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We introduce a novel field theory representation for the Sum of Powers of Principal Minors
(SPPM), a mathematical construct with profound implications in quantum mechanics and sta-
tistical physics. We begin by establishing a Berezin integral formulation of the SPPM problem,
showcasing its versatility through various symmetries including SU(n), its subgroups, and particle-
hole symmetry. This representation not only facilitates new analytical approaches but also offers
deeper insights into the symmetries of complex quantum systems. For instance, it enables the rep-
resentation of the Hubbard model’s partition function in terms of the SPPM problem. We further
develop three mean field techniques to approximate SPPM, each providing unique perspectives and
utilities: the first method focuses on the evolution of symmetries post-mean field approximation, the
second, based on the bosonic representation, enhances our understanding of the stability of mean
field results, and the third employs a variational approach to establish a lower bound for SPPM.
These methods converge to identical consistency relations and values for SPPM, illustrating their
robustness. The practical applications of our theoretical advancements are demonstrated through
two compelling case studies. First, we exactly solve the SPPM problem for the Laplacian matrix
of a chain, a symmetric tridiagonal matrix, allowing for precise benchmarking of mean-field theory
results. Second, we present the first analytical calculation of the Shannon-Rényi entropy for the
transverse field Ising chain, revealing critical insights into phase transitions and symmetry breaking
in the ferromagnetic phase. This work not only bridges theoretical gaps in understanding principal
minors within quantum systems but also sets the stage for future explorations in more complex
quantum and statistical physics models.
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I. INTRODUCTION

Matrices find widespread applications in a variety of
scientific fields, such as quantum mechanics and machine
learning. In quantum mechanics, matrices serve as a
representation of physical observables and transforma-
tions in the Hilbert space, offering a potent mathemati-
cal framework to describe and comprehend the behav-
ior of quantum systems. In machine learning, matri-
ces are commonly employed to represent datasets, lin-
ear models, and for matrix factorization methods that
facilitate feature extraction and dimensionality reduc-
tion. While many properties of matrices, including de-
terminant, trace, rank, eigenvalues, and eigenvectors can
be calculated in polynomial time, other quantities such
as permanent [1], the sum of powers of principal mi-
nors(SPPM) [2] and mixed discriminants [2], require ex-
ponential time complexity making them relatively diffi-
cult to compute. The sum of powers of principal minors
has been found to be useful in a variety of interesting
applications. For example, in theoretical physics, it ap-
pears in the calculation of the Shannon-Rényi entropy
of fermionic systems and quantum spin chains [3]. In
machine learning, the sum of powers of principal minors
is used in determinental point processes [4]. Addition-
ally, the sum of powers of principal minors plays a role in
mixed discriminants [2], which are objects used in con-
vex geometry to study mixed volumes [5]. Additionally,

we demonstrate in this paper that the partition function
of the renowned Hubbard model can be expressed as a
SPPM problem.

So far, exact numerical calculations have been the only
viable approach for computing the Shannon-Rényi en-
tropy of quantum chains, including the transverse field
Ising (TFI) chain and free fermions. Calculations of this
kind are limited by the curse of exponential growth, re-
sulting in the largest matrix sizes being limited to around
42 [6, 7]. Moreover, there is a growing interest in the
machine learning community to efficiently compute the
sum of powers of principal minors of symmetric matrices.
With this in consideration, for the first time we intro-
duce a method that is analytically controllable and can
be used to compute this quantity for a broad spectrum
of matrices perturbatively.

The primary focus of this paper is the introduction
of a Berezin integral representation for SPPM problem
with integer powers n. This representation bears sig-
nificant importance in multiple aspects. It resembles a
field theory representation and exhibits a range of in-
triguing symmetries including SU(n) symmetry, its sub-
groups like U(1) and axial U(1), symmetric group sym-
metry, and particle-hole symmetry. Furthermore, this
representation facilitates the creation of new representa-
tions, such as the bosonic integral representation, which
can be utilized for additional analytical computations.

Following the introduction of various representations
of SPPM involving Grassmann or scalar variables, we
introduce three mean field methods for approximating
the sum. The initial approach in mean field methodol-
ogy involves simplifying the interaction component of the
action within the Berezin-Grassmann framework by sub-
stituting it with quadratic terms and then establishing
the corresponding consistency relations. The use of the
Berezin integral representation sheds light on the exami-
nation of symmetries and their behavior post-mean field,
particularly regarding spontaneous symmetry breaking.
The second method which is based on the bosonic repre-
sentation and the steepest-descent approximation is more
appropriate for verifying the stability of mean field out-
comes, rendering it a more viable option for higher-order
perturbation theory. The third mean field technique em-
ploys a variational method, where Jensen’s inequality is
utilized to derive a lower bound for the sum of powers of
principal minors. All three mean field approaches con-
verge to identical consistency relations and yield the same
value for the SPPM. We conduct a thorough analysis of
all techniques and classify the majority of intriguing sce-
narios. Within the Berezin integral representation, we
contend that near the critical point, intriguing scaling
relationships can emerge, akin to those observed in crit-
ical phenomena.

We will examine two compelling examples in our study.
The initial example is a symmetric tridiagonal matrix
known as the Laplacian matrix of a chain. All the prin-
cipal minors of this matrix are non-negative. This system
is interpreted as the weighted partition function of rooted
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spanning forests. A rooted spanning forest is a type of
subgraph within the original graph, encompassing all its
vertices and forming a forest. Each tree within this for-
est has a specifically designated root vertex at which it
is rooted. We solve the SPPM problem for any value
of the power, which can be interpreted as the inverse
temperature. We determine the free energy, average en-
ergy, entropy, and the relevant principal minors exactly.
Since we can solve this problem exactly, we can use it to
compare and evaluate the mean-field theory results in a
controlled manner.

