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Abstract

Interference upon free expansion gives access to the relative phase between two interfering
matter waves. In 1D systems, such measurements can be used to reconstruct the spatially-
resolved relative phase, which is a key observable in many quantum simulations of quantum
field theory and non-equilibrium experiments. However, longitudinal dynamics is typically ig-
nored in the analysis of experimental data. In our work, we give a detailed account of various
effects and corrections that occur in finite temperatures due to longitudinal expansion. We
provide an analytical formula showing a correction to the readout of the relative phase due to
longitudinal expansion and mixing with the common phase. Furthermore, we numerically as-
sess the error propagation to the estimation of the gases’ physical quantities such as correlation
functions and temperature. We also incorporate systematic errors arising from experimental
imaging devices. Our work characterizes the reliability and robustness of interferometric mea-
surements, directing us to the improvement of existing phase extraction methods necessary to
observe new physical phenomena in cold-atomic quantum simulators.

Contents
1 Introduction 2
2 Free expansion dynamics of parallel 1D Bose gases 3
3 Readout phase error due to longitudinal expansion 5
4 Reconstruction of physical quantities 7
4.1 Two-point phase correlation function 9
4.2 Full distribution function 10
4.3 Velocity-velocity correlation 10
4.4 Mean occupation number & temperature 13
4.5 Gaussian and non-Gaussian correlation functions 13
5 The effect of image processing 16
6 Summary & Discussion 18
7 Acknowledgments 21



SciPost Physics Submission

References 21
Appendix A Free expansion dynamics 24
Appendix B Derivation of the transverse fit formula 25
Appendix C Corrections due to longitudinal dynamics 26
Appendix D Relative phase fitting initialization 28
Appendix E Supplementary plots 29

1 Introduction

Matter-wave interference [1] not only highlights the quantum nature of matter but also pro-
vides ultra precise sensors for metrology and serves as a sensitive probe for the intricate many
body physics of ultracold quantum gases and quantum simulators [2]. A key technique thereby
is time-of-flight (TOF) measurements, where the quantum gas expands upon being released
from the trap. If two such expanded clouds overlap, they form a matter-wave interference
pattern from which the relative phase between the trapped clouds can be extracted. If the
expansion preserves local information, properties connected to the relative local phase in the
original samples can be extracted.

This rational was extensively used in particular for 1D cold-atomic quantum field simu-
lators to study non-equilibrium dynamics [3], prethermalization [4, 5], area law scaling of
the mutual information [6], and quantum thermodynamics [7,8]. This is because the statis-
tical properties of relative phases [9] can be used to infer physical quantities of the gas such
as temperature [10], relaxation time scales [11, 12]; the nature of excitations through full
distribution functions [13, 14] and quantum tomography [15]; the quantum field theory de-
scription through correlation functions [16,17]; and the propagation of information [18,19].
In all these investigations, measuring interference in time of flight and then inferring the local
relative phase and its fluctuations and correlations is an essential tool.

In this work, we perform a focused study on the TOF measurement of two parallel 1D Bose
gases, going beyond the initial idealized reasoning in [20,21]. We systematically address a
variety of different physical phenomena that can modify the interference patterns and thereby
the extraction of the local relative phase. We assess the accuracy of the decoding, i.e. the
inference of the relative phase in the trapped clouds from the observed interference. Such a
detailed and systematic analysis of the various effects that can influence TOF measurement
becomes indispensable when pushing further the detailed analysis of low dimensional many
body quantum systems and the quantum field simulators they enable.

To reliably extract the relative phase, we need an accurate understanding of the measure-
ment dynamics. If the trap is switched off rapidly, the dynamics are well approximated by a
quench into free evolution [20,21], which leads to the gas expanding ballistically while free
falling. For 1D systems, such free expansion can be divided into expansion in the transversal
directions (perpendicular to the length of the gas) and longitudinal direction (along the length
of the gas). Although previous studies [22, 23] often neglect longitudinal expansion, recent
theoretical works have started to address its significance [21,24,25]. In particular, they unveil
new phenomena affecting the formation of interference patterns such as density ripples [20],
and mixing with common (symmetric) phases [21,24]. A natural question then arises: How
do these factors influence the relative phase extraction fidelity and the determination of gases’
physical properties? To the best of our knowledge, no systematic answer has been offered in
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Figure 1: (a) The setup schematics for relative phase measurement of parallel quasi-
one dimensional Bose gases (red) after time of flight (TOF) adapted from Ref. [26]
(b) Comparison table for the assumptions used to derive different models for TOF
density [Egs. (4)-(5)]. The ~ symbol means that the assumption can be relaxed in
general.

the literature. This paper therefore aims to comprehensively address this question.

The paper is structured as follows: after this brief introduction, we summarize the de-
velopments in modelling TOF measurement dynamics for parallel 1D systems in Sec. 2. In
Sec. 3 we develop a perturbative theory for incorporating longitudinal dynamics, and derive
analytical expressions for the systematic readout errors in the extracted phase. Sec. 4 provide
numerical analyses to assess the influence of errors on the estimation of the various physical
quantities of the gases, accounting for modelling errors (Sec. 4). We conclude with a brief
discussion and outlook in Sec. 6.

2 Free expansion dynamics of parallel 1D Bose gases

We consider a pair of parallel one-dimensional bosonic gases of length L extending along the z-
axis (longitudinal axis) and separated by a distance d along one of the transversal axes, e.g. the
x-axis [Fig. 1a]. Let ) j(z) be the bosonic annihilation operator with subscripts j = 1, 2 index-
ing the left and right well respectively. This operator can be decomposed as 1,[) i(z)= el \/ﬁ—J
with #; and qg j being the density and phase operators. In this paper, we will use the semi-
classical approximation by replacing If) j(z) with a scalar field ¥ ;(z) = e'?i®) /n i(z)+6n;(z)
where n;(z) is the mean density, and 6n;(z), ¢;(z) are density and phase fluctuations respec-
tively. The objective of 1D Bose gases interferometry is to measure the relative phase fluc-
tuation ¢_(2) = ¢,(2) — ¢1(2). This can be achieved through TOF scheme, whereby the
atomic cloud is imaged after being released and expanded for some time t. The image en-
codes information about the in-situ phase fluctuations in the resulting interference pattern of
the expanded density measured in experiments.

In the following, we assume the system to be initially in the quasi-1D regime, i.e. only
occupying the Gaussian transverse ground state wavefunction [22,27, 28]

ox (_(x +d/2)*+y?
noy(z) b 200(2)?

\Ij](xny’zao): )'l,b](Z), (1)

where the right and left wells are assumed to be symmetric with respect to the origin. The
Gaussian width ag(z) = og 4/ 1+ 2a;n;(z) depends on the scattering length a;, the mean den-
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sity n;(z), and the single-particle ground state width oy = 4/fi/(mw ) given by the atomic
mass m and the transverse harmonic confinement frequency w | . For the moment, we will ig-
nore the radial broadening due to atomic repulsion such that the width oy(2) = o is uniform
along the condensate. We discuss the effect of scattering in Sec. 6 and Appendix E.

We model TOF expansion as a ballistic expansion, without any external potential nor any
interaction (i.e. a,(t > 0) = 0). The latter is justified due to the fast decrease of interaction
energy as a result of the rapid expansion of the gas in the tightly confined transverse direc-
tions characterized by w . Thus, for t > 0 the system is effectively governed by free particle
dynamics [20,21,25]

Wi(F,z,t) = f d*F dz’ G(F—7,t)G(z —2', t) ¥;(¥,2/,0), (2)

where 7 is a short-hand notation for the position vector in the transverse plane and
G(&,t) = 4/ %e_mgz/ 2ift s the free, single-particle Green’s function. We also note that a
recent work [25] has developed a fast and efficient method to numerically evaluate Eq. (2). In
our analytical contributions, we make use of additional approximations to obtain a simplified
analytical form of the time evolution. Thus, our results are complementary to that of Ref. [25],
while paving the way for a further systematic understanding of the TOF scheme.

