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Abstract

We introduce the code kolya, an open-source tool for phenomenological analyses of inclusive
semileptonic B meson decays. It contains a library to compute predictions for the total rate
and various kinematic moments within the framework of the heavy quark expansion, utilizing
the so-called kinetic scheme. The library currently includes power corrections up to 1/m5

b
. All

available QCD perturbative corrections are implemented via interpolation grids for fast numeri-
cal evaluation. We also include effects from new physics parameterised as Wilson coefficients of
dimension-six operators in the weak effective theory below the electroweak scale. The library
is interfaced to CRunDec for easy evaluation of the quark masses and strong coupling constant
at different renormalization scales. The library is developed in Python and does not require
compilation. It can be used in an interactive Jupyter notebook session.
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1 Introduction

Measurements of semileptonic B decays lie at the core of the Belle II and LHCb physics program in
the upcoming years. Thanks to relatively large rates and clean experimental signatures, inclusive and
exclusive semileptonic decays with a b→ clν̄l transition (ℓ = e,µ) offer a clean avenue for the deter-
minations of |Vcb|, the element of the Cabibbo-Kobayashi-Maskawa matrix (CKM) which parameterizes
the strength of the weak interaction among bottom and charm quarks in the Standard Model of particle
physics.

Inclusive determinations of |Vcb| exploit that the semileptonic rate Γsl and moments of kinematic
spectra can be described with good precision using the heavy quark expansion (HQE) [1–3]. In the
HQE, these observables are expressed as a series of non-perturbative HQE elements proportional to
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increasing powers of the inverse bottom quark mass times the QCD scale parameter, ΛQCD/mb. In
addition, each order in the HQE also receives corrections expressed as a series expansion in the strong
coupling constant, αs, which can be systematically calculated in perturbative QCD.

This paper documents the first release of the open-source code kolya [4]. It consists of a Python
library which computes the prediction for the total rate and lepton-energy, hadronic invariant mass and
dilepton invariant mass kinematic moments within the framework of the HQE utilizing the so-called
kinetic scheme [5–8]. The kolya code supersedes and extends the code developed for the fit of q2

moments [9] measured by Belle [10] and Belle II [11]. We also include effects from new physics (NP)
studied in Ref. [12]. These are parameterised as Wilson coefficients of dimension-six operators in the
weak effective theory below the electroweak scale [13, 14].

Several building blocks necessary for the prediction of Γsl and the moments to high orders in αs
and the 1/mb expansion have been presented over the last 30 years (see Sec. 3.2 for an exhaustive list
of references). The kolya library provides the first comprehensive open-source framework in which
all available corrections are implemented and validated. A schematic overview of the perturbative
corrections implemented for the total rate and the moments is given in Tab. 1. This document accom-
panies the first release of kolya and details the specifics of the code. Although this paper represents a
reference for future analyses of Belle II measurements of inclusive B→ X c lν̄l decays and gives a first
outlook of kolya with basic examples to try in a Jupyter notebook, it is not meant to be a review article
on semileptonic decays. To obtain a deeper understanding of the scientific part, the user is referred to
e.g. Refs. [15–17]. The software kolya complements in scope several other open-source packages in
HEP, in particular flavio [18], EOS [19], HEPfit [20], HAMMER [21] and SuperIso [22].

This article is structured as follows. In Sec. 2, we present the definitions of observables. Their
implementation in the code is discussed in Sec. 3 where we discuss various ingredients implemented
and quote the original references from which the material was obtained. The definition of the effective
Hamiltonian parametrizing NP effects is given in Sec. 4. Section 5 focuses on basic usage of the code,
illustrating the installation, the classes implemented in the code, use of the code for calculating Γsl
and the moments together with details about our validation of the code. We close in Sec. 6 with an
outlook.

2 Definitions

We focus on the the inclusive semileptonic decay of a B meson,

B(pB)→ X c(pX ) l(pl) ν̄l(pν) with l = e,µ, (1)

in its rest frame where pB = (MB, 0⃗). We assume that the charged lepton and the neutrino are massless.
Let q = pl + pν be the sum of the neutrino and the charged lepton momenta. pX = pB − q is the total
momentum of the hadronic system X c . The energy of e or µ in the rest frame of the B meson is El .

In the HQE framework, predictions can be made for various differential rates with respect to the
total leptonic energy q0 = El + Eν, the charged lepton’s energy El and q2. However, these predictions
cannot be directly compared to data on a point-by-point basis, as the phase space region allowed at the
parton level is smaller than the physical one. Moreover, close to the endpoint, the 1/mb-suppressed
terms contain singularities. Consequently, the inclusive process B→ X c lν̄l must be compared to theo-
retical predictions of integrated quantities, such as the total rate

Γsl =

∫

d3Γ

dq2 dq0 dEl
dq2 dq0 dEl , (2)
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or partial decay rate with a lower cut on q2 or El :

∆Γsl(q
2
cut) =

∫

q2≥q2
cut

dΓ
dq2

dq2 , ∆Γsl(Ecut) =

∫

El≥Ecut

dΓ
dEl

dEl . (3)

The moments of normalized differential distributions can be also calculated in the framework of the
HQE. They are defined by

〈(O)n〉cut =

∫

cut

(O)n
dΓ
dO

dO

�∫

cut

dΓ
dO

dO , (4)

where O strands for El , q2 or M2
X , and dΓ/dO is the spectrum for the observable O. The term “cut” in the

integrals refers to a selection threshold on q2 or on El . Theoretically, the dependence of the moments
on such a lower cut offers additional insights into the HQE parameters, improving their extraction in
the global fits. Experimentally, the full spectrum is often not measurable due to detector acceptance.
For instance, at the B-factories electrons are selected with El ≥ Ecut and Ecut ≃ 0.5 GeV to suppress the
background.

Starting from n= 2, one normally compares data for centralized moments. For the charged lepton
energy spectrum, the centralized moments are

ℓ1(Ecut) = 〈El〉El≥Ecut
, ℓn(Ecut) =

¬

(El − 〈El〉)n
¶

El≥Ecut
for n≥ 2. (5)

For the hadronic invariant mass spectrum, they are given by

h1(Ecut) = 〈M2
X 〉El≥Ecut

, hn(Ecut) =
¬

(M2
X − 〈M

2
X 〉)

n
¶

El≥Ecut
for n≥ 2 . (6)

The first moment is the mean value of the differential distribution over the considered range and the
second moment is its variance. Higher moments, e.g. n= 3 and n= 4, are also measured. In addition,
the measurement of the q2 moments, defined by

q1(q
2
cut) = 〈q

2〉q2≥q2
cut

, qn(q
2
cut) =

¬

(q2 − 〈q2〉)n
¶

q2≥q2
cut

for n≥ 2 . (7)

was suggested in Ref. [23]. It was shown that q2 moments are invariant under reparametrization
and therefore depending on a reduced set of HQE parameters (which we will introduce in Sec. 3),
like the total rate (see Refs. [23, 24]). The definition of the q2 moments do not incorporate a the
cut El > Ecut since it would break reparametrization invariance (RPI). In order to preserve RPI, the
selection q2 > q2

cut was proposed. This also implies an indirect constraint on the energy of the charged
lepton through

El ≥
M2

B + q2
cut −M2

D −λ
1/2(M2

B , q2
cut, M2

D)

2MB
, (8)

where λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc is the Källén function. Therefore, a cut on q2 can
effectively exclude low-energy electrons in the experimental analysis, just as a cut on El would.
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3 Implementation in the SM

3.1 Building blocks

We use the heavy quark expansion (HQE) and express the total semileptonic width Γsl and the kinematic
moments as a double expansion in 1/mb and αs. While working with the HQE, it is often advantageous
to consider dimensionless quantities normalized w.r.t. the bottom quark mass mb. We will denoted
them with a “hat(ˆ)”: e.g. q̂2 = q2/m2

b, Êl = El/mb.
As a starting point, we define the following building blocks:

Q i j =
1
Γ0

∫

cut

dEl dq0 dq2 (q2)i(q0)
j d3Γ

dq2 dq0 dEl
, (9)

where q0 = (El+Eν) = v ·q is the total leptonic energy with v = pB/MB and q2 is the leptonic invariant
mass. Schematically, we write

Q i j =(mb)
2i+ j

�

Q(0)i, j +Q(1)i, j
αs(µs)
π

+Q(2)i, j

�

αs(µs)
π

�2

+
µ2
π

m2
b

�

Q(0)i, j,π +Q(1)i, j,π
αs(µs)
π

�

µ2
G(µb)

m2
b

�

Q(0)i, j,G +Q(1)i, j,G
αs(µs)
π

�

+
ρ3

D(µb)

m3
b

�

Q(0)i, j,D +Q(1)i, j,D
αs(µs)
π

�

+
ρ3

LS(µb)

m3
b

�

Q(0)i, j,LS +Q(1)i, j,LS
αs(µs)
π

�

+O

�

1

m4
b

�

�

, (10)

where

Γ0 =
m5

bG2
F Aew

192π3
|Vcb|2 . (11)

The factor Aew = 1.01435 stems from short-distance radiative corrections at the electroweak scale [25].
αs ≡ α

(n f )
s (µs) is the strong coupling constant taken with n f active quarks and at the renormalization

scale µs. To leading order in 1/mb, the heavy B meson decay coincides with the decay of a free bottom
computed in perturbative QCD. Starting from O(1/m2

b) the predictions depend on a set of HQE pa-
rameters: non-perturbative matrix elements of local operators. These are denoted by µ2

π,µ2
G ,ρ3

D,ρ3
LS .