Our second example involves calculating the Shannon-
Rényi entropy of the TFI chain. The corresponding ma-
trix in this case is a dense antisymmetric matrix, and
an exact solution may not be possible. However, we
have managed to calculate this quantity analytically for
the first time. Our analytical results demonstrate the
phase transition at h = 1 and reveal both the univer-
sal and non-universal contributions to the Rényi entropy,
which were previously obtained solely through numerical
methods. Additionally, our Berezin integral representa-
tion provides a fresh perspective on the scaling relations
around the critical point of the TFI chain. Further-
more, we demonstrate that some symmetries are spon-
taneously broken in the ferromagnetic phase. We should
emphasize that the Shannon-Rényi entropy differs from
the von Neumann-Rényi entanglement entropy, which
can be efficiently computed here using the correlation
matrix method, see [8, 9]. Simply put, the Shannon-
Rényi entropy concerns the diagonal elements of the den-
sity matrix, while the von Neumann Rényi entropy fo-
cuses on the eigenvalues of the density matrix. From
an experimental perspective, Shannon-Rényi entropy is
a more practical quantity because it only requires pro-
jective measurements in a local basis, like the spins at
different sites. This is a standard procedure with today’s
technology.

The structure of the paper is as follows: The upcom-
ing section initially defines the main problem and then
highlights several significant physical problems that are
analogous to the SPPM problem. Specifically, it demon-
strates how the Hubbard model’s partition function can
be related to the SPPM. Section III outlines the paper’s
key findings. Section IV begins with a field theory formu-
lation of the SPPM problem and then introduces various
new ways to represent the SPPM. It notably discusses
the potential application of Sourlas duality for approxi-
mating the sum. Section V categorizes the symmetries in
the field theory representation for both general and spe-
cific (symmetric and antisymmetric) matrices. Section
VI focuses on the mean-field approximation of the SPPM,
presenting three different mean-field methods. The first
method is particularly useful in understanding the sym-
metries of the problem, the second aids in grasping the
stability of mean-field results, and the third offers a lower
bound for the SPPM. These methods are analyzed in
both original and dual spaces. Section VII provides an
exact solution for the SPPM problem for arbitrary pow-

ers in the Laplacian of a chain, which is then used to
validate the mean-field theory results. Section VIII is
dedicated to examining the Shannon-Rényi entropy of
the ground state of the TFI chain, including the first an-
alytical calculation of this entropy using the mean-field
techniques. It especially highlights how transitioning to
the dual space yields highly accurate results in the fer-
romagnetic domain. The paper concludes in section IX
with discussions and prospects for future research. Nu-
merous appendices accompany the paper, detailing the
calculations of the results discussed in the main text.

II. DEFINITIONS AND MOTIVATIONS

In this section we first introduce the problem of sum of
the powers of the principal minors (SPPM) of a matrix,
and then discuss the main motivations and applications.

Consider A = (ai,j)
l
i,j=1 as an l × l square matrix. First

we define [l] = {1, 2, ..., l}, and the sets I, J ⊆ [l]. Then
the sets Ic and Jc can be defined as the complements
of I and J in [l]. We then define the matrix AI,J as
a submatrix of A corresponding to the rows I and the
columns J , all kept in their original order. From now
on we also use the notation AI ≡ AII . The quantity
of interest is M (n)(A) defined as the summation of nth
power of all the principal minors (SPPM) of A, i.e.

M (n)(A) ≡
∑
I

[detAI ]
n
, (1)

where
∑
I represents the summation over all possible sub-

sets I (sometimes called all configurations in this paper).
The number of principal minors is 2l. In this work we
mostly consider integer ns.

In the rest of this section we discuss briefly a few prob-
lems that can be mapped to the SPPM problem.

A. Rényi entropy of eigenstates of quadratic
fermionic systems

Consider a free fermionic system described by a
quadratic Hamiltonian

Hfree = c†Mc +
1

2
c†Nc† +

1

2
cNT c− 1

2
TrM, (2)

where c ≡ (c1, c2, ..., cL) is a vector made of the fermionic
annihilation operators and c† is defined similarly by the
creation operators. The M and N are in general Hermi-
tian and antisymmetric matrices, respectively. In this pa-
per however we work with real Hamiltonians. The corre-
lation matrix G for an eigenstate is defined using two Jor-

dan fermionic operators γj ≡ c†j+cj , and γ̄j ≡ i
(
c†j − cj

)
as follows:

iGjk = Tr [ρlγ̄jγk] , (3)
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where ρl is the (reduced) density matrix corresponding
to the (sub)system. Formation probabilities are defined
as the probability of finding a particular configuration of
fermions in the (sub)system. These probabilities for the
subsystem can be calculated as follows: one first writes
the reduced density matrix of the eigenstate (usually the
ground state) in fermionic coherent basis as follows [9]:

ρl(ξ, ξ
′) = < ξ|ρl|ξ′ >

= det

[
1

2
(I−G)e

1
2 (ξ̄−ξ′)TF(ξ̄+ξ′)

]
, (4)

where we defined cj |ξ >= ξj |ξ >, I is the identity matrix
and

F ≡ (I + G) (I−G)−1. (5)

Then one can calculate the formation probability of an
arbitrary configuration C by putting ξj = 0 when there
is no fermion at site j and Berezin integrate over those
sites that there is a fermion. This procedure leads to the
following general formula for formation probabilities [3]:

P (C) = det

[
1

2
(I−G)

]
detFC , (6)

where FC is the submatrix of F corresponding to the
configuration C. It is the submatrix of F with all rows

and columns in J ≡
{
j : c†j |C〉 = 0

}
remained intact.

Note that the summation over all principal minors of F is
det (I + F), guaranteeing that

∑
C P (C) = 1. Although

we found the above relation for a subsystem with mixed
state it can be also applied for the full system as far as
the F matrix exists.

The Shannon-Rényi entropy of the (sub)system is de-
fined as

Rn(l) ≡ 1

1− n ln
∑
C

P (C)
n
, (7)

where n is the Rényi index. Note that in the limit n→ 1
we recover the well-known Shannon entropy, i.e. R1(l) =
−∑C P (C) lnP (C). Using Eq. 6, one can express the
Shannon-Rényi entropy of the fermionic system in terms
of SPPM as:

Rn(l) =
n

1− n ln det

[
1

2
(I−G)

]
+

1

1− n lnM (n)(F).

(8)
Note that the above arguments are also valid for quan-
tum spin chains that can be mapped to free fermions via
Jordan-Wigner transformation such as the TFI chain.

We emphasize once again that the Shannon-Rényi en-
tropy concerns the diagonal elements of the density ma-
trix in the computational basis. On the other hand, the
so called von-Neumann-Rényi entropy is defined as

Sn(l) =
1

1− n ln (trρnl ) . (9)

For free fermions, the latter entropy can be efficiently
computed in polynomial time using the correlation ma-
trix method and has been extensively studied, see [8, 9].