As the gases expand, they start to overlap and coherently interfere. We are interested in
the density image of the atomic cloud after interference as seen from the vertical direction
(y-axis), i.e.

pTOF(X,Z, t):de |\I/1(F,Z’ t_’)-‘,—\IJz(F’Z, t)lz‘ (3)

After substituting the time-evolved fields from Eq. (2) and applying the assumptions listed in
Fig. 1b, one arrives at a simplified formula for the expanded density [22, 23]

pTlOF(x,z, t) =A(z, t)e_xz/"?[l + C(2)cos (kx + ¢_(z))], 4

where o, = 04/1+ w? t2 is the expanded Gaussian width, k(t) = d/(cjw, t) = md/(ht) is
inverse fringe spacing, and A(z, t) and C(z) are interference peaks amplitudes and contrasts
respectively. In experiments, the relative phase ¢_(z) is obtained by fitting the interference
image to Eq. (4), and so we refer to it as ‘transversal fit formula’. The superscript L means
we have ignored longitudinal dynamics by substituting G(z —z’,t) ~ 6(z —2’) in Eq. (2). In
addition, the formula also assumes w t > 1 and d < o, such that the overlapping trans-
verse Gaussian can be approximated as a single Gaussian centred at the origin. Furthermore,
although they can be relaxed, we consider identical mean density n,(z) = ny(z) = ny(z) and
ignore density fluctuation 6n; 5 < ny.

This work explores the impact of longitudinal expansion on the accuracy of relative phase
extraction. In other words, we go beyond Eq. (4) by including longitudinal dynamics in our
analysis, where the final density after expansion and interference is written as [21]

2

L/2 ,
. , k _
‘ J dZ/ G(Z —Z/, t)\/ Tlo(Z/ €l¢+(z )/2 CcOS (M) , (5)

Pror(x,2,t) — Ae*/0?
—L/2 2

where ¢, (2) := ¢1(2) + ¢5(2) is the common (symmetric) phase [24, 29], typically unmea-
sured in experiments. We provide a detailed derivation of Eq. (5) in Appendix A and we
show how to recover Eq. (4) from Eq. (5) in Appendix B. The mixing with common degrees
of freedom in Eq. (5) is a new phenomenon neglected in Eq. (4). Meanwhile, longitudinal
expansion manifests itself through the Green’s function kernel which allows local correlation
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Figure 2: Comparison between three different TOF expansion models: (a) pTloF ,
(b) pror with ¢, (2) = 0, and (¢) pror With ¢, (2) # 0. Panels d - f show the
respective TOF longitudinal density nror = prOF dx. The mean insitu density
ny(2) is set to follow the Thomas-Fermi approximation in harmonic potential (inverse
parabola) with peak density 75 um™!. The other parameter values are t = 15 ms,
w, =21 x 2 kHz, L = 100 um, d = 3 um, and m is the mass of 8’Rb. These
parameters are fixed throughout the paper unless stated otherwise.

between density at z and 2z’ # z. We refer to Eq. (5) as the ‘ull expansion formula’. Unlike the
transversal fit formula, the integral form and the dependence on the common phase make it
difficult to use the full expansion formula as a fit function.

We conclude our description of these models by illustrating their differences in Fig. 2a-c,
showing a comparison between interference patterns of identical phase profiles computed with
different expansion models. Their differences are visible through the longitudinal variation of
the central peaks. They can also be seen more clearly by numerically evaluating longitudinal
density nrop(z, t) = f dx prop(x,z,t), which is directly measurable in experiments by imaging
the atoms along the x-axis [10,20,22]. The result is shown in Figs. 2d-e with the transverse
fit formula showing no density ripples [Fig. 2d], i.e. ntop(2) = ng(2), in contrast with the full
formula [Figs. 2e-f].

The density ripples imply the presence of systematic longitudinal correlations in the inter-
ference pattern induced by free expansion, which is neglected in the transversal expansion
model. Since we read out the relative phase from the interference pattern, it is natural to ask
whether this density correlation will cause a systematic correlation in the readout phase as
well, leading to a systematic error between true insitu phase and the readout phase. This error
is indeed numerically reported in Ref. [21] but with no systematic characterization of their
behaviour. We will discuss this in the next section.

3 Readout phase error due to longitudinal expansion
In experimental analysis, longitudinal dynamics are often ignored, and Eq. (4) is used to read

out the relative phase from the density interference pattern. If we relax this assumption, the
expression for the final density is given by Eq. (5), which is considerably more complicated
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Figure 3: Simple model illustrating the different contributions of relative and
common phase on the measured interference patterns in time of flight. (a) In-
put relative (solid black line) and common (dashed black line) phase profiles
¢_(2) = mcos(4nz/L) and ¢ (2) = mcos(6nz/L) together with the extracted phase
profiles ¢£OUt)(z) with t = 7 ms (blue circles) and t = 15 ms (red crosses). (b)
Phase shift induced by longitudinal expansion A¢_(z,t) = ¢_(z) — $°"9(z). The
solid lines are fitting curves based on Eq. (9). Panels c-d are repetition of a-b with
¢.(2) = 0. Numerical errors have been accounted for by subtracting the phase error
using the transversal model in both encoding and decoding. The initial mean density
profile is the same as in Fig. 2 (inverse parabola).

and no longer useful as a fitting function. Our aim in this section is to assess the modelling
error that may arise from ignoring longitudinal expansion. We do this by treating the integral
in Eq. (5) perturbatively.

We start by defining an integrand function,

10x,2', 6) = /ng(z)e#+EV/2 cos (k’f%sb—(z)) ©

so that the integral in Eq. (5) can be written as f_Lﬁz dz’ G(z —2',t)I(x,2’,t). Similar the
stationary phase approximation, the integrand’s dominant contribution will come from 2z’ ~ z.
We may then perform asymptotic expansion of the integral around that point in analogy to
Laplace’s method [30], i.e. we perform Taylor expansion of I(x,z’,t) centred around z.

We show in Appendix C that up to second-order approximation, Eq. (5) can always be
expressed in the following form

p1op(x,2, 1) ~ A (7, )™ 17O [14 (2, t) cos (kx + p_(z) — Ad_(2,1))], 7)

where A'(z,t), C'(z,t) now include corrections from longitudinal expansion. The above im-
plies that, at least up to the second order, longitudinal expansion does not change the func-
tional relationship between pror(x,2,t) and ¢_(2). This demonstrates the robustness of the
transversal fit formula; nevertheless, longitudinal expansion still influences the extracted fit
parameters. In particular, it introduces a systematic phase shift A¢_(z,t) into the readout
phase, so that

Lz, 1) = p_(2) — Ap_(z,1). (8)
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For a uniform gas, the dominant corrections for the phase A¢_(z, t) are expressed in terms of
scaled derivatives of the phases

A¢-(, )= 326 N0y b)+ 5(026 )@, )2 + 03], ©

where derivatives are taken with respect to a scaled coordinate n = z/{, with £, = y/ht/m
being the length scale of longitudinal expansion. In the standard Bogoliubov theory for 1D
gas [31], the scaled derivative of the phase with respect to a finite lattice length is considered
a small parameter. Similarly, our formula is expanded with respect to small parameters J, ¢
with £, being analogous to lattice length. The corrections to Eq. (9) are of order four or higher
in scaled phase derivatives [see Appendix C]. We also note that the form in Eq. (9) already
uses a linearization of an arctan function. When considering phase profile with high modes
fluctuation, one might need to adopt the full analytical form derived in Appendix C.

