corresponding to [e]) and the twisted
sector (corresponding to [g]). The interactions preserve the Z2 symmetry under which [e] is even
and [g] is odd.

The description above is very crude, in that the strings stuck at different fixed points of S1/Z2

are both assigned to the class [g]. These can be distinguished in our framework using the equality

S1
R/Z2 = S1

2R/(Z2 × Z2) , (3.5)

where the first Z2 = {e, s} acts on S1
2R by a half-shift and the second Z2 = {e, g} acts by flipping

the coordinate. This is still an Abelian orbifold, and there are four sectors labeled by [e], [s], [g],
and [gs]. The interactions preserve the Z2 × Z2 symmetry acting on these sectors. In the usual
terminology, the states in the [e]- and [s]-twisted sectors are the untwisted strings with even and
odd winding numbers, while the states in the [g]- and [gs]-twisted sectors are the twisted sectors
localized at the two fixed points.

This implies, for example, that the merger of two twisted sector states at the same fixed point
produces untwisted sector states of even winding number, i.e. [g][g] = [gs][gs] = [e]. Similarly,
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the merger of two twisted sector states at two different fixed points produces untwisted sector
states of odd winding number, i.e. [g][gs] = [s].

3.3.2 As non-Abelian orbifolds

By generalizing the trick used above, it is possible to regard S1
R/Z2 as a non-Abelian orbifold and

hence to derive more detailed selection rules, albeit this time only applicable at tree level. Indeed,
we have

S1
R/Z2 = S2

2nR/D4n (3.6)

where D4n := Z2n ⋊ Z2 is the dihedral group of order 4n. We use the notation Z2 = {e, g} and
Z2n = {e, s, . . . , s2n−1}, such that gsg = s−1. The conjugacy classes are

[e], [s] = {s, s−1}, . . . , [sn−1] = {sn−1, s1−n}, [sn] (3.7)

and
[g] = {g, gs2, · · · , gs2n−2} , [gs] = {gs, gs3, · · · , gs2n−1} . (3.8)

In the usual terminology, the [sk]-twisted sector states are those whose winding numbers are ±k

mod 2n, and the [g]- and [gs]-twisted sector states are those which are stuck at each of the two
fixed points on S1/Z2. The fusion rules such as

[s][s2] = [s] + [s3] (3.9)

then constrain the scattering processes. But since the group is now non-Abelian, these selection
rules are applicable only at tree level. As the commutator length of dihedral groups is one, the
selection rules reduce to the all-loop ones already at one loop. Since the abelianization map gives

D4n = Z2n ⋊ Z2 → Z2 × Z2 , (3.10)

the resulting selection rule is the one we already studied using (3.5) above.

3.3.3 The D8 symmetry

Let us now study the symmetries of the worldsheet theory for S1/Z2 in more detail. We denote
by Φm,w the momentum m, winding w local operator in the theory before orbifolding, where
m,w ∈ Z. Then the linear combinations

Φ̂m,w :=
1√
2
(Φm,w + Φ−m,−w) (3.11)

survive the orbifold; their scaling dimensions are given by

(h, h̄) =

(
1

2

(
m

R
+

wR

2

)2

,
1

2

(
m

R
− wR

2

)2
)

. (3.12)
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Denote by τ1 and τ2 the worldsheet twist fields of dimension ( 1
16
, 1
16
) associated to the two

fixed points. These twist fields satisfy OPEs schematically of the form

τ1 · τ1 ∼
∑
i,j

C2i,2jΦ̂2i,2j +
∑
i,j

C2i+1,2jΦ̂2i+1,2j , (3.13)

τ2 · τ2 ∼
∑
i,j

C2i,2jΦ̂2i,2j −
∑
i,j

C2i+1,2jΦ̂2i+1,2j , (3.14)

τ1 · τ2 ∼
∑
i,j

C2i,2j+1Φ̂2i,2j+1 , (3.15)

as was detailed e.g. in [DVV88].
In the notation of Sec. 3.3.1, i.e. when we view this system as the orbifold S1

2R/(Z2×Z2), the
fields Φ̂i,2j are in the sector [e] and the fields Φ̂i,2j+1 are in the sector [s], while τ1 is in the sector
[g] and τ2 is in the sector [gs]. The OPE given above satisfies the selection rules discussed there.
In [DVV88], it was noticed that the worldsheet actually has a D8 symmetry13 generated by two
order-2 operations

b : (τ1, τ2, Φ̂m,w) 7→ (−τ1, τ2, (−1)wΦ̂m,w) , (3.16)

c : (τ1, τ2, Φ̂m,w) 7→ (τ2, τ1, (−1)mΦ̂m,w) . (3.17)

Note that the operation

a = bc : (τ1, τ2, Φ̂m,w) 7→ (−τ2, τ1, (−1)m+wΦ̂m,w) (3.18)

is of order 4. Furthermore, the operation

a2 : (τ1, τ2, Φ̂m,w) 7→ (−τ1,−τ2, Φ̂m,w) , (3.19)

together with b forms a Z2 × Z2 ⊂ D8 subgroup distinguishing the four sectors [e], [s], [g], and
[gs] above. We emphasize that this D8 symmetry is distinct from the D8 used when we regarded
the system as S1

4R/D8 in Sec. 3.3.2.

3.3.4 Non-invertible symmetries at generic radius

The S1/Z2 model has also a continuum of non-invertible symmetries, which we review following
[CL20, TW19, TW21]. For every U(1)m × U(1)w rotation U(θ,ϕ) in the original S1 theory, we
obtain a non-invertible symmetry in the S1/Z2 gauge theory, generated by

Û(θ,ϕ) = U(θ,ϕ) + U(−θ,−ϕ) , (3.20)

all of which have quantum dimension 2. The fusion rules are

Û(θ,ϕ)Û(θ′,ϕ′) = Û(θ+θ′,ϕ+ϕ′) + Û(θ−θ′,ϕ−ϕ′) . (3.21)

13This worldsheet symmetry has been studied from a spacetime perspective in [KRZ04, KNP+06]. More recent
accounts can be found in [CL20, TW19, TW21].
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These symmetries act on the operators Φ̂m,w as

Û(θ,ϕ) : Φ̂m,w → 2 cos(mθ + wϕ) Φ̂m,w . (3.22)

When θ, ϕ ∈ {0, π}, the operators U(θ,ϕ) are themselves invariant under the Z2 used in the
orbifolding. In such cases, we do not have to form a sum as in (3.20). Instead, to fully specify
the line operator in the orbifolded theory we must pick a charge ±1 under this Z2, giving eight
operators

U±
(0,0) , U±

(0,π) , U±
(π,0) , U±

(π,π) . (3.23)

Here, U−
(0,0) is the generator acting by −1 on the twisted sector fields and can be identified with a2

given in (3.19), i.e.
U+
(0,0) = e , U−

(0,0) = a2 . (3.24)

We then have
U∓
(θ,ϕ) = a2U±

(θ,ϕ) (3.25)

in general for θ, ϕ ∈ {0, π}.
Other elements in (3.23) can similarly be identified with the D8 elements introduced in (3.16),

(3.17), and (3.18). As U(θ,ϕ) for θ, ϕ ∈ {0, π} acts on the untwisted sector fields as

Φ̂m,w 7→ eimθ+iwθΦ̂m,w , (3.26)

we see that they correspond to, for example,

{U+
(π,0), U

−
(π,0)} = {ab, a3b} , {U+

(0,π), U
−
(0,π)} = {b, a2b} , {U+

(π,π), U
−
(π,π)} = {a, a3} , (3.27)

where the assignments within each pair are not unique due to the nontriviality of the extension by
Z2. We also note that the equality (3.20) when θ, ϕ ∈ {0, π} should be interpreted as follows:14

Û(θ,ϕ) = U+
(θ,ϕ) + U−

(θ,ϕ) . (3.28)

We now note that the operators

U±
(0,0) , U±

(0,π) , and Û(0,kπ/n) for k = 1, . . . , n− 1 (3.29)

have the same fusion rules as Rep(D4n). In fact they generate precisely the Rep(D4n) symmetry
arising when we regard S1

R/Z2 as S1
2nR/D4n as in Sec. 3.3.2. To see this, we first regard S1

R =

S1
2nR/Z2n. The Rep(Z2n) symmetry of the left-hand side should measure the winding number of

S1
R modulo 2n, which means that it is given by U(0,2πk/2n), for k = 0, . . . , 2n − 1. We then form

S1
R/Z2 = (S1

2nR/Z2n)/Z2. This affects the symmetry generators as we described above, so the
simple objects of the natural Rep(D4n) symmetry are indeed the ones listed in (3.29).

