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We present the Julia module PauliStrings.jl for quantum many-body simulations, which per-
forms fast operations on the Pauli group by encoding Pauli strings in binary. All of the Pauli
string algebra is encoded into low-level logic operations on integers, and is made efficient by vari-
ous truncation methods which allow for systematic extrapolation of the results. We illustrate the
effectiveness of our module by (i) performing Heisenberg time evolution through direct numerical
integration and (ii) by constructing a Liouvillian Krylov space. We benchmark the results against
tensor network methods, and we find our module performs favorably. In addition, we show that
this representation allows for easy encoding of any geometry. We present results for chaotic and
integrable spin systems in 1D as well as some examples in 2D. Currently, the main limitations are
the inefficiency of representing non-trivial pure states (or other low-rank operators), as well as the
need to introduce dissipation to probe long-time dynamics.
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I. INTRODUCTION

It is generally difficult to represent quantum objects on a classical computer because they live
in a Hilbert space that is exponential in system size. Hamiltonians of discrete systems are trivially
represented as matrices that take exponential space, and pure states are vectors on which these
matrices can act. It is this basic fact that limits the classical simulability of quantum systems, one
way or another. However, most systems of interest have a lot more structure, and this structure
can often be exploited to devise more meaningful representations of the problem. Most quantum
systems of interest are local, i.e. subsystems with few degrees of freedom typically interact through
few-body interactions on a geometrically local graph. This locality can be taken advantage of; for
example, it has been proven that gapped Hamiltonians have low energy eigenstates which obey
the ‘area law’, that is, their entanglement entropy in a given region of space scales as the area of
the boundary of that region rather than as the volume, which would be the case generically [1–3].
Thus, the manifold of Hilbert space in which these states live is very small with respect to the total
space, and in addition under time evolution the amount of Hilbert space explored is exponentially
tiny [4].

We can take advantage of this by choosing ansatzes to represent our states which also obey
the area law. Tensor networks such as Matrix Product States (MPS) [5–7] are one such set of
ansatzes which have been shown to be extremely effective at representing quantum states of local
Hamiltonians [8]. Operators can also be represented as tensor networks, such as in the form of
Matrix Product Operators (MPO) [9, 10].

In this work we will explore a different representation for efficiently modeling such systems; for
example when we write the Hamiltonian of an Ising chain

H =
∑
i

ZiZi+1 +
∑
i

Xi (1)

we take advantage of the locality of H to decompose it into local terms : H =
∑

i τi where the τi’s
are Pauli strings. Each Pauli string is the tensor product of a Pauli matrix {1, X, Y, Z} at each site.
Since these strings form a complete basis, all operators in the Hilbert space can simply be encoded
as linear combinations of Pauli strings.

In this work, we will show that this encoding can be advantageous for numerical simulation of
quantum dynamics. The advantage arises from two key features:

1. The Pauli string algebra is encoded in low-level logic operations on integers, making it very
efficient to numerically store and multiply strings together.

2. Operators can be systematically truncated to some precision by discarding strings with neg-
ligibly small weight. This allows one to keep the number of strings manageable at the cost of
some incurred error.

The second point is particularly powerful when combined with noise. It has recently been shown
that noisy quantum circuits can be simulated in polynomial time [11]. The proof is based on the
idea that long Pauli strings decay exponentially in time with an exponent that is proportional
to their length. Because there are only polynomially many short strings, truncation of the long
strings makes simulations more tractable. This can be seen as a truncation of the very non-local
correlations. Note that here ‘non-locality’ refers to many body interactions, not to ‘geometric
non-locality’. Thus, the method does not truncate geometrically non-local correlations if they are
encoded in few body terms. The Pauli string representation is therefore the natural way to take
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advantage of noise to classically simulate quantum many body systems. To make this practical, we
present a user-friendly Julia module that easily encodes local Hamiltonians and operators, as well as
implements important techniques in the study of quantum many-body systems: PauliStrings.jl.

The paper is organized as follows. We will first outline the numerical methods. Then, we will
show results obtained with PauliStrings.jl for Heisenberg time evolution and Krylov subspace
expansion (the recursion method) of operators in 1D, 2D, integrable, and chaotic systems. To
benchmark our method, we also present results obtained with tensor network techniques. Since
we are interested in high-temperature dynamics, we find that the Pauli string algebra outperforms
tensor networks in a number of cases. Finally, we discuss ways in which the Pauli string method
can still be improved.