The tree-level expressions are known also to higher orders in 1/mb (see Refs. [23, 26–28]). They are
implemented in kolya up to 1/m5

b. However, in (10) they are omitted to keep a compact notation.
The explicit definitions of the HQE parameters up to 1/m5

b are reported in Appendix A. The HQE pa-
rameters in (10) are quoted in what we refer to as the “historical” basis employed in e.g. [29, 30]. For
RPI quantities, like q2 moments, it is however useful to work in the RPI basis, which has a reduced
number of parameters [23, 31]. The differences between these two bases are detailed in Ref.[31, 32].

The functions denoted by Q i j are the fundamental building blocks necessary to assemble the pre-
dictions for the centralized moments qi in (7) and hi in (6). They all depend on the mass ratio

ρ ≡
mc

mb
, (12)

where mc and mb refer to the on-shell masses of the charm and bottom quark. In (9), the subscript
“cut” refers to certain restrictions in the phase-space integration. For the prediction of qi in (7), we
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apply the cut q2 > q2
cut so that various build blocks in (10) depend on ρ and q̂2

cut: Q i j → Q i j(ρ, q̂2
cut).

For the hadronic moments hn in (6), the restriction is on the electron energy El > Ecut, so that the
building blocks are functions of ρ and Êcut: Q i j → Q i j(ρ, Êcut) (see Eq. (18) for the relation between
hn and Q i j).

The QCD corrections depend also on the renormalization scale µs of the strong coupling constant
starting at O(α2

s ). The functions Q i, j,G ,Q i, j,D and Q i, j,LS depend on µb, the scale at which the Wilson
coefficients of the HQET Lagrangian are matched onto QCD, starting from O(αs).

To construct the centralized electron energy moments in (5), we consider the moments of the
charged-lepton energy El = pl · v within the HQE:

Li =
1
Γ0

∫

El≥Ecut

dEl dq0 dq2 (El)
i d3Γ

dq2 dq0 dEl

=(mb)
i

�

L(0)i + L(1)i
αs(µs)
π

+ L(2)i

�

αs(µs)
π

�2

+
µ2
π

m2
b

�

L(0)i,π + L(1)i,π
αs(µs)
π

�

+
µ2

G(µb)

m2
b

�

L(0)i,G + L(1)i,G
αs(µs)
π

�

+
ρ3

D(µb)

m3
b

�

L(0)i,D + L(1)i,D
αs(µs)
π

�

+
ρ3

LS(µb)

m3
b

�

L(0)i,LS + L(1)i,LS
αs(µs)
π

�

+O

�

1

m4
b

�

�

, (13)

where in this case we allow for a cut on El only. All functions Li depend on ρ and the cut Ecut:
Li → Li(ρ, Êcut).

The total semileptonic rate corresponds to

Γsl =
m5

bG2
F Aew

192π3
|Vcb|2Q0,0(ρ, 0) = Γ0 L0(ρ, 0), (14)

with no cut applied, namely Ecut = q2
cut = 0 . For the partial decay width, we similarly have

∆Γsl(Ecut) = Γ0 L0(ρ, Êcut) , ∆Γsl(q
2
cut) = Γ0 Q0,0(ρ, q̂2

cut) . (15)

The ratios defined in (4) correspond to

〈(q2)n〉=
Qn,0

Q0,0
, 〈En

l 〉=
Ln

L0
. (16)

The centralized moments are obtained by inserting the double expansions of (10) or (13) into (4-7)
and re-expanding in αs and 1/mb up to the relevant order. To assemble the M2

X moments, we express
the hadronic invariant mass in terms of the parton level quantities in the B rest frame:

M2
X = (MB v − q)2 = M2

B + q2 − 2MBq0 . (17)

The moments of M2
X are obtained as linear combinations of the mixed moments Q i, j:

Mn =
1
Γ0

∫

El≥Ecut

dEl dq0 dq2 (M2
B − 2MBq0 + q2)n

d3Γ

dEl dq0 dq2

=
n
∑

i=0

i
∑

j=0

�

n
i

��

i
j

�

(M2
B)

n−i(−2MB)
i− jQ j,i− j , (18)
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Γsl tree αs α2
s α3

s

Partonic [34] [35–38] [39]

µ2
π,µ2

G [1, 2] [40–43]

ρ3
D,ρ3

LS [44] [45]

1/m4
b, 1/m5

b [23, 26–28]

qn(q2
cut) tree αs α2

s

Partonic [45, 46] [47]

µ2
G ,µ2

π [1, 2] [41, 42]

ρ3
D,ρ3

LS [44] [45]

1/m4
b, 1/m5

b [23, 28]

ℓn(Ecut), hn(Ecut) tree αs α2
sβ0 α2

s

Partonic [46, 48, 49] [46] [33]
∗

µ2
G ,µ2

π [1, 2] [42, 50]

ρ3
D,ρ3

LS [44]

1/m4
b, 1/m5

b [26–28]

Table 1: Schematic overview of the perturbative corrections implemented for the rate
Γsl, the q2 moments, the El and M2

X moments. (*) The α2
s corrections to hn and ℓn

are only available for several ρ and Ecut values in [33].

and 〈(M2
X )

n〉= Mn/M0.
In kolya, we first implement all building blocks introduced above, corresponding to the on-shell

scheme for both mb and mc . We collect in the Tab. 1 the list of references from which the various
building blocks are retrieved. The implementation of the building blocks is described in Sec. 3.2. The
implementation of the NNLO corrections to El and MX moments, based on the results published in
Ref. [33], requires a dedicated discussion in sections 3.3 and 3.4. In Sec. 3.5, we perform a scheme
change to the kinetic scheme to obtain the final prediction for the total rate and the centralized mo-
ments.

3.2 Analytic expressions and grids for QCD corrections

In kolya, the tree level expressions up to O(1/m5
b) (see Refs. [23, 26–28]) are implemented in an

exact analytic form. For example, the tree-level expressions at leading order in 1/mb for L(0)i (ρ, Êcut)
in (13) are coded in Python as follows.

from numba import jit
import math

@jit(cache=True, nopython=True)
def L_0(i,elcuthat,r,dEl,dr):

""" Tree level (partonic) for El moments and their derivatives """

7
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y = 2*elcuthat
logy = math.log((1-y)/r**2)
# tree level function
if (dEl == 0 and dr == 0 and i==0):

return (1-8*r**2-6*r**4+12*logy*r**4+4*r**6-r**8
-(2*r**6)/(-1+y)**2-(6*r**4*(1
+r**2))/(-1+y)
-2*r**4*(-3+r**2)*y+2*(-1+r**2)*y**3+y**4)

if (dEl == 0 and dr == 0 and i==1):
return (3*logy*r**4*(3+r**2)+(7-75*r**2-180*r**4

+120*r**6-15*r**8+3*r**10)/20
-r**6/(-1+y)**2-(r**4*(3+5*r**2))/(-1+y)
+6*r**4*y-(r**4*(-3+r**2)*y**2)/2
+(3*(-1+r**2)*y**4)/4+(2*y**5)/5)

...

where the arguments of L_0 refer to the moment i ∈ [0, . . . , 4], the normalized electron energy cut
Êcut = Ecut/mb (elcuthat) and the mass ratio ρ = mc/mb indicated by (r). The additional two
arguments (dEl,dr) are positive integers referring to the derivatives of Li(ρ, Êcut) w.r.t. to Êcut or ρ.
These derivatives are required when expressing the predictions in the kinetic scheme (see detailed
discussion in Sec. 3.5). The tree level expressions up to O(1/m3

b) for the moments are implemented in
the files Q2moments_SM.py, Elmoments_SM.py and MXmoments_SM.py. The power corrections
of order 1/m4

b and 1/m5
b are given in separate files Q2moments_HO.py, Elmoments_HO.py and

MXmoments_HO.py. For the q2 moments, the higher power corrections are in Q2moments_HO_RPI.py
In order to use kolya for phenomenological applications, for instance to perform a fit, it is im-

portant to ensure adequate speed for the numerical evaluations. To this end, our implementation
utilizes the library Numba [51], which translates Python functions to optimized machine code at run-
time using the standard LLVM compiler library. The functions decorated with @jit, as shown in the
example above, are compiled to machine code “just-in-time” for execution at native machine-code
speed. Numba-compiled routines in Python approach the speed of C or FORTRAN.