14This is because the Z2 orbifold exchanges the two summands of (3.20) as in
(
0 1

1 0

)
, which can be diagonalized

to give
(
+1 0

0 −1

)
instead, when θ, ϕ ∈ {0, π}.

20



Let us take n = 2 here and introduce the new notation

N := Û0,π/2 . (3.30)

This N extends the Z2 × Z2 generated by a2 and b, with the fusion rules

N 2 = 1 + a2 + b+ a2b (3.31)

and
a2N = bN = N . (3.32)

In contrast, the D8 symmetry we discussed above in Sec. 3.3.3 extends the same Z2×Z2 symmetry
by a. This shows that a, b, and N together generate an interesting mixture of D8 and Rep(D8).
By studying the action on Φ̂m,w, we see that c = ba and N satisfy cN = N c.

3.3.5 Ising symmetry at a specific radius

At certain special rational points, the worldsheet non-invertible symmetry can be enhanced even
further. As an example, we consider the case of R = 1.15 At this radius, the operators Φ̂0,2 and
Φ̂1,0 have scaling dimensions (h, h̄) = (1/2, 1/2). In fact, at this radius, the theory is known to be
equivalent to two copies of the c = 1/2 Ising theory.

The mapping between the operators of S1
R/Z2 and those of two copies of the Ising theory was

given e.g. in [DVV88]. We already saw in Sec. 3.2 that the Ising theory has sectors e, σ, and ϵ,
with corresponding Verlinde line operators Le, Lσ, and Lϵ. We continue to use the same symbols
here, with an additional subscript 1, 2 to distinguish the two copies. The end result is that the two
Ising primaries σ1,2 of dimension (1/16, 1/16) can be identified with our twisted sector fields τ1,2,
and that the two Ising primaries ϵ1,2 of dimension (1/2, 1/2) can be identified as follows,

ϵ1 := Φ̂0,2 + Φ̂1,0 , ϵ2 := Φ̂0,2 − Φ̂1,0 . (3.33)

Comparing our D8 transformation rules (3.16) – (3.18), we find that the Z2 × Z2 subgroup gen-
erated by a2 and b are related to the two Z2 symmetries of the two copies of the Ising theory
via

(Lϵ)1 = b , (Lϵ)2 = a2b , (3.34)

and the exchange of the two Ising factors is the operation c of D8.
We can also see that the non-invertible line N introduced in (3.30) has the identification

(Lσ)1(Lσ)2 = cN . (3.35)

We see that the fusion rule (3.31) is reproduced from (Lσ)
2 = 1 + Lϵ and (3.34).

As we saw in Sec. 3.2, the Ising fusion algebra leads to the selection rule that the interaction
ϵn is allowed at tree level only when n is even. This results in the following somewhat interest-
ing spacetime selection rule. First, note that the Virasoro primary ϵ1ϵ2 has dimension (1, 1) and

15We can equally consider the T-dual radius R = 2, but R = 1 matches our previous discussions better.
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captures the change in the radius of the S1. In spacetime, it corresponds to a massless radion
field. Then, at tree level, the interaction term (ϵ1ϵ2)

n is allowed only when n is even. On the other
hand, at one loop this selection rule can be violated. If we used only the invertible symmetry, this
conclusion would be hard to come by, since ϵ1ϵ2 is invariant under the entire D8 symmetry—the
generator b leaves both ϵ1 and ϵ2 invariant, while the generator a exchanges ϵ1 with ϵ2, so that their
product ϵ1ϵ2 remains invariant.16

3.4 Tambara-Yamagami of Z3

Thus far, all of our explicit examples have involved worldsheet non-invertible symmetries forming
a modular tensor category. Such cases are particularly simple, since the spacetime sectors have
fusion rules identical to the symmetries themselves. On the other hand, when the worldsheet
symmetries do not form a modular tensor category, we must instead label the spacetime sectors
by representations of the non-invertible symmetry, i.e. by elements of the Drinfeld double of the
original fusion category.

In this section we analyze arguably the simplest example of a non-modular non-invertible
symmetry, namely the Tambara-Yamagami category TY(Z3). This fusion category has rank-4
with fusion rules given by

η3 = e , η ×N = N , N ×N = e+ η + η2 . (3.36)

It arises as a symmetry of the 3-states Potts model and the Z3 parafermion theory; in the context
of the string worldsheet, it is relevant for certain Gepner models (p1, . . . pn) with pi being 1.

The Drinfeld double for TY(ZN) for generic N was studied in the mathematics literature
in [Izu01, GNN09]; a more physically motivated discussion can be found in [KOZ22]. For the
case of N = 3, the result is as follows. First, Z(TY(Z3)) has a total of 15 objects,

• 6 invertible objects Xg,i with g ∈ Z3 and i ∈ Z2

• 3 objects of quantum dimension 2 denoted by Y[0,1], Y[0,2], Y[1,2] (symmetric in the subscripts)

• 6 objects of quantum dimension
√
3 denoted by Zg,i with g ∈ Z3 and i ∈ Z2.

16In fact, for the specific operator O := ∂X∂̄X of dimension (1, 1), the tree-level interaction term On vanishes
for odd n for arbitrary values of the radius R. This is due to the fact that the subalgebra generated by O within the
full operator algebra of the theory is common to all R, and therefore the selection rule derived at a given value of R is
applicable at any other value of R. This argument does not apply to generic operators in the sector ϵ1ϵ2 of two copies
of the Ising fusion algebra, and we expect that the interaction would be nonzero for odd n in the generic case.
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The full set of fusion rules amongst these objects can be found in [KOZ22], and are as follows,

Xg,i ×Xh,j = Xg+h,i+j

Xg,i × Y[g′,h′] = Y[g+g′,g+h′]

Xg,i × Zh,j = Z2g+h,i+j+δh,0+δ2g+h,0

Y[g,h] × Zg′,i = Zg+h+g′,0 + Zg+h+g′,1

Y[g,h] × Y[g′,h′] =

{
Xg+g′,0 +Xg+g′,1 + Y[h+g′,g+h′] g + g′ = h+ h′

Xh+g′,0 +Xh+g′,1 + Y[g+g′,h+h′] otherwise
Zg,i × Zh,j = X−g−h,i+j+δg,0+δh,0 + Y[−g−h+1,−g−h−1] (3.37)

We now label the spacetime sectors by the elements above. In particular, untwisted sectors must
be closed under fusion, and thus must be labelled by a closed subalgebra. An example of such a
subalgebra is the set of invertible lines. Besides that, the largest proper subalgebra contains five
objects X0,0, X0,1, Y[1,2], Z0,0, and Z0,1. Using the abbreviated notation

X0,0 → e , X0,1 → X , Y[1,2] → Y , Z0,0 → Z , Z0,1 → XZ , (3.38)

the fusion rules amongst them are found to be,

X2 = e , X × Y = Y , Y 2 = e+X + Y , Y × Z = Z +XZ , Z2 = e+ Y .(3.39)

These are none other than the fusion rules of SU(2)4. In the presence of a TY(Z3) symmetry on
the worldsheet, we may then label the spacetime sectors by elements of a non-trivial subring of
the SU(2)4 fusion ring, of which there are three: Z2 = ⟨X⟩, Rep(D3) = ⟨X, Y ⟩, and SU(2)4
itself. In all cases the tree-level fusions are dictated by those given above. Assuming that it is the
maximum subalgebra that is realized, we have

Com(A) = Com(A)∞ = {e,X, Y } , (3.40)

from which we see that these selection rules would be broken at one loop and beyond to those
for the group Gr[A] = {[e], [Z]} = Z2. This would mean that the equality in (3.4) is no longer
satisfied.
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A Basics of finite hypergroups
Here we summarize the bare minimum on the theory of finite hypergroups, since it is not easy
to find a self-contained reference where only finite ones are discussed. The discussions here are
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based on [SW03], [BH95], [EGNO15, Sec. 3], and [Bis16, Sec. 2]; the authors claim no originality
in presentation.