II. METHODS

Pauli strings

To encode the algebra of Pauli strings in logic operations on binary strings, we utilize the method
laid out in Ref. [12]. Here, we give an overview of this encoding and show how we use it to efficiently
manipulate quantum operators. First define the following real matrices

τ00 = 12 (2)
τ01 = X (3)
τ10 = Z (4)
τ11 = iY (5)

where X,Y, Z are the Pauli matrices. Up to a phase α, we can multiply two τ matrices by performing
two XOR operations on their indices:

τijτkl = ατ(i⊕k)(j⊕l). (6)

We can use this property to efficiently multiply Pauli strings. Encode a Pauli string τa in a tuple
of binary integers a = (v, w) such that τa = τv1w1 ⊗ τv2w2 ⊗ τv3w3 ... where vi is the ith bit of integer
v. Then the following relation holds:

(−1)α1τa1
(−1)α2τa2

= (−1)α12τa12
, (7)

where a1 = (v1, w1), a2 = (v2, w2), a12 = (v12, w12) and

v12 = v1 ⊕ v2 (8)
w12 = w1 ⊕ w2 (9)

α12 = (−1)pop(v1∧w2). (10)

Here ⊕ denotes bitwise XOR, ∧ denotes bitwise AND and pop(n) counts the number of set bits of
n (Hamming weight or popcount). A similar relation holds for the commutator of two Pauli strings:

[(−1)α1τa1
, (−1)α2τa2

] = (−1)α12τa12
(11)

where (8) and (9) still hold but (10) is replaced by

α12 = (−1)pop(v1∧w2) − (−1)pop(w1∧v2). (12)

https://github.com/nicolasloizeau/PauliStrings.jl
https://github.com/nicolasloizeau/PauliStrings.jl
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We can now use this encoding to represent an operator as a list of tuples {ai = (vi, wi)}, together
with a list of complex coefficients {hi}. The full operator is simply

H =
∑
i

hiτai
. (13)

Computing the product or the commutator of two operators in this representation is equivalent
to multiplying the coefficients and the Pauli strings τai two by two, as shown in algorithm 1.
Algorithm 1 can also be adapted with eq. (12) in order to compute the commutator.

Algorithm 1 Product of two operators A and B in the binary Pauli string representation
C ← empty operator
for 0 ≤ i <length(A) do

for 0 ≤ j <length(B) do
v ← A.vi ⊕B.vj
v ← A.wi ⊕B.wj

h← A.hi ·B.hj · (−1)pop(A.vi∧B.wj)

if (u, v) is in C then
C[(u, v)] ← C[(u, v)]+h

else
C[(u, v)] ← h

end if
end for

end for
return C

In the special case that the operators have translation symmetry, there is an even more efficient
way to encode them. Consider for example the 1D Ising Hamiltonian with periodic boundary
conditions H = −J(

∑
i ZiZi+1+g

∑
i Xi). In this case, there is no need to store all the Pauli strings.

H is fully specified by the two strings −JZ1Z2 and −JgX1 and the fact that it has translation
symmetry. In general, a 1D translation symmetric operator can be written as

∑
i Ti(H0) where Ti

is the i-site’s translation operator and H0 is the local operator that generates H. H0 can be chosen
so that it’s only composed of Pauli strings that start on the first site. Algorithm 2 shows how to
take the product of two translation symmetric operators. The main difference from Algorithm 1 is
that we need to translate each string back so that it starts on the first site. In PauliStrings.jl,
this is implemented in the OperatorTS1D structure.

In both cases, (translation symmetric or not), the numerical power of this representation lies
in the possibility to efficiently truncate an operator by only keeping Pauli strings with the largest
weights. When running iterative algorithms like Lanczos, or discrete time evolution, we truncate
the operator at each step by keeping a maximum number of strings or by discarding long strings.

https://github.com/nicolasloizeau/PauliStrings.jl
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Algorithm 2 Product of two translation symmetric operators A and B. Tk is the translation
operator by k sites and Shiftleft(τ) translates τ such that it starts on the first site.

