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Digital quantum computers promise exponential speedups in performing quantum time-evolution,
providing an opportunity to simulate quantum dynamics of complex systems in physics and chem-
istry. However, the task of extracting desired quantum properties at intermediate time steps remains
a computational bottleneck due to wavefunction collapse and no-fast-forwarding theorem. Despite
significant progress towards building a Fault-Tolerant Quantum Computer (FTQC), there is still
a need for resource-efficient quantum simulators. Here, we propose a hybrid simulator that en-
ables classical computers to leverage FTQC devices and quantum time propagators to overcome
this bottleneck, so as to efficiently simulate the quantum dynamics of large systems initialized in
an unknown superposition of a few system eigenstates. It features no optimization subroutines
and avoids barren plateau issues, while consuming fewer quantum resources compared to standard
methods when many time steps are required.

I. INTRODUCTION

Quantum computers have long been touted as the nat-
ural solution to Hamiltonian simulation. They were first
proposed by Feynman [1] to efficiently perform quantum
time evolution and offer a provable exponential speedup
over its classical counterparts [2]. Thus, Hamiltonian
simulation is widely considered to have many practical
applications in solving quantum dynamics of complex
many-body systems in physics and chemistry [3, 4].

Many simulation algorithms developed over the past
decades have relied on simulating the quantum time
propagator e−iHt/ℏ directly on digital quantum com-
puters [5–7]. Notable examples of digital simula-
tions include the Trotter product decomposition [2, 8–
13], linear combination of unitaries [14, 15], quantum
walks [16, 17], quantum signal processing [18], qubiti-
zation [19], stochastic quantum simulation [20–22] and
time-dependent quantum simulation in the interaction
picture [23–26]. Whilst time propagation of the quantum
states is an integral component to quantum dynamics,
there is also the other important yet often unspoken task
of extracting desired properties of the quantum states at
intermediate times, as shown in Fig 1a. Computational
bottlenecks in the standard method of simulating quan-
tum dynamics include the preparation of multiple copies
of the time-evolved quantum state at every time step,
due to measurement “collapse of the wavefunction” [27]
and the inability of state copies to be prepared quicker
than their simulation time due to the no-fast-forwarding
theorem [10, 28]. As a result, simulating long or rapidly
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oscillating dynamics become computationally expensive
as more intermediate time step measurements are gener-
ally needed.

Quantum time propagation algorithms assume access
to a Fault-Tolerant Quantum Computer (FTQC), which
relies on a full implementation of quantum error correc-
tion [29–32]. This allows one to simulate any quantum
system with arbitrary amounts of simulation time and er-
ror. In recent years, rapid development in quantum hard-
ware has culminated in several intermediate-scale quan-
tum error correction demonstrations using superconduct-
ing circuit [33], neutral-atom [34], trapped-ion [35] and
silicon [36] platforms. Although these demonstrations
have shown promising scaling capabilities to have more
error-corrected qubits and gates, it still remains a chal-
lenging engineering endeavor to build a FTQC [37].
Thus, it is natural to seek algorithms from the Noisy
Intermediate-Scale Quantum (NISQ) [38, 39] era for in-
spiration, owing to their frugal use of quantum resources
that aims to minimize the effects of quantum noise.

Quantum-Assisted Simulator (QAS) [40, 41] is a hybrid
quantum-classical simulation algorithm that was origi-
nally proposed to combine NISQ and classical computers
to simulate quantum dynamics of a system with a time-
independent Hamiltonian. It assumes a time-evolution
ansatz as a linear combination of basis states. Using a
classical computer, the linear coefficients are evolved via
a set of complex linear dynamical equations derived from
dynamical variational principles. Although QAS utilizes
dynamical variational principles for simulation, it does
not have any quantum variational optimization subrou-
tines [39]. This allows the circumvention of the barren
plateau problem [42, 43] as there is no need for any es-
timation of the variational landscape [40, 41]. Moreover,
it guarantees energy conservation for simulations with
time-independent Hamiltonians, that are distinct from
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most other variational quantum simulators in the litera-
ture [44–50]. The quantum computer is only used to cal-
culate basis state overlaps, the Hamiltonian elements as
defined in the dynamical equations and also the observ-
able elements expressed in the basis states. The dynam-
ical properties of the quantum state are then classically
computed using the observable elements and the time-
evolved linear coefficients. This avoids the computational
bottleneck of preparing multiple copies of time-evolved
quantum states for measurement at every intermediate
time step.

In the original QAS proposal, however, the basis states
were obtained by applying to the initial state different
single Pauli-string operators generated from the Pauli
Hamiltonian terms [40]. Despite being highly compati-
ble with NISQ devices, such basis states are often linearly
dependent and have basis set sizes that are unnecessarily
larger than the entire quantum Hilbert space in order to
ensure a good simulation fidelity [40, 51, 52]. QAS thus
becomes inefficient for any quantum or classical computer
to handle, as a result of exponential growth of the basis
set to achieve desired fidelity.