The Shannon-Rényi entropy of the ground state of a
quantum chain normally shows a volume-law behavior
and presents some information about the phase transition
and its universality class [6, 10–14].

Instead of calculating the Shannon-Rényi entropy of
the full system one can also use marginal probabilities
and calculate the entropy for the subsystems. These en-
tropies as their full system counterparts also show a vol-
ume law behavior, however, at the phase transition point
there is a logarithmic subleading term the coefficient of
which shows an interesting universal behavior. Signifi-
cantly, for specific values of the Rényi index, the coeffi-
cient associated with the logarithm is influenced by the
central charge, a key parameter in two-dimensional con-
formal field theories [3, 7, 15–22]. The formation prob-
abilities have also been studied in depth for subsystems
of certain free fermions [3, 23–27]. For results on the full
system see [11, 28]. These probabilities have been also
investigated in experiments [29, 30].

Most notably, the Shannon-Rényi entropy of quantum
critical spin chains, such as the XXZ and TFI chains, has
recently been measured experimentally in various bases
for critical systems using the IBM quantum computer
[30]. Furthermore, for the first time, the central charge
of the underlying conformal field theory (CFT) was suc-
cessfully estimated using the Shannon-Rényi entropy in
the same experiment [30].

Although one can calculate analytically certain forma-
tion probabilities in the thermodynamic limit, the results
for the Shannon-Rényi entropy has been entirely numeri-
cal. Our paper is the first step to tackle this problem an-
alytically using various mean field schemes for the ground
state of the TFI chain.

B. Shannon-Rényi entropy of finite temperature
quadratic fermionic systems

Consider the free fermionic system in a finite temper-
ature β. Then the density matrix of the system is:

ρβ =
e−βHfree

Zβ
. (10)

The normalization factor is Zβ = det[I + T]
1
2 where

T = exp

[
−β
(
M N
-N -M

)]
≡
(
T11 T12

T21 T22

)
. (11)

Because of the Wick’s theorem one can again write all
the correlation functions with respect to the correlation

matrix iGβjk = Tr [ρβ γ̄jγk]. After finding the correlation
matrix one can write back the density matrix in the co-
herent basis with respect to the Gβ matrix as the Eq.
4. This shows that the Shannon-Rényi entropy of finite
temperature density matrix of free fermions is an SPPM
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problem. A more direct approach is to write the density
matrix (10) in coherent bases. This can be done first by
using the Balian-Brezin decomposition formula to decom-
pose the exponential to three seperate exponentials and
then using the well-known formulas of fermionic coherent
states [31]. This procedure leads to a formula similar to
Eq. 4, i.e.

P (C) =
1

Zβ
detFβC , (12)

with the Fβ matrix that can be derived from the following
equation:

Fβ = T12(T22)−1 + T−1
22 . (13)

This method gives the same result as the one based on
first finding the Gβ matrix and then writing the density
matrix with respect to this matrix.

Having found Fβ one can calculate the Shannon-Rényi
entropy by following the same procedure as the previous
section:

Rβn(l) = − n

1− n lnZβ +
1

1− n lnM (n)(Fβ), (14)

relating the Shannon-Rényi entropy of finite temperature
density matrix of free fermions to an SPPM problem.

C. Determinantal point processes

Determinantal Point Processes (DPP) are a family of
probabilistic models that have a repulsive behavior [32],
and are useful in machine learning where returning a di-
verse set of objects is important [4]. DPP has many
applications in random matrix theory [33] and also many
other areas of pure and applied mathematics [34]. For a
list of examples of DPP such as descents in random se-
quences, non-intersecting random walks, edges in random
spanning trees, eigenvalues of random matrices, Aztec di-
amond tilings and relevant references see [4].

DPP can be defined easily using the concept of forma-
tion probabilities. Without loosing any generality con-
sider the set C = {1, 2, ..., l} and the probability measure
P on the 2C subsets of the set C. Here the probability of
having subset C is given by

P (C = C) =
1

det [I + F]
detFC , (15)

where F and FC are defined in accordance with Eqs. 5
and 6. In general, one can start with positive semi-
definite matrix F and define the above probability distri-
bution which in DPP community is called an L-ensemble
[35].

Determinantal point processes are usually defined for
symmetric F’s by considering marginal probabilities; we
say that a random subset C is drawn according to a DPP
if for every A ⊆ C we have

P (A ⊆ C) = detKA. (16)

Here K = I − (I + F)−1 and A is the set of rows and
columns that should be kept. Equation (16) with sym-
metric K is the starting point of DPP studies. Note that
the definition given by Eq. 16 is more general than that of
Eq. 15. Moreover, the marginal probabilities P (A ⊆ C)
need not sum to 1.

SPPM and its generalizations are useful in the study
of the Hellinger distance between two DPPs [4] and also
in normalization of some deformed DPPs when one is
interested in distributions that are more peaked around
high-quality, diverse sets than the corresponding DPPs
[36, 37].

D. Partition function of the Hubbard model

Another interesting problem that can be mapped to
SPPM is the Hubbard model. For simplicity we take
the one dimensional case. The model is described by the
following many-body Hamiltonian

HHub = −t
∑

<ij>,σ

c†i,σcj,σ + U

L∑
i=1

ni↑ni,↓, (17)

where c†i,σ and ci,σ are fermionic creation and annihi-
lation operators respectively with spin σ at site i and

ni,σ = c†i,σci,σ is the corresponding number operator. t
and U are the hopping energy and Coulomb on-site in-
teraction energy, respectively. The partition function of
this system is as follows:

ZHub(L) = Tr
[
e−β(HHub−µNF )

]
, (18)

where NF ≡
∑
iσ niσ is the fermion number operator.

To relate this to a minor problem, we use the stan-
dard Berezin integral representation of fermoinic parti-
tion function [38]. We write the partition function as a
functional integral over Grassmann variables using the
identity

ZHub(L) = lim
N→∞

ZHub
N (L) (19a)

≡ lim
N→∞

Tr

[(
e−ε(HHub−µNF )

)N]
, (19b)

where ε ≡ β
N , and N is the number of imaginary time

slices. Considering Grassmann variables at each site i
and time slice k by ψ̄ik,σ and ψik,σ, one can show that [38]

ZHub
N (L) =

∫
ψψ̄

exp
[
−SHub

(
ψ̄, ψ

)]
, (20)

where SHub
(
ψ̄, ψ

)
is given in Eq. C2. Using the notation

~ψσ ≡
{
{ψik,σ}Li=1

}N
k=1

the size of which is l ≡ LN , and

also Ψ ≡
(
~ψ↑
~ψ↓

)
(and the same for Ψ̄) after the dual

transformation (Sec. IV B for details) we have
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ZHub
N (L) =

(
1 +m2

)−L
det

(
AHub +

m

m2 + 1
I

)2

M (2)

(
mI−

(
AHub +

m

m2 + 1
I

)−1
)
, (21)

where m2 = −1 ± 1√
−Uε , and AHub is a t- and µ-

dependent 2NL× 2NL matrix given by Eq. C8.