C ← empty operator
for 0 ≤ i <length(A) do

for 0 ≤ j <length(B) do
for 0 ≤ k < N do

τ ← Shiftleft(A.τi · Tk(B.τj))
h← A.hi ·B.hj

if τ is in C then
C[τ ] ← C[τ ]+h

else
C[τ ] ← h

end if
end for

end for
end for
return C

Tensor networks

We will use tensor networks to benchmark PauliStrings.jl, because as mentioned previously,
they also provide a powerful tool to work around the exponential size of the Hilbert space (for a
review of tensor networks we refer readers to Refs. [13, 14]). By constructing a tensor network,
one can compress a state or operator living in the exponentially large Hilbert space into a polyno-
mial number of chain of tensors, which when contracted, recover the full state/operator. For this
representation to be efficient, the number of tensors should be polynomial in the system size.

Matrix Product States and Matrix Product Operators are 1D tensor networks in which N spins
are represented by N , 3-dimensional tensors, each with two internal indices running over the internal
‘bond-dimension’ (BD), and the third index representing the spin degrees of freedom. When doing
calculations a maximum bond-dimension of tensors can be set, inducing a controlled error in the
representation of the state/operator, but at the benefit of reducing the number of parameters to be
just polynomial in the system size.

Using these truncations effectively, tensor networks are highly efficient at performing matrix op-
erations and time evolution with a local and highly sparse Hamiltonian H. In this work, we will
use the ITensors.jl julia package [15] to run all tensor network simulations, and we refer readers
to its documentation for a precise definition of the ‘cutoff’ parameter we use in our simulations.
Heisenberg time evolution is performed with the operator form of the Time Evolving Block Dec-
imation (TEBD) algorithm [16, 17] as is implemented in ITensors.jl, and we perform the tensor
network recursion method simulations described later by representing all operators in the algorithm
as MPOs.

III. HEISENBERG TIME EVOLUTION

Computing time evolution with the Pauli strings is done in the Heisenberg picture. Indeed, a
pure state is a low-rank density matrix, and low-rank matrices cannot be efficiently encoded as the
sum of Pauli strings [18]. It is therefore more efficient to evolve a local operator than a pure state

https://github.com/nicolasloizeau/PauliStrings.jl
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in the Pauli strings representation. Here this is done by integrating Von Neuman’s equation

i
dO

dt
= −[H,O] (14)

using the Runge-Kutta method. To keep the number of strings manageable, we introduce noise and
truncate the operator O at each time step by keeping the strings with the largest weight. The noise
is modeled by a depolarizing channel that causes long Pauli strings to decay. In the Heisenberg
picture, observables evolve under the adjoint channel. Because a depolarizing channel is self-adjoint,
we can apply it directly to O. The transmission rate associated with a Pauli string of length w is
e−ϵw where ϵ is the noise amplitude. Similar approaches have been recently used in Refs. [11, 19–
22]. The strategy here is to choose the smallest noise value that makes the simulations tractable,
while not destroying the phenomena of interest.

Results: Next-nearest neighbor XXZ chain

As an example, we discuss the diffusion of a local operator in a XXZ next-nearest-neighbor spin
chain

H =
∑
i

(XiXi+1 + YiYi+1 +∆ZiZi+1) (15)

+ γ
∑
i

(XiXi+2 + YiYi+2 +∆ZiZi+2)

with γ = 1
2 and ∆ = 2. In PauliStrings.jl we can build this Hamiltonian as follows:

� �
function XXZnnn(N::Int)

∆ = 2
γ = 1/2
H = ps.Operator(N)
for j in 1:N

H += "X",j, "X",j%N+1
H += "Y",j, "Y",j%N+1
H += ∆, "Z",j, "Z",j%N+1
H += γ, "X",j, "X",(j+1)%N+1
H += γ, "Y",j, "Y",(j+1)%N+1
H += γ*∆, "Z",j, "Z",(j+1)%N+1

end
return H

end� �
where the modulo ensure periodic boundary conditions.
It is known to be difficult to numerically recover the hydrodynamic diffusive behavior of strongly

coupled spin chains, with some of the best current methods being the truncated Wigner approxima-
tions [23, 24] and TEBD [25]. Diffusion can be observed as a ∼ 1√

t
decay of the infinite-temperature

autocorrelation function:

S(t) =
1

2N
Tr[Z1(t)Z1(0)]. (16)

https://github.com/nicolasloizeau/PauliStrings.jl
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We recover this behavior with our truncated Pauli string simulations as shown in Fig. 1 for
relatively large system size N = 30, where the grey lines indicate ∼ 1

t−1/2 scaling and M denotes
the maximum allowed number of Pauli strings. All results were computed within 1 day maximum
runtime.