Equations (7)-(9) are the main analytical results of this paper. In particular, Eq. (9) is
useful to assess the reliability of the existing phase readout protocol. For example, it shows
that the readout error grows with a longer expansion time. This is intuitive since a longer
longitudinal expansion time would lead to a more systematic longitudinal correlation spread
along the gas. Moreover, Eq. (9) also clearly shows a dominant phase shift correction due to
mixing with the common phase, which was previously unnoticed. We also find a higher-order
correction that depends only on the derivatives of the relative phase, signifying a systematic
error purely due to the presence of longitudinal Green’s function.

We compare our analytical prediction with numerical data by encoding smooth phase pro-
files, e.g. ¢_(2) = mcos(4nz/L) and ¢, (2) = mcos(6mz/L), into density interference pattern
computed with the full expansion formula and then decode the relative phase with the trans-
verse fit formula. We find agreement between numerical data and our analytical prediction up
to finite size effects near the boundary [Fig. 3]. We also examined the fit for various other
smooth profiles and obtained similar results. Note that the numerical data does not assume
uniform density and yet Eq. (9) fits the data quite well, demonstrating the usefulness of our
formula in realistic scenarios where density varies sufficiently slowly.

4 Reconstruction of physical quantities

Ultimately, we are interested in reconstructing physical quantities associated with the gas’
initial state, which we assume to be given by a Hamiltonian of the form [20,32,33]

H=Hr(6p4, ) +Hrp(6p_, ) — Zth()J dz cos¢p_(z), (10)

where Hy;; is the Tomonaga-Luttinger liquid Hamiltonian

2
tir = [ s | @0 + e 0o . ay

While the common mode is determined by this Gaussian theory, the non-Gaussianity of the
relative degrees of freedom can be experimentally tuned via the single particle tunnelling
strength J, giving rise to the sine-Gordon model. The relevance of the cosine potential can
be characterized by ¢ = A4/l; which is directly related to the experimentally accessible co-
herence factor (cos(¢_)). The thermal coherence length A; = h?n;p/(mkyT) for uniform gas
ng = n;p and phase locking length [; = %\/ fi/mJ determine the randomization and restora-
tion of the phase due to temperature and tunnel coupling respectively. In thermal equilibrium
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Figure 4: The simulation workflow is divided into four stages, separated by the dot-
ted lines. The first stage (green boxes) represents the input to the simulation, ob-
tained by sampling relative and common phase profiles from an input state. The
next stage (blue boxes) represents TOF encoding implemented with three different
models. The last stage (red boxes) represents decoding where relative phases and
physical quantities are inferred by fitting with the transverse fit formula (4). The
goal of the simulation is to compare the input and output physical quantities.

phase correlation functions for varying g, i.e. strength of the tunnel coupling J, have been
experimentally computed up to the 10™ order [32] and found in agreement with predictions
of the sine-Gordon model.

In this section, we assess the reliability of TOF measurement for such a task, especially in
the light of possible error propagation from A¢_(z,t). We begin with investigating the recon-
struction of physical quantities associated with uncoupled Luttinger liquid (J = 0) in thermal
equilibrium in Subsecs. 4.1-4.4. We then discuss the TOF reconstruction of second-order and
fourth-order correlations of the coupled sine-Gordon theory in the Gaussian (g = 0.5) and
non-Gaussian regime (q = 3) in Subsec. 4.5. From here onwards, we mainly resort to numer-
ical simulation, where our workflow is summarized in Fig. 4. The code used to perform the
simulation is available in Ref. [34].

* Independent sampling of relative and common phase profiles. We sample many in-
stances of {¢Sn)(z)} from a many body state. In our case, the many body state would ei-
ther be a thermal Gaussian state or a non-Gaussian sine-Gordon state. The phase profiles
corresponding to thermal Gaussian state are sampled from a multivariate normal distri-
bution following a thermal covariance matrix [15], with small tunnelling J = 0.1 Hz to
renormalize the zero modes. Meanwhile, the non-Gaussian phase profiles are sampled
by a stochastic process described by an It6 equation [35, 36].

The sampled phase profiles are the input to our simulation. Using these inputs, the
ground-truth physical quantities O ({d)gn)(z)}) can be computed. Although it may con-

tain statistical fluctuations, given sufficiently many samples of the phase profiles, the
computed quantities O should closely match their theoretical values.

* Simulation of the TOF encoding of phases into density interference patterns. Given
the phase profiles, we simulate TOF by computing density after TOF (pop) using Eq.
(5) with varying expansion time t. To control for the influence of common phases, we
perform the simulation twice for every t, once with zero common phase (¢,(z) = 0)
and the second time with the sampled common phase (¢, (z) = ¢$n)(z)). In addition,
we simulate the transverse expansion model to control for numerical error in the relative
phase decoding process (explained below).

* Decoding the relative phase from interference patterns. With the obtained pqp, we
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Figure 5: The input (dashed black line) and output two-point phase correlation func-
tion Cy (2,0) for T_ = 25 nK (a-b) and T_ = 75 nK (c - d) reconstructed with 500
TOF simulations. The first (a, ¢) and second (b, d) columns are reconstructed with
7 ms and 15 ms, respectively. The blue crosses (red circles) are data from TOF sim-
ulation with ¢ (2) # 0 (¢, (2) = 0) sampled from the same thermal distribution as
the relative phase (T, = T_).

use Eq. (4) as a fitting function to extract ¢_(z). To do so, we solve a constrained opti-
mization ¢£°m) (2) € [—27, 27t] problem using the interior-point algorithm. We initialize
the optimizer by feeding a linear function ¢£O) (2) = —kx . Where X, is the transver-
sal peak position at fixed z [ Appendix D]. Due to phase multiplicity over a 27 period, we
sometimes observe phase jumps (discontinuity) in the optimization output. We elimi-
nate the discontinuity by applying a phase unwrapping protocol: adding a multiple of 27
to the phase whenever detecting a jump larger than 7 until discontinuity is eliminated.
However, this protocol is inaccurate for highly fluctuating profiles in finite resolution,
which puts a limit on the temperatures for which our method performs reliably.

After obtaining all the decoded phases data {¢E’“t)(z)}, we compute the inferred physical

quantities O({¢°“?(2)}) and compare them to the input O({¢"™(2)}) in different scenarios.
Note that in Fig. 4, there is an additional image processing stage between the encoding and
decoding process. This is the stage where the initial interference pattern gets modified due to
the experimental setup and limitations of the imaging devices. We will momentarily ignore
this stage and revisit it in Sec. 5.

4.1 Two-point phase correlation function
We first consider the two-point phase correlation function
Cy(z,2") = <cos[¢_(z)—¢_(z’)]> (12)

where (.) denotes average over realizations. This quantity can be evaluated analytically [37]
for Gaussian theory with quadratic Hamiltonian, and has been measured in experiments to
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observe light cone of thermal correlation [4] as well as recurrences [38] in parallel 1D Bose
gases. Here, we will only consider a middle cut Cy(z,0). The comparisons between input
and reconstructed Cy(z,0) for different parameters are shown in Fig. 5. We find that the
reconstruction of phase correlation function Cy is robust against systematic phase shift due
to TOE. In other words, A¢_, both with and without the common phase do not significantly
influence the reconstruction of C. This is intuitive since Cy mostly rely on the low mode and
long wavelength physics which do not get significantly influenced by A¢_.

4.2 Full distribution function

Shot-to-shot variations of the interference patterns for pairs of independently created one-
dimensional Bose condensates can reveal signatures of quantum fluctuation. In Ref. [13], they
show that a key quantity to observe quantum fluctuation in this system is the full distribution
function P(&) where

e as]

—1/2
2>’

<UZ§2 ¢ dz

with [ being a variable distance from 0 to L. We are interested in calculating the probability
distribution P(&) for different length scales [. Both theoretically and experimentally, it was
observed that for a length scale comparable to the total gas length £ ~ L, the distribution P(&)
is dominated by thermal fluctuations while for shorter lengths, P(£) provides unambiguous
signatures of quantum fluctuations [13]. This quantity is also used to study prethermalization
of 1D Bose gases after coherent splitting [26,39,40].