III. SUMMARY OF THE MAIN RESULTS

In this section we briefly review some of the main con-
tributions of this paper. As we mentioned in the previous
section some interesting physical and applied mathemat-
ics problems can be mapped to the SPPM problem. It
was already realized in [3] that the Shannon-Rényi en-
tropy of the ground states of free fermionic Hamiltonians
is related to the SPPM problem. The application of the
same problem in machine learning community was al-
ready appreciated in [4]. To our knowledge, the mapping
of the partition function of certain interacting fermionic
systems such as the Hubbard model to the SPPM has not
been noticed before. The most important contribution
of this paper is writing a Berezin integral representation,
i.e. Eq 23 for the SPPM problem for generic matrices
in Sec. IV. This representation is useful to explicitly
map the problem of the partition function of the Hub-
bard model to the SPPM using the Sourlas duality [39]
which we slightly generalize in Sec. IV. In addition one
can apply Hubbard-Stratonovich kind of transformations
to this Grassmann representation to find other formulas
that might be useful for tackling the SPPM problem for
certain matrices.

The Berezin integral representation, which resembles
a path integral, shows some remarkable symmetries such
as SU(n) symmetry and its subgroups such as, U(1) and
axial U(1), the symmetric group symmetry, particle-hole
symmetry and a few more that we discuss in depth in Sec.
V. Most of these symmetries exist for generic matrices
and are responsible for many identities for the two point
functions. In the case of symmetric and anti-symmetric
matrices there are extra symmetries that we also classify
them in the same section.

The SPPM for generic matrices is an NP hard problem
and one needs to tackle the problem using approximate
methods. For n = 2 we develop three mean field (MF)
methods to get an estimate for the SPPM in Sec. VI.
The first method is based on directly writing the interac-
tion term of the Grassmann representation with respect
to quadratic terms. We find the consistency relations and
discuss how the symmetries discussed in Sec. V can be
broken in various circumstances. These are summarized
in Tables III, IV and V. We also discuss how one can ver-
ify the stability of the solutions using a bosonic version of
the SPPM and saddle point approximation. We improve
the MF results by going to the dual space (from now
on we call the space resulting from the Sourlas transfor-
mation as “dual space”). The third method is based on

Jensen inequality which proves that the MF results give
a lower bound to the SPPM. This method can be also
considered as a variational method and can be a starting
point of application of numerical optimization methods
in estimating SPPM.

To show that the MF approximation is useful we dis-
cuss two examples. The first example is the discrete
Laplacian in one dimension which we use as a bench-
mark. We first solve the SPPM for arbitrary ns exactly
and discuss the statistical mechanics of the rooted span-
ning forests on a chain. Then we tackle the problem
using MF approximation and show that the MF gives a
good approximation of the SPPM especially in the dual
space. The second example which is our main example
is the Shannon-Rényi entropy of the ground state of the
Ising chain. This problem has been studied previously
using numerical calculations in [40]. We apply the MF
approximation and find the solution for the consistency
relations. Remarkably we find that the consistency re-
lations have a trivial solution in the paramagnetic phase
and non-trivial solutions appear just below the critical
magnetic field. We show that the MF gives a very good
approximation of the Shannon-Rényi entropy in the en-
tire phase diagram. Most importantly, the MF approx-
imation not only is able to detect the phase transition
point exactly it also provides very good estimates of the
universal quantities. Our MF formula is apparently the
first analytic result for the Shannon-Rényi entropy in the
fermionic systems.

IV. A BEREZIN-GRASSMANN INTEGRAL
REPRESENTATION

In this section we present a Berezin-Grassmann repre-
sentation for the sum of principal minors of an arbitrary
matrix, for a summary of useful Berezin integrals over
Grassmann variables and notations see Appendix (A).
We start with n = 1. Using the Grassmann representa-
tion of determinant one can easily check that

M (1)(A) =
∑
I

∫
χ,χ̄

(∏
i∈I

χ̄iχi

)
w

(1)
A (χ̄, χ) (22a)

=

∫
χ,χ̄

w
(1)
A (χ̄, χ) exp

 l∑
j=1

(χ̄jχj)

 (22b)

= det [I + A] , (22c)

where {χ̄i, χi}li=1 are independent Grassmann variables
with the property χjχk + χkχj = 0 and χ2

j = 0 (the
same holds for χ̄j) for all j, k = 1, ..., l, χ is an l-

vector (χ1, χ2, ..., χl) (the same for χ̄), w
(1)
A (χ̄, χ) ≡



7

exp
[∑l

jk=1 χ̄jajkχk

]
, and

∫
χ̄,χ
≡
∫ (∏l

i=1 dχ̄idχi

)
is a

Berezin integral of Grassmann variables. The second line
is easily understood by expanding the exponential term
and using the properties of Berezin integrals of Grass-
mann variables. The generalization of the above formula
to n > 1 needs considering n copies/replicas of Grass-

mann variables, i.e.

{{
χ̄

(r)
j , χ

(r)
j

}l
j=1

}n
r=1

with a gener-

alized integrand. The generalization of this equation is
expressed as follows:

M (n)(A) =

∫
χ̄,χ

w
(n)
A {χ̄, χ} , (23)

where the definitions are generalized to
∫
χ̄,χ

≡∫ (∏l
j=1

∏n
r=1 dχ̄

(r)
j dχ

(r)
j

)
and χT ≡

(
χ(1), χ(2), ..., χ(n)

)
(note that each χ(r) is an l-vector

(
χ

(r)
1 , χ

(r)
2 , ..., χ

(r)
l

)T
,

all definitions applies also for χ̄(r)), and

w
(n)
A {χ̄, χ} ≡ w(1)

A

(
χ̄(1), χ(1)

)
w

(1)
A

(
χ̄(2), χ(2)

)
...w

(1)
A

(
χ̄(n), χ(n)

)
exp

 1

n!

l∑
j=1

(
n∑
r=1

χ̄
(r)
j χ

(r)
j

)n . (24)

One can cast this equation into the following more com- pact and appropriate form

w
(n)
A {χ̄, χ} ≡ w(n)

A {χ̄, χ} = exp

χ̄Anχ+
1

n!

l∑
j=1

(
n∑
r=1

χ̄
(r)
j χ

(r)
j

)n , (25)

where we have defined an (nl)× (nl) block-diagonal ma-
trix

An ≡ diagn {A,A, ...,A} . (26)

We note that the only non-vanishing contribution to the
second term in the exponential of Eq. 25 is

1

n!