Let us now discuss the implementation of the QCD corrections in kolya. For Γsl, the functions in
(10) depend only on the mass ratio ρ and we implement the NLO corrections up to 1/m3

b using the
analytic expressions given in Ref. [45]. At NNLO in the free bottom quark approximation, there are
asymptotic expansions available either in the limit ρ → 0 [35, 36] or δ = 1− ρ → 0 [37]. Recently,
analytic expressions for the NNLO corrections written in terms of iterated integrals were presented
in Ref. [38]. In kolya we use the expressions expanded in terms of δ = 1 − ρ up to δ46 given in
Ref. [38]. For the third-order correction to Γsl we implement the asymptotic expansion up to δ12

computed in Ref. [39]. The total rate is implemented up to 1/m3
b in TotalRate_SM.py, the higher

power corrections are given in TotalRate_HO.py and TotalRate_HO_RPI.py.
We use interpolation grids to implements most of the QCD corrections for the moments. Specifi-

cally, we use grids for all NLO corrections, the NNLO corrections to the q2 moments and the so-called
BLM corrections (of order α2

sβ0) [52] to the El and MX moments.
Analytic expressions for the differential rate dΓ/dq2 for a free bottom quark are available at NLO

from Ref. [53] and at NNLO from Ref. [47]. The NLO corrections to leading order in 1/mb were
computed also for the triple differential rate in Ref. [46, 48]. The NLO corrections to µ2

G and ρ3
D for

the q2 spectrum have been presented in Ref. [45]. By making use of reparametrization invariance [24],

8
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one can also show that in the on-shell scheme

−
1
2

Q(n)i0 (ρ, q2
cut) =Q(n)i0,π(ρ, q2

cut) , −Q(n)i0,G(ρ, q2
cut) =Q(n)i0,LS(ρ, q2

cut) , (19)

to all orders n ≥ 0 in the perturbative expansion. Therefore, the functions Q i j entering (10) can be
computed for any q2

cut and ρ via:

Q i0(ρ, q̂2
cut) =

1
Γ0

∫ (1−ρ)2

q̂2
cut

(q̂2)i
dΓ
dq̂2

dq̂2 . (20)

The differential rate dΓ/dq̂2 at higher orders is expressed in terms of functions defined via iterated
integrals like harmonic polylogarithms (HPLs) [54] and generalized polylogarithms (GPLs) [55, 56]. It
is not convenient to integrate the differential rate numerically “on-the-fly” since there are several HPLs
and GPLs whose evaluation (for instance with GiNaC [57]) is time-consuming. For this reason, we opt
to implement all higher QCD corrections for the moments not in an exact form, but through Chebyshev
two-dimensional grids. The functions implemented via grids are Q(1)i j ,Q(2)i j ,Q(1)i j,πQ(1)i j,G ,Q(1)i j,D,Q(1)i j,LS in

(10) and L(1)i j , L(2)i j , L(1)i j,πL(1)i j,G in (13).
Let us briefly review here how a generic function f (x) can be discretized on a grid consisting of

the so-called Chebyshev points (for more details see e.g. Ref. [58]). The idea is to evaluate f (x) in n
points xn corresponding to the zeros of the Chebyshev polynomial Tn(x) of degree n:

xk = cos
�

π(k− 1/2)
n

�

for k = 1, . . . , n . (21)

If f (x) is an arbitrary function defined on the domain x ∈ [−1, 1], we calculate the coefficients c j ,
with j = 0, ..., n− 1 given by

c j =
2
n

n
∑

k=1

f (xk)T j(xk) , (22)

which can be employed to construct the polynomial

f̃ (x) = −
1
2

c0 +
n−1
∑

k=1

ckTk(x)≈ f (x) , (23)

approximating f (x) in the interval [−1,1]. In particular f̃ (x) = f (x) for all n zeros of Tn(x). In case
the function to interpolate f (y) is defined between two arbitrary limits, e.g. y ∈ [a, b], we apply the
variable transformation

x =
y − 1

2(b+ a)
1
2(b− a)

, (24)

and then perform the interpolation in x as before.
In our setup, the functions to interpolate depend on ρ and q̂2

cut (or ρ and Êcut) and can be ob-
tained via two consecutive one-dimensional Chebyshev interpolations. First, we discretize the interval
ρ ∈ [1/6,1/3] (relevant for the phenomenology) in nρ points distributed according to (21). Then for
each ρk ∈ {ρ1, . . . ,ρnρ}, we discretize q̂2

cut or Êcut into further ncut points within the allowed range:

q̂2
cut ∈ [0, (1 − ρ)2] or Êcut ∈ [0, (1 − ρ2)/2]. An example of how the discretization is performed is

shown in Fig. 1, for a grid in ρ and q̂2
cut with nρ = ncut = 10.

9
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xxxxxxxxxx
◆◆

0.20 0.22 0.24 0.26 0.28 0.30 0.32
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 1: Example of how we discretize functions depending on two variables using
Chebyshev nodes. In the plot, we consider the grid for Q i j depending on ρ and q̂2

cut.

To estimate the function at a new point P = (ρP , q̂2
P) (the green diamond in Fig. 1), we proceed as

follows. For each ρk, k = 1, . . . , nρ, we calculate Q(ρk, q̂2
P(1−ρP)2/(1−ρk)2) using one-dimensional

interpolations in the variable q̂2
cut. These values calculated at fixed ρ are shown by black crosses in

Fig. 1. Afterwards, we use them as nodes for a second interpolation this time along the ρ direction,
as displayed by the black dashed line in Fig. 1. The second interpolation yields the final estimate for
f (ρP , q̂2

P).
For the implementation of the QCD corrections to hi and ℓi , which depend on ρ and Ecut, we also

use Chebyshev interpolation grids. At NLO, it is possible to write the differential rate dΓ/dEl in a
closed analytic form at NLO [49] for a free quark. To compute Q i j(ρ, Êcut) and Li(ρ, Êcut) at O(αs) we
perform the one variable integration, as for instance

Li(ρ, Êcut) =
1
Γ0

∫ (1−ρ2)/2

Êcut

(Êl)
i dΓ

dÊl
dÊl ,

Q i j(ρ, Êcut) =
1
Γ0

∫ (1−ρ2)/2

Êcut

dQ i j

dÊl
dÊl . (25)

In the last equation, we define

dQ i j

dÊl
=

∫

(q2)i(q0)
j d3Γ

dq2 dq0 dEl
dq2dq0 (26)

which can also be computed analytically up to NLO following Ref. [49, 59].

10
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At order 1/m2
b, the NLO corrections Q i j(ρ, Êcut) and Li(ρ, Êcut) can be calculated from the triple

differential distributions given in Refs. [41, 42] by performing the phase space integration numerically
as described in Ref. [60]. The NLO corrections to ρ3

D and ρ3
LS are not known at the moment.

The values of the coefficients c j in (22) for all grids are stored in the directory grids as multidi-
mensional arrays. The routines which perform the interpolation of the NLO and NNLO corrections at
O(1/m0

b) are implemented in NLOpartonic.py and NNLOpartonic.py. The routines for the NLO
corrections to the power-suppressed terms are given in NLOpw.py.

We validate the grid implementation by generating 100 random points in the two-dimensional
plane (ρ, q̂2

cut) or (ρ, Êcut). For each point, we compare the approximation provided by the grids and
high-precision evaluations obtained with Mathematica. We verify that the two estimates differ by less
than 10−5 for the points considered.

3.3 NNLO corrections to the lepton energy moments

The NNLO corrections to the ℓi moments are not known in a closed form. As discussed, the BLM
corrections are implemented through interpolation grids. The remaining “non-BLM” corrections are
only known for specific values of ρ and Ecut from Ref. [33]. Their functional form can be obtained
from a two-dimensional fit to these data points. In order to perform this fit, we write:

ℓn(ρ, Ecut) = (mb)
n

�

Y (0)n + Y (1)n
αs(µs)
π

+
�

β0Y (2,BLM)
n + Y (2,nonBLM)

n

�

�

αs(µs)
π

�2

+O

�

1
mb

,
�

αs(µs)
π

�3��

, (27)

where the Ecut- and ρ-dependence of Y (i)n is implied and Y (0)n is the partonic contribution without any
αs or 1/mb corrections. In terms of the building-blocks defined in (13), we can write the non-BLM
terms as:

Y (2,nonBLM)
1 =

L(2,nonBLM)
1

L(0)0

−
L(2,nonBLM)

0 L(0)1

(L(0)0 )2
,

Y (2,nonBLM)
2 =

L(2,nonBLM)
2

L(0)0

− 2
L(2,nonBLM)

1 L(0)1

(L(0)0 )2
+ L(2,nonBLM)

0

�

2
(L(0)1 )

2

(L(0)0 )3
−

L(0)2

(L(0)0 )2

�

,

Y (2,nonBLM)
3 =

L(2,nonBLM)
3

L(0)0

− 3
L(2,nonBLM)

2 L(0)1

(L(0)0 )2
+ 3L(2,nonBLM)

1

�

2
(L(0)1 )

2

(L(0)0 )3
−

L(0)2

(L(0)0 )2

�

+ L(2,nonBLM)
0

�

−6
(L(0)1 )

3

(L(0)0 )4
+ 6

L(0)1 L(0)2

(L(0)0 )2
−

L(0)3

(L(0)0 )2

�

. (28)

Ref. [33] gives the L(2,nonBLM)
n terms at ρ = {0.20,0.22, 0.24,0.25, 0.26,0.28} and y = {0,0.1, . . . , 0.7},

with y ≡ 2Êcut. From these,1 the non-BLM contributions Y (2,nonBLM)
n to the ℓn moments are obtained

1Note that the L(n)i defined in Ref. [33] are normalized to the total partonic rate without cut while we only normalize to
Γ0 defined in (14).