In this work, we shall show how QAS can complement
and utilize quantum time propagation algorithms imple-
mented on FTQC devices to simulate quantum dynamics
efficiently by considering time-evolved states themselves
as a basis, as shown in Fig 1b. The time-evolved basis
set size thus becomes equal to the time-evolution Hilbert
subspace, where all time-evolved states reside. Specifi-
cally, if the system is initialized in an unknown superpo-
sition of n system eigenstates, the QAS will only need
to store and evolve n linear coefficients, without need-
ing any information on the eigenvalues and eigenstates.
For a 2N -qubit quantum device, QAS is expected to con-
sume fewer quantum resources than the standard method
when the number of time steps exceeds roughly 100n2.
Therefore, if n≪2N is small, then QAS is able to perform
more efficiently in simulating large N system sizes, for a
larger number of time steps than most existing hybrid
quantum simulation algorithms. As a simple example,
we shall demonstrate QAS for simulating quantum dy-
namics for a 4-qubit Helium atom and 8-qubit Hydrogen
molecule initialized in a superposition of n=2 eigenstates.

II. BACKGROUND

A. Quantum-Assisted Simulator

We want to solve the quantum dynamics of a system,
described by a time-independent Hamiltonian Ĥ and ini-
tialized in an unknown state |ψ0⟩, for an observable Ô
at fixed times intervals ∆t up to a simulation time T .
The quantum time evolution is described by the time-
dependent Schrödinger equation,

iℏ∂t |Ψ(t)⟩ = Ĥ |Ψ(t)⟩ . (1)

QAS is a hybrid quantum-classical simulation al-

 time steps

Standard Method Quantum-Assisted Simulator

State evolution Dynamics

 basis states

Parameter Evolution Dynamics

(a) (b)

Legend:
, : Time propagation algorithm, e.g. Trotterization. 

Figure 1. (a) Standard method to simulate the quantum dy-
namics of a system of Hamiltonian Ĥ, initialized in |ψ0⟩, up
to a time T , measured by an observable Ô at fixed time inter-
vals ∆t. (b) Our proposal to use Quantum-Assisted Simulator
(QAS) to utilize quantum time propagation algorithms to ef-
ficiently simulate quantum dynamics. QAS assumes a time
evolution state |ψ(t)⟩ as a linear combination of time-evolved
states. Atomic units, ℏ=1, are assumed in this figure.

gorithm that considers a time-evolution ansatz |ψ(t)⟩
as a complex linear combination of nbasis basis states
{|ψj⟩ |j=0, 1, . . ., nbasis−1} that is,

|ψ(t)⟩ =
nbasis−1∑

j=0
αj(t) |ψj⟩ , (2)

where the initial state |ψ0⟩ is part of the basis set, so
that the initial linear coefficients can be simply written
as α(0)=(1, 0, . . . , 0), thereby avoiding expensive initial
state tomography. To ensure an accurate simulation, it
is necessary for the basis set to be linearly independent
and span the entire time-evolution Hilbert subspace – a
subset of the full quantum Hilbert space where all pos-
sible time-evolved states reside. The choice of basis and
the basis set size significantly determine the accuracy of
the time-evolution.

After the basis set is chosen, QAS then splits the time-
evolution task appropriately between a quantum and a
classical computer. The quantum computer will compute
the basis state overlaps, Hamiltonian, and observable el-
ements in the chosen basis, whilst the classical computer
stores and solves the dynamics of the complex linear co-
efficients in the ansatz in Eq. (2). The complex linear
dynamical equation can be obtained by first applying
McLachlan’s dynamical variational principle [53] which
states that the quantum time-evolution always minimizes
the square root overlap between the left and right hand
side states of the Schrödinger equation in Eq. (1). Then,
by setting the variation of the square root overlap with
respect to the linear coefficients α to zero, that is,

δα∥(iℏ∂t − Ĥ) |ψ(t)⟩ ∥ = 0, (3)

and substituting the ansatz from Eq. (2),

F α̇ = −iHα, (4)
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where the elements of the matrices F and H are the basis
state overlap and Hamiltonian matrix respectively,

Fjk = ⟨ψj |ψk⟩ , (5)
Hjk = ⟨ψj |Ĥ|ψk⟩ . (6)

We refer readers to Appendix A for detailed derivation
of parameter evolution in Eq. (4).

QAS can thus be summarized in four steps:

1. Choose a suitable basis set that includes the initial
state for the simulation.

2. Use a quantum computer to estimate basis state
overlap F in Eq. (5), Hamiltonian matrix H in
Eq. (6), and the observable matrix O, where
Ojk= ⟨ψj |Ô|ψk⟩. This can be done using a vari-
ety of quantum subroutines such as the Hadamard
Test [54] or the projective measurements-based pro-
tocol [55].

3. Use a classical computer to solve the complex dy-
namical equations in Eq. (4) using a complex ordi-
nary differential equation (ODE) solver to obtain
the dynamics of the linear coefficients αt.