(
n∑
r=1

χ̄
(r)
j χ

(r)
j

)n
→

n∏
r=1

χ̄
(r)
j χ

(r)
j , (27)

then, by expanding the exponential term and using the
well-known Berezin integrals (Appendix A) one can
easily prove the equation.

Putting another way, we are dealing with a system
with a partition function given by an effective action

S(n)
A {χ̄, χ} ≡ logw

(n)
A {χ̄, χ}, i.e.

S(n)
A {χ̄, χ} = χ̄Anχ+

1

n!

l∑
j=1

(
n∑
r=1

χ̄
(r)
j χ

(r)
j

)n
. (28)

We call the space of copies as the replica space, which is
n-dimensional, while j = 1, ..., l enumerates the matrix
elements, which we call matrix space. The above analogy
is especially true if An is a semi-positive definite matrix.
It is worth mentioning that, using the change of variables

χ
(r)
j → iχ̄

(r)
j and χ̄

(r)
j → iχ

(r)
j one can easily show that

for arbitrary n we have

M (n)(AT ) = M (n)(A). (29)

Also for even n values, using χ̄
(r)
j → −χ̄(r)

j and χ
(r)
j →

χ
(r)
j one finds

M (n)(−A) = M (n)(A), (30)

which is rather expected from the basic properties of prin-
cipal minors.

A. Sum of the squares of the principal minors

In this subsection we summarize some results regarding
sum of the squares of the principal minors, i.e. M (2)(A).
This is the case which we comprehensively investigate
using the mean field technique. For n = 2 we have

M (2)(A) =

∫
χ̄χ

exp
[
S(2)
A {χ̄, χ}

]
=

∫
χ̄χ

exp

χ̄Aχ+
1

2

l∑
j=1

(
χ̄

(1)
j χ

(1)
j + χ̄

(2)
j χ

(2)
j

)2

 ,
(31)
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where A ≡
(
A 0
0 A

)
, χ ≡

(
χ(1)

χ(2)

)
, and χ̄ ≡

(
χ̄(1), χ̄(2)

)
.

Note that the second term in the exponential can be also

written as
∑l
j=1 χ̄

(1)
j χ

(1)
j χ̄

(2)
j χ

(2)
j , which is reminiscent

of the interaction term in the Hubbard model (see the
followings).

Using the discrete Hubbard-Stratanovich (HS) trick
one can write (31) as:

M (2)(A) =
1

2l

∑
S

[detAS ]2; (32)

where AS = A + S in which S is a diagonal matrix with
the non-zero elements {s1, s2, ..., sl} and sj = ±1. The
above formula can be easily generalized to the Zq case as
follows:

M (2)(A) =
1

ql

∑
S

[detAS detAS∗ ]; (33)

where now sj = e
2πipj
q with pj ∈ {1, 2, ..., q}.

A randomized version of the above formula exits, see
[2], in which one can assume that sj ’s are independent
symmetric random variables with first moment equal to
zero, and second moment equal to 1. Then we have

M (2)(A) = E[(detAS)2], (34)

where E is the expectation value. The above formulas
can be useful in numerical calculations for certain ma-
trices. Note that if instead of discrete HS one uses the
continuous version then we will have

M (2)(A) = (
1√
2π

)l
∫ ∞
−∞

l∏
j=1

dsje
− 1

2

∑
k s

2
k [det(AS)]2,

(35)
which is a especial case of Eq. (34). The above version of
HS trick is a good starting point for tackling the problem
of SPPM using the saddle point approximation.

Another variant can be derived by first change of
variables on the Grassmann variables and then use a
generalized version of the HS trick. However, in this case
one needs to introduce l2 variables. The usefulness of
different versions depends on the matrix and application.

B. Strong-Weak Coupling Duality

Consider χ, χ̄, φ and φ̄ as two-component Grassmann
variables with the components χ(1), χ(2) and φ(1), φ(2)

respectively, with the same definition for the fields with
bar (from now on all variables on the left of expression
with ”bar” contain also a transpose). Using properties
of Berezin integration over Grassmann variables (Ap-
pendix A and B) one can show that (see Eq. B14) [39]:

∫
χ,χ̄

exp

∑
jk

χ̄jAjkχk +
λ

2

∑
j

(χ̄jχj)
2

 =
∏
j

[(
uj +m2

j

)−1
]

det [A′]
∫
φ̄,φ

exp

∑
jk

φ̄jNjkφk +
1

2

∑
j

uj
(
φ̄jφj

)2 ,

(36)
where uj and mj are some arbitrary numbers that are related by the relations

Njk ≡ mjδjk −
[
(A′)−1

]
jk
, A′jk ≡ Ajk + δjk

mj

uj +m2
j

, λ =
uj

(uj +m2
j )

2
. (37a)

Note that the above relation is more general than the one introduced in Ref [39]. When all the mj and uj ’s are equal
we recover the result in [39]. Using the above duality one can show

M (2)(A) =
∏
j

[(
uj +m2

j

)−1
]

det [A′]
∫
φ̄,φ

exp

∑
jk

φ̄jNjkφk +
1

2

∑
j

uj
(
φ̄jφj

)2 , (38)

which serves as the weak-strong duality transformation.
To see this, note that λ is the inverse of u in the large u
limit. Using Eq. B14, we see that

M (2)(A) = clM
(2)
u (N), (39)

where M
(2)
u and cl are given by Eq. B14, and N is given

by Eq. 37. Here we have defined

N ≡ Iu − (A + Du)
−1
, (40)

where

Du ≡ diag

{
mj

uj +m2
j

}l
j=1

, and Iu ≡ diag {mj}lj=1 ,

(41)
so that

N =

(
N 0
0 N

)
. (42)
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It is also worth mentioning that we may start with the
positive semi-definite matrix A, however, in dual space
the matrix N may not be a positive semi-definite matrix.