11



SciPost Physics Codebases Submission

by combining with the tree-level building blocks L(0)n . In Ref. [61], these non-BLM contributions are
studied in detail and compared to the effect of their BLM counterparts. We fit the values for Y (2,nonBLM)

n
assuming the following polynomial ansatz

Yn(ρ, y) =
5
∑

i=1

(an,i + bn,iρ)(y +ρ
2 − 1)i , (29)

for each moment n. Following Ref. [61], we only include one power of ρ in our ansatz, but keep up
terms up y5 in our interpolating fit. In addition, the ansatz is chosen to ensure that the non-BLM
corrections vanish at the end point y = 1−ρ2 [33]. We stress that our approach differs from [61] as
we first construct Y (2,nonBLM)

n in each available (ρ, y) point and then perform the analysis. Fitting first
the L(2,nonBLM)

n and then combining them resulted in strongly oscillating functions due to accidental
cancellations. Fitting directly Yn, we find

Y1
(2,nonBLM)(ρ, y) =

(72.57ρ − 25.62)
�

y +ρ2 − 1
�5
+ (177.60ρ − 64.65)

�

y +ρ2 − 1
�4

+ (157.19ρ − 59.27)
�

y +ρ2 − 1
�3
+ (62.69ρ − 24.32)

�

y +ρ2 − 1
�2

+ (11.25ρ − 4.35)
�

y +ρ2 − 1
�

,

Y2
(2,nonBLM)(ρ, y) =

(12.61 − 44.47ρ)
�

y +ρ2 − 1
�5
+ (32.28 − 112.34ρ)

�

y +ρ2 − 1
�4

+ (29.36 − 100.36ρ)
�

y +ρ2 − 1
�3
+ (11.07 − 36.89ρ)

�

y +ρ2 − 1
�2

+ (1.42 − 4.55ρ)
�

y +ρ2 − 1
�

, (30)

and

Y3
(2,nonBLM)(ρ, y) =

(32.23ρ − 7.28)
�

y +ρ2 − 1
�5
+ (79.34ρ − 17.72)

�

y +ρ2 − 1
�4

+ (67.06ρ − 14.67)
�

y +ρ2 − 1
�3
+ (21.52ρ − 4.49)

�

y +ρ2 − 1
�2

+ (1.71ρ − 0.289)
�

y +ρ2 − 1
�

. (31)

These functions are implemented in kolya. We do not assign any uncertainty to these fit functions.
In Fig. 2, we show our fit results for Y (2,nonBLM)

1,2,3 , as a function of y for fixed ρ = 0.22 (solid blue
line). Due to the fit ansatz, we observe a light oscillatory behavior as a function of y . In black, we
show the constructed data points at fixed y obtained from [33]. The fit uncertainty is given by the
red dotted line, which represents the 90% C.L. interval of the fit. Since we only have data points up
to y = 0.7 and impose that the contribution vanishes at the endpoint, we notice large uncertainties
towards higher y values. In a typical phenomenological analysis, missing higher order terms (here
α3

s ) terms would be accounted for by varying the scale of αs. The blue bland corresponds to the effect
of such a scale variation from [αs(mkin

b /2),αs(2mkin
b )]. For Y1, we observe that the αs variation covers

12
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Figure 2: Results of our fitted non-BLM contributions Y (2,nonBLM)
n (solid blue line) as

a function of y = 2Ecut/mb for ρ = 0.22 as discussed in the text. Data points are
constructed from [33].

the data points and fit uncertainty. For the higher moments, we observe that the fit uncertainty is
higher than the αs variation for large y . However, given the smallness of the BLM contributions to
these moments, our default setting is to not include an additional uncertainty for these corrections.

3.4 NNLO corrections to the hadronic invariant mass moments

The nonBLM corrections to the hadronic moments can be obtained from Ref. [46]. However, as for
the lepton energy moments, the additional “non-BLM” contributions are only known numerically for
several values of ρ and Ecut [33]. In Ref. [33], building blocks Hi j are defined as

Hi j(ρ, Êcut) =
1

Γ0 L(0)0 (ρ, 0)

∫

Ecut

dÊl dq̂0 dq̂2

�

m2
x −m2

c

m2
b

�i
�

Eh

mb

� j d3Γ

dÊl dq̂0 dq̂2
, (32)

where L(0)0 (ρ, 0) is defined in (13) and where mx and Ex are partonic invariant mass and energy. A
linear combination of these Hi j corresponds to our building blocks Q i j defined in (18). This then allows
us to calculate the non-BLM contributions to h1 by combining different Hi j contributions. However,
not all the Q i j moments necessary to construct the hadronic moments h2 and h3 are calculated. In
terms of the definition of [33], the non-BLM contributions of the combinations

H20, H30, H21 ,
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are missing.
In order to determine the effect of the non-BLM terms, we write

hn(y,ρ) = Xn(y,ρ) +m2
b

�

αs(µs)
π

�2
�

β0X (2,BLM)
n (y,ρ) + X (2,nonBLM)

n (y,ρ)
�

, (33)

where X (2,nonBLM)
n is the non-BLM contribution, X (2,BLM)

n the BLM contribution and Xn contains all other
contributions. For h1, we can now proceed as for the lepton energy moments. Here, we use

X (2,nonBLM)
1 (ρ, y) =

5
∑

i=0

(a1,i + b1,iρ)y
i , (34)

as our fit ansatz, where we do not require that the first moment vanishes at the end point. Using
the data points from Ref. [33] (to be conservative, we assume a 1% uncertainty on all data points for
which no uncertainty was given), we then find

X (2,nonBLM)
1 (y,ρ) = y5(33.13 − 97.49ρ) + y4(224.82ρ − 71.16)

+ y3(49.01 − 160.90ρ) + y2(37.72ρ − 10.92)

+ y(0.73 − 2.56ρ) + 2.08ρ − 0.92 . (35)

In Fig. 3, we show X (2,nonBLM)
1 as a function of y . As for the lepton energy moments, the red dotted

line shows the fit uncertainty, which now diverges close to the end point. However, as usually the
experimental data does not have lepton energy cuts y > 0.8 this feature does not pose a great problem.
In addition, we notice the small uncertainty on the data points, clearly much smaller than the effect of
the αs variation (shown by the blue band). As such, we do not implement an additional fit uncertainty
on (35) and implement this function into kolya. A similar fit was done in [62], where also ρ2 terms
were taken into account. We do not notice an improvement in the fit when including such terms and
therefore use our minimal fit ansatz presented above.

For the h2 and h3 moments, we currently do not have sufficient information to perform a fit.
However, for y = 0, we can use the expression for Q i j from [59], where analytic expression in terms
of δ = 1− ρ were given. From these, we can then also determine the non-BLM effect over the BLM
contribution. We find stable results for the different Xn. Using ρ = 0.25 for illustration, we have

X (2,nonBLM)
1

β0X (2,BLM)
1

= −0.237 ,
X (2,nonBLM)

2

β0X (2,BLM)
2

= −0.227 ,
X (2,nonBLM)

3

β0X (2,BLM)
3

= −0.241 . (36)

We do not quote an uncertainty on these values, which could be obtained from [59] by consider the
effect of the highest power in the δ expansion. At the moment, we do not have more information for
the X2 and X3 contributions at nonzero values of the lepton cut y . In [61], the non-BLM/BLM ratios
of the available relevant combinations of Hi j moments were calculated. For the values in [33], it was
found that this ratio is rather independent of y . This may indicate that also the missing terms are
constant when considering ratios of non-BLM versus BLM corrections. In [61], this constant behavior
was therefore assumed for the missing H(2)20,21,30 moments.2 On the other hand, we note that the

2Using [59], we can calculate for the first time also the ratio of H (2,non−BLM)
20 /H (2,BLM)

20 and similarly for {21} and {30}. We
confirm within uncertainties the ratios quoted in [61].
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Figure 3: The non-BLM contributions X (2,nonBLM)
n as a function of y = 2Ecut/mb for

ρ = 0.22 as described in the text.
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analytic results in [47] for the q2 moments with a q2 cut do not show a constant non-BLM over BLM
behavior.