Definition A.1. A finite hypergroup G is a finite set with an involution G ∋ x 7→ x ∈ G such that
RG is an associative algebra with the product

xy =
∑
z∈G

N z
xyz , N z

xy ∈ R≥0 (A.1)

where i) the unit is given by an element e ∈ G, ii) xy = ȳx̄ where the involution is extended to
RG by linearity, and iii) N e

xy ̸= 0 if and only if x = y.

Definition A.2. Given a hypergroup G, let G̃ be a copy of G with an element x̃ ∈ G̃ for each
x ∈ G. We choose a set of non-negative numbers cx, and formally define x̃ = x/cx. Then G̃

becomes a hypergroup with the structure constants

Ñ z̃
x̃ỹ :=

cz
cxcy

N z
xy . (A.2)

The hypergroups G and G̃ can be considered as essentially the same. We say that G̃ is obtained
from G by a rescaling.

Remark A.3. In the hypergroup literature, the standard normalization is to take
∑

z̃ Ñ
z̃
x̃ỹ = 1.

Another convention common in the literature is to take Ñ ẽ
x̃x̃

= 1. Such rescalings can always be
performed, but the proof of this fact (Props. A.28, A.29) is not immediate.

Definition A.4. We call a hypergroup G “strict” if N e
xx = 1 for all x ∈ G.

Remark A.5. This usage of the adjective strict is not common in the literature. It is introduced
here simply for the sake of exposition.

Definition A.6. A finite hypergroup G for which N z
xy are all integers is called a fusion algebra.

Remark A.7. In the literature, strict fusion algebras in the sense above are often simply called
fusion algebras. They are also called based rings, e.g. in [EGNO15].

Example A.8. A finite group G determines a strict fusion algebra.

Example A.9. Given a finite group G, the elements c([g]) =
∑

h∼g h ∈ R[G] generate a commu-
tative subalgebra of R[G]. Since the structure constants are integers, we see that the set Conj(G)

of conjugacy classes forms a commutative fusion algebra. The algebra is not always strict in this
normalization though, since N

[e]

[g][g−1] = #[g] which can be larger than 1 when G is non-Abelian.
We can rescale the hypergroup by cg = (#[g])1/2 to make it into a strict hypergroup, but then it is
not necessarily a fusion algebra, since the structure constants are not necessarily integers.

Example A.10. Given a finite group G, the set Rep(G) of irreducible representations is also a
fusion algebra, where the product is given by the tensor product. It is automatically strict, since
R⊗ R̄ contains the identity representation exactly once.
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Example A.11. More generally, isomorphism classes of simple objects of a fusion category also
form a finite fusion algebra. It is automatically strict.

Example A.12. A finite strict hypergroup structure on a two-element set {e, x} is specified by
x2 = e + nx, where n is a non-negative number. It is a fusion algebra when n is a non-negative
integer. When n = 0 or n = 1, it can be realized by a fusion category. In fact there are two
distinct fusion categories for each n = 0 and n = 1 [MS89b]. It is also known that there are no
fusion categories realizing fusion algebras given by x2 = e + nx with n ≥ 2 [Ost02]. Therefore
one needs to be careful about the distinction between hypergroups, fusion algebras, and fusion
categories.

Notation A.13. We define wx := N e
xx̄. For a =

∑
x∈G axx ∈ RG with ax ∈ R, we write

u(a) = ae. We also define x ≺ a to mean ax ̸= 0.

Proposition A.14. We have N z
xy = u(xyz̄)/wz and N x̄

yz̄ = u(xyz̄)/wx. In particular, z ≺ xy is
equivalent to x̄ ≺ yz̄.

Proof. Immediate.

Remark A.15. There are many other similar formulas, which will not be listed in full here but will
be used implicitly below.

Proposition A.16. For any x, y ∈ G, we have xy ̸= 0.

Proof. From Definition A.1, we have e ≺ x̄x and e ≺ yȳ. Therefore e ≺ x̄xyȳ. Therefore
xy ̸= 0.

Proposition A.17. For any x, y ∈ G, there is a z ∈ G and z′ ∈ G such that y ≺ zx and y ≺ xz′.

Proof. We know that y ≺ zx is equivalent to z̄ ≺ xȳ. Since xȳ is nonzero via Prop. A.16, there
is at least one such z. The other statement can be proved similarly.

To define the quantum dimension and derive its properties, we use the following:

Theorem A.18 (The Perron-Frobenius theorem). Consider an N × N matrix Mij with non-
negative entries. Then the following statements hold:

• Its maximal eigenvalue λ(M) is non-negative.

• For this eigenvalue λ(M), there is an eigenvector whose entries are all non-negative.

• If an eigenvector has all entries positive, its eigenvalue is λ(M).

• If the entries Mij are all strictly positive, λ(M) is non-degenerate and is positive.

We call such an eigenvalue/eigenvector the Perron-Frobenius eigenvalue/eigenvector of M .

Proof. This is well-known; see e.g. [EGNO15, Sec. 3.2].
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Definition A.19. We denote the left and right multiplications by x ∈ G by

ℓx : a 7→ xa, rx : a 7→ ax. (A.3)

We denote the left and right multiplication by
∑

x∈G x by

ℓG : a 7→ (
∑
x∈G

x)a, rG : a 7→ a(
∑
x∈G

x). (A.4)

We regard them as linear operators on RG.

Proposition A.20. For R ∈ RG, the following four conditions are equivalent, and define R as a
vector with all positive entries, uniquely up to a positive scalar multiple:

1. R is a common Perron-Frobenius eigenvector for all the right multiplications rx.

2. R is a Perron-Frobenius eigenvector for rG.

3. R is a common Perron-Frobenius eigenvector for all the left multiplications ℓx.

4. R is a Perron-Frobenius eigenvector for ℓG.

Proof. We prove this statement by showing that 1) implies 2), 2) implies 3), 3) implies 4), and 4)
implies 1). That R is unique up to a positive scalar multiple and that R has all positive entries will
be proved along the way.

1) to 2): Immediate.
2) to 3): The linear map rG as a matrix has strictly positive entries, thanks to Prop. A.17.

Therefore, R is unique up to scalar multiplication and its entries are all positive. Now we note
that xR is another eigenvector of rG, whose entries are also all positive. From the uniqueness of
the Perron-Frobenius eigenvector of rG up to scalar multiplication, we see that xR ∝ R, meaning
that R is a Perron-Frobenius eigenvector of ℓx.

3) to 4): Immediate.
4) to 1): Replace the role of the left and the right in the proof of 2) to 3).

Definition A.21. For x ∈ G, we define dx to be the Perron-Frobenius eigenvalue of the left
multiplication ℓx. We extend d from G to RG by linearity. We call da the quantum dimension of a.

Proposition A.22. d is a ring homomorphism RG → R, i.e. dxy = dxdy. Equivalently, dxdy =∑
z∈GN z

xydz .

Proof. By definition xR = dxR. From this it follows that dxyR = xyR = dxdyR.

Proposition A.23. dx is also the Perron-Frobenius eigenvalue of the right multiplication a 7→ ax

on RG.

Proof. We have already shown that Rx = exR for some ex ∈ R. Taking the quantum dimension
of both sides, we see that dRdx = exdR. Therefore ex = dx.
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Proposition A.24. dx = dx̄ .

Proof. This follows from the fact that the matrix of left multiplication by x is equal to the matrix
of right multiplication by x̄.

We can actually write the explicit form of the important element R in Prop. A.20:

Definition A.25. For a hypergroup G, we define its Haar element by

RG :=

∑
x∈G dxx/wx∑
x∈G d2x/wx

. (A.5)

Here the denominator is included to normalize dRG
= 1.