We compare the input and reconstructed (output) full distribution function P(&) for three
different length scales in Fig. 6. We find that except for a minor reduction in the high-contrast
probability, the qualitative features of the input and output distribution almost coincide. The
suppression of the high-contrast probability implies that, as expansion time becomes longer,
the medium contrast becomes over-represented and so it could slightly modify the skewness
of the underlying distribution. We believe this is due to additional fluctuation coming from
the systematic phase shift A¢_(z, t) which grows with expansion time. Furthermore, by com-
paring the first and second rows in Fig. 6, we also show that the common phase does not
significantly influence the full distribution function. Overall, we observe the same quantum
to thermal distribution transition as reported in Ref. [13]. Thus, longitudinal expansion and
common phase do not play significant roles here and the existing phase readout protocol can
faithfully reproduce the full distribution function function P(§).

&)= (13)

4.3 Velocity-velocity correlation

The spatial derivative of phase has a physical meaning as a velocity field u.(z) = (h/m)d,¢.(2)
in the hydrodynamics description of cold Bosonic gas. Here, we specifically look at the corre-
lation in the relative velocities

Cu(z,2") = (8,9 (28, ¢_(z") — (8,9_(2)) (0. $_(z")) - (14

If the relative velocities of the atoms at z and 2z’ are independent, then C,(z,2’) vanishes.
Any non-zero values (discounting statistical fluctuation) for this quantity reflect a correlation
in the relative velocities, i.e. if C,(z,2") > 0 the relative velocities of the atoms at z and 2’
tend to align whereas if C,(z,2") < 0 they tend to be opposite. Recently, the velocity-velocity
correlation has been measured in experiments to observe curved light cones in a cold-atomic

10
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Figure 6: Full distribution function P(&) computed with 1000 phase profiles sampled
from a thermal state with T, = 75 nK. The top (bottom) row a-c (d-f) corresponds
to the case where ¢, (2) = 0 (¢,(2) # 0). The length scales are [ = 9.8 um (a,d),
[ =25.5 um (b,e), and [ =49 um (c,f). The blue histogram is the input, red (yellow)
histogram is the reconstructed distribution from 7 ms (15 ms) full expansion.
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Figure 7: Velocity-velocity correlation C,(z,z") calculated from (a) input phase pro-
files and (b) extracted profiles with 7 ms transversal expansion (c¢) 7 ms full expan-
sion with ¢, (2) = 0 and (d) ¢ (z) # 0. Panels (e)-(f) are the same as (c)-(d) except
for t = 15 ms. Panel (a) is generated with 104 phase profiles whereas panels (b)-(f)
are generated with 500 TOF simulation. The upper bound of the color bar has been
adjusted to low values to accentuate structures in the off-diagonals. The input phase
profiles are sampled from a thermal distribution with temperatures T, = 75 nK.
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Figure 8: Thermal (T_ = 50 nK) mean occupation number {|®;|?) computed us-

ing 200 realizations of TOF measurement simulation. In panel a, k = 207/L
(~ 0.63 um™!) is fixed but expansion time is varied. In panel b, k is varied but
expansion times are fixed at different values: t = 7 ms (blue circles), t = 15 ms
(red crosses), and t = 30 ms (green triangles). The black solid lines are the ground
truths computed from the input data. To emphasize the oscillation in the intermedi-
ate mode, we only plot data points with k > 107/L ~ 0.31 um™!. The inset shows
the residue A, = <|<I>(km)|2) — (|<I>(k°m)|2). Panel ¢ shows inverse thermal coherence
length a; as a function of temperature T_. Panels d-f are the repetition of a-c but
include common phase with temperature T, = T_.

quantum field simulator [19]. We compare the input and output velocity correlation in Fig.
7. The in situ velocity correlation Clsi“)(z,z’ ) for a thermal state is not completely diagonal.
Instead, it has a weak and short-distance anti-correlation as shown by Fig. 7a.

Interestingly, we observe spatial propagation of the initial anti-correlation in the TOF model
with longitudinal expansion shown in Figs. 7c-d and Figs. 7e-f, which does not appear in the
control simulation with only transversal expansion [Fig. 7b]. We observe the length scale for
this correlation (the span of the off-diagonal) increases with a longer expansion time. Such
propagation of correlation can be physically understood in a quasi-particle picture, where
neighbouring quasi-particles with initial opposite velocity correlation will move further away
from each other as the gas expands longitudinally. We also observe alternating patterns of pos-
itive and negative correlation which indicates momentum interference in the longitudinal di-
rection [Fig. 7e]. However, this long-distance correlation and anti-correlation are randomized
when common phases are involved and only the propagation of the primary anti-correlation
persists [Fig. 7f].

This propagation is similar to what has been observed experimentally in the context of a
quench from an interacting to non-interacting pair of Luttinger liquids [19]. The difference
here is that we report the propagation of velocity correlation due to quenching into a free
Hamiltonian induced by the TOF measurement protocol. Our results point to the necessity
of calibrating the results of dynamical propagation of velocity-velocity correlation such as in
Ref. [19] to the measurement background.
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4.4 Mean occupation number & temperature

The mean Fourier spectrum {|®;|?) where &, = (1/L) f —LL/iZ ek ¢_(2) dz is another relevant
physical quantity of the gas, since it is related to the gas temperature T. In particular, it is
directly related to the temperature of the relative sector T_, which in general can be different
from the temperature of the common sector T,. For a uniform thermal state, their relation is

given by [41]
(1of2) = ol _ %1 (15)
T Rkeny, K2
where ay = 1/A; = mkzT/(h?n;p) is inverse thermal coherence length. By fitting (|®,|2)
with respect to k™2, we can obtain a; and extract the temperature of the relative phase T._.
For our simulation, we will assume the relative and common degrees of freedom are in thermal
equilibrium with respect to each other (T, = T_).

We start by comparing the input and output spectrum for a thermal state with a fixed
temperature T_ = 50 nK. We first fixed the momentum to be k = 207/L and varied the
expansion time t. In the absence of energy transfer from other sectors, the energy in phase
quadrature can not exceed its initial energy. This explains why the output spectrum appears to
be upper-bounded by its in situ values [Figs. 8a,b] when common phase is absent. However,
for high enough common phase temperature, the in-situ values do not provide an upper-bound
anymore because initial common phase fluctuation can give extra energy to the relative phase
[see Eq. (9)]. Note that in our case, energy from in situ density fluctuation is ignored.

While a perfectly faithful reconstruction of {|®;|?) should not depend on t, we find a non-
trivial oscillation of (|<1>§<°ut)|2) with respect to the expansion time attributed to longitudinal
expansion [Figs. 8a,d]. This oscillation is also visible when we plot {|®;|?) as a function
of k for different values of expansion time as shown in Figs. 8b,e. To emphasize the os-
cillation in the intermediate mode regime we have omitted the low-momentum population
k < 10m/L. The insets in Figs. 8b,e show the residue between input and output spectrum
Ap = (|<I>§<in) 1) — (|<I>§<°m)|2), which qualitatively resembles the evolution of density ripple spec-

trum [20]. As expansion time gets longer, the maximum of the residue A(kmax) = maxy(Ay)
grows and its peak location k., shifts to a lower mode.

We checked numerically that such oscillation originates from a transfer of energy from the
relative phase to relative density fluctuation during the expansion. Note that although we
ignore density fluctuation in situ, it does not prevent density fluctuation from developing as
the cloud expands. Indeed, density ripples displayed in Figs. 2e-f can be considered as the
common density fluctuation of the clouds after TOEF In contrast, relative density fluctuation, i.e.
5n§°ﬂ(z, t) = fsz[le(?,z, ) — |y, (7,2, t)|2] is not directly measurable in experiments,
but can still be computed in simulation. We found opposite oscillatory behaviour between the
spectrum of & ngoﬂ(z, t) and the lost energy in (|<I>(k°m)|2), giving strong evidence for energy
transfer between the two fields.