4. Estimate the expectation value of observable ⟨Ô⟩
at fixed time intervals ∆t up to a simulation time
T to solve the quantum dynamics,

⟨ψ(t)|Ô|ψ(t)⟩ =
nbasis−1∑

j,k=0
α∗

j (t)Ojkαk(t). (7)

B. Minimizing Quantum-Classical Resources

The hybrid quantum-classical setup in QAS enables
certain types of simulations to run efficiently. In particu-
lar, consider a system of size N initialized in the following
unknown superposition of n non-degenerate eigenstates
of the system |ej⟩, where n is defined as the number of
eigenstates that span the time-evolution subspace of the
quantum system, and assuming n ≪ 2N ,

|ψ0⟩ =
n−1∑
j=0

βj |ej⟩ . (8)

Suppose we choose the following time-evolved states as a
basis,

|ψj⟩ = e−iĤsj |ψ0⟩ , (9)

where sj are parameter times which are not
more than the total simulation time, that is
0=s0<s1<. . .<snbasis−1≤T , using atomic units ℏ=1,
which shall be used throughout this paper. Then,
assuming linear independence of the basis, we will
only need nbasis=n time-evolved basis states that fully

span the time-evolution Hilbert subspace. The quan-
tum computer then handles these basis states with a
dimension of 2N each, whilst the classical computer
will only need to store and evolve just nbasis=n linear
coefficients. If there are fewer time-evolved basis states
than n, that is nbasis<n, the time-evolution ansatz is
under-parameterized, leading to incorrect results. On
the other hand, if the number of basis states is much
larger than n, that is nbasis>n, the ansatz becomes over-
parameterized which may lead to numerical convergence
issues. The system eigenvalues, eigenstates |ej⟩, and the
linear coefficients βj in the initial state in Eq. (8) remain
unknown to us and need not be solved.

Assuming the system Hamiltonian Ĥ and observable Ô
both decompose into a linear combination of L number
of Pauli strings P̂l= ⊗N

j=1 σ̂j where σ̂j∈{Îj , X̂j , Ŷj , Ẑj},
which may or may not share the same Pauli string, then
getting the basis state overlap F , Hamiltonian H and
observable O matrices requires the estimation of the fol-
lowing quantities

Fjk = ⟨ψ0|eiĤ∆sjk |ψ0⟩ , (10)

Pjkl = ⟨ψ0|P̂le
iĤ∆sjk |ψ0⟩ , (11)

where ∆sjk=sj−sk parameterizes the differences in the
basis states’ evolution times.

We first consider using the Hadamard Test with the
time propagator Û=e−iĤ∆t to evaluate a combined total
of O(Ln2) quantities, Fjk and Pjkl in Eqs. (10) and (11)
respectively. An ancilla-controlled-Û would have longer
a quantum runtime complexity than the standard Û , but
by no more than a constant multiple factor γ [56]. If
we now assume access to a 2N -qubit quantum computer,
we can consider a modified Hadamard test with N an-
cilla qubits [56], instead of just one ancilla qubit con-
sidered previously. We refer readers to Appendix B for
more details on the modified Hadamard Test. Controlled-
quantum gates in the controlled-Û that act on separate
sets of systems qubits can remain parallel if the gates are
controlled by separate ancilla qubits. In the worst case
scenario, since all times sj are not more than the total
simulation time T , all modified Hadamard tests have a
maximum number of T

∆t ancilla controlled-Us. The total
overall quantum runtime complexity to estimate all the
required quantities is thus O

(
T γLn2

∆t Poly(L, ϵ−1,∆t)
)

where Poly(L, ϵ−1,∆t) is the quantum runtime complex-
ity of Û and ϵ≥

∥∥∥eiĤ∆t−Û
∥∥∥ is the time evolution error.

In contrast, the standard method involves preparing
L copies of the time-evolved states and measuring each
with the corresponding Pauli strings, decomposed from
the observable, at every intermediate time step. Thus,
this requires O

(
L

(
T
∆t

)2
)

repetitions of Û . The over-
all quantum runtime complexity to run the standard
method is thus O

(
L

(
T
∆t

)2 Poly(L, ϵ−1,∆t)
)

. We there-
fore estimate that QAS will consume fewer quantum re-
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Figure 2. Atomic orbital population dynamics for the Helium
atom using the 6-31G atomic orbital basis set, initialized in an
equal superposition of the ground and highest excited state
of eigenenergies -2.87 and 0.609 Hartrees respectively. The
solid colored lines and shaded regions represents the mean and
uncertainty of the 100 independent QAS simulation samples,
each with 104 simulated shots, respectively. The true time-
evolution is denoted by the black dashed line.

sources than the standard method in terms of overall
quantum runtime complexity, when the number of time
steps exceeds T

∆t≳16γn2. By making a reasonable as-
sumption of γ≈6, based on the general observation that
a 3-qubit Toffoli gate can be decomposed into at least 6
CNOT gates [57, 58], the threshold is approximated to
be T

∆t≳100n2. We refer readers to the full derivation of
this claim in Appendix C.

After populating the necessary matrices, the complex
linear dynamical equation in Eq. (4) is solved on a
classical computer using a complex ODE solver with a
O

(
T n3

∆t

)
classical runtime complexity. Although QAS is

computationally inefficient when n∼O(2N ), it becomes
efficient when n is small, that is n≪2N , avoiding any
exponential classical runtime or memory scaling. Hence,
QAS is unsuitable for simulating the time-evolution of a
system with arbitrary state initialization, it can be useful
when simulating large systems initialized in a superposi-
tion of a low number of eigenstates n and a large number
of time steps that is more than 100n2.