Nevertheless, to further study h2 and h3, we follow [61] and assume constant non-BLM over BLM
ratios for the missing moments. We then find the constructed data points for X (2,nonBLM)

2 and X (2,nonBLM)
3

given in Fig. 3. In blue, we present the fit to the data using a similar ansatz as in (29) (ensuring also
that the contribution vanishes at the end point). We note that the fit uncertainty (dotted red line) is
very small and that also the αs variation (blue band) is much smaller than the uncertainty on the data
points. In addition, the assumption for the missing moments may bias our predictions. Therefore,
we decide for the moment not to include any non-BLM corrections to the h2 and h3 hadronic mass
moments.

3.5 Kinetic and MS scheme

The predictions for inclusive decayse must be formulated using a short-distance mass scheme for the
charm and the bottom quarks, to ensure the cancellation of the leading renormalon divergence [63,
64]. In kolya, we adopt the kinetic scheme [5] for the bottom quark mass and the HQE parameters.
In the kinetic scheme, we substitute the bottom quark pole mass is favour of the kinetic mass thorugh
the relation

mpole
b = mkin

b (µ) + [Λ(µ)]pert +
[µ2
π(µ)]pert

2mkin
b (µ)

+O

�

1

m2
b

�

, (37)

where the Wilsonian cutoff µ is a scale chosen such that ΛQCD ≪ µ ≪ mb. The last two terms in
(37) labelled by “pert” are the HQE parameters calculated in pertubative QCD with the Small Velocity
sum rules [65]. The analytic expressions up to O(α3

s ) are given in Refs. [6, 8]. We stress that in our
implementation, we follow [8] and include also the decoupling effects of the charm quark in the kinetic
scheme. We show the effect of this decoupling numerically in Sec. 3.6. In the kinetic scheme, also the
HQE parameters in (10) and (13) are redefined in the following way:

µ2
π(0) = µ

2
π(µ)− [µ

2
π(µ)]pert , ρ3

D(0) = ρ
3
D(µ)− [ρ

3
D(µ)]pert . (38)

These two definitions apply in principle to µ2
π and ρ3

D in the mb→∞ limit. The analyses from Refs. [9,
29] define the HQE parameters at finite mb and both setup do not include terms of order µ3 from the
redefinition of µ2

π and µ2
G . Ref. [29] and [9] employ different operator basis, both implemented in

kolya and referred as the “historical basis” and the “RPI” basis.
For the charm mass, we use the MS scheme. This is related to the pole charm mass via

mpole
c = mc(µc)

�

1+
αs(µc)
π

�

4
3
+ L

�

+
�

αs(µc)
π

�2�37
24

L2 +
415
72

L +
779
96
+
π2

6
−
ζ3

6
+

1
9
π2 log(2)

��

+O(α3
s ), (39)

where L = log(µ2
c/m

2
c (µc)).

In order to implement the scheme change for the quark masses and the HQE parameters, we replace
mpole

b and mpole
c in the expressions for the centralized moments using (37) and (39) and expand the

formulas as a series in αs and 1/mb.
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Hard coding these scheme changes would lead to huge expressions for the moments. To illustrate
this, we write the mass conversion formulas schematically as follows:

mpole
c = mc(1+αsδmc ,1 +α

2
sδmc ,2 +α

3
sδmc ,3) ,

mpole
b = mkin

b (1+αsδmb ,1 +α
2
sδmb ,2 +α

3
sδmb ,3) . (40)

The coefficients appearing at order αn
s from the bottom and charm mass scheme conversion formulas

are denoted by δmb ,n and δmc ,n, respectively. Let us now consider a simple example with a function
f (ρ) depending only on the mass ratio. The scheme change for f (ρ) up to O(αs) reads

f (ρ) = f

 

mpole
c

mpole
b

!

= f
�

mc(1+αsδmc ,1)
À

mkin
b (1+αsδmb ,1)

�

= f

�

mc

mkin
b

�

+αs f ′
�

mc

mkin
b

�

mc

mkin
b

(δmc ,1 −δmb ,1) +O(α2
s ) . (41)

The function f (ρ) and its derivative are the building blocks entering in kolya. This has several
advantages with respect to hard coding the expression in.

In fact for the centralized moments, the role of f (ρ) is played by the building blocks denoted by
Q i j and Li on the r.h.s. of (10) and (13). They appear multiple times after the re-expansion of the
ratios in (4) and the scheme change. Therefore, we find more convenient to calculate first all building
blocks in (10) and (13) (and the necessary derivatives) and cache the results at a given value of ρ
and the cut. Afterwards, we assemble the centralized moments using expressions similar to (41). This
approach yields code with a much smaller size and improved evaluation time.

The coefficients δmb ,n and δmc ,n which enter in the scheme change are implemented up to O(α3
s ) in

the file schemechange_KINMS.py. This allows in principle to easily adopt a different mass scheme
from our default one, by changing the expression for δmb ,n and δmc ,n to the required mass scheme in
a separate file.

3.6 Numerical results for lepton energy and hadronic mass moments

The accuracy of our moment predictions is summarized in Tab. 1. As the NNLO corrections to the q2

moments are known analytically [47], and a detail discussion was given recently in that reference,
we do not discuss these here in detail. However, since our implementation for the lepton energy and
hadronic mass moments depends on our fit for the non-BLM contributions, it is interesting to give the
relative contributions to the moments. These contributions are given in Tab. 2 for Ecut = 1 GeV. For the
HQE parameters, we use µ2

π = 0.4 GeV2, µ2
G = 0.35 GeV2, ρ3

LS = −0.15 GeV3, ρ3
D = 0.2 GeV3.

For the other input parameters, we employ mkin
b (1 GeV) = 4.563 GeV, mc(3 GeV) = 0.989 GeV,

αs(mkin
b ) = 0.2182. In Tab. 2, we also explicitly give the effect of including the charm decoupling

in the kinetic scheme conversion. This contribution is labelled as ∆c . Our results are in good agree-
ment with Ref. [61] up to the non-BLM corrections. The∆c effects were not included in that reference.
Currently, these contributions are automatically included at NNLO in kolya, and they cannot be sep-
arated from other contributions. We observe that ∆c has a 0.1% effect and is of similar in size but
opposite in sign as the non-BLM correction. Overall, the α2

s contributions have a 0.05% effect.
We provide additional numerical examples and comparisons with literature in the GitLab repository,

in the Jupyter notebook example-reproduce_literature.ipynb.
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Moment tree αs α2
sβ0 α2

s scheme α2
s non-BLM α2

s ∆c

ℓ1 [GeV] 1.5650 1.5521 1.5540 1.5459 1.5480 1.5465

ℓ2 [GeV2] 0.0895 0.0870 0.0881 0.0861 0.0867 0.0863

ℓ3 [GeV3] -0.0018 -0.0003 0.0004 0.0006 -0.0006 -0.0006

h1 [GeV2] 4.166 4.331 4.304 4.417 4.381 4.403

h2 [GeV4] 0.609 0.818 1.001 0.987 - 0.990

h3 [GeV6] 5.071 4.810 4.487 4.641 - 4.640

Table 2: Contributions of the different orders to the moments at Ecut = 1 GeV for
µ2
π = 0.4 GeV2 , µ2

G = 0.35 GeV2 , ρ3
LS = −0.15 GeV3 , ρ3

D = 0.2 GeV3. For the other
input parameters, we employ mkin

b (1 GeV) = 4.563 GeV, mc(3 GeV) = 0.989 GeV,
αs(mkin

b ) = 0.2182.

4 Extension to physics beyond the SM

In kolya, we also implement NP effects in b → clν̄l decays following [12]. In order to parametrize
effects beyond the SM, we use the weak effective theory (WET), an effective field theory valid below
the EW scale written as an expansion in powers of the inverse electroweak scale GF = 1/(

p
2v2) . The

effective Hamiltonian relevant for inclusive semileptonic B decays is

Heff =
4GF Vcbp

2





�

1+ CVL

�

OVL
+

∑

i=VR,SL ,SR,T

Ci Oi



 , (42)

where we consider only the operators of dimension six contributing to the differential rate at tree level:

OVL(R)
=
�

c̄γµPL(R)b
� �

ℓ̄γµPLνℓ
�

,

OSL(R)
=
�

c̄PL(R)b
� �

ℓ̄PLνℓ
�

,

OT =
�

c̄σµνPL b
� �

ℓ̄σµνPLνℓ
�

. (43)

We define σµν = i
2[γ

µ,γν] and PL(R) = 1/2 (1∓ γ5). Since only the operator OVL
appears in the SM,

we have explicitly factored it out in Eq. (42), ensuring that the NP Wilson coefficients vanish in the
SM. We assume that all Ci are real-valued and that neutrinos are exclusively left-handed.

Note that below the EW scale, the expansion parameter is 1/v formally. However, from the point of
view of the SMEFT [66], NP effects are associated to an additional expansion parameter Λ, the scale
of new physics above EW scale. At tree-level, the matching between the SMEFT operators and the
operators in the effective Hamiltonian (42) are given in Ref. [67]. From the SMEFT prospective, the
Wilson coefficients in (42) are not of order one but additionally suppressed by the small ratio (v/Λ)2.