The above duality might be useful when one deals
with a problem with large λ values, and the equation
helps to transform it to a problem with small interac-
tion coupling to be treated perturbatively. The espe-
cial case of the duality is when m = 0 and u = 1,
i.e. M (2)(A) = (detA)

2 ×M (2)(A−1) which can be de-
rived also out of the relation between the principal mi-
nors of the inverse of a matrix with the principal minors

of the matrix itself. It can be also proved easily using
the Hubbard-Stratonovich trick. For λ = 1 which is an
SPPM problem, we have mj = ±√√uj − uj , or equiv-

alently u± = 1
2 − m2 ±

√
1
4 −m2, see Appendix B for

details. Note that in the dual space mean field theory re-
sults are the most effective when we take negative branch
mj = −√√uj − uj .

Equation 38 can be exploited to expand Eq. 31 for
weak couplings uj . By expanding the interacting part of
the exponential term one finds up to O(u3)

M (2)(A) =

∏
j

[(
uj +m2

j

)−1
] det [A′]

(
det [N] +

∑
k1

uk1 det
[
NIck1Jck1

]
+
∑
k1>k2

uk1uk2 det
[
NIck1,k2Jck1,k2

]
+ ...

)
,

=

∏
j

[(
uj +m2

j

)−1
] det [A′] det [N]

(
1 +

∑
k1

uk1G
(1) {k1}+

∑
k1>k2

uk1uk2G
(2) {k1, k2}+ ...

)
,

(43)

where I{ki}si=1
= [l] \ {ki}si=1 , J{ki}si=1

= [l] \ {ki}si=1 are

sets [l] minus {ki}si=1 (for both copies), and Ic and Jc

are their complements. The second line of this relation
contains summation over s-point functions defined as

G(s) {ki}si=1 ≡ det

[
N−TI{ki}si=1

,J{ki}si=1

]
=

(
det

[
N−TI{ki}si=1

,J{ki}si=1

])2

=

[∑
σ∈Ss

(
sgn(σ)

s∏
i=1

G(1)(ki, kσ(i))

)]2

,

(44)

where Sn is the set of all permutations, sgn(σ) is + (−)

for even (odd) permutations, G(1)(k, k′) ≡
(
N−T

)
k,k′

,

and G(1)(k) = G(1)(k, k). This relation is a Wick expan-
sion. Using this, we can design a diagramatic interpreta-
tion for Eq. 43 as follows: To each term in rth level we
attribute a graph composed of r nodes, and correspond-
ing to each G(1)(km, kn) we make an edge connecting the
nodes km and kn. Each G(1)(km, km) is a local loop at
the node m. Suppose that a given diagram i is composed
of several connected components Ci, for which there are
ni identical copies, leading a symmetry factor ni!. The

contribution of such a term in the diagram is
C
ni
i

ni!
, so that

Eq. 43 becomes

M (2)(A) = cl (detN)
∏
i

∞∑
i=0

Cnii
ni!

= cl (detN) e
∑
i Ci = e−F

(2)(A).

(45)

This relation shows that for the free energy F (2)(A), the
summation is over connected components. This result
is a consequence of the linked cluster expansion theo-
rem [41]. One should use this perturbative expansion
with caution since the principal minors of N and the com-
binatorial number of terms involved in each level grows
exponentially with the level of expansion.

An interesting application of the duality is when one
uses the mean field method in the dual space. Two exam-
ples will be discussed later in the context of the Laplacian
matrix and the Rényi entropy of the TFI chain. We see
that for both examples there are values of u which the
mean field is more stable in the dual space than the orig-
inal space. The duality with the free parameters {uj}’s
provide remarkable possibilities to look for the best value
of them in which the mean field approximation is most
effective.

V. SYMMETRIES OF THE SYSTEM

In this section we explore various symmetries of the
system. In particular, we study the implications of these
symmetries on the two point functions. We define the
“expectation value” of an “observable” O {χ̄, χ} as fol-
lows:

〈O {χ̄, χ}〉 ≡
∫
χ̄,χ

O {χ̄, χ}w(n)
A {χ̄, χ}∫

χ̄,χ
w

(n)
A {χ̄, χ}

. (46)
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An example is the following 2d-point functions, which
can be exactly written with respect to the minors as:〈∏

r∈S
χ̄

(r)
j χ

(r)
j

〉
=

∑
I (detAI,j)

d
(detAI)

n−d

M (n) (A)
, (47)

where S is a subset of {1, 2, ..., n} with d elements. In
this relation the sum is over all subsets I, and AI is the
matrix A with removed rows and columns corresponding
to I, and AI,j is the same with an additional removed jth
row and column. Generally, the properties of 〈O {χ̄, χ}〉
depend on the symmetries of A. In the following subsec-
tions we summarize some symmetry-related properties of
the system.

A. U(n) Symmetry

Consider the following unitary transformation
χ(1)

χ(2)

.

.
χ(n)

→ Un


χ(1)

χ(2)

.

.
χ(n)

 ,


χ̄(1)

χ̄(2)

.

.
χ̄(n)

→ U∗n


χ̄(1)

χ̄(2)

.

.
χ̄(n)

 , (48)

where Un is a n × n unitary matrix, and U∗n is its
complex conjugate. It is straightforward to demonstrate
the invariance of the effective action given by Eq. 28
under this transformation. To illustrate this, we observe
that Un exclusively acts within the “replica space”
and behaves as a unit matrix in the “matrix space”,
resulting in the commutation of A with Un. Addition-
ally,

∑n
m=1 χ̄

(m)χ(m) remains unchanged under this
transformation.