Theorem A.26. We have RGy = yRG = dyRG. In particular, R2
G = RG.

Proof. We have

(
∑
x∈G

dxx/wx)y =
∑
x,z∈G

dxN
z
xy/wxz =

∑
x,z∈G

dxN
x̄
yz̄/wzz = dy(

∑
z∈G

dzz/wz) , (A.6)

and therefore RGy = dyRG. This means that RG satisfies the condition i) of Prop. A.20, from
which yRG = dyRG also follows.

Proposition A.27. wx = wx̄ .

Proof. We consider the element

R′
G :=

∑
x∈G dxx/wx̄∑
x∈G d2x/wx̄

. (A.7)

We can show that yR′
G = dyR

′
G, since

y(
∑
x∈G

dxx/wx̄) =
∑
x,z∈G

dxN
z
yx/wx̄z =

∑
x,z∈G

dxN
x̄
z̄y/wz̄z = dy(

∑
z∈G

dzz/wz̄) . (A.8)

From Prop. A.20, we see RG = R′
G, from which we see that wx = wx̄.

Proposition A.28. We can rescale a given hypergroup G so that
∑

z N
z
xy = 1 for all x and y. This

is the standard convention in the hypergroup literature.

Proof. We use cx = dx in Definition A.2 and set x̃ = x/cx. Then dx̃ = 1. Evaluating the quantum
dimension of both sides of x̃ỹ =

∑
z̃ Ñ

z̃
x̃ỹz̃, one obtains

∑
z̃ Ñ

z̃
x̃ỹ = 1.

Proposition A.29. We can rescale a given hypergroup G so that it is strict, i.e. N e
xx̄ = 1. This is

the standard convention in the fusion category literature.

Proof. Use cx =
√
wx in Definition A.2 and set x̃ = x/cx. Then

Ñ ẽ
x̃x̃

=
1

√
wx

√
wx̄

N e
xx̄ = 1 , (A.9)

where we have used Prop. A.27.

27



We now move on to a discussion of subhypergroups and quotients. For simplicity of presen-
tation, we assume that all hypergroups are rescaled to be strict.

Definition A.30. A subset H of a hypergroup G is a subhypergroup if H is closed under the
involution and RH is closed under the product.

Definition A.31. For a subhypergroup H of G, we define ‘the double coset ⟨x⟩ containing x’ via

⟨x⟩ = {y ∈ G | y ≺ hxh′ for some h, h′ ∈ H} . (A.10)

Proposition A.32. The relation y ∼H x defined by y ∈ ⟨x⟩ is an equivalence relation.

Proof. Reflexivity is obvious. For transitivity, say y ≺ hxh′ and z ≺ h̃yh̃′ for some h, h′, h̃, h̃′ ∈
H . We then have z ≺ (h̃h)x(h′h̃′). For symmetry, say y ≺ hxh′. This means that u(ȳhxh′) ̸= 0.
This implies u(h̄′ȳhx) ̸= 0, which then implies u(x̄h̄yh′) ̸= 0, meaning that x ≺ h̄yh′.

Definition A.33. We define G//H := {⟨x⟩}, the partition of G given by the equivalence relation
∼H .

We now introduce the structure of a hypergroup on G//H . Consider the linear map

eH : a 7→ RHaRH (A.11)

defined on RG. As R2
H = RH , eH(RG) clearly forms an R-algebra. Let us find an explicit basis.

For this, note
RG =

⊕
⟨x⟩∈G//H

V⟨x⟩ , V⟨x⟩ =
⊕
y∈⟨x⟩

Ry . (A.12)

Now consider the linear map
eH |V⟨x⟩ : a 7→ RHaRH . (A.13)

By the definition of the double coset ⟨x⟩, eH |V⟨x⟩ as a matrix has strictly positive entries. Therefore
its Perron-Frobenius eigenvector is unique. As (eH)2 = eH , the Perron-Frobenius eigenvalue is 1.
Now, RHRGRH = RG. Therefore the Perron-Frobenius eigenvector of eH |V⟨x⟩ is ∝

∑
y∈⟨x⟩ dyy.

Definition A.34. For ⟨x⟩ ∈ G//H , we define

R⟨x⟩ :=

∑
y∈⟨x⟩ dyy

(
∑

z∈H d2z)
1/2(
∑

y∈⟨x⟩ d
2
y)

1/2
. (A.14)

This reduces to RH when x = e.

Proposition A.35. The set {R⟨x⟩} for ⟨x⟩ ∈ G//H spans a subalgebra of RG.

Proof. This is immediate since this set spans RH(RG)RH by the discussions above.
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Theorem A.36. Given a strict hypergroup G and a subhypergroup H , we define N
⟨z⟩
⟨x⟩⟨y⟩ via

R⟨x⟩R⟨y⟩ =
∑

⟨z⟩∈G//H

N
⟨z⟩
⟨x⟩⟨y⟩R⟨z⟩ . (A.15)

This makes G//H into a strict hypergroup, with the multiplication given by

⟨x⟩⟨y⟩ =
∑

⟨z⟩∈G//H

N
⟨z⟩
⟨x⟩⟨y⟩⟨z⟩ . (A.16)

Proof. The only remaining step is to show that N ⟨e⟩
⟨x⟩⟨x̄⟩ = 1 and that N ⟨e⟩

⟨x⟩⟨y⟩ ̸= 0 if and only if
y = x̄. The former is a simple computation done by computing u(R⟨x⟩R⟨x̄⟩). To show the latter,
assume that N ⟨e⟩

⟨x⟩⟨y⟩ ̸= 0. Then h ≺ xh′y for some h, h′ ∈ H , which means u(h̄xh′y) ̸= 0. This is
equivalent to y ≺ h̄′x̄h and therefore y ∈ ⟨x̄⟩.

Remark A.37. G//H is not necessarily a strict fusion algebra even when G and H are. This is
due to the fact that N ⟨z⟩

⟨x⟩⟨y⟩ as determined above are not necessarily integers, even when N z
xy are.

Note that the construction of the quotient hypergroup G//H was done without any assumption
of normality for H . We will now study the effect of two types of normalities on H .

Definition A.38. A subhypergroup H of G is called normal when Hx = xH for all x ∈ G, where

Hx := {y | y ≺ hx for some h ∈ H} , xH := {y | y ≺ xh for some h ∈ H} . (A.17)

A subhypergroup H of G is called supernormal when xHx̄ ⊂ H for all x ∈ G, where

xHx̄ := {y | y ≺ xhx̄ for some h ∈ H} . (A.18)

Remark A.39. For a subgroup H of a group G, being supernormal is equivalent to being normal.
Also, G/H when H is normal agrees with G//H as hypergroups.

Proposition A.40. A supernormal subhypergroup H of a hypergroup G is normal.

Proof. Suppose y ≺ hx for some h ∈ H . It suffices to show that y ≺ xh′ for some h′ ∈ H . To
do so, note that supernormality implies xx̄ ∈ RH , and therefore y ≺ (xx̄)hx = x(x̄hx). From
x̄Hx ⊂ H , we see that we can pick an h′ ∈ H such that y ≺ xh′.

Proposition A.41. For a normal subhypergroup H , we have Hx = xH = HxH .

Proof. Immediate.

Remark A.42. This means that for a normal subhypergroup, one can introduce a hypergroup struc-
ture on the left coset as in the group case, since it is just a special case of the quotient hypergroup
structure on the double coset.

The condition of normality appears naturally in relation to morphisms between hypergroups.
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Definition A.43. Given two hypergroups L and K, a map ϕ : L → K is a morphism if it
preserves the involution and if it extends to an algebra homomorphism ϕ : RL → RK. The image
of a morphism ϕ : L → K is simply the image as the map between two sets. The kernel of a
morphism ϕ : L → K is the inverse image of e ∈ K.

Proposition A.44. The image of a morphism is a hypergroup.

Proof. Immediate.

Proposition A.45. The kernel H of a morphism ϕ : L → K is a normal subhypergroup of L.