The NP contributions to the differential rate of B → X c lν̄l have been presented in Ref. [12]. The
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NP effects for the moments defined in (4) can be written schematically in the following way

〈O〉= ξSM + |CVR
|2 ξ〈VR,VR〉

NP + |CSL
|2 ξ〈SL ,SL〉

NP + |CSR
|2 ξ〈SR,SR〉

NP + |CT |2 ξ
〈T,T 〉
NP

+Re((CVL
− 1)C∗VR

)ξ〈VL ,VR〉
NP +Re(CSL

C∗SR
)ξ〈SL ,SR〉

NP +Re(CSL
C∗T )ξ

〈SL ,T 〉
NP

+Re(CSR
C∗T )ξ

〈SR,T 〉
NP . (44)

The terms denoted by ξ are the various interference terms between different operators. They depend
on mb, mc , the HQE parameters and Ecut or q2

cut. Ref. [12] provides results for the power corrections
at tree level up to O(1/m3

b) and NLO perturbative corrections to leading order in the power expansion
(1/m0

b). In (44), Wilson coefficients Ci are considered much smaller than one. We therefore expand
up to quadratic terms when preparing the predictions for the centralized moments. We note that the
term CVL

ξ
〈VL〉
NP do not appear because of the normalization. It affects only the branching ratio, which

however only results in a rescaling of Vcb.
The first term ξSM in (44) corresponds to the SM prediction, whose implementation has been de-

scribed in the previous sections. The additional NP contributions generated by the effective operators
have been implemented in kolya including power corrections up to 1/m3

b and NLO perturbative QCD
corrections at partonic level. The implementation closely follows the methods described for the SM
case. Namely, we implement the tree-level contributions in an exact form, while for the QCD correc-
tions, we generate interpolation grids for their fast evaluation. The NP contributions to the moments
are implemented in Q2moments_NP.py, Elmoments_NP.py and MXmoments_NP.py. The NP exten-
sion of the total rate is in TotalRate_NP.py.

5 Usage of the library

5.1 Installation

The software kolya requires Python version 3.6 or above and runs on Linux and Mac. The code is
released under the GNU GPL v3 license. To download the package, clone the master branch of the Git
repository via

$: git clone https://gitlab.com/vcb-inclusive/kolya.git

Afterwards, change the directory to the kolya directory and install it with pip3 in the following way:

$: cd kolya
$: pip3 install .

The dependencies will be automatically downloaded and installed during the setup. To get started,
just import the package into a Python shell or a Jupyter notebook:

>>> import kolya

Note that the first time kolya is loaded, several functions are translated from Python to optimized
machine code by Numba and cached. This stage may take from several seconds up to a few minutes.
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5.2 Parameter classes

The library contains classes to store various real-valued variables. One class is dedicated to the phys-
ical parameters like heavy quark masses and the strong coupling constant, one for the HQE parame-
ters, and one for the Wilson coefficients in the NP extension. Dimensionful quantities, like the quark
masses, are given in units of GeV. The values of the physical parameters are stored in an object of
parameters.physical_parameters class

>>> par = kolya.parameters.physical_parameters()

The new object par contains information about MB, mkin
b (µkin), mc(µc) and α(4)s (µs). The bottom quark

mass in the kinetic scheme and its scale are given in the variables mbkin and scale_mbkin, while the
charm mass in the MS at renormalization scale µc corresponds to the variables mcMS and scale_mcMS.
The strong coupling constant α(4)s and its renormalization scale scale µs correspond to the class vari-
ables alphas and scale_alphas. The class initializes also the renormalization scales of the HQE
parameters µ2

G , ρ3
D and ρ3

LS through the variables scale_muG, scale_rhoD and scale_rhoLS. At
present, these are set equal to mkin

b (µkin).
The values stored in the object par can be shown with the show method:

>>> par.show()
bottom mass: mbkin( 1.0 GeV) = 4.563 GeV
charm mass: mcMS( 3.0 GeV) = 0.989 GeV
coupling constant: alpha_s( 4.563 GeV) = 0.2182

where the current default values are based on the latest version of the FLAG 21 review [68] as of Febru-
ary 2024 [69]. Values different from the default ones can be set during initialization. For instance, we
can initialize the mc(2 GeV) = 1.094 GeV as follows:

>>> par = kolya.parameters.physical_parameters(mcMS=1.094,scale_mcMS=2.0)
>>> par.show()
bottom mass: mbkin( 1.0 GeV) = 4.563 GeV
charm mass: mcMS( 2.0 GeV) = 1.094 GeV
coupling constant: alpha_s( 4.563 GeV) = 0.2182

The example above shows that during initialization, the values of mcMS and scale_mcMS must be set
consistently. The following command

>>> par = kolya.parameters.physical_parameters(mcMS=1.094)

would initialize the charm mass to the (unphysical) value mc(3GeV) = 1.094 GeV. In order to set the
quark masses at scales different from the default ones in a consistent way, we include the method
FLAG2024. For instance, we set the quark masses at a scale µkin = µc = 2 GeV in the following way:

>>> par = kolya.parameters.physical_parameters()
>>> par.FLAG2024(scale_mcMS=2.0, scale_mbkin=2.0)
>>> par.show()
bottom mass: mbkin( 2.0 GeV) = 4.295730717092438 GeV
charm mass: mcMS( 2.0 GeV) = 1.0940623249384822 GeV
coupling constant: alpha_s( 4.563 GeV) = 0.21815198098622618
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Internally, the bottom and quark masses are recalculated using CRunDec [70–72] using the default
values from Ref. [69]. The scale of the strong coupling constant can be modified in a similar way:

>>> par = kolya.parameters.physical_parameters()
>>> par.FLAG2024(scale_alphas=3.0)
>>> par.show()
bottom mass: mbkin( 1.0 GeV) = 4.56266484311551 GeV
charm mass: mcMS( 3.0 GeV) = 0.989 GeV
coupling constant: alpha_s( 3.0 GeV) = 0.2531150801276913

Also in this case, we internally use CRunDec to evaluate α(4)s (3GeV).
The values of the HQE parameters in the historical basis (sometimes referred to as the “perp” basis

in literature) are stored into an object of the class parameters.HQE_parameters. By default, their
values are set to zero unless explicitly initialized:

>>> hqe = kolya.parameters.HQE_parameters(
muG = 0.306,
rhoD = 0.185,
rhoLS = -0.13,
mupi = 0.477)

>>> hqe.show()
mupi = 0.477 GeV^2
muG = 0.306 GeV^2
rhoD = 0.185 GeV^3
rhoLS = -0.13 GeV^3

where the values up to 1/m3
b can be visualized all at once with show(). Since there are several

operators at order 1/m4
b and 1/m5

b, we do not print them by default, however, their values can be
inspected with the additional option show(flagmb4=1) and show(flagmb5=1). We introduce the
class parameters.HQE_parameters_RPI for the HQE parameters in the RPI basis:

>>> hqe = kolya.parameters.HQE_parameters_RPI(
muG = 0.306,
rhoD = 0.185,
mupi = 0.477)

The parameter classes LSSA_HQE_parameters and LSSA_HQE_parameters_RPI contain numerical
values for the HQE parameters in the historical and RPI basis, respectively, obtained using the “lowest-
lying state saturation ansatz” (LLSA). The LLSA approximates the higher-order HQE parameters by
expressing them through the bottom quark mass mb, the HQE parameters (µ2

π)
⊥ and (µ2

G)
⊥, and the

excitation energies ε1/2 and ε3/2. For further details on the LLSA, we refer to Ref. [73], and for the
expressions of the higher-order HQE parameters and their LLSA values, we refer to Refs. [28, 32].

The Wilson coefficients of the effective dimension-six operators defined in (42) are initialized via
the class parameters.WCoefficients and their values are inspected with the method show()

>>> wc = kolya.parameters.WCoefficients(SL=0.1,SR=-0.05)
>>> wc.show()
C_{V_L} = 0
C_{V_R} = 0
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C_{S_L} = 0.1
C_{S_R} = -0.05
C_{T} = 0

The Wilson coefficients CVL
, CVR

, CSL
, CSR

and CT are denoted by VL, VR, SL, SR and T respectively.
By default, they are initialized to zero.