Our method allows us not only to compute S(t) but also more general two-time correlation
functions between Z1 and other Pauli strings. To illustrate this, in Fig. 2 we plot the two point
correlator:

Si−j(t) =
1

2N
Tr[Zi(t)Zj(0)]. (17)

In the diffusive regime, we’d expect these correlations to decay like a Gaussian with a width that
grows like σ2 ∼ t. As the depolarizing noise ϵ is increased, the results increasingly converge in
increasing M to the expected diffusive decay. However, for the highest values of ϵ, the effects
of the breaking of energy and particle-number conservation start to manifest itself. The system
then locally relaxes to equilibrium, resulting in a crossover from diffusion to exponential decay. By
carefully choosing a moderate value of ϵ and large M , one can see good convergence to the expected
diffusive decay up to large t (see in particular the plot for ϵ = 0.01). In addition, by scaling out
the particle loss n(t) =

∑
j Tr[Z0(t)Zj(0)] = e−ϵt to correct for the purely dissipative effect that

comes from the depolarizing channel, one observes a broad regime of ϵ and t over which the results
converge, as shown in Fig. 3.

The following is a code example of noisy time evolution implementation in PauliStrings.jl used
to generate Fig. 1:

� �
# heisenberg evolution of the operator O using rk4
# return tr(O(0)*O(t))/tr(O(t)^2)
# M is the number of strings to keep at each step
# noise is the amplitude of depolarizing noise
function evolve(H, O, M, times, noise)

S = []
O0 = deepcopy(O)
dt = times[2]-times[1]
for t in times

push!(S, ps.trace(O*ps.dagger(O0))/ps.trace(O0*O0))
#preform one step of rk4, keep only M strings, do not discard O0
O = ps.rk4(H, O, dt; heisenberg=true, M=M, keep=O0)
#add depolarizing noise
O = ps.add_noise(O, noise*dt)
# keep the M strings with the largest weight. Do not discard O0
O = ps.trim(O, M; keep=O0)

end
return real.(S)

end� �
Achieving time evolution at this system size with dense or sparse matrices would require a large

amount of distributed memory, making it very computationally expensive to run. On the other
hand, using TEBD as shown in Fig. 4 we are able to get converged results with 9 Gb of memory
but only up to t ∼ 1 in 4 days runtime. The PauliStrings.jl result with M = 218 and ϵ = 0.01
is shown for comparison and displays the expected decay to an order of magnitude longer time
(t ∼ 10), though it only required 5 Gb of memory and 1 day of runtime. The TEBD results shown
use a truncation cutoff of 10−10; we also performed the same simulation for both larger and smaller

https://github.com/nicolasloizeau/PauliStrings.jl
https://github.com/nicolasloizeau/PauliStrings.jl


8

cutoffs, but found 10−10 to be more than sufficiently converged while larger cutoffs did not improve
accessible simulation times without significant loss of accuracy. Thus PauliStrings.jl performs
significantly better than TEBD for Heisenberg time evolution of the next-nearest neighbor XXZ
chain.
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10 1

100

S(
t)

model:XXZnnn, N=30, = 0.005

M = 212

M = 214

M = 216

M = 218

10 1 100 101 102

10 1

100
model:XXZnnn, N=30, = 0.01
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t

10 3
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10 1

100
model:XXZnnn, N=30, = 0.04

M = 212

M = 214

M = 216
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FIG. 1. Diffusive decay of correlator (16) computed by time evolving the XXZ next-nearest-neighbor spin
chain (15) using the Pauli strings method. The grey lines show the ∼ 1√

t
decay. M denotes the maximum

number of strings in the time evolution. Only M strings with the highest weight are kept at each time step
of the RK4 integration.

https://github.com/nicolasloizeau/PauliStrings.jl
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t=0.10
t=0.25
t=0.65
t=1.45
t=3.40
t=7.95
t=18.45
t=43.00
t=100.00

FIG. 2. Diffusive decay of the two point correlator (17). The two point correlator takes the form of a
Gaussian function in i − j spreading with time. This is characteristic of diffusion. Note that in our Pauli
strings representation, extracting this quantity is not more computationally costly than extracting the
correlator (16) from Fig. 1. The presence of noise makes the correlator decay faster than diffusive at late
times, as also seen on Fig. 1.