III. EXAMPLES AND RESULTS

We provide two examples in the context of quantum
chemistry for a simple QAS demonstration: the orbital
population dynamics of a Helium (He) atom and a hy-
drogen (H2) molecule at an equilibrium bond distance
of 1.4 Bohr, using the 6-31G atomic basis set, initial-
ized to an equal superposition of ground and highest ex-
cited eigenstate. Both chemical systems can be described
by the following second-quantized electronic Hamiltonian

Ĥelec [59],

Ĥelec =
N∑
pq

hpqâ
†
pâq + 1

2

N∑
pqrs

hpqrsâ
†
pâ

†
qârâs, (12)

where â†
p and âp are fermionic creation and annihilation

operators respectively for the pth atomic/molecular spin-
orbital, hpq are one-electron core integrals, and hpqrs are
two-electron repulsion integrals. The orbital population
observable is the sum of spin-up and spin-down number
operators â†

↑â↑+â†
↓â↓ that act on the corresponding or-

bital.
We implemented a numerical statevector calculation

using the Jordan-Wigner (JW) fermion-to-qubit map-
ping [60], which transforms Ĥelec into a Pauli Hamilto-
nian ĤP with up to L∼O(N4) terms in general [4, 61].
Ĥelec for the He atom is mapped to a 4-qubit system with
27 terms in ĤP , and that for H2 molecule is mapped to an
8-qubit system with 185 terms in ĤP . The time-evolved
basis set consist of n=2 states: the initial state |ψ0⟩
and |ψ1⟩ =e−iĤ/2 |ψ0⟩, where we set the parameter time
s1= 1

2 . Assuming an ideal noiseless Hadamard Test with
104 simulated shots, we randomly sampled 100 sets of the
basis state overlaps F , Hamiltonian matrices H and the
orbital population observable O. Next, we solve the ODE
according to Eq. (4) for every sample pair of F and H in-
dependently up to a simulation time t=4 Hartree−1 with
a time interval of ∆t=0.001 Hartree−1. The total num-
ber of time steps in this simulation is 4000, which far ex-
ceeds the threshold of 100·22=400 time steps, placing this
QAS demonstration well into quantum resource-efficient
regime. Finally, we calculated the orbital population at
every time step for each sample run. We refer readers
to Appendix D for details on how the sampling of F , H
and O matrices was performed.

We plotted the orbital population dynamics of the He
atom and H2 molecule in Figs. 2 and 3 respectively. The
colored solid lines and shaded regions represents the pop-
ulation mean and uncertainty of the 100 independent
QAS simulation samples, respectively. The true time-
evolution is denoted by a black dashed line. In addi-
tion, we also refer readers to Appendix E for plots of the
total, coulomb, kinetic and potential energy dynamics,
which demonstrate the total energy conservation feature
of QAS. For both systems, we observe the orbital popu-
lation oscillates with a frequency of roughly 0.5 Hartree.
This is in agreement with the true frequency of -0.554
and -0.490 Hartrees, respectively. For the helium atom,
the maximum fractional population uncertainty is about
4% for the 1s and 5% for the 2s atomic orbitals. For the
hydrogen molecule, the maximum fractional population
uncertainty is about 6% for both 1σ and 2σ∗ molecular
orbitals. We also observe that the population estimation
of 1σ∗ and 2σ molecular orbitals are extremely impre-
cise due to its low orbital population. The low precision
can be improved by simply increasing number of shots,
for which we refer reader to Appendix F which details
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Figure 3. Molecular orbital population for Hydrogen molecule
using the 6-31G atomic orbital basis set, at equilibrium dis-
tance of 1.4 Bohr, initialized in an equal superposition of the
ground and highest excited state of eigenenergies -1.15 and
1.93 Hartrees, respectively. Solid colored line and shaded re-
gions represent the mean and uncertainty of the 100 indepen-
dent QAS simulation samples, each with 104 simulated shots,
respectively. The true time-evolution is denoted by the black
dashed line.

the linear relationship between the variance of the esti-
mated quantities and number of shots. In principle, if
the quantum subroutines are executed with minimal and
unbiased quantum noise, that is indistinguishable to sta-
tistical shot noise, then the QAS can accurately simulate
the quantum dynamics, though more shots are needed to
improve its precision.

IV. DISCUSSION AND OUTLOOK

We have shown that by using a linear combination of
time-evolved basis states as the evolution ansatz, QAS
can simulate the quantum dynamics of large systems
more efficiently than the standard method of prepar-
ing multiple copies of time-evolved states beyond a small
number of time steps. More precisely, if the system is ini-
tialized in an unknown superposition of n system eigen-
states, then the QAS requires fewer quantum resources
when the number of time steps exceeds 100n2, regardless
of the system size N , the number of terms in the elec-
tronic Hamiltonian or the mapped Pauli Hamiltonian,
and without any prior knowledge of the eigenstates and
eigenvalues.

While we have demonstrated how a digital FTQC de-
vices can be used by QAS to simulate quantum dynamics,
an analog quantum device may be used as well due to
its potential for practical quantum advantage in quan-
tum simulation [62]. Several possible QAS approaches
for analog quantum computation includes analog emula-
tion of digital quantum simulation [63] or Hamiltonian
learning techniques [64] to estimate elements of QAS dy-
namical equations in Eq. 4. However, such approaches
must be further refined to mitigate any additional over-
heads that negates the efficiency of QAS.

Our results have demonstrated that useful dynamical
quantities of chemical systems can be estimated fairly ac-
curately and precisely with modest amount of quantum-
classical resources and minimal heuristics. However, the
QAS performance depends heavily on the quality of the
quantum time propagation algorithm employed. As an
example, we refer readers to Appendix G where we show
how a large number of Trotter steps from the first-order
Trotterization of time-evolved basis is required to achieve
good simulation fidelity for the helium atom case. The
trade-offs between the quality of the time-evolved ba-
sis state and the overall quantum runtime complexity
must be thoroughly analyzed. Thus, an important di-
rection would be to identify and refine time propaga-
tion techniques that would minimize quantum resources
while maximizing simulation accuracy for different sys-
tem types.