5.3 Moment predictions

We implemented the first four centralized moments of the q2 spectrum and the first three moments of
El and M2

X . To evaluate them, we first need to initialize three objects for the physical parameters, the
HQE parameters, and the Wilson coefficients:

>>> par = kolya.parameters.physical_parameters()
>>> hqe = kolya.parameters.HQE_parameters(

muG = 0.306,
rhoD = 0.185,
rhoLS = -0.13,
mupi = 0.477)

>>> wc = kolya.parameters.WCoefficients()

The prediction for the q2 moments receive as inputs the value of q2
cut expressed in GeV2, and the three

objects par, hqe and wc. The functions Q2moments.moment_n_KIN_MS(q2cut, par, hqe, wc),
where n= 1,2, 3,4, return the value of each q2 moment. For example, to evaluate q1(q2

cut = 8.0 GeV2)
type

>>> q2cut = 8.0 #GeV^2
>>> kolya.Q2moments.moment_1_KIN_MS(q2cut, par, hqe, wc)
8.996406491856465 #GeV^2

The result is provided in the respective powers of GeV2n. The suffix KIN and MS refers to the scheme
for bottom (kinetic) and charm (MS) masses. By default, the evaluation considers power corrections
up to 1/m3

b. The corrections of order 1/m4
b and 1/m5

b can be included by setting the optional ar-
guments flagmb4=1 and flagmb5=1. For instance, we can set the higher-order HQE parameters
m1 = 0.1 GeV4 and r1 = 0.1GeV5 and compare the predictions up to order 1/m5

b in the following way:

>>> hqe.m1=0.1 #GeV^4
>>> hqe.r1=0.1 #GeV^5
>>> kolya.Q2moments.moment_1_KIN_MS(q2cut, par, hqe, wc)
8.996406491856465
>>> kolya.Q2moments.moment_1_KIN_MS(q2cut, par, hqe, wc, flagmb4=1)
8.966491804532277
>>> kolya.Q2moments.moment_1_KIN_MS(q2cut, par, hqe, wc, flagmb4=1, flagmb5=1)
8.75600814954277

Setting flagmb4=0 and flagmb5=0 eliminates all terms of order 1/m4
b and 1/m5

b, respectively. We
note that at these orders also mixing terms proportional to µ2

Gµ
2
π or µ2

Gρ
3
D enter which can only be

excluded by putting these two flags to zero. Therefore, putting these flags to zero does not have the
same effect as simply setting all the 1/m4

b and 1/m5
b HQE element to zero.
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Concerning the perturbative corrections, these are all included by default in the numerical eval-
uation (see Tab. 1 for the current orders in αs implemented). For cross-checks with the literature
and the study of their impact, the NNLO corrections can be switched off via the optional argument
flag_includeNNLO=0 (default flag_includeNNLO=1). NLO corrections to the power-suppressed
terms can be excluded with flag_includeNLOpw=0.

Moreover, the option flag_DEBUG=1 will print a report of the various contributions coming from
the higher-order QCD corrections:

>>> kolya.Q2moments.moment_1_KIN_MS(8.0, par, hqe, wc, flag_DEBUG=1)
Q2moment n. 1 LO = 9.148659808170105
Q2moment n. 1 NLO = api * -1.319532010835962
Q2moment n. 1 NNLO = api^2 * -9.616956902561078
Q2moment n. 1 NLO pw = api * -0.7873907726673756
Q2moment n. 1 NNLO from NLO pw = api^2 * 8.39048437244325

The contributions denoted by NLO and NNLO are the coefficients in front of αs(µs)/π and (αs(µs)/π)2

to leading order in 1/mb. The term NLO pw corresponds to the overall NLO correction in the terms
of order 1/m2

b and 1/m3
b. In the kinetic scheme, the inclusion of the NLO corrections to the power-

suppressed terms induces also an additional O(α2
s ) contribution to leading order in 1/mb, which is

reported in the last line.
The predictions for the El and M2

X moments follow a similar syntax. The first argument passed to
the function corresponds to the value of the cut Ecut in units of GeV. For instance, the first moments of
El and M2

X for Ecut = 1.0 GeV are evaluated as follows:

>>> par = kolya.parameters.physical_parameters()
>>> hqe = kolya.parameters.HQE_parameters(

muG = 0.306,
rhoD = 0.185,
rhoLS = -0.13,
mupi = 0.477)

>>> wc = kolya.parameters.WCoefficients()
>>> elcut=1.0 #GeV
>>> kolya.Elmoments.moment_1_KIN_MS(elcut, par, hqe, wc)
1.5498126092840554 #GeV
>>> kolya.MXmoments.moment_1_KIN_MS(elcut, par, hqe, wc)
4.348386230761794 #GeV^2

Higher moments ℓ2,ℓ3, h2, h3 are computed in a similar way by replacing moment_1 with moment_2
or moment_3. The result for ℓn(Ecut) is in GeVn, while for hn(Ecut) the result is in GeV2n.

By default, the moments are calculated using the HQE parameters as defined in the historical ba-
sis. The q2 moments and the total rate can also be calculated using the RPI basis adopted in Ref. [9].
The predictions in the RPI basis are obtained by passing the optional argument flag_basisPERP=0.
In this case, the HQE parameters must be passed to the function through an object of the class
HQE_parameters_RPI:

>>> par = kolya.parameters.physical_parameters()
>>> hqeRPI = kolya.parameters.HQE_parameters_RPI(

muG = 0.38,
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rhoD = 0.03,
mupi = 0.43)

>>> wc = kolya.parameters.WCoefficients()
>>> kolya.Q2moments.moment_1_KIN_MS(8.0, par, hqeRPI, wc, flag_basisPERP=0)
9.350141389366614

The RPI basis is supported only for qn moments and the total rate since reparametrization invariance
reduces the number of HQE parameters only for them. Similar to before, the 1/m4

b and 1/m5
b correc-

tions in the RPI basis can be included by using the optional arguments flagmb4=1 and flagmb5=1.
For the ℓn and hn, we stick to the historical basis.

5.4 Branching ratio prediction

To obtain the branching ratio Br(B → X c lν̄l) or the total semileptonic width Γsl, three objects for the
physical parameters, the HQE parameters, and the Wilson coefficients must be initialized, as discussed
for the moments in the previous subsection. For the total rate Γsl defined in (2), type

>>> Vcb = 42.2e-3
>>> kolya.TotalRate.TotalRate_KIN_MS(Vcb, par, hqe, wc)
4.4016320941077224e-14 #GeV

where the first argument is the value of |Vcb| and the result is expressed in GeV. For the evaluation of
the branching ratio, we use

>>> Vcb = 42.2e-3
>>> kolya.TotalRate.BranchingRatio_KIN_MS(Vcb, par, hqe, wc)
0.10555834162102022

We obtain the branching ratio by dividing Γsl by the average lifetime of the B± and B0 mesons.
The partial width ∆Γsl(Ecut) with cut on El is obtained with

>>> Vcb = 42.2e-3
>>> elcut = 1.0 # GeV
>>> kolya.DeltaBR.DeltaRate_KIN_MS(Vcb, elcut, par, hqe, wc)
3.47993610329532e-14 #GeV

where the first argument is the value of |Vcb|, the second argument the value of Ecut in GeV. The result
is reported in GeV. The corresponding value for the branching ratio is given by

>>> Vcb = 42.2e-3
>>> elcut = 1.0 # GeV
>>> kolya.DeltaBR.DeltaBR_KIN_MS(Vcb, elcut, par, hqe, wc)
0.08345456325227786

The function for the branching ratio allows the optional arguments flagmb4=1 and flagmb5=1 to
include the power corrections of order 1/m4

b and 1/m5
b. The predictions in the RPI basis are obtained by

passing the optional argument flag_basisPERP=0. For cross-checks with the literature and the study
of the impact of QCD corrections, the NNLO and N3LO corrections to the total rate can be switched
off via the optional arguments flag_includeNNLO=0 and flag_includeN3LO=0 (by default, all
these corrections are included). Moreover, the effects arising from the NLO corrections to the power-
suppressed terms can be excluded with flag_includeNLOpw=0.
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6 Outlook & Conclusion

In this document, we have presented the first version of the open-source library kolya, corresponding
to the release 1.0. In this release, we have implemented the predictions in the HQE for the total
rate and the moments of q2, El and M2

X . Currently, this is sufficient for comparison with published
experimental results by B factories. We included all higher order corrections in αs and 1/mb which
are available at this specific point in time and are summarized in Tab. 1.

On the GitLab repository, we provide, additionally, interactive tutorials running as a Jupyter note-
book and validation notebooks which demonstrate how the library can reproduce the results available
in the literature. The library is open source, so code contributions and improvements are very welcome.
In particular, new higher-order corrections can be implemented like

• QED effects calculated in Ref. [74],

• exact results for the NNLO corrections to El and M2
X moments with a lower cut Ecut,

• renormalization group evolution of the HQE parameters to NLO,

• the NLO corrections in the coefficients of ρ3
D and ρ3

LS for the El and M2
X moments.

Additional observables can play an important role in better improving the extraction of the HQE pa-
rameters or have an important role in testing the SM. These new observables may include

• forward-backward asymmetries AFB and q2, El and M2
X moments for forward and backward

events [75, 76],

• the ratio RX = ΓB→X cτν̄τ
/ΓB→X c lν̄l

,

• the lifetime of B mesons within the HQE,

• predictions for the decay into charmless final states B→ Xulν̄l .

Finally, kolya could also be extended to include predictions for inclusive D decays discussed in detail
in [77].
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A Definition of the HQE elements

Here, we define the HQE parameters both in the historical and the RPI basis up to 1/m5
b. The conver-

sions between these two bases can be found in Ref. [28].