Proof. Let us show xH = ϕ−1(ϕ(x)). To show this, say y ≺ xh for some h ∈ H . Applying ϕ,
we have ϕ(y) ≺ ϕ(x)ϕ(h) = ϕ(x). Conversely, say y ≺ xh for no h ∈ H . This means h ≺ ȳx

for no h ∈ H . Therefore ϕ(ȳ)ϕ(x) does not contain e, and ϕ(x) ̸= ϕ(y). We conclude that
xH = ϕ−1(ϕ(x)). We can analogously show that Hx = ϕ−1(ϕ(x)). Therefore xH = Hx.

Remark A.46. Summarizing, associated to a normal subhypergroup H ⊂ G, there is a short exact
sequence

{e} → H → G → G//H → {e} (A.19)

of hypergroup morphisms.

Proposition A.47. The quotient hypergroup G//H is a group if and only if H is supernormal.

Proof. If G//H is a group, then R⟨x⟩R⟨x̄⟩ = RH . This requires that xRH x̄ ∈ RH , meaning that
xHx̄ ⊂ H . So H is supernormal.

Suppose conversely that H is supernormal. Let us first show that R⟨x⟩R⟨y⟩ ∝ R⟨z⟩ for some z.
For this, note that R⟨x⟩ ∝ RHxRH and R⟨y⟩ ∝ RHyRH . It then suffices to show that if z ≺ xhy

and w ≺ xh′y for h, h′ ∈ H , we have z ∼H w. To see this, note that z ≺ xhy implies x ≺ zȳh̄,
meaning that w ≺ (zȳh̄)h′y = z(ȳ(h̄h′)y). Therefore w ≺ zh′′, where h′′ ∈ ȳHy ⊂ H .

Next, to determine the proportionality constant, note that R⟨x⟩R⟨x̄⟩ = RH thanks to our choice
of normalizations. This means that d⟨x⟩ = 1 for all x, which in turn implies that R⟨x⟩R⟨y⟩ = R⟨z⟩
for some z. Therefore we have found that G//H is indeed a group.

Remark A.48. Note that in this case we have a hypergroup morphism f : G → X := G//H

where G is a hypergroup and X is a group. If we expand the definition, this simply means that
N z

xy ̸= 0 only if f(x)f(y) = f(z). Therefore X gives a grading of the hypergroup multiplication
law and/or the fusion rule coefficients N z

xy. It is natural to ask what the largest possible such
grading X is, or equivalently, to ask what the smallest possible supernormal subgroup H is.

Definition A.49. Let Com(G) = {h | h ≺ xx̄ for some x ∈ G}. We then define Com(G)L to be

Com(G)L = {y | y ≺ x1x2 · · ·xL for some x1, x2, . . . , xL ∈ Com(G)} . (A.20)

Proposition A.50. We have Com(G)L ⊂ Com(G)L+1.

Proof. This follows from the fact that e ∈ Com(G).
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Definition A.51. The ascending chain

Com(G) ⊂ Com(G)2 ⊂ · · ·Com(G)L ⊂ Com(G)L+1 ⊂ · · · (A.21)

eventually stabilizes, as they are subsets of a finite set G. We denote the limit by Com(G)∞.

Proposition A.52. Com(G)∞ is a supernormal subgroup of G.

Proof. For finite L, whenever h ∈ Com(G)L, we have xhx̄ = xx̄h ∈ Com(G)L+1, so xHx̄ ⊂
Com(G)L+1. Taking L → ∞, we have xCom(G)∞x̄ ⊂ Com(G)∞.

Proposition A.53. Any supernormal subgroup H of G contains Com(G)∞.

Proof. As e ∈ H and xHx̄ ⊂ H , we have Com(G) ⊂ H . As H is a subhypergroup, it follows
that Com(G)∞ ⊂ H .

Definition A.54. We define the “groupification” Gr[G] of G by Gr[G] := G//Com(G)∞.

Remark A.55. From the discussions above, the groupification Gr[G] gives the finest grading
G → Gr[G] of a given hypergroup G. Possible gradings G → X of a strict fusion algebra
G by a group X were discussed without introducing general hypergroups and their quotients
in [EGNO15, Sec. 3.5]. Although the conclusion there is important and useful, the discussion
seems rather ad hoc. The authors recalled the basic theory of hypergroups here since they thought
that hypergroups might provide slightly more context for the problem at hand.

B Tree- and loop-level selection rules of non-invertible symme-
tries of WZW models

In this appendix we study the tree- and loop-level selection rules coming from non-invertible
symmetries of WZW models based on gk affine Lie algebras. Before proceeding, we note that
the WZW models themselves have the full gk affine symmetry, which includes the ordinary Lie
algebra symmetry for g. The selection rules arising from these Lie algebras would be stronger
than the selection rules coming solely from the fusion algebras associated to gk. The aim of this
appendix is simply to use these fusion algebras as concrete examples for which the techniques
introduced in the main text can be applied.

Non-invertible symmetries of the diagonal gk WZW model are given by a modular tensor
category, whose simple objects are irreducible integrable representations of gk. As such, its closed
string Hilbert space is organized into sectors labeled by A(gk) = P k

+, the positive weights of g
whose heights are less than k. A(gk) forms a commutative fusion algebra, to which we can apply
our methods. In particular, A(gk) itself gives the tree-level selection rules, which reduces to a
symmetry labeled by a finite Abelian group Gr[A(gk)] at infinite loop level.

Our main interest will be in studying the “conjugate pair length” cl(A(gk)) ∈ Z+, which
specifies the loop level at which the selection rules reduce to those of Gr[A(gk)]. As was explained
in Sec. 2.3, conjugate pair length generalizes the notion of commutator length for a finite group.
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Concretely, we will find that A(su(2)k), the fusion algebra for the diagonal su(2)k WZW model,
has conjugate pair length equal to 1. A similar statement holds for the fusion algebras of non-
diagonal su(2)k WZW models, when the chiral algebra extends. On the other hand, we will see
that the even part A′ of the fusion algebra A(su(2)2k) has cl(A′) = 2. This even part is not a
modular tensor category, and therefore cannot be directly used to label the closed-string sectors of
a perturbative string theory, but nevertheless may be interesting in other contexts. Finally, using
computational means we show that cl(A(su(N)k)) = 1 for N, k ≤ 7.

B.1 Affine characters and fusion rules
We begin by reviewing the basic WZW fusion rules; for a comprehensive review, we refer the
reader to [DFMS97]. The primary fields in a gk WZW model are labeled by integral representa-
tions λ of the gk affine Lie algebra at level k, which descends to a simple Lie algebra g. If we
consider a process in which incoming integrable representations λ and µ turn into an outgoing
integrable representation ν, then the fusion coefficients N (k)ν

λµ are defined by

λ⊗̂µ =
⊕
σ∈Pk

+

N (k)ν
λµ ν , (B.1)

where P
(k)
+ is the affine Weyl chamber of g at level k. For su(N)k, an element x ∈ P

(k)
+ is simply

a sequence of N non-negative integers [x1, . . . , xN ] with x1 + · · · + xN = k. In particular, for
N = 2 we have

P
(k)
+ = {[k, 0], [k − 1, 1], [k − 2, 2], . . . , [0, k]} . (B.2)

The fusion coefficients N (k)ν
λµ can be computed from the modular S matrix using the Verlinde

formula [Ver88],

N (k)ν
λµ =

∑
σ∈Pk

+

SλσSµσSνσ

S0σ

. (B.3)

For su(N)k, they can alternatively be computed via a combinatorial algorithm based on Young
tableaux. Roughly speaking, this proceeds in two steps,

• First, we determine the fusion coefficients N ν
λµ of the non-affine Lie algebra g. These can

be obtained by e.g. the Littlewood-Richardson algorithm [LR34].