IV. KRYLOV SUBSPACE EXPANSION

Much recent work has shown that Krylov subspace expansions of the Liouvillian, through the
recursion method, provide valuable insights in quantum many-body dynamics beyond simply solving
the equations of motion (recently reviewed in Ref. [26]). The recursion method has been used for
decades to study quantum many-body systems, and is explained in detail in Ref. [27]. The method
consists of utilizing the Lanczos algorithm to tridiagonalize the Liouvillian L = [H, ·], which is the
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)Z
j(t

) ]
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(t)
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i j
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= 0.02
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FIG. 3. Two point correlator (17) (same as in Fig. 2) for some particular times and different values of
dissipation ϵ. On this figure, the correlator (17) is normalized by n(t) =

∑
j Tr[Z0(t)Zj(0)] = e−ϵt in order

to correct for the purely dissipative effect that comes from the depolarizing channel only. At short time
(e.g. t = 8), the correlator is Gaussian while at longer times (e.g. t = 16), the edges of the Gaussian flatten
due to finite size effects.

superoperator which generates time evolution of operators in the Heisenberg picture as dO
dt = i[H,O].

Lets introduce Lanczos’ algorithm. The idea is to construct an orthonormal basis of operators
generated by recursively applying L to O. First, one defines an inner product, which here we choose
to be the infinite temperature inner product: AB = 1

2N
Tr[A†B] and norm ∥O∥ = 1

2N
Tr[O2]. Then,

the first iteration is given by:

O1 = LO0/b1 = [H,O0]/b1,

b1 = ∥LO0∥. (18)

For n > 2 the algorithm proceeds as follows, up to a maximal dimension n = D2 −D + 1 where
D is the Hilbert space dimension [28]:

O′
n = LOn−1 − bn−1On−2,

On =
O′

n

bn
,

bn = ∥O′
n∥. (19)

In the end, one has generated an orthonormal ‘Krylov-basis’ {LO,L2O, ...LnO} and ‘Lanczos
coefficients’ bn which are also uniquely related to the moments of the Hamiltonian [27].

The recursion method was first used in the 1980s to approximate time evolution [29, 30], and
has also been used more recently to calculate conductivities [31–33]. However in this work we will
focus on even more recent developments of the recursion method as a probe of quantum chaos
[34–40]. The logic is as follows; evolving in time under the Liouvillian, an initially local operator
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model: XXZnnn,  N=30, cutoff=10 10

Pauli strings
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FIG. 4. Diffusive decay of the two point correlator (16) computed by time evolving the XXZ next-nearest-
neighbor spin chain (15) using TEBD. The grey lines show the ∼ 1√

t
decay, BD denotes the maximum bond

dimension allowed in the time evolution, and results are shown for a truncation cutoff of 10−10. The Pauli
strings result with M = 218 and ϵ = 0.01 is shown for comparison.

becomes increasingly nonlocal and complex, requiring an increasing number of basis vectors from
the Hilbert space to represent it. The Lanczos coefficients generated by the recursion method
are a measure of this complexity. These coefficients are expected to grow as fast as possible in
chaotic systems, which has been strictly bounded to be linear, with a logarithmic correction in
one-dimension [34]. However, in integrable systems, due to the presence of conserved quantities,
the dynamics is restricted and the Lanczos coefficients are generally expected to grow sublinearly
(commonly as ∼

√
n), and don’t grow at all for systems which can be mapped to free fermions [34].

Thus the rate of growth of the Lanczos coefficients can be used as a generic probe of quantum
chaos. In addition, using these ideas it has recently been shown that the knowledge of a few Lanczos
coefficients can be sufficient to estimate long time dynamics [41] and to probe for hydrodynamics
[25, 42].