Finally, we check the impact of this oscillation to the reading of temperature using Eq.
(15). We perform fitting (|®;|?) = ark—2 for different values of T_ and then plot a; as a
function of T_ shown in Figs. 8c,f. We find that the oscillation due to longitudinal expansion
does not significantly affect the readout of temperatures, but the additional fluctuation from
common phase does make a difference for medium to long expansion time (t > 15 ms) and
high enough T, > 60 nK.

4.5 Gaussian and non-Gaussian correlation functions

Equal-time higher-order correlations contain detailed information about the many body state,
and can be directly calculated from the extracted phase profiles after time of flight. Computing
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Figure 9: Second-order correlation G (z,,2,) for=A;/l; =0.5 (a-¢) and g = 3
(d - f). The first column (a, d) shows the input correlation G(Z)(zl, 25), the second col-

umn (b, e) shows TOF reconstruction G( ) t)(2;1,22) with t = 15 ms and zero common
phase ¢, = 0, and the third column 1ncludes the effect of common phase sampled
from a thermal distribution with T, = 75 nK. The edge data of length 2.5 um on
each end have been omitted to suppress boundary effects.

all correlation functions is tantamount to solving a many body problem [17,22,32]. The N-th
order relative phase correlation function referenced at z = 0 is defined by

N
6™(z) = <ﬂ (¢-()— ¢_(0))> : (16)

i=1
where z = (21,2,,...,2y). In general, the correlation function can be decomposed into the
connected and disconnected part

6M(z) = 6M(z) + V(). (17)

con dis

The disconnected part can be expressed in terms of lower-order correlations while the con-
nected part contains genuine new information about N-body interactions [17,32]. The com-
putation of correlation function of order larger than two is analytically difficult, except for
special cases such as non-interacting Gaussian states, where higher-order connected correla-
tions vanish identically for N > 2.

We first compare the second order correlation G for sine-Gordon Hamiltonian in Gaus-
sian (¢ = A¢/l; = 0.5) and non-Gaussian (q = 3) regimes. The comparison is shown in Fig. 9.
We observe only small differences between input and output correlation in the small J Gaus-
sian regime of the sine-Gordon model, implying that TOF can faithfully reconstruct Gaussian
correlation. However, in non-Gaussian regimes, we observe a spread of cross-shaped strips
at the center, which can be interpreted as a correction from higher-order correlation terms
induced by systematic phase shift error.

Next, we compare the input and TOF reconstruction of fourth-order correlation function

Ggg%(zl, 29,%3,24). This quantity strictly vanishes for Gaussian states. We have checked that in
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Figure 10: Time of flight (TOF) reconstruction of connected fourth-order correlation
function Gggl)1 cut at z; = —z4 = 5.5 um (a- ¢) and 23 = —z4 = 10 um (d-f). All panels
are reconstructed with 2500 realizations of 15 ms TOF with different expansion mod-
els. The first column (a, d) involves only transversal expansion, the second column
(b, e) includes longitudinal expansion but with common phase kept at zero while the
third column (¢, f) includes both longitudinal expansion and common phase sampled
from a thermal distribution with T, = 75 nK. The edge data of length 2.5 um on
each end have been omitted to suppress boundary effects.

N

[2=Y

2y (pm)

Figure 11: Time of flight (TOF) reconstruction of disconnected fourth-order correla-
tion function Gé‘;’s) cut at z; = —z4 = 5.5 um (a-¢) and 23 = —24, = 10 um (d - f). Each
panel corresponds to the same TOF models and parameter regime as in Fig. 10.
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the Gaussian regime of ¢ = 0.5, the four-point correlation function indeed factorizes into the
products and sum of contributions coming from the two-point function (disconnected part),
barring some fluctuations due to finite statistics (see Fig. 22 in Appendix E). Here, we will
focus only on the G reconstruction of non-Gaussian states, which contains information about
four-body correlation. However, a direct comparison between input and output correlation
functions is not straightforward for higher dimensional data. For visualization, we fix a cut
at two different lengths z3 = —z, = 5.5 um and 23 = —z4 = 10 um. From Fig. 10, we find
that in both cases TOF allows a faithful reconstruction of the connected correlator. However,
the disconnected part appears to be considerably modified by TOF as shown in Fig. 11. The
effect of TOF is especially profound for short distance cut at z3 = —z4 = 5.5 um (Figs. 1la-
¢) where we find correlations which are different from insitu not only quantitatively but also
qualitatively. In this regime, the correlation is dominated by systematical deviations generated
by longitudinal expansion.

We hypothesize that this systematic is due to the movement of the atoms during longitu-
dinal expansion, i.e. the atoms at z insitu already move a distance of ~ z £ {, after time of
flight which is a physical mechanism behind the systematic phase shift error in Eq. (9). This
can also be seen from Fig. 9 where the cut 23 = —z, = 5.5 um is still located in the region
dominated by TOF systematics, i.e. the expanding cross region in the middle of Fig. 9. Con-
sequently, it introduces an extra positive correlation in the off-diagonal block and a negative
correlation in the diagonal block. When we probe longer distance cut 23 = —z4 = 10 um,
however, the input and output/reconstructed correlation appear more similar to each other
than the shorter cut, but still with a slight asymmetry between the diagonal and off-diagonal
blocks, and a discrepancy in the absolute value of the correlation.

Our results highlight the importance of considering measurement systematics from time
of flight when looking into higher order correlation data [42]. Although the connected part
of the correlation appears conserved by TOE, the disconnected part is affected. This may then
distort the overall result, i.e. measure of non-Gaussianity. However, this systematic effect is
dominant in short-length scale of ~ 5 um as compared to the typical cut in experiments of
around ~ 15 um. A shorter cut is usually not taken in experiments due to the blurring of
imaging systematics, which will be explained in the next section.

5 The effect of image processing

In the previous section, we discussed how the systematic error generated during longitudinal
expansion propagates into the measurement of the physical properties of the gas. We find that
TOF reconstruction is robust against the systematic phase shift induced by longitudinal dy-
namics for observables that mostly rely on low-energy excitations with long wavelengths. On
the other hand, for some quantities such as velocity-velocity correlation and mean occupation
number, the details of fluctuations with shorter wavelengths might matter and so we observe
some qualitative differences between the input and the reconstructed quantity.

To check if our analysis also holds in a realistic experimental setting, it is necessary to
include the effects introduced by the experimental implementation of the imaging. These in-
clude foremost the finite imaging resolution of the imaging optics, the finite pixel size and
the readout noise of the camera. In an ideal setting, the readout noise is given by the photon
shot noise of the detected light. Furthermore, it includes physical processes that occur during
imaging. For example, as the atomic cloud scatters light, it receives a momentum transfer
which can lead to diffusion of the atoms in the imaging plane. Moreover, in absorption imag-
ing, the incoming light is in the imaging direction, which may push the image out of focus. In
addition, the cloud is also falling under gravity during the exposure time. All together result
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Figure 12: Time of flight density interference image before (a-d) and after image
processing (e - h). The expansion times are 1.5 ms (a, e), 3.5 ms (b, f) 7 ms (c, g),
and 15 ms (d,h). The input relative and common phase profiles are identical to that
of Fig. 2.

in a washing out of short-distance patterns leading to an effective high-frequency cut-off in the
imaging function. For a detailed analysis of short wavelength (high momentum) physics, this
high-frequency cut-off needs to be determined with exceptional care, mostly from numerical
modelling of all the physical effects participating in the specific implementation of the mea-
surement. See Ref. [22] for a more detailed discussion of experimental imaging systematics.