Whilst QAS may seem very accurate when compared
with other simulation algorithms, there is a major caveat
that needs to be pointed out. The time-evolved basis
is often linearly dependent, making the complex dynam-
ical equation in Eq. (4) prone to ill-conditioning, thus
resulting in numerical instabilities. As the number of
eigenstates in the initial state n increases, there is an
increasing likelihood of the time-evolved basis becoming
too similar to each other as the corresponding eigenbasis
amplitudes only differ in its phase angles but not in its
magnitude, resulting in linear dependence of the basis.
The parameter times must then be chosen carefully to
avoid such an issue. In the n=2 base case, any parame-
ter time s1 ̸= 2πk

∆e , for any k∈Z and eigenvalue difference
∆e, is acceptable as it leads to a well-conditioned prob-
lem, as shown in Appendix H. For the n>2 case, however,
solving for the complete set of conditions for the param-
eter times becomes an incredibly difficult problem and
remains an open question on the best method to choose
a optimal set of parameter times. In practice, for small n,
a suitable set of parameter times is chosen heuristically
via trial and error to avoid the complexity of solving the
conditions so as to ensure an accurate and efficient sim-
ulation.

The resource analysis has suggested that if n≪2N is
kept significantly smaller than the size of the Hilbert
space, then QAS becomes a practical hybrid quantum-
classical algorithm as the classical runtime and memory
scales polynomially in n. Quantum dynamical problems
involving the dynamics of a few (unknown) eigenstates
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that may particularly benefit from QAS implementa-
tion. For example, in systems hosting quantum many-
body scars, special simple initial states termed scar states
can be expressed as a superposition of a few eigenstates
with dynamics restricted to a small subspace of the full
Hilbert space [65, 66]. More generally, one may envis-
age quantum simulation applications involving systems
whose ground state is resonantly excited by a fixed fre-
quency drive term that is briefly applied, leading to dy-
namics involving eigenstates resonantly excited by the
periodic drive term and its harmonics.

Besides applications to static systems, QAS can be
extended to systems with a time-dependent Hamilto-
nian such as light-matter interaction, and atomic and
molecular dynamics, though such tasks will likely in-
volve a quantum-classical feedback loop which updates
the Hamiltonian matrix H at every simulation time step,
which will significantly increase the computation run-
time and quantum resources. Nevertheless, to realize
such applications, an important direction would be to
develop efficient quantum state preparation algorithms
which can reliably generate interesting superpositions of
a few eigenstates.

It is expected that digital quantum computers with
dozens of error-corrected qubits and gates will be avail-
able for use in the near future. If so, the aforementioned
quantum time propagation algorithms may potentially be

demonstrated beyond trivial toy systems to small, yet in-
teresting systems. However, there is still a need for quan-
tum resource-efficient simulation algorithms even when
FTQC devices are available. Hence, QAS may thereby
achieve a “quantum-assisted advantage” in the simula-
tion of quantum dynamics, realizing a practical end-to-
end quantum solution for quantum simulation as first
envisioned by Feynman.
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Appendix A: Derivation of Parameter Evolution

We present the derivation of the parameter evolution, adapted from Bharti and Haug [40], and Yuan et al. [44]. In
the main text, we define the time-evolution state ansatz as

|ψ(t)⟩ =
nbasis−1∑

j=0
αj(t) |ψj⟩ . (A1)

The McLachlan’s variational principle [53] states that the quantum time-evolution always minimizes the square root
error overlap between the left and right hand side states of the Schrödinger equation,

δα∥(iℏ∂t − Ĥ) |ψ(t)⟩ ∥ = 0. (A2)

where error overlap ϵ,

ϵ = ∥(iℏ∂t − Ĥ) |ψ(t)⟩ ∥2 (A3)
= [(iℏ∂t − Ĥ) |ψ(t)⟩]†[(iℏ∂t − Ĥ) |ψ(t)⟩] (A4)

=


nbasis−1∑

j,k=0
[∂α∗

j
⟨ψ(t)|][∂αk

|ψ(t)⟩]α̇∗
j α̇k

 + i


nbasis−1∑

j=0
[∂α∗

j
⟨ψ(t)|]Ĥ |ψ(t)⟩ α̇∗

j


−i

{
nbasis−1∑

k=0
⟨ψ(t)| Ĥ[∂αk

|ψ(t)⟩]α̇k

}
+ ⟨ψ(t)| Ĥ2 |ψ(t)⟩ . (A5)

Since,

∂αj
|ψ(t)⟩ = |ψj⟩ , (A6)

the error overlap ϵ in Eq. (A5) simplifies to

ϵ =


nbasis−1∑

j,k=0
⟨ψj |ψk⟩ α̇∗

j α̇k

 + i


nbasis−1∑

j=0
⟨ψj | Ĥ |ψ(t)⟩ α̇∗

j


−i

{
nbasis−1∑

k=0
⟨ψ(t)| Ĥ |ψk⟩ α̇k

}
+ ⟨ψ(t)| Ĥ2 |ψ(t)⟩ (A7)