• Next we perform the affinization. Concretely, given a specific level k, we put the non-affine
coefficients into the Kac-Walton formula [Kac90, Wal90],

N (k)ν
λµ =

∑
w∈Ŵ , w·ν∈P+

Nw·ν
λµ ϵ(w) , (B.4)

where Ŵ is the affine Weyl group of su(N)k. Later we will see that this step amounts to
doing a truncation on the tensor product coefficients of su(N) representations, and that such
a truncation always becomes trivial under the large k limit N (∞)ν

λµ = N ν
λµ.
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Ak+1 :
∑k

n=0 |χn|2 (∀ k)

D2ℓ+2 :
∑ℓ−1

n=0 |χ2n + χ4ℓ−2n|2 + 2|χ2ℓ|2 (k = 4ℓ)

D2ℓ+1 :
∑2ℓ−1

n=0 |χ2n|2 + |χ2ℓ−1|2 +
∑ℓ−2

n=0(χ2n+1χ̄4ℓ−2n−3 + c.c.) (k = 4ℓ− 2)

E6 : |χ0 + χ6|2 + |χ3 + χ7|2 + |χ4 + χ10|2 (k = 10)

E7 : |χ0 + χ16|2 + |χ4 + χ12|2 + |χ6 + χ10|0 + |χ8|2 + (χ8(χ̄2 + χ̄14) + c.c.) (k = 16)

E8 : |χ0 + χ10 + χ18 + χ28|2 + |χ6 + χ12 + χ16 + χ22|2 (k = 28)

Table 1: Modular invariants of su(2)k. For more details, see [DFMS97].

In some cases it is possible to write a closed form expression for N (k)ν
λµ , as is the case for example

for su(2)k [GW86, ZF86],

N (k)ν
λµ =

{
1 |λ− µ| ≤ ν ≤ min{λ+ µ, 2k − λ− µ} and λ+ µ+ ν = 0 mod 2

0 otherwise
(B.5)

For a general gk WZW model, the modular-invariant partition function can be written in terms
of holomorphic and anti-holomorphic characters χλ, χ̄λ′ , together with a pairing matrix M,

Z =
∑
λ,λ′

Mλλ′ χλχ̄λ′ . (B.6)

When M is the identity matrix, the modular invariant is referred to as diagonal. Whenever we
discuss a gk WZW model without specifying the partition function, we are implicitly working
with the diagonal invariant. In such cases, each characters appear exactly once, and all fields are
spinless, meaning the holomorphic and anti-holomorphic conformal dimensions are the same, i.e.
h = h̄.

It is also possible to construct WZW theories with off-diagonal modular invariants. In the case
of g = su(2) there are two infinite families of non-diagonal D-type invariants, as well as a series
of exceptional non-diagonal invariants, with corresponding partition functions given in Table 1.
As indicated there, the existence of these invariants depends on the particular value of the level k.
For example, for the su(2)4 theory, there is a single off-diagonal modular invariant, given by

Z = |χ0|2 + |χ4|2 + 2|χ2|2 + χ0χ̄4 + χ4χ̄0 . (B.7)

This corresponds to the invariant of type D4. This off-diagonal modular invariant can be re-written
as |χ0+χ4|2+2|χ2|2, with the following interpretation: under the Z2 outer-automorphism folding,
χ0 and χ4 combines into a new state, while the invariant χ2 splits into two separate states.

This behavior persists for all D2ℓ+2 type theories for k = 4ℓ. The fusion rules in these cases
are given as follows [MS89a]. First, the irreducible modules are given by ⟨n⟩ := [2n, 4ℓ −
2n] + [4ℓ − 2n, 2n] for 0 ≤ n < ℓ, which are the invariant combinations of characters under
automorphism, together with ⟨ℓ⟩±, which are the pair arising from the middle characters [2ℓ, 2ℓ]
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which are invariant under the automorphism. The fusion rules are then,

⟨n1⟩⟨n2⟩ =
max(|n1+n2|,8ℓ−|n1+n2|)∑

j=|n1−n2|

⟨j⟩ ,

⟨n⟩⟨l⟩ =
l+n∑

j=l−n, j ̸=l

⟨j⟩+ xn⟨l⟩+ + (1− xn)⟨l⟩− ,

⟨l⟩±⟨l⟩± =
l−1∑
n=0

xn+l⟨n⟩+ ⟨x±⟩ ,

⟨l⟩±⟨l⟩∓ =
l−1∑
n=0

(1− xn+l)⟨n⟩ ,

(B.8)

where xn = 1 for n odd and 0 for n even, with xn+l being understood similarly. We have also
introduced ⟨2l − n⟩ := ⟨n⟩ and ⟨l⟩ := ⟨l⟩+ + ⟨l⟩− for notational uniformity.

One way to generate diagonal invariants is to consider conformal embeddings su(2)k ⊂ gk′ ,
for which the diagonal invariants of gk′ induce non-diagonal invariants of su(2)k. For example, the
case of D4 mentioned above follows from the conformal embedding su(2)4 ⊂ su(3)1. A similar
thing can be done using the conformal embeddings su(2)10 ⊂ sp(2)1 and su(2)28 ⊂ (G2)1,
which give rise to the E6 and E8 invariants, respectively. The fusion rules of the E6 and E8

modular invariants can then be obtained by recalling that the fusion algebras of (G2)1 and sp(2)1
are Fibonacci and Ising, respectively.

B.2 Symmetries at infinite loop order
We next analyze the symmetries of the diagonal su(N)k WZW model at arbitrary loop order. As
discussed in the main text, this is given by the finite group Gr[A] = A//Com(A)∞. Let us first
show that for A = A(gk), the group Gr[A] contains the center Z(G) of G, where G is the simply-
connected group with Lie algebra g. To see this, note that the center Z(G) acts on all possible
representations of the affine Lie algebra, so a conjugate pair of representations has opposite center
charges,

c(λ) = −c(λ̄) ∈ Z(G) , (B.9)

where c(λ) is the center charge of the irreducible representation λ ∈ P k
+. Therefore, the fusion

product of λ and λ̄ has trivial center charge17

c(λ · λ̄) = 0 ∈ Z(G) (B.11)

17More generally, the triple fusion coefficients are zero for those triplets whose center charge do not sum properly:

c(λ) + c(µ) ̸= c(ν) ∈ Z(G) ⇒ N
(k)ν
λµ = 0 (B.10)
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and therefore
x ≺ λ · λ ⇒ c(x) = 0 ∈ Z(G) . (B.12)

From this it follows that
Com(A)∞ ⊂ {x | c(x) = 0 ∈ Z(G)} (B.13)

which then means that

Gr[A] = A//Com(A)∞ ⊃ A//{x | c(x) = 0 ∈ Z(G)} = Z(G) . (B.14)

In particular, this means that for su(N)k WZW models, the all-loop symmetry will at least contain
ZN . Conversely, if we are able to show that every irreducible representation with charge 0 ∈ Z(G)

appears in Com(A)∞, then we can conclude that Gr[A] = Z(G). We will do this for su(2)k below.
Incidentally, note that the conclusion (B.13) can also be understood from the statement (3.4)

quoted in the main text. There, we noted that a mathematical theorem guarantees that Gr[A]

equals the group Inv(A) of invertible objects of A. For su(N)k, it is easy to find a ZN subgroup
of Inv(A). Indeed, the irreducible representations [k, 0, . . . , 0], [0, k, . . . , 0], . . . , [0, 0, . . . , k] of
su(N)k can be checked to form a ZN subgroup, and it turns out that these elements give all the
invertible elements in the su(N)k fusion category, as shown in [Fuc91].

B.3 Conjugate pair lengths
We next study the conjugate pair length cl(A) of the fusion algebras associated to WZW models,
starting with the following result.

Proposition B.1. For any k, the fusion algebra A = A(su(2)k) for the diagonal su(2)k WZW
model satisfies

Gr[A] = Z2 and cl(A) = 1 . (B.15)

Proof. This is immediate upon noting that the full set of Z2-symmetric elements is

[k − j, j] , 0 ≤ j ≤
⌊
k

2

⌋
(B.16)

with j taking integer values, together with the fact that the non-Z2-symmetric element with j =
1
2
⌊k
2
⌋ satisfies

[k − j, j] · [k − j, j] =

⌊ k
2
⌋∑

ℓ=0

[k − ℓ, ℓ] . (B.17)

Because all of the su(2)k affine weights with center charge 0 ∈ Z2 appear in this fusion product,
the results of the previous section imply that Gr[A] = Z2. Since this occurs already at one loop,
we conclude that cl(A) = 1.