A.1 Historical basis

The HQE matrix elements in the historical basis, denoted by “⊥”, are defined through the spacial
covariant derivatives iD⊥µ = g⊥µνiD

ν, where

g⊥µν = gµν − vµvν , (45)

as in Refs. [27, 79]. We will employ here the notation 〈b̄v ... bv〉 ≡ 〈B(v)|b̄v ... b̄v|B(v)〉. At 1/m2
b, we

have

2mB(µ
2
π)
⊥ = −〈b̄v (iD

ρ) (iDσ) bv〉 g⊥ρσ ,

2mB(µ
2
G)
⊥ =

1
2
〈b̄v

�

(iDρ), (iDσ)
�

(−iσαβ) bv〉 g⊥ραg⊥σβ , (46)

where γµγν = gµν + (−iσµν). At 1/m3
b, we have

2mB(ρ
3
D)
⊥ =

1
2
〈b̄v

�

(iDρ),
�

(iDσ), (iDλ)
�

�

bv〉 g⊥ρλvσ ,

2mB(ρ
3
LS)
⊥ =

1
2
〈b̄v

¦

(iDρ),
�

(iDσ), (iDλ)
�

©

(−iσαβ) bv〉 g⊥ραg⊥λβ vσ . (47)

The nine HQE parameters at 1/m4
b were first introduced in Ref. [27]. We list them here:

2mBm1 = 〈b̄v (iD
ρ) (iDσ) (iDλ) (iDδ) bv〉

1
3

�

g⊥ρσg⊥λδ + g⊥ρλg⊥σδ + g⊥ρδg⊥σλ
�

,

2mBm2 = 〈b̄v

�

(iDρ), (iDσ)
� �

(iDλ), (iDδ)
�

bv〉 g⊥ρδvσvλ ,

2mBm3 = 〈b̄v

�

(iDρ), (iDσ)
� �

(iDλ), (iDδ)
�

bv〉 g⊥ρλg⊥σδ ,

2mBm4 = 〈b̄v

¦

(iDρ),
�

(iDσ),
�

(iDλ), (iDδ)
�

�©

bv〉 g⊥σλg⊥ρδ ,

2mBm5 = 〈b̄v

�

(iDρ), (iDσ)
� �

(iDλ), (iDδ)
�

(−iσαβ) bv〉 g⊥αρ g⊥βδvσvλ ,

2mBm6 = 〈b̄v

�

(iDρ), (iDσ)
� �

(iDλ), (iDδ)
�

(−iσαβ) bv〉 g⊥ασg⊥βλg⊥ρδ ,

2mBm7 = 〈b̄v

¦

�

(iDρ), (iDσ)
	

,
�

(iDλ), (iDδ)
�

©

(−iσαβ) bv〉 g⊥σλg⊥αρ g⊥βδ ,

2mBm8 = 〈b̄v

¦

�

(iDρ), (iDσ)
	

,
�

(iDλ), (iDδ)
�

©

(−iσαβ) bv〉 g⊥ρσg⊥αλg⊥βδ ,

2mBm9 = 〈b̄v

�

(iDρ),
�

(iDσ),
�

(iDλ), (iDδ)
�

�

�

(−iσαβ) bv〉 g⊥ρβ g⊥λαg⊥σδ . (48)
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Finally, eighteen more parameters are present at 1/m5
b, as defined in Ref. [27]:

2mB r1 = 〈b̄v (iDµ) (ivD)3 (iDµ) bv〉 ,

2mB r2 = 〈b̄v (iDµ) (ivD) (iDµ) (iD)2 bv〉 ,

2mB r3 = 〈b̄v (iDµ) (ivD) (iDν) (iD
µ) (iDν) bv〉 ,

2mB r4 = 〈b̄v (iDµ) (ivD) (iD)2 (iDµ) bv〉 ,

2mB r5 = 〈b̄v (iD)
2 (ivD) (iD)2 bv〉 ,

2mB r6 = 〈b̄v (iDµ) (iDν) (ivD) (iDν) (iDµ) bv〉 ,

2mB r7 = 〈b̄v (iDµ) (iDν) (ivD) (iDµ) (iDν) bv〉 ,

2mB r8 = 〈b̄v (iDα) (ivD)3 (iDβ) (−iσαβ) bv〉 ,

2mB r9 = 〈b̄v (iDα) (ivD) (iDβ) (iD)
2 (−iσαβ) bv〉 ,

2mB r10 = 〈b̄v (iDµ) (ivD) (iDµ) (iDα) (iDβ) (−iσαβ) bv〉 ,

2mB r11 = 〈b̄v (iDµ) (ivD) (iDα) (iD
µ) (iDβ) (−iσαβ) bv〉 ,

2mB r12 = 〈b̄v (iDα) (ivD) (iDµ) (iDβ) (iD
µ) (−iσαβ) bv〉 ,

2mB r13 = 〈b̄v (iDµ) (ivD) (iDα) (iDβ) (iD
µ) (−iσαβ) bv〉 ,

2mB r14 = 〈b̄v (iDα) (ivD) (iD)2 (iDβ) (−iσαβ) bv〉 ,

2mB r15 = 〈b̄v (iDα) (iDβ) (ivD) (iD)2 (−iσαβ) bv〉 ,

2mB r16 = 〈b̄v (iDµ) (iDα) (ivD) (iDβ) (iD
µ) (−iσαβ) bv〉 ,

2mB r17 = 〈b̄v (iDα) (iDµ) (ivD) (iDµ) (iDβ) (−iσαβ) bv〉 ,

2mB r18 = 〈b̄v (iDµ) (iDα) (ivD) (iDµ) (iDβ) (−iσαβ) bv〉 . (49)
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A.2 RPI basis

The RPI HQE matrix elements up to 1/m4
b have been determined in Ref. [31]. We list them here:

2mBµ
2
π = −〈b̄v (iD)

2 bv〉 ,

2mBµ
2
G = 〈b̄v (iDα) (iDβ) (−iσαβ) bv〉 ,

2mBρ̃
3
D =

1
2
〈b̄v

�

(iDµ),
��

(ivD) +
1

2mb
(iD)2

�

, (iDµ)
�

�

bv〉 ,

2mB r4
G = 〈b̄v

�

(iDµ), (iDν)
� �

(iDµ), (iDν)] bv〉 ,

2mB r̃4
E = 〈b̄v

��

(ivD) +
1

2mb
(iD)2

�

, (iDµ)
���

(ivD) +
1

2mb
(iD)2

�

, (iDµ)
�

bv〉 ,

2mBs4
B = 〈b̄v

�

(iDµ), (iDα)
� �

(iDµ), (iDβ)
�

(−iσαβ) bv〉 ,

2mB s̃4
E = 〈b̄v

��

(ivD) +
1

2mb
(iD)2

�

, (iDα)
���

(ivD) +
1

2mb
(iD)2

�

, (iDβ)
�

(−iσαβ) bv〉,

2mBs4
qB = 〈b̄v

�

(iDµ),
�

(iDµ),
�

(iDα), (iDβ)
�

�

�

(−iσαβ) bv〉 , (50)

We note that we choose to use µ2
π instead of µ3 as in Ref. [31], in order to avoid factors of 1/µ3

in the centralized moments. Furthermore, we note that ρ̃3
D, r̃4

E , and s̃4
E contain their so-called RPI-

completion terms as described in Refs. [28, 31]. In Ref. [28], the RPI matrix elements at 1/m5
b have

been determined to be:

2mBX 5
1 = 〈b̄v

�

(ivD),
�

(ivD), (iDµ)
�

�

�

(ivD), (iDµ)
�

bv〉 ,

2mBX 5
2 = 〈b̄v

�

(ivD),
�

(iDµ), (iDν)
�

�

�

(iDµ), (iDν)
�

bv〉 ,

2mBX 5
3 = 〈b̄v

�

(iDµ),
�

(ivD), (iDν)
� �

(iDµ), (iDν)
�

�

bv〉

2mBX 5
4 = 〈b̄v

�

(iDµ),

�

(iDν),
�

(iDµ),
�

(ivD), (iDν)
�

�

��

bv〉 ,

2mBX 5
5 = 〈b̄v

�

(ivD),
�

(ivD), (iDα)
�

�

�

(ivD), (iDβ)
�

(−iσαβ) bv〉 ,

2mBX 5
6 = 〈b̄v

�

(ivD),
�

(iDµ), (iDα)
�

�

�

(iDµ), (iDβ)] (−iσαβ) bv〉 ,

2mBX 5
7 = 〈b̄v

�

(iDµ),
�

(ivD), (iDα)
�

�

�

(iDµ), (iDβ)
�

(−iσαβ) bv〉 ,

2mBX 5
8 = 〈b̄v

�

(iDµ),
�

(ivD), (iDα)
� �

(iDµ), (iDβ)
�

�

(−iσαβ) bv〉 ,

2mBX 5
9 = 〈b̄v

�

(iDµ),
�

(ivD), (iDµ)
�

�

�

(iDα), (iDβ)
�

(−iσαβ) bv〉 ,

2mBX 5
10 = 〈b̄v

�

(iDµ),
�

(ivD), (iDµ)
� �

(iDα), (iDβ)
�

�

(−iσαβ) bv〉 . (51)
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