In our numerical study, we take into account these effects by processing our TOF density
image as in Refs. [10,22]. Consequently, the code is fine-tuned to the parameters of the specific
experiment. For instance, the pixel size is set to be approximately 2 um, and the defocusing of
the camera is set to be 32.7 um which consists of 25 um recoil and 7.7 um due to free-falling
during 50 us exposure time. Prior analysis [22] has shown that the effective result of all the
imaging systematics is to induce an exponential momentum cutoff ~ exp(—kzagumff) where
O cutoff depends on the specifics of the experiments and system parameters. In our simulation,
the cutoff is approximately o .o ~ 2.5 pum.

The comparisons between density images before and after image processing for various
expansion times are shown in Fig. 12. For a very short expansion time (t = 1.5 ms), the fringe
spacing (A = ht/md =~ 2.3 um) is still too small to be resolved by the imaging. By t = 3.5 ms
(A ~ 5.4 um), the interference fringe is finally resolved and one can start extracting the phase
reliably, although with a significantly lower contrast as compared to the unprocessed image
(see Fig. 16 in Appendix E). After t = 3.5 ms, the qualitative differences between the density
image mostly appear in the density ripple as one can see by comparing Fig. 12g and Fig. 12h.
Furthermore, after this limit, image processing only modifies the Gaussian width of the cloud
and introduces momentum cutoff, thus effectively smoothening short wavelength fluctuations
in the extracted fit parameters (see Fig. 13).

To check the robustness of our analytical systematic phase shift formula (9), we perform the
same numerical experiment as in Sec. 3 where we encode and decode a smooth single-mode
phase profile with TOF simulation but additionally include image processing to the encoding
step. The result is shown in Fig. 17 of Appendix E. We find that the dominant correction
due to mixing with the common phase is still present even after taking into account imaging
systematics. On the contrary, the higher order correction term that arises purely due to the
Green’s function gets blurred by noise and other experimental imaging systematics. Thus, we
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Figure 13: Comparison between single-shot relative phase extraction with and with-
out image processing. Panel a (b) shows density without (with) image processing
after 15 ms time of flight. The extracted relative phase is shown in panel ¢ where
blue (red) denotes the result extracted from TOF density without (with) image pro-
cessing. The black solid line is the input relative phase and the dashed black line
is the common phase. Panels (d-f) show the other fit parameters: amplitude A(z),
contrast C(z), and width o,(z) with the blue (red) color denoting the fit parameters
extracted from TOF without (with) image processing. This figure demonstrates that
image processing only modifies the Gaussian width of the cloud and smoothens short
wavelength fluctuations in the extracted fit parameters.

expect that some features of the physical quantities that arise in the high momentum mode
due to Green’s function dynamics will also get blurred after image processing. This is indeed
what we observed in the numerical simulation for the reconstruction of physical quantities
associated with Gaussian Luttinger liquid theories. For quantities that rely on long wavelength
fluctuation such as two-point phase correlation function (4.1) and full distribution function
(4.2), TOF reconstruction is insensitive to image processing (see Figs. 18-19 in Appendix E).
On the other hand, the qualitative effects we observe in the TOF reconstruction of Fourier
modes and velocity-velocity correlation due to the dynamics of high mode get washed out after
taking into account image processing (see Figs. 20 -21 in Appendix E). Lastly, for the fourth-
order correlation in the non-Gaussian regime, we find that the slight asymmetry between the
diagonal and off-diagonal plateaus of the cut disconnected correlation is still present, although
much weaker than without image processing (see Fig. 14).

6 Summary & Discussion

In summary, we derived an analytical expression for systematic phase shift error due to lon-
gitudinal expansion, specifically due to mixing with the common degrees of freedom and the
presence of longitudinal Green’s function. We also assessed the error propagation in the re-
construction of physical quantities related to the statistics of the relative phase field. We find
that Gaussian observables and two-point correlations are well-preserved by the TOF measure-
ment since those depend mostly on low momentum phase fluctuation. However, for higher
moments and observables sensitive to high momentum fluctuation, we observe that TOF in-
troduces some deviations so they must be taken with great care.
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Figure 14: Time of flight (TOF) reconstruction of fourth-order correlation func-
tion G™(z;,25,23,24) of the sine-Gordon model in the non-Gaussian regime
(g = A¢/l; = 3) taking into account image processing. The data is cut at
23 = —2, = 11.5 um for visualization. Panels (a-c¢) show the full correlation, panels
(d - f) show the disconnected part, and panels (g - i) shows the connected part. The
first column (a, d, g) represents the case with only transversal expansion and imag-
ing, the second column (b, e, h) includes longitudinal expansion and imaging but
with common phase kept at zero and the last column (c, f, i) corresponds to the case
with longitudinal expansion, image processing, and common phase sampled from
thermal distribution with T, = 75 nK. Each panel is reconstructed from 2500 TOF
realizations with 15 ms expansion time. The edge data of length 2.5 um on each end
have been omitted to suppress boundary effects.
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For these quantities, one can then think about correcting the systematic deviation or im-
proving the measurement. To improve on the readout of these 1D quantum simulators one can
implement atom optical elements during the time of flight. Implementing a weak cylindrical
lens (harmonic potential along the longitudinal direction applied for a finite time) projects the
image to infinity and will result in transforming the time of flight measurement into a mea-
surement of longitudinal momentum [43]. Implementing a stronger cylindrical lens leads to
direct imaging of the longitudinal in-situ coordinate into the imaging plane [44]. The latter
will also allow us to enlarge the image and gain considerable improvement in longitudinal
imaging resolution, and it will solve problems caused by the longitudinal expansion and mix-
ing between common and relative degrees of freedom caused by the finite temperature of the
trapped quantum gas. Both options will be explored in detail in future work.

The analysis done in this paper is subjected to the validity of the modelling approxima-
tions [see Fig. 1]. One approximation we made was to ignore the broadening due to atomic
repulsion 03(z) = 024/1+2a;ny(z) ~ of. Relaxing this assumption makes it difficult to
obtain an analytical relation between the initial state and the final measured density due to
the non-separability of the initial state. However, assuming that the non-separability is weak,
there exists an ansatz [22] that can phenomenologically capture the most relevant features
of interference image broadened by scattering. The ansatz is to replace all o, appearing in
Eq. (4) by the broadened o(z). Note that the fringe spacing now also depends on z, i.e.
k(z,t)=d/ (Gg(z)w | t). Taking longitudinal expansion into account, we can develop a sim-
ilar ansatz to modify Eq. (5). We replace all o, with o,(2”) and propagate it with a Green’s
function. Preliminary numerical simulation with this ansatz has revealed that scattering only
affects the width of the final image, but it does not significantly affect other extracted fit pa-
rameters [Fig. 15 in Appendix E].

Furthermore, throughout this paper, we have ignored the impact of density fluctuations by
assuming 6n; , < ny which might not be accurate in higher temperatures. We will address
the effect of density fluctuation in future work. Moreover, we have assumed that the time of
flight expansion is fully ballistic. A more refined modelling would be to include the hydrody-
namic effect at the initial phase of the expansion, where interaction energy still remains in the
system. Only after interaction energy sufficiently decays, does the system follow fully ballistic
dynamics. A further direction of work will be to include the final state interaction during the
initial expansion. This will be important when studying systems in the 1D-3D cross-over when
the fast switch-off of interactions can no longer be guaranteed.