To grasp the implications of this transformation, we
begin by considering the especial case of n = 2 and then
return to the general n values. In this specific case, the
representation of U2 is as follows:

U2 = eiγ
(

a b
−b∗ a∗

)
, (49)

where γ is a U(1) parameter, and a and b are some com-
plex parameters with an extra condition |a|2 + |b|2 = 1
(showing the SU(2) part), leaving totally four indepen-
dent parameters in the transformations. This symmetry
transformation gives rise to the strong restrictions for two
point functions. As an example we have〈
χ̄

(1)
j χ

(1)
k

〉
→
〈
χ̄

(1)
j χ

(1)
k

〉
+X1

(〈
χ̄

(2)
j χ

(2)
k

〉
−
〈
χ̄

(1)
j χ

(1)
k

〉)
+X2

〈
χ̄

(1)
j χ

(2)
k

〉
+X∗2

〈
χ̄

(2)
j χ

(1)
k

〉
,

(50)

where X1 ≡ |b|2, X2 ≡ a∗b and X∗2 are independent
variables. Given that there are three independent pa-
rameters for the SU(2) part, one finds that the three last

coefficients should be zero, implying that〈
χ̄

(1)
j χ

(1)
k

〉
=
〈
χ̄

(2)
j χ

(2)
k

〉
, (51a)〈

χ̄
(1)
j χ

(2)
k

〉
=
〈
χ̄

(2)
j χ

(1)
k

〉
= 0. (51b)

A subgroup of U(2) is obtained when we choose γ =
1
2 (α1 + α2), a = e

i
2 (α1−α2), b = 0 giving rise to

U2 → U(1)⊗ U(1) ≡
(
eiα1 0

0 eiα2

)
. (52)

This symmetry implies that (the same for χ̄’s)〈
χ

(1)
j χ

(2)
k

〉
=
〈
χ

(1)
j χ

(1)
k

〉
=
〈
χ

(2)
j χ

(2)
k

〉
= 0. (53)

The SU(2) subgroup (γ = 0) which rotates the replica
can be represented in terms of the new parameters in the
form R2(φ, n̂) ≡ U2(φ, n̂, γ = 0), where

R2(φ, n̂) = exp

[
−iφ

2
n̂.~σ

]
= I cos

φ

2
− in̂.~σ sin

φ

2
. (54)

Here φ is a real parameter and n̂ ≡ (nx, ny, nz) is a real
unit vector, and σi’s (i = x, y, z) are Pauli matrices. Us-
ing this, one can easily show that

Re[a] = cos
φ

2
, Im[a] = −nz sin

φ

2
,

Re[b] = −ny sin
φ

2
, Im[b] = −nx sin

φ

2
.

(55)

For example, in the case nx = ny = 0, we have

R2(φ, nz = 1) = e−i
φ
2 σz =

(
e−i

φ
2 0

0 ei
φ
2

)
, (56)

under which
〈
χ̄

(1)
j χ

(2)
k

〉
→ eiφ

〈
χ̄

(1)
j χ

(2)
k

〉
. This trans-

formation, which is called the axial U(1) implies that〈
χ̄

(1)
j χ

(2)
k

〉
= 0 (for all j and k values). Note also that

the transformations

R2(3π, nx = 1) = iσx, (57a)

R2(3π, ny = 1) = iσy, (57b)

interchange the replica. Both imply
〈
χ̄

(1)
j χ

(1)
k

〉
↔〈

χ̄
(2)
j χ

(2)
k

〉
, and also

〈
χ̄

(1)
j χ

(2)
k

〉
↔ ±

〈
χ̄

(2)
j χ

(1)
k

〉
,

where in the latter +(−) stands for R2(3π, nx = 1)
(R2(3π, ny = 1)), in agreement with Eq. 51.

The above results can be directly generalized to all n
values as follows:〈

χ̄
(r)
j χ

(r)
k

〉
=
〈
χ̄

(r′)
j χ

(r′)
k

〉
for all r, r′, j, k, (58a)〈

χ̄
(r)
j χ

(r′)
k

〉
=
〈
χ̄

(r′)
j χ

(r)
k

〉
= 0 for all r 6= r′, j, k, (58b)〈

χ
(r)
j χ

(r′)
k

〉
=
〈
χ̄

(r)
j χ̄

(r′)
k

〉
= 0 for all r, r′, j, k. (58c)

We will derive them using some especial subgroups of the
U(n) group.
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B. Un(1) symmetry

A subgroup of U(n) is the generalization of Eq. 52,
i.e. Un(1) ≡ U(1) ⊗ U(1) ⊗ ... ⊗ U(1), which is ar-

guably the most obvious symmetry of S(n)
A . It means

χ
(r)
j → eiαrχ

(r)
j , χ̄

(r)
j → e−iαr χ̄

(r)
j , r = 1, ..., n, where

αr’s are arbitrary real numbers. A direct consequence of
this symmetry is 〈

χ̄
(r)
j χ

(r′)
k

〉
= 0, (59)

for r 6= r′. It is worth exploring the properties of some
subgroups of the group Un(1) and the resulting identities
for the two-point functions in the following subsections.

1. U(1) and axial U(1) symmetry

An important subgroup of U (n)(1), namely U(1) group,
corresponds to the case where all αr’s are identical, i.e.(
χ̄

(r)
j , χ

(r)
j

)
→
(
e−iαχ̄

(r)
j , eiαχ

(r)
j

)
. A system with this

symmetry is expected to have the property〈
χ

(r)
j χ

(r′)
k

〉
=
〈
χ̄

(r)
j χ̄

(r′)
k

〉
= 0, (60)

for all r, r′ = 1, 2, ..., n.

Another subgroup of Un(1) is the so-called axial U(1)
group, defined by the transformation Eq. 56 with α =
−2φ (in the case n = 2). More explicitly it trans-

forms the pair
(
χ̄

(1)
j , χ

(1)
j

)
→
(
e−iαχ̄

(1)
j , eiαχ

(1)
j

)
, and(

χ̄
(2)
j , χ

(2)
j

)
→
(
eiαχ̄

(2)
j , e−iαχ

(2)
j

)
. This transformation

in extended easily to any arbitrary n.

2. The parity and sectorial parity (SP) symmetry

The parity symmetry χ̄, χ → −χ̄,−χ implies that the
expectation value for all strings 〈X〉 is zero (X ≡ a string
of χs and χ̄s) if the total number of χ’s and χ̄’s in the
string is odd.
We also define a sectorial parity (SP) transformation

χ̄
(r)
j , χ

(r)
j → sgn(r)χ̄

(r)
j , sgn(r)χ

(r)
j , where sgn(r) = ±1.