= α̇†F α̇ − iα̇†Hα + iα†Hα̇ + α†(H2)α, (A8)

where have used the following matrices

Fjk = ⟨ψj |ψk⟩ , (A9)
Hjk = ⟨ψj | Ĥ |ψk⟩ , (A10)

(H2)jk = ⟨ψj | Ĥ2 |ψk⟩ . (A11)

As the variation of the square root error overlap is equivalent to the variation of the error overlap up to a constant
factor, we may focus on variation of the error overlap instead, then we have

δαk
ϵ =

nbasis−1∑
j=0

[∂α∗
j

⟨ψ(t)|][∂αk
|ψ(t)⟩]α̇j + i[∂αk

|ψ(t)⟩]Ĥ |ψ(t)⟩

 δα̇∗
k

+

nbasis−1∑
j=0

[∂α∗
j

⟨ψ(t)|][∂αk
|ψ(t)⟩]α̇∗

j − i[∂αk
|ψ(t)⟩]Ĥ |ψ(t)⟩

 δα̇k (A12)

= (F α̇ + iHα)δα̇∗
k + (F α̇∗ − iHα)δα̇k. (A13)

Thus, the parameter evolution is

F α̇ = −iHα, (A14)

which minimizes the error overlap ϵ in Eq.(A8) throughout the entire evolution,

ϵmin = α†(H2)α − α̇†F α̇. (A15)
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Appendix B: Modified Hadamard Test

The standard Hadamard Test estimates the real and imaginary components of ⟨ψ| Û |ψ⟩ using an ancilla qubit and
an N -system-qubit unitary Û gate controlled by the ancilla qubit. This creates a problem: parallel gates in the gate
decomposition of Û must be serialized when gate control by the ancilla qubit is applied. We shall show that this
problem can be solved using more ancilla qubits. As a simple example, let Û=Û1⊗Û2 where Û1 and Û2 act on two
separate sets of system qubits. Then, we may consider the following modified Hadamard Test that uses two ancilla
qubits, as shown in Fig. 4.

|0⟩ H Sb† H

|0⟩

|ψ⟩
U1

U2

Figure 4. Modified Hadamard Test with two ancilla qubits initialized in |0⟩ and two sets of system qubits initialized in |ψ⟩.

The first three quantum gates on the left of the modified Hadamard test circuit in Fig. 4 generate an ancilla Bell state
|00⟩ + |11⟩ if b=0 or |00⟩ −i |11⟩ if b=1, where we drop state normalization to reduce verbosity. Next, Û1 controlled by
the top ancilla qubit and Û2 controlled by the bottom ancilla qubit are applied to prepare |00⟩ |ψ⟩ + |11⟩ Û |ψ⟩ if b=0
or |00⟩ |ψ⟩ −i |11⟩ Û |ψ⟩ if b=1. Then, the inverse of operator that generates the ancilla Bell state, without any phase
gates S, is applied. Finally, the top ancilla qubit is measured in the Pauli-Z basis. The Pauli-Z expectation value ⟨Z⟩
will give the real and imaginary components of ⟨ψ| Û |ψ⟩ for b=0 and 1 respectively. To maximize gate parallelism,
it is sufficient to have N ancilla qubits. Doing so will require one to prepare a N -qubit ancilla GHZ state that is
|0 · · · 0⟩ + |1 · · · 1⟩ if b=0 or |0 · · · 0⟩ −i |1 · · · 1⟩ if b=1, instead of an ancilla Bell state.

Appendix C: Quantum Resource-Efficient Regime

Here we shall compare the total quantum runtime complexity between the standard method and the Quantum-
Assisted Simulator (QAS) and derive a condition that QAS has to fulfill in order to be more quantum resource-efficient
than standard methods. We are given the problem of solving the quantum dynamics of a system of qubit size N ,
described by a time-independent Hamiltonian Ĥ, initialized in an unknown state |ψ0⟩, measured by an observable Ô
at fixed time intervals ∆t up to a simulation time T .

We assume the system Hamiltonian Ĥ and observable Ô both decompose into a linear combination of L Pauli
strings P̂l= ⊗N

j=1 σ̂j , where σ̂j∈{Îj , X̂j , Ŷj , Ẑj}, which may or may not share the same Pauli string. The quantum
runtime complexity of existing quantum algorithms that simulates the e−iĤ∆t time propagator up to a time evolution
error ϵ≥

∥∥∥eiĤ∆t−Û
∥∥∥ are upper bounded by O(PolyÛ (L, ϵ−1,∆t)) as shown in Table I. Thus, performing the time

evolution for a simulation time of j∆t, where j∈Z is a non-negative integer, incurs a quantum runtime complexity of
j · O(PolyÛ (L, ϵ−1,∆t)) from applying the e−iĤ∆t time propagator j times on the initial state.