In addition to refining the model, another future direction is to extract the common phase
from TOF interference pattern. From this study, we find that information about the common
phase is imprinted on the density ripple. Density ripple has been used for thermometry in
the case of single condensate [10,20]. However, the significance of density ripple in the two
condensates case has not been explored. Developing a readout method of the common phase
from density ripple could be useful in unlocking the full potential of 1D Bose gas interference
experiments, especially in non-equilibrium. For example, it is known that the higher order
correction to the sine-Gordon model for describing tunnel-coupled 1D Bose gas involves a
coupling between relative and common phase [24,33]. Moreover, density imbalances between
atoms in the two double wells can also lead to coupling between relative and common phases,
leading to double-light cone thermalization [29]. Finally, having access to a common phase
could also allow us to simulate spin-charge transport in 1D Bose gases [29,40]. This work
serves as a fundamental starting point for further research in this direction.

In conclusion, our study underscores two significant findings. Firstly, it provides a com-
prehensive understanding of various systematics sources in local relative phase reconstruction
with time of flight measurement. Secondly, it identifies avenues and regimes for enhancing
modelling methods to achieve more accurate reconstructions. In addition, we also observe the
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potential for extracting additional information from TOF measurements [45], thus augment-
ing the measurement capabilities of cold atomic quantum simulators. These advancements
may serve to enhance future explorations of the physics of cold atomic systems.
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A Free expansion dynamics

In this Appendix, we will derive the expansion dynamics of the Bosonic fields including both
transversal and longitudinal dynamics, elucidating earlier works by Yuri, Essler, and Schmied-
mayer [21]. Let us consider the 3D time-dependent Gross-Pitaevskii equation

ih— =——V*U +V(x,y,2)¥ + g|¥|*V. (18)
at 2m

Upon free expansion, we set all trapping potential to zero V(x, y,z) = 0 and we neglect final
state interaction g = 0, so that the equation of motion is essentially that of free particles.
Then, the time evolution is given by convolution with a Green’s function

U(F,2,t)= f d?? dz G(F —7,6)G(z — 2/, t)¥ (¥, 2,0), (19)

where we have separated the transversal ¥ = (x,y) and longitudinal z components of the
evolution and that G(&,t) = v/m/2mikt exp(—m&?2/2iht) is the free, single-particle Green’s
function. Next, we substitute the initial state [Eq. (1) in the main text] and integrate over the
transverse directions, giving us the time-evolved fields

1 ( (x:l:d/2)2+y2) (im[(x:l:d/2)2+y2])
exp| — exp

\/nag(l—i—ith)z 20(1+iw,t) 2kt

x j dz’ G(z—2',t)4/ny(z’ ei®12() (20)

\I"l,Z(x: Y2, t) =
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where we have assumed w t > 1 and explicitly ignored density fluctuation 6n; 5 < n,.
We are concerned with the density after coherent superposition of the two fields as they
overlap, integrated along the vertical direction (y-axis), i.e.

pTOF(x:z: t):de |‘I’1(?,Z, t)+\112(?32’ t)lz' (21)

By substituting Eq. (20) to Eq. (21), we will obtain a transverse Gaussian envelope of width
O; = Opy/1+ a)itz. If we wait long enough such that d < o, the transverse Gaussian
envelopes can be approximated into a single Gaussian centred at the origin. Consequently, the
expression for ppop becomes relatively simple

_2 | L2 I kx +¢_(z") :
prop(x,2,t) =Ae J dz’ G(z — 2/, t)4/ng(z")e!%+C Vzcos(T_) (22)
—L/2
with A being a normalization constant, k = md/(kt) is the inverse fringe spacing,

¢=(2) = ¢5(2) F ¢1(2) are relative (-) and common (+) phases.

B Derivation of the transverse fit formula

We continue to derive the transversal fit formula [Eq. (4) in the main text] including the
effects of mean density imbalance as well as density fluctuations. This section is a restatement
of other similar derivations in the literature [21-23].

We start from the extended version of Eq. (4) in the main text, taking into account density
fluctuations and different mean densities in each well

L/2
pror(x,2,t) = Ae 1% J dz'G(z" —z, t)eid’*(zl)/z[\/nl(z’) + 61, (z')e 1#-(D/2—ikx/2
~L/2

2

+ \/nz(z’) + 5n2(z’)ei¢—(z/)/zeikx/2] (23)

Next, we ignore longitudinal dynamics by substituting G(z —z’,t) — 6(z —2’) and integrate
/
over z

2

. kx+¢—(2) . kx+¢_(2)
V(@) +on(z)e™ 7 4+ 4/ny(2)+0ny(z)e’ 2

=~ Ae ™19 [, (2) + 61, (2)][1 + C(2) cos(kx + _(2)], (24)

p”f“_OF(XJZ: t) =Ae 1

where
ny(z) =ni(z)+ny(z)  6n,(z) =6n,(2) + 6ny(2), (25)

and interference contrast C(z)

2v/(n1(2) + 8, (2))(n2(2) + 8ny(2))

Ce) = n.(2) + 6, (2)

(26)

Note that contrast is maximum C(z) = 1 when n;(z) = ny(z) and 6n;(z) = 6n,y(z) = 0. After
absorbing n, (z), 6n,(z) into the normalization constant A, we recover Eq. (4) in the main
text.
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C Corrections due to longitudinal dynamics

Here, we present a detailed derivation of the new analytical results contained in the main text
[Egs. (7) - (9)]. We start from the full expansion formula [Eq. (5) in the main text]

L/2 2
proe(x,2,t) =A(t)e™ 1 f dz'G(z —2', 0I(x,2',0)] 27)
—1/2
where
o kx + ¢_(2’
I(x,2',t) = /ng(z/)el+E)/2 cos (%(Z)) (28)

We treat longitudinal expansion perturbatively by performing Taylor expansion of I(x,z’, t)
around small Az =z'—z

A 2
10,2, t) = I(x,2,t) + Az 8,] + Tzazzl +0(az®). (29)

Substituting Eq. (29) to the integral in Eq. (27), we find that the zeroth order term will give
us the transversal expansion formula with a maximum contrast C =1

2
Prop(x,7,) M A(t)e™ /7

I(x,z, t)J G(Az,t) d(Az)

_ A(f)go(z) e

where we have extended the integration limit from [—L/2,L/2] to (—oo, o0).

Let us now compute the higher-order corrections. The first order term will vanish because
it is proportional to f _OZO(AZ G(Az, t)) d(Ag) = 0. Therefore, the next non-zero correction
will come from the second-order term,

[1+ cos (kx + ¢_(z))], (30)

N 2/o? 921 [ X 2
prop(x,2,t) A A(t)e A+ (A22G(Az, 1)) d(Az)| . (31)

—0Q0

It is easy to check that f_OZO(AzzG(Az, t))d(Az) = %t = iﬁf where we have defined
¢, = y/ht/m to be the length scale of longitudinal expansion. Substituting the integral and
defining a derivative with respect to scaled coordinate 1 = z/{,, one obtains

2, 2 1. 5 2
pror(x,2,t) ~ A(t)e™ ot + El 81)1‘ (32)
=pl (x,z t)+A(t)e—x2/a?[—1m(z*azf)+1|321|2] (33)
= Ptor\X> %, n 4'"n
= p%OF(x,z, )+ ApP +Ap® (34)

with Ap™ being the n-th order correction terms in scaled derivatives ,I which we expect to
be small [see the main text for reasoning]. L
We first focus on the leading order correction Ap(z) = —A(t)e ™"/ Im(I *3”21 ). To compute

this term, we must first compute 8ZZI = Kt_z 31721

8ZZI =T(z) cos(kx%qb_(z))—A(z)sin(kx%(b_(z)), (35)
where , 22
O O R M PR L& (36)
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and Y, () = v/ng(2)e!®+®/2, For simplicity, we will consider the case ny(z) = n;p = const.
which gives us

Ap® = —A(t)e—xz/af%[ai(m(l +cos(kx + ¢_))—8,¢_,¢, sin(kx +p_)].  (37)

Combining the above with the expression for pTLOF in Eq. (30) and using trigonometric identity
acosx + bsinx = va2 + b2 cos(x — a) with tana = b/a we can express prop as

Pror(x,2, £) M A (2, e /7 [1 + C(z, t) cos(kx + p_(z) — ApP(z, )] (38)
with A .
Az, t)= % (1 — §a§¢+) (39)
N 1, VLl ?
o (1- %aﬁmN (1 2% ¢+) ’ (23”¢‘a”¢+) 40

1
ian ¢+an ¢
1
1-502¢,
In the main text, we are also interested in cases where ¢, = 0. For such cases, the above

Aqb(_z)(z, t)= arctan( ) A %8n¢+8nqb_ . (41)

derivation implies A¢(_2) = 0 and so higher order terms need to be taken into account.