Similar statements hold for the diagonal invariants of su(3)k for arbitrary k. The proof pro-
ceeds by using the explicit form of the fusion rules in [BMW92], though we do not describe it here.

35



In the more general case of su(N)k, we have checked via explicit computation in SAGEMATH that
the following holds,

Gr[(A(su(N)k)] = ZN and cl(A(su(N)k)) = 1 for N, k ≤ 7 . (B.18)

It would be interesting to understand whether this pattern persists more generally.
Next, let us take k = 4ℓ consider the fusion algebra Dsuk given in (B.8). In this case we have

the following result,

Proposition B.2. We have

Gr[Dsuk ] = Z1 and cl(Dsu(2)k) = 1 . (B.19)

Proof. This follows immediately by considering the fusion of the self-conjugate weight [2ℓ − 2]

with itself, which by (B.8) includes all basis elements.

The cases of the E6 and E8 modular invariants are simpler than the cases discussed above,
since the fusion algebras in those cases are given simply by the Ising and Fibonacci fusion alge-
bras, respectively.

Finally, assume that k is even, and consider the Z2-even part A′
suk

⊂ A(suk) of the su(2)k
fusion algebra, given by

A′
suk

= {[k, 0], [k − 2, 2], [k − 4, 4], , . . . , [0, k]} . (B.20)

This is a subalgebra of the fusion algebra A(suk), and in fact gives a fusion subcategory of the
modular tensor category Asuk . This subcategory is not itself modular, though.18 We then have the
following results,

Proposition B.3. The Z2-even part A′
suk

⊂ A(suk) of the su(2)k fusion algebra satisfies,

Gr[A′
suk

] = Z2 and cl(A′
suk

) =

{
1 k

2
even

2 k
2
odd

. (B.21)

Proof. For k/2 even, the affine weight [k, k] is in A′
suk

. The proof then proceeds in the usual
fashion: we note that [k, k] is self-conjugate, and a short computation shows that the product
[k, k] · [k, k] contains all generators.

On the other hand, for k/2 odd, we see that a single conjugate pair can produce all weights
ranging from [2k, 0] to [2, 2k − 2], but not [0, 2k]. These cases must thus have conjugate pair
length greater than one. Proceeding to two loops, we note that

[k + 1, k − 1] , [k − 1, k + 1] ≺ [k + 1, k − 1] · [k + 1, k − 1] , (B.22)

while
[0, 2k] ≺ [k + 1, k − 1] · [k − 1, k + 1] . (B.23)

We have thus generated all basis elements at two loops, and hence cl(A′
suk

) = 2.
18It is, however, super-modular, in the sense that there is a single invertible order-2 element (a ‘fermion’) which

has trivial braiding with everything else [BGN+17]. In this case, the ‘fermion’ is the irreducible representation [0, 2k].
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Rank Algebras Non-Abelian Categorifiable cl(A) > 1 cl(A) > 1 and categorifiable
3 4 0 4 0 0
4 10 0 9 2 2
5 16 0 10 1 0
6 39 2 21 11 2
7 43 3 12 5 0

Table 2: At each rank, we list the number of distinct multiplicity-1 fusion algebras, the number
which are non-Abelian, the number which are categorifiable, the number which have cl(A) > 1

(in all cases, cl(A) = 2), and the number which both have cl(A) > 1 and are categorifiable.
There is only one case which is both non-Abelian and has cl(A) > 1, namely the Haagerup-Izumi
HI(Z3) fusion algebra at rank-6. This case is also categorifiable.

C Low-rank fusion algebras with conjugate pair length greater
than one

All of the explicit examples of hypergroups encountered in the main text have conjugate pair
length cl(A) equal to one; in other words, Com(A) = Com(A)∞. As a result, the selection rules
studied in the main text all reduce to their all-loop forms already at one-loop. It is interesting to
ask for examples of hypergroups with cl(A) > 1. In this appendix, we restrict to fusion algebras
of multiplicity 1 (i.e. those whose fusion coefficients N z

x,y are 0 or 1), whose classification can be
found for rank r ≤ 9 in e.g. [VS22], and list all examples with cl(A) > 1 for r ≤ 7. In fact, we
will see that all such examples have cl(A) = 2. Achieving higher values of cl(A) seems to require
proceeding to higher rank or multiplicity. Let us also mention that none of the examples below
can be realized by modular tensor categories [VS22]. In fact, most of them cannot be realized by
standard fusion categories either [LPR20]. We will indicate when they can be realized as such. A
brief summary of our results can be found in Table 2.

C.1 Rank 4
We begin at rank 4, where there are two multiplicity-1 fusion algebras with conjugate pair length
greater than 1 (in particular, 2). Their fusion rules are contained in the following tables, where the
element 1 represents the identity and 2, 3, 4 represent the non-trivial objects,

1 2 3 4

1 1 2 3 4

2 2 2 + 3 + 4 1 + 2 + 3 3

3 3 1 + 2 + 3 2 + 3 + 4 2

4 4 3 2 1

1 2 3 4

1 1 2 3 4

2 2 1 4 3

3 3 4 1 + 3 + 4 2 + 3 + 4

4 4 3 2 + 3 + 4 1 + 3 + 4

(C.1)
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In both cases Com(A)2 = Com(A)∞ = {1, 2, 3, 4}. The second of these fusion rules is rec-
ognized as the fusion ring for PSU(2)6, discussed previously in App. B, or equivalently for the
Haagerup-Izumi category HI(Z2). These fusion rules can be realized by a fusion category, and
also admit a braiding, but they cannot be realized by a modular tensor category. The total quantum
dimensions of both cases are D2 ≈ 13.6569.

C.2 Rank 5
At rank 5, there is only a single multiplicity-1 fusion algebra with conjugate pair length greater
than 1 (in particular, 2). Its fusion rules are given in the following table,

1 2 3 4 5

1 1 2 3 4 5

2 2 1 5 4 3

3 3 5 1 + 4 + 5 3 + 5 2 + 3 + 4

4 4 4 3 + 5 1 + 2 + 4 3 + 5

5 5 3 2 + 3 + 4 3 + 5 1 + 4 + 5

(C.2)

with Com(A)2 = Com(A)∞ = {1, 2, 3, 4, 5}. These fusion rules cannot be realized by a fusion
category. The total quantum dimension is D2 ≈ 16.6056.

C.3 Rank 6
At rank 6, there are eleven multiplicity-1 fusion algebras with conjugate pair length greater than 1
(in particular, 2). Of them, only two can be realized by fusion categories. These two sets of fusion
rules are given by the following tables,

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 1 6 5 4 3

3 3 6 1 + 5 + 6 4 + 5 + 6 3 + 4 + 5 2 + 3 + 4

4 4 5 4 + 5 + 6 1 + 3 + 4 + 5 + 6 2 + 3 + 4 + 5 + 6 3 + 4 + 5

5 5 4 3 + 4 + 5 2 + 3 + 4 + 5 + 6 1 + 3 + 4 + 5 + 6 4 + 5 + 6

6 6 3 2 + 3 + 4 3 + 4 + 5 4 + 5 + 6 1 + 5 + 6

(C.3)

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 3 1 6 4 5

3 3 1 2 5 6 4

4 4 5 6 1 + 4 + 5 + 6 2 + 4 + 5 + 6 3 + 4 + 5 + 6

5 5 6 4 3 + 4 + 5 + 6 1 + 4 + 5 + 6 2 + 4 + 5 + 6

6 6 4 5 2 + 4 + 5 + 6 3 + 4 + 5 + 6 1 + 4 + 5 + 6

(C.4)
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The first of these is the PSU(2)10 WZW model, discussed already in App. B, with total quantum
dimension D2 ≈ 44.7846. This case admits a braiding, but is not modular. The second case
corresponds to the Haagerup-Izumi HI(Z3) fusion rules, which do not admit a braiding. Unlike the
other cases described in this appendix, these fusion rules are non-Abelian. This puts it somewhat
outside of the class of fusion rules studied in the main text, though such examples could still have
some physical applications, c.f. footnote 10. The total quantum dimension is D2 ≈ 35.725.