Due to wavefunction collapse and no-fast-forwarding theorem, the standard method involves preparing L copies of
time-evolved states at times {j∆t|j=0, 1, . . . , T

∆t } for Pauli measurements. Since, in the main text, we assume that
QAS have access to a 2N -qubit quantum computer, we may parallelize the the standard method by running two
independent time-evolution at a time, reducing the overall runtime by a factor of 2. Therefore, the overall quantum
runtime complexity of the standard method is

1
2 · L ·

T/∆t∑
j=0

[
j · O(PolyÛ (L, ϵ−1,∆t))

]
= 1

4
T

∆t

(
T

∆t + 1
)

· L · O(PolyÛ (L, ϵ−1,∆t)) (C1)
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Algorithms Simulating e−iĤt Quantum runtime complexity

1st Order Trotter [2, 8, 9] O
[
L3(t∥Ĥ∥max)2/ϵ

]
2nd Order Trotter [2, 8, 9] O

[
L

5
2 (t∥Ĥ∥max)

3
2 /ϵ

1
2
]

2kth Order Trotter [2, 10] O
[
52kL(Lt∥Ĥ∥max)1+ 1

2k /ϵ
1

2k

]
Qubitization [19] O [tλ+ log(1/ϵ)/ log log(1/ϵ)]

Linear Combination of Unitaries [15] O [tλ log(tλ/ϵ)/ log log(tλ/ϵ)]

Quantum Signal Processing [18] O
[
t∥Ĥ∥max + log(1/ϵ)/ log log(1/ϵ)

]
Stochastic Simulation (QDRIFT) [21] O

[
(tλ)2/ϵ

]
Table I. The quantum runtime or gate complexity of various quantum algorithms simulating e−iĤt time propagator, that are
upper bounded by O(PolyÛ (L, ϵ−1, t)), for a time-independent Hamiltonian Ĥ and up to a simulation time t [6]. Here ∥Ĥ∥max

is the largest absolute element of Ĥ and λ=
∑

l
pl is the sum of all Pauli coefficients of the Pauli-form of Hamiltonian Ĥ.

For the QAS, the quantum computer is used only for estimating the real and imaginary components of the overlap
F , Hamiltonian H, and observable O matrices, as shown in the main text section II A. We choose n time-evolved
states |ψj⟩ = e−iĤsj |ψ0⟩ as basis, where j={0, 1 . . . , n−1} and parameter times 0=s0<s1<. . .<sn−1≤T are not
longer than the total simulation time. As a result, the aforementioned matrix elements consist of the quantities
Fjk= ⟨ψ0|eiĤ∆sjk |ψ0⟩ and Pjkl= ⟨ψ0|P̂le

iĤ∆sjk |ψ0⟩ where k={0, 1, . . . , n−1}, ∆sjk=sj−sk are the parameter time
differences and l={0, 1, . . . , 2L}. In total, there are n2+2Ln2=O(Ln2) such quantities combined. We consider using
the modified Hadamard test from Appendix B to estimate them. It requires a controlled-e−iĤ∆t time propagator that
has a longer quantum runtime complexity than a standard e−iĤ∆t time propagator by at most a constant factor of
γ. Thus, the overall quantum runtime complexity of the QAS is

2 · 2 · L ·
n−1∑

j,k=0

[
∆sjk

∆t · γO(PolyÛ (L, ϵ−1,∆t))
]
< 4γn2 · T∆t · L · O(PolyÛ (L, ϵ−1,∆t)) (C2)

where we used the inequality
∑n−1

j,k=0 ∆sjk<Tn
2. Comparing the runtime complexities Eqs. (C1) and (C2), we

obtain the following condition for the QAS to be more resource-efficient,

T

∆t ≳ 16γn2 − 1. (C3)

By the observation that a 3-qubit Toffoli gate can be decomposed into 6 CNOT gates, we made a reasonable assumption
that γ≈6. Thus,

T

∆t ≳ 100n2 ≳ 16 · 6 · n2 − 1. (C4)
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Appendix D: Sampling Basis State Overlaps, Hamiltonian and Observable Elements.

Here we consider using the standard Hadamard Test to estimate the real and imaginary components of the overlap
F , Hamiltonian H and observable O matrices using an ancilla qubit, for ease of presentation. The aforemen-
tioned matrix elements consist of the following quantities: Fjk= ⟨ψ0|eiĤ∆sjk |ψ0⟩ and Pjkl= ⟨ψ0|P̂le

iĤ∆sjk |ψ0⟩, where
j={0, 1 . . . , n−1}, k={0, 1, . . . , n−1}, l={0, 1, . . . , 2L}, n is the number of basis states, ∆sjk=sj−sk are the time
differences, L is the maximum number of Pauli elements in the Hamiltonian Ĥ or the observable Ô operators,
0=s0<s1<. . .<sn−1≤T are the time parameters. Both Fjk and Pjkl can be estimated using the Hadamard Test
shown in Fig. 5.

The real and imaginary component of the quantities can be estimated by the Pauli-Z expectation value of the
ancilla qubit ⟨Z⟩ for b=0 and b=1 respectively. Assuming noiseless quantum circuits and measurements, the Ns-shots
measurement statistics of the ancilla qubit can be treated as a normal distribution with its mean equal to the Pauli-Z
expectation value of the ancilla qubit ⟨Z⟩ and its variance Var(Ẑ) =

√
1−⟨Ẑ⟩2

Ns
. Thus, a sample set of the matrices are

obtained by sampling the corresponding normal distributions once for each real and an another for each imaginary
components of the corresponding quantities respectively.