Let us now consider the Ap™ term in Eq. (32). Below, we explicitly write the form of
9711,

021 =3 (NP + INGIP) + 5 (TR — AR cos(ex + (=)

—Re(T*(2)A(2) ) sin(kx + ¢_(2)). (42)
To simplify the expressions, we again use the assumption ny = n;p = const., such that
VD ST
F(z)= Y2 @2F(n)  A(z) =22 *+E2G(p), 43)
205 0%
where F(n), G(n) are dimensionless functions
(Byd4)* +(0,9-) :
F)=87¢, —————— G(n) =i(2,¢,)(@,p)+37p_. (44
Thus, the density correction is given by,
1 272 |F|? —|G|? 2Re(F*G)
ApW = ZA()e™ /7 (P + |G [1+— kx +¢_)— ——— sin(kx + ¢_ ]
P = TeA TR 16| 1+ o costhon t ¢)— o g sinllox +6.)

(45)

Putting p”f“_OF> Ap@, and Ap™® together, one can always recast the entire expression into the
form Y

pror(x,2,t) ~ Az, t)e /% [1 + C(z,t)cos (kx +¢_(2)— A(j)_(z))] , (46)

which is one of the main analytical results of the main text [Eq. (7)]. Note that the validity
of Eq. (46) does not depend on the specific forms of A(z, t) and C(z, t). It only relies on the
fact that the correction terms are always proportional to sin(kx + ¢_) or cos(kx + ¢_) and so
it will also be valid in varying mean density cases.

In the simplest case of ny(z) = n;p and ¢, (2) =0, we find a higher order phase shift

2Re(F*G) 1 2
2625 0], =_ar“a“(s+(|F|2—|G|2)) ~g@s)(%0). @

Summing Eq. (41) with Eq. (47) gives another analytical result of the main text [Eq. (9)].
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D Relative phase fitting initialization

In this section, we show the approximate linear relationship between relative phase ¢_ and

the interference peak’s transversal position x,,,, for a fixed longitudinal position z. We use this
approximate linear relationship to provide an initial guess for the optimizer used in fitting.

For simplicity, we assume pror to be well approximated by the standard fitting formula

[Eq. (4) in the main text] with C = 1. To find the transversal peak location, we simply solve

apTLOF /0x|y—y, . =0, which gives the condition
2x
2

[1 + 05 (kg + ¢©) ] + ksin (kxpa + 9) =0, (48)
O-t

where the superscript O indicates a ’guess’ value (initial value to feed into the optimizer). Using
the half-angle formula, we obtain

KXima + ¢ KXima + ¢ KXima + ¢
cos(xa#qﬁ_) [z_zcos(xa#qb—) + ksin(xa#qﬁ_)} =0, (49)

Ot
For non-zero interference, we must have cos([ kx + qb(_o)] /2) # 0 and so to satisfy Eq. (49), the
terms inside the parenthesis have to vanish. Finally, we can solve for ¢(_0) and the result is

2wt xmax) ~ _md (50)

(&) _ _ _ -
¢°" = —kX g+ 2arctan( = witz ] - X max

where in the last approximation we have used w | t > 1 such that the arctan function changes
very slowly with x ..
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Figure 15: Single shot relative phase extraction with and without broadening due to
atomic repulsion. Panels a - b show interference pattern without (o = const.) and
with scattering-induced broadening (0(2)(2;) = US v 1+ asng(z)). Panels c-f show the
extracted fit parameters {¢_,A, C, o'} without (red) and with interaction broadening.
The black solid (dashed) line in panel c is the input relative (common) phase. From
this figure, we observe that scattering-induced broadening does not significantly im-
pact the extracted fit parameters except the width.
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Figure 16: Single shot relative phase extraction with (red) and without (blue) image
processing, similar to that of Figure 13 but for a short time-of-flight t = 3.5 ms. The
common phase is denoted by a dashed line in panel c.
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Figure 17: Simulation of analytic systematic phase shift before (blue) and after (red)
image processing for 15 ms expansion time, see Fig. 3 for comparison.
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Figure 18: Phase correlation function C ¢ with (red crosses) and without (blue cir-
cles) image processing. Each panel corresponds to the same parameter regime and
number of shots as in Fig. 5 except that the common phase is always sampled from a
thermal state with T, = T_. The statistics are obtained with the camera defocusing
set to O (ignoring recoil and free falling of the cloud during exposure), but we expect
defocusing effect to be small.
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Figure 19: Full distribution function P(&) before (blue) and after (red) image pro-
cessing reconstructed with 5000 TOF simulations. Each panel correspond to the same
parameter regime as Fig. 6 except for a fixed expansion time t = 15 ms. The statis-
tics are obtained with the camera defocusing set to O (ignoring recoil and free falling
of the cloud during exposure), but we expect defocusing effect to be small.
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Figure 20: Velocity-velocity correlation C,(z,2") without (a-b) and with (c-d) image
processing. The first column (a, ¢) corresponds to the case with ¢, (z) = 0 and the
second column (b, d) corresponds to the case with common phase sampled from the
same thermal distribution as the relative phase T, = T_ = 75 nK. After processing,
the correlation near the boundary is excluded due to artefacts from image processing.
The statistics are obtained with the camera defocusing set to 0 (ignoring recoil and
free falling of the cloud during exposure), but we expect defocusing effect to be small.
The edge data of length 5 um on each end have been omitted to suppress boundary
effects.
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%1073

(1x*)

Figure 21: TOF reconstruction of mean Fourier mode (solid black line) before (blue
circles) and after (red crosses) image processing computed with 500 TOF simulations
for T_ = 75 nK. The solid black line represents the input value(s). In panels (a)-(b),
the mode is fixed at k = 2271/L ~ 0.69 um ™! while the expansion time t is varied. In
c-d ¢ is fixed at 15 ms but k is varied. The dashed vertical line at k ~ 0.44 um ™! indi-
cates the point where deviation due to image processing is apparent. The horizontal
dashed-dot line shows the shot-noise fluctuations computed with TOF simulations of
¢_(2) = 0. The first column (a,c) is for the case with ¢, (z) = 0, the second column
(b,d) is for the case with common phase sampled from thermal state with T, = T_.
The statistics are obtained with camera defocusing set to 0 (ignoring recoil and free
falling of the cloud during exposure), but we expect the defocusing effect to be small.
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Figure 22: Time of flight (TOF) reconstruction of fourth-order correlation
function G(4)(zl,zz,z3,z4) of the sine-Gordon model in the Gaussian regime
(@ = Ar/l; = 0.5). The data is cut at 23 = —z4 = 15 um for visualization. Pan-
els (a-c) show the full correlation, panels (d - f) show the disconnected part, and
panels (g - i) shows the connected part. The first column (a, d, g) represents the
case with only transversal expansion, the second column (b, e, h) includes longi-
tudinal expansion but with common phase kept at zero and the last column (c, f,
i) corresponds to the case with longitudinal expansion and common phase sampled
from thermal distribution with T, = 75 nK. Each panel is reconstructed from 2500
TOF realizations with 15 ms expansion time. The edge data of length 2.5 um on
each end have been omitted to suppress boundary effects.
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