For good measure, we also include the nine cases which cannot be realized by fusion cate-
gories, leaving it to the reader to come up with useful applications for them,

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 6 1 5 4 3

3 3 1 6 5 4 2

4 4 5 5 2 + 3 + 4 + 5 1 + 4 + 5 + 6 4

5 5 4 4 1 + 4 + 5 + 6 2 + 3 + 4 + 5 5

6 6 3 2 4 5 1

(C.5)

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 6 1 5 4 3

3 3 1 6 5 4 2

4 4 5 5 1 + 4 + 5 + 6 2 + 3 + 4 + 5 4

5 5 4 4 2 + 3 + 4 + 5 1 + 4 + 5 + 6 5

6 6 3 2 4 5 1

(C.6)

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 2 + 3 + 4 + 5 1 + 2 + 3 + 6 3 3 2

3 3 1 + 2 + 3 + 6 2 + 3 + 4 + 5 2 2 3

4 4 3 2 1 6 5

5 5 3 2 6 1 4

6 6 2 3 5 4 1

(C.7)

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 1 6 5 4 3

3 3 6 1 5 4 2

4 4 5 5 1 + 4 + 5 + 6 2 + 3 + 4 + 5 4

5 5 4 4 2 + 3 + 4 + 5 1 + 4 + 5 + 6 5

6 6 3 2 4 5 1

(C.8)
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1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 3 1 5 6 4

3 3 1 2 6 4 5

4 4 5 6 3 + 4 + 6 1 + 4 + 5 2 + 5 + 6

5 5 6 4 1 + 4 + 5 2 + 5 + 6 3 + 4 + 6

6 6 4 5 2 + 5 + 6 3 + 4 + 6 1 + 4 + 5

(C.9)

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 1 6 4 5 3

3 3 6 1 + 4 + 5 + 6 3 + 6 3 + 6 2 + 3 + 4 + 5

4 4 4 3 + 6 1 + 2 + 5 4 + 5 3 + 6

5 5 5 3 + 6 4 + 5 1 + 2 + 4 3 + 6

6 6 3 2 + 3 + 4 + 5 3 + 6 3 + 6 1 + 4 + 5 + 6

(C.10)

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 3 1 5 6 4

3 3 1 2 6 4 5

4 4 5 6 3 + 4 + 5 + 6 1 + 4 + 5 + 6 2 + 4 + 5 + 6

5 5 6 4 1 + 4 + 5 + 6 2 + 4 + 5 + 6 3 + 4 + 5 + 6

6 6 4 5 2 + 4 + 5 + 6 3 + 4 + 5 + 6 1 + 4 + 5 + 6

(C.11)

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 2 + 3 + 4 + 5 1 + 2 + 3 + 6 3 3 + 5 + 6 2 + 5 + 6

3 3 1 + 2 + 3 + 6 2 + 3 + 4 + 5 2 2 + 5 + 6 3 + 5 + 6

4 4 3 2 1 6 5

5 5 3 + 5 + 6 2 + 5 + 6 6 1 + 2 + 3 2 + 3 + 4

6 6 2 + 5 + 6 3 + 5 + 6 5 2 + 3 + 4 1 + 2 + 3

(C.12)

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 1 6 5 4 3

3 3 6 1 + 4 + 5 3 + 5 + 6 3 + 4 + 6 2 + 4 + 5

4 4 5 3 + 5 + 6 1 + 4 + 5 + 6 2 + 3 + 4 + 5 3 + 4 + 6

5 5 4 3 + 4 + 6 2 + 3 + 4 + 5 1 + 4 + 5 + 6 3 + 5 + 6

6 6 3 2 + 4 + 5 3 + 4 + 6 3 + 5 + 6 1 + 4 + 5

(C.13)

Their total quantum dimensions are D2 ≈ 18.9282, 18.9282, 18.9282, 18.9282, 20.4853, 25.5826,
35.725, 36.7792, and 36.7792, respectively. In all cases Com(A)2 = Com(A)∞ = {1, 2, 3, 4, 5, 6}.
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C.4 Rank 7
We finally discuss the case of rank 7, for which there are a total of five multiplicity-1 fusion
algebras with conjugate pair length greater than 1 (in particular, 2). Their fusion rules are as
follows,

1 2 3 4 5 6 7

1 1 2 3 4 5 6 7

2 2 7 1 6 5 4 3

3 3 1 7 6 5 4 2

4 4 6 6 1 + 5 + 6 + 7 4 + 6 2 + 3 + 4 + 5 4

5 5 5 5 4 + 6 1 + 2 + 3 + 7 4 + 6 5

6 6 4 4 2 + 3 + 4 + 5 4 + 6 1 + 5 + 6 + 7 6

7 7 3 2 4 5 6 1

(C.14)

1 2 3 4 5 6 7

1 1 2 3 4 5 6 7

2 2 1 7 6 5 4 3

3 3 7 1 6 5 4 2

4 4 6 6 1 + 5 + 6 + 7 4 + 6 2 + 3 + 4 + 5 4

5 5 5 5 4 + 6 1 + 2 + 3 + 7 4 + 6 5

6 6 4 4 2 + 3 + 4 + 5 4 + 6 1 + 5 + 6 + 7 6

7 7 3 2 4 5 6 1

(C.15)

1 2 3 4 5 6 7

1 1 2 3 4 5 6 7

2 2 1 7 6 5 4 3

3 3 7 1 + 6 + 7 5 + 7 4 + 5 + 6 3 + 5 2 + 3 + 4

4 4 6 5 + 7 1 + 4 + 6 3 + 5 + 7 2 + 4 + 6 3 + 5

5 5 5 4 + 5 + 6 3 + 5 + 7 1 + 2 + 3 + 4 + 6 + 7 3 + 5 + 7 4 + 5 + 6

6 6 4 3 + 5 2 + 4 + 6 3 + 5 + 7 1 + 4 + 6 5 + 7

7 7 3 2 + 3 + 4 3 + 5 4 + 5 + 6 5 + 7 1 + 6 + 7

(C.16)

1 2 3 4 5 6 7

1 1 2 3 4 5 6 7

2 2 1 7 6 5 4 3

3 3 7 1 + 5 + 6 + 7 4 + 6 + 7 3 + 7 3 + 4 + 6 2 + 3 + 4 + 5

4 4 6 4 + 6 + 7 1 + 3 + 5 + 7 4 + 6 2 + 3 + 5 + 7 3 + 4 + 6

5 5 5 3 + 7 4 + 6 1 + 2 + 5 4 + 6 3 + 7

6 6 4 3 + 4 + 6 2 + 3 + 5 + 7 4 + 6 1 + 3 + 5 + 7 4 + 6 + 7

7 7 3 2 + 3 + 4 + 5 3 + 4 + 6 3 + 7 4 + 6 + 7 1 + 5 + 6 + 7

(C.17)
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1 2 3 4 5 6 7

1 1 2 3 4 5 6 7

2 2 1 7 4 5 6 3

3 3 7 1 + 4 + 5 + 6 + 7 3 + 7 3 + 7 3 + 7 2 + 3 + 4 + 5 + 6

4 4 4 3 + 7 1 + 2 + 6 5 + 6 4 + 5 3 + 7

5 5 5 3 + 7 5 + 6 1 + 2 + 4 4 + 6 3 + 7

6 6 6 3 + 7 4 + 5 4 + 6 1 + 2 + 5 3 + 7

7 7 3 2 + 3 + 4 + 5 + 6 3 + 7 3 + 7 3 + 7 1 + 4 + 5 + 6 + 7

(C.18)

None of these can be realized by a fusion category. The total quantum dimensions are D2 ≈
21.1231, 21.1231, 36.9706, 42, and 34.3852, respectively. In all cases Com(A)2 = Com(A)∞ =

{1, 2, 3, 4, 5, 6, 7}.
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