Results: Lanczos coefficients

In this section we show Lanczos coefficients for different systems calculated with both the trun-
cated Pauli string method and MPOs. In both cases we use a maximum memory of 40 Gb, however,
importantly, in the tensor network simulations 4 CPUs are used while in PauliStrings.jl there is
currently no parallelization implemented and only 1 CPU is used. Fig. 5 compares Pauli strings
without exploiting translation symmetry to MPO while Fig. 7 shows Pauli strings results using
translation symmetry.

https://github.com/nicolasloizeau/PauliStrings.jl
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Integrable Models

We first consider two interacting integrable models. The universal behaviors of this class are
not fully understood, however it is known that the Lanczos coefficients have square root growth
bn ∼

√
n in many standard models such as those studied here [27, 34, 43].

We first consider the XX model with Hamiltonian:

H =
∑
i

(XiXi+1 + YiYi+1) . (20)

To construct this Hamiltonian in PauliStrings.jl with open boundary conditions one writes the
following julia code:

� �
function XX(N)

H = ps.Operator(N)
for j in 1:(N - 1)

H += "X",j,"X",j+1
H += "Y",j,"Y",j+1

end
return H

end� �
We then build the Krylov space from an initial operator O0 =

∑N
i=1 Xi. The results for this model

are shown in Fig. 5 (A) for N = 40 up to n = 40 Lanczos iterations. With PauliStrings.jl the
sequence is converged for trim M = 224 strings in 46 minutes while the equivalent tensor network
code is not able to converge much past n = 30. In addition, if we consider n = 30 where both
methods are converged, tensor networks is about 40 times slower than PauliStrings.jl for equiv-
alent precision (considering BD=500 and trim M = 222). In addition, the convergence time and
memory cost can be improved even more by taking advantage of the translation symmetry of the
model, as explained in the Methods section. Doing this, we can now generate results for N = 50,
converged up to n = 50, which are shown in Fig. 7 (A). Finally, we note that when unconverged
the behavior is very different for both methods. The Pauli strings method tends to underestimate
the correct sequence while tensor networks overestimates, and diverges. This allows for a much
more controlled extrapolation of the correct result with increasing trim than for increasing bond
dimension, and also reduces computation time when unconverged. Thus the Pauli strings method
is much more efficient for this model, even without taking advantage of the translational symmetry.

We also consider the interacting XXX Heisenberg model which is integrable by the Bethe
ansatz [44], and has the following Hamiltonian:

H =
∑
i

(XiXi+1 + YiYi+1 + ZiZi+1) . (21)

This Hamiltonian is constructed in PauliStrings.jl with the following code:

� �
function XXX(N)

H = ps.Operator(N)
for j in 1:(N - 1)

H += "X",j,"X",j+1

https://github.com/nicolasloizeau/PauliStrings.jl
https://github.com/nicolasloizeau/PauliStrings.jl
https://github.com/nicolasloizeau/PauliStrings.jl
https://github.com/nicolasloizeau/PauliStrings.jl
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H += "Y",j,"Y",j+1
H += "Z",j,"Z",j+1

end
return H

end� �
We again consider open boundary conditions and use the initial operator O0 =

∑N
j XjYj+1 −

YjXj+1 which is shown to give a square root growth in Ref. [34]. The results are shown in Fig. 5 (B).
In this case the methods are more comparable; the Pauli strings method is converged up to n ∼ 15
while the tensor network method is converged up to n ∼ 17, however, the latter requires more
than an order of magnitude more time to reach this convergence than PauliStrings.jl. Taking
advantage of the translation symmetry we achieve convergence up to n ∼ 20, shown in Fig. 7 (B).

Chaotic Model

We now consider a chaotic chain which we call the quantum Ising chain with the following
Hamiltonian:

H =
∑
i

(XiXi+1 − 1.05Zi + hXXi) . (22)

This code builds the Hamiltonian in PauliStrings.jl:

� �
function Quantum_Ising(N, h_X)

H = ps.Operator(N)
for j in 1:(N - 1)

H += "X",j,"X",j+1
end
for j in 1:N

H += -1.05,"Z",j
H += h_X,"X",j

end
return H

end� �
The Lanczos coefficients of generic chaotic systems grow linearly: bn ∼ n (with a logarithmic

correction in 1D bn ∼ n
logn ) [34, 45]. Here we use hX = 0.5 which has been shown to be far away

from the integrable point [46]. As an initial operator we use O =
∑

i (1.05XiXi+1 + Zi), as is also
used in Ref. [34].