(a)

(b)

Figure 5. Hadamard test for estimating the real (b=0) and imaginary components (b=1) of (a) Fjk and (b) Pjkl quantities.
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Appendix E: Energy Dynamics of Helium Atom and Hydrogen Molecule

We plot the energy dynamics of the He atom and H2 molecule, initialized in an equal superposition of its ground and
highest excited state, in Figs. 6 and 7, respectively. The solid colored line and shaded regions represent the mean and
uncertainty, respectively, of 100 independent QAS simulation samples, each with 104 simulated shots. The true time-
evolution is denoted by the black dashed line. The top left plots of both figures show the total energy which represents
the expectation value of the electronic Hamiltonian of the He atom and H2 molecule correspondingly. The top right
plots show the Coulomb energy which represents the sum of all interaction energy between two electrons due to
Coulomb repulsion. The bottom left plots show the kinetic energy, that is the sum of all one-electron kinetic energies.
The bottom right plots show the potential energy which represents the sum of all one-electron potential energy of
electrons due to nuclear attraction. For both systems, we observe that the total energy is conserved throughout the
entire simulation time, with a fractional energy uncertainty of about 0.8% and 4% for He atom and H2 molecule case
respectively. For the Coulomb energy, the fractional energy uncertainty of about 6% and 13% for He atom and H2
molecule case, respectively. For the kinetic energy, the fractional energy uncertainty of about 3% and 5% for He atom
and H2 molecule case, respectively. For the potential energy, the fractional energy uncertainty of about 0.5% and 2%
for He atom and H2 molecule case, respectively. Despite the seemingly-good accuracy and reasonable precision, some
energy oscillations cannot be precisely determined, especially the potential energy plots for both cases. This is due
to the energy magnitude being larger than the energy oscillating amplitude. A larger number of shots is required to
improve the precision of measuring energy oscillating amplitude.
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Figure 6. Energy dynamics for Helium Atom, using the 6-31G basis set, initialized in an equal superposition of the ground and
highest excited state of eigenenergies -2.87 and 0.609 Hartrees, respectively.
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Figure 7. Energy dynamics for Hydrogen molecule, using the 6-31G basis set, at equilibrium distance of 1.4 Bohr, initialized
in an equal superposition of the ground and highest excited state of eigenenergies -1.15 and 1.93 Hartrees, respectively.
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Appendix F: Variance of Observed Quantities against Number of Shots

We plot the variance of the orbital population and energy against a range of shots between 103 to 1010 per real
and per imaginary evaluation of basis state overlap and Hamiltonian element, for the He atom in Figs. 8 and 9,
respectively, and for the H2 molecule in Figs. 10 and 11. All plots show that the variance is directly proportional to
the number of shots, as expected for shot noise.

1. Helium Atom Case
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Figure 8. Atomic orbital population variance for 100 independent QAS samples runs for Helium Atom, using the 6-31G basis
set.
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Figure 9. Energy variance for 100 independent QAS samples runs for Helium Atom, using the 6-31G basis set.
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2. Hydrogen Molecule Case
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Figure 10. Molecular orbital population variance for 100 independent QAS samples runs for Hydrogen molecule, using the
6-31G basis set.
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Figure 11. Energy variance for 100 independent QAS samples runs for Hydrogen molecule, using the 6-31G basis set.
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Appendix G: First Order Trotterized Time-Evolved Basis States

We applied first order Trotterization on the basis |ψ1⟩ =e−iĤ/2 |ψ0⟩ and repeated the QAS simulation. We plotted
the state infidelity of the Helium atom problem for a simulation time of t=4 Hartree−1 against a range of Trotter
steps up to 104 steps and a range of shots between 104 and 1010. The results show that state infidelity improves
at larger Trotter steps, but quickly plateaus beyond a finite number of steps as the shot noise becomes the limiting
factor.
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Figure 12. State Infidelity after a simulation time of t=4 Hartree−1 as a function of the number of first-order Trotter steps
implemented per time-evolved basis state, ranging from 1 to 104 steps, at various number of shots ranging from 104 to 1010

shots per real and per imaginary evaluation of basis state overlap and Hamiltonian element.

Appendix H: Linear Dependence of the Time-Evolved Basis

The time-evolved basis is linearly independent if and only if the basis state overlap F is invertible. As basis overlap
is defined using the L2-inner product, F is also semi-positive definite, that is all of the eigenvalues of F is either zero
or positive real-valued. Using the above properties of the basis state overlap, we shall show that for n=2 basis set
size, the basis linear independence condition for parameter time s1 can be derived. Consider having n=2 time-evolved
basis, then basis state overlap is

F =

⟨ψ0|ψ0⟩ ⟨ψ0|ψ1⟩

⟨ψ1|ψ0⟩ ⟨ψ1|ψ1⟩

 . (H1)

As the basis states are normalized, that is ⟨ψ0|ψ0⟩ = ⟨ψ1|ψ1⟩ =1 and the F is a 2-by-2 matrix, we can impose the
constraint that det(F )>0, to ensure that F is both invertible and semi-positive definite, that is

1 − | ⟨ψ1|ψ0⟩ |2 > 0. (H2)
Suppose the initial state |ψ0⟩ is a superposition of n=2 eigenstates corresponding eigenvalues e0 and e1, that is

|ψ0⟩ =β0 |e0⟩ +β1 |e1⟩, where |β0|2+|β1|2=1. Also, let the other basis be |ψ1⟩ =e−iHs1 |ψ0⟩, then the inequality above
in Eq. (H2) can be evaluated to

|β0|4 + |β1|4 + 2|β0|2|β1|2 cos[s1(e1 − e0)] < 1, (H3)
which simplifies to

s1 ̸= 2kπ
e1 − e0

, k ∈ Z. (H4)
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