The results are shown in Fig. 5 (C), where we see the expected growth bn ∼ n
logn . Here the

methods are again comparable, but tensor networks have an edge in convergence, converging up to
n = 40 while PauliStrings.jl converges up to n ∼ 33 in similar time. We thus conclude that the
tensor network implementation is more efficient for this model, though the Pauli strings method is
comparable. That being said, if we take advantage of the translational symmetry, shown in Fig. 7
(C) (and (D) for hX = 0.1) the Pauli strings method now converges up to n = 40 in approximately
half the time as the tensor network method.

https://github.com/nicolasloizeau/PauliStrings.jl
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2D Chaotic Models

A significant advantage of PauliStrings.jl is the relative ease of considering higher spatial di-
mensions. The Pauli string representation is not tied to any geometry; it allows us to work with
local systems defined on arbitrary graphs. First we give an example of chaotic growth in 2D we
using the following 2D XZ+ZX model, with the following Hamiltonian:

H =
∑
xy

(Xx,yZx+1,y + Zx,yXx,y+1) (23)

We again use open boundary conditions and an initial operator O = Z11. It has been proven
that for this model the Lanczos coefficients grow linearly [34, 47], and we see this clearly in Fig. 6
(A). With PauliStrings.jl we are able to achieve up to n = 15 coefficients in a small amount
of computation time (26 minutes). This competes with analytical methods used for computing
Lanczos coefficients for other 2D models [48].

We also consider the 2D XXZ model given by the following Hamiltonian:

H =
∑
<i,j>

(
XiXj + YiYj +

1

2
ZiZj

)
. (24)

The Lanczos coefficients for this model are shown in Fig. 6. Convergence is achieved up to n = 10
in relatively small computation times.

V. VISUALIZING THE ALGEBRA

We now turn to a more pedagogical example in which the string representation gives direct
intuitive insight into the system. Consider the XX model (eq. 20). This is an integrable model
and if O is a Majorana Pauli string, then [H,O] is another Majorana string. A Majorana string
is a string of the form Y..Y X1...1 or Y..Y Z1...1. Indeed, these strings anti-commute and can be
interpreted as spin representations of Majorana fermions. Now, if we add a defect to the XX model,
this breaks integrability. Let us visualize this effect using PauliStrings.jl. We already constructed
the XX model below eq. (20). Now define a simple lanczos algorithm that prints the operator at
each step :

� �
function lanczos(H::ps.Operator, O::ps.Operator, steps::Int)

O0 = deepcopy(O)
b = ps.norm_lanczos(ps.com(H, O0))
O1 = ps.com(H, O0)/b
for n in 1:steps-1

println("step ",n+1)
println(O1)
A = ps.com(H, O1)-b*O0
b = ps.norm_lanczos(A)
O = A/b
O = ps.cutoff(O, 1e-10)
O0 = deepcopy(O1)
O1 = deepcopy(O)

https://github.com/nicolasloizeau/PauliStrings.jl
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FIG. 5. Lanczos coefficients calculated with PauliStrings.jl (PS) and Tensor networks (TN) for the XX
model (A), chaotic chain (B), and XXX model (C) for different trim and bond dimensions (BD) respectively.
The trim value is log2 M where M is the maximum number of strings kept at each step. Similar results
exploiting translation symmetry are shown in Fig. 7. Results are calculated with a maximum of 40 Gb
memory and 1 CPU or 4 CPUs for PauliStrings.jl and tensor networks respectively.
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end
end� �

Then we add a defect (a X field) on site 4 and run the Lanczos algorithm:

� �
N = 10 #number of sites
H = XX(N) # construct a XX Hamiltonian
H += "X", 4 # add a defect on site 4
O = ps.Operator(N)
O += "X", 1
println(O)
lanczos(H, O, 7)� �

This yields the following output :

� �
(1.0 + 0.0im) X111111111

step 2
(-0.0 + 1.0im) YZ11111111

step 3
(1.0 - 0.0im) YYX1111111

step 4

https://github.com/nicolasloizeau/PauliStrings.jl
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FIG. 7. Lanczos coefficients calculated with PauliStrings.jl exploiting translation symmetry. Instead of
storing the whole operator at each step, we can take advantage of translation symmetry by only keeping
strings that start on a particular site. This saves a factor N in memory and allows better convergence for
similar memory usage.

(-0.0 + 1.0im) YYYZ111111

step 5
(0.7071067812 + 0.0im) YYYY111111
(0.7071067812 + 0.0im) YYYYX11111

step 6
(-0.0 + 0.8164965809im) YYYZX11111
(-0.0 - 0.4082482905im) YYYXZ11111
(0.0 + 0.4082482905im) YYYYYZ1111
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step 7
(0.4 - 0.0im) YYX1X11111
(-0.6 + 0.0im) YYY1Y11111
(-0.2 + 0.0im) YYYXYX1111
(0.2 - 0.0im) YYZ1Z11111
(-0.6 + 0.0im) YYYZYZ1111
(0.2 - 0.0im) YYYYYYX111� �

In the beginning, each Majorana is transformed into a single other Majorana, and the string
grows until it hits the defect at step 5. Then the defect breaks integrability and the number of
strings starts exploding. That’s a simple example of how the Pauli string method can also be used
as a pedagogical and insightful way to visualize physical phenomena such as integrability-breaking.

VI. CONCLUSION

We have shown that PauliStrings.jl provides a competitive platform for studying quantum
many-body dynamics. Examples of this are presented for Heisenberg time evolution and Krylov
subspace expansion through the recursion method. One of the important strengths of Pauli strings
is that they provide a natural framework to take advantage of noise to make simulations tractable.
In addition, though tensor network methods quickly break down with increasing long-range entan-
glement, some systems with this type of entanglement can still be decomposed into a small number
of strings, making Pauli strings more efficient for these kinds of systems. Furthermore, Pauli string
methods are not as limited in spatial dimension and geometry, and arbitrary geometries are easy
to implement. PauliStrings.jl is easily installable through the Julia language package manager,
and more thorough code examples can be found in the documentation [49].

However, right now the truncation schemes that we use are very basic. In the Lanczos case, we
just discard strings with the smallest weight. In the time evolution case, we first add noise and
then discard strings with smallest weight, effectively discarding long strings that are more affected
by noise. There may be more efficient truncation schemes, and indeed, in certain cases, long strings
do matter. For example, in the XX model, even if the model is integrable, nested commutators
generate a few very long strings, as shown in the previous section. This suggests that in this model,
discarding long strings is not the best strategy. Ideally we would like to predict what strings matter
and what strings don’t. A more refined heuristic truncation scheme would be able to estimate the
impact of discarding a string on the higher-order nested commutators. One idea would be to use
machine learning techniques to predict the importance of strings.

Also note that our current implementation is not yet parallelized yet beats parallelized tensor
networks codes in many cases. Parallelization would offer a straightforward route to improvement.
In the future, one valuable application of the Pauli String method would be a technique that lets us
probe spectral properties. For example, an interesting quantity to compute is the thermal average
Tr(e−βHO)
Tr(e−βH)

. In the large β limit and when O is the Hamiltonian itself, this converges to the ground-
state energy. An approach to computing such a quantity is to expand it into connected moments
[50–53]. Strings are particularly appropriate for computing moments since they take advantage of
the sparsity of the operators. Moreover, computing the moment TrHk does not require storing Hk.
For example if H =

∑
i hiτi then the 4th moment is µ4 =

∑
ijkl hihjhkhl Tr(τiτjτkτl) and computing

µ4 only requires accumulating terms hihjhkhl such that τiτjτkτl = 1. From a more foundational
point of view, we also have suggested that the moments of local Hamiltonians may give us insight

https://github.com/nicolasloizeau/PauliStrings.jl
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on the decomposition into subsystems and the quantum to classical transition [54]. An alternative
to moment expansion for estimating ground state expectation values is to imaginary-time-evolve H
and O.
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