It corresponds to U (n)(1) with αr = π or 2π. To be

more specific, consider the transformation (χ̄
(r)
j , χ

(r)
j )→

(−χ̄(r)
j ,−χ(r)

j ), and (χ̄
(r′)
j , χ

(r′)
j → χ̄

(r′)
j , χ

(r′)
j ), implying

that for r 6= r′ 〈
χ̄

(r)
j χ

(r′)
k

〉
= 0, (61)

and also 〈
χ̄

(r)
j χ̄

(r′)
k

〉
=
〈
χ

(r)
j χ

(r′)
k

〉
= 0. (62)

C. The symmetric group (SG)

Equation 23 is invariant under symmetric group which
is the permutations of all copies/replicas. This symmetry
implies that all multi-point functions are unchanged un-
der exchanging the replicas (upon interchanging r ↔ r′).
In particular, it forces the two-point functions to satisfy
the following equations〈

χ̄
(r)
j χ

(r′)
k

〉
=
〈
χ̄

(r′)
j χ

(r)
k

〉
, (63a)〈

χ̄
(r)
j χ

(r)
k

〉
=
〈
χ̄

(r′)
j χ

(r′)
k

〉
, (63b)〈

χ
(r)
j χ

(r′)
k

〉
=
〈
χ

(r′)
j χ

(r)
k

〉
, (63c)

for all r and r′ values. The last line specially implies

that
〈
χ

(r)
j χ

(r′)
j

〉
= 0.

D. SUn(2) and Chiral Particle-Hole (CPH)
symmetry for symmetric matrices

Consider the transformation(
χ̄(r)

χ(r)

)
→ SU (r)

2

(
χ̄(r)

χ(r)

)
, (64)

where SU (r)
2 is given by Eq. 49, with γ = 0 and the

new parameters which depend on r . Given that A =
diag {A, ...,A}, if A is symmetric, then one can easily

show by a simple expansion that χ̄
(r)
j Ajkχ

(r)
k is invariant

under the transformation Eq. 64, and consequently S(n)
A

is invariant. Then, using the fact that this transformation
is local in the replica space, the big symmetry group is
represented by

SUn2 ≡ SU (1)
2 ⊗ SU

(2)
2 ⊗ ...⊗ SU

(n)
2 . (65)

To inspect the consequences of this symmetry group, we

consider an especial element SU (r)
2 ≡ I(1) ⊗ ...⊗ SU (r)

2 ⊗
... ⊗ I(n), where SU (r)

2 = R2(φ, nz = 1). This element
gives rise to the transformations

〈
χ̄

(r)
j χ̄

(r′)
k

〉
→ e−i

φ
2 (1+δrr′ )

〈
χ̄

(r)
j χ̄

(r′)
k

〉
, (66a)〈

χ
(r)
j χ

(r′)
k

〉
→ ei

φ
2 (1+δrr′ )

〈
χ

(r)
j χ

(r′)
k

〉
, (66b)〈

χ̄
(r)
j χ

(r′)
k

〉
→ e−i

φ
2 (1−δrr′ )

〈
χ̄

(r)
j χ

(r′)
k

〉
, (66c)

implying that〈
χ̄

(r)
j χ̄

(r′)
k

〉
=
〈
χ

(r)
j χ

(r′)
k

〉
= 0 for all r, r′, (67a)〈

χ̄
(r)
j χ

(r′)
k

〉
= 0 for all r 6= r′. (67b)
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On the other hand, by taking the SU (r)
2 = U2(a = 0, b =

eiα), we find that〈
χ̄

(r)
j χ

(r)
k

〉
=
〈
χ̄

(r)
k χ

(r)
j

〉
. (68)

Another especial symmetry for the symmetric matrices is
associated with the transformation SU2 = R2(π, ny = 1),
which implies χ̄j → −χj and χj → +χ̄j . We call it chiral
particle-hole (CPH) symmetry. This implies that if A is
a symmetric matrix, then we have〈

χ̄
(r)
j χ

(r′)
k

〉
=
〈
χ̄

(r′)
k χ

(r)
j

〉
, (69a)〈

χ̄
(r)
j χ̄

(r′)
k

〉
=
〈
χ

(r′)
k χ

(r)
j

〉
, (69b)

for all r and r′ values. The first line of this equation is
just the same as the relation in the first line of Eq. 63
obtained from the SG symmetry.

E. Particle-Hole (PH) symmetry for antisymmetric
matrices

We define the particle-hole (PH) transformation as the
operation of exchanging particles and holes, i.e. we ex-

change χ
(r)
j with χ̄

(r)
j for all values of r. Under this

transformation the interaction term is invariant for even
n, while the term χ̄

(r)
j Ajkχ

(r)
k goes to −χ̄(r)

k Ajkχ
(r)
j =

χ̄(r)
(
−AT

)
χ(r), showing that the effective action is in-

variant only for antisymmetric matrices. One finds for
antisymmetric matrices〈

χ̄
(r)
j χ

(r)
j

〉
= 0, (70a)〈

χ̄
(r)
j χ

(r′)
k

〉
= −

〈
χ̄

(r′)
k χ

(r)
j

〉
, (70b)〈

χ̄
(r)
j χ̄

(r′)
k

〉
=
〈
χ

(r)
j χ

(r′)
k

〉
. (70c)

It is worth mentioning that, the second line of this equa-
tion, when combined with the first line for j = k in Eq. 63
(SG symmetry) for antisymmetric matrices gives rise to
the relation 〈

χ̄
(r)
j χ

(r′)
j

〉
=
〈
χ̄

(r′)
j χ

(r)
j

〉
= 0. (71)

For odd values of n the following argument based on

a sectorial PH transformation leads to
〈
χ̄

(r)
j χ

(r)
j

〉
= 0

for all r values. A sectorial PH transformation is defined
as a PH transformation applied to all r replica except

one (arbitrarily chosen) replica r′, so that χ̄
(r)
j → χ

(r)
j

and χ
(r)
j → χ̄

(r)
j for r ∈ {1, ..., r′ − 1, r′ + 1, ..., n}, while

χ̄
(r′)
j → χ̄

(r′)
j and χ

(r′)
j → χ

(r′)
j . By employing the same

reasoning as presented earlier, it can be readily demon-
strated that Eq. 70 holds true, this time for all r values
except r′. By varying r′, it becomes evident that Eq. 70
remains valid for all r values.

F. Diagonally equivalent symmetry

Consider a diagonal matrix with non-zero diagonal el-
ements D, then using the Berezin-Grassmann represen-
tation it is easy to show that

M (n)(AD) = M (n)(A), (72)

where AD = DAD−1. We say that A and AD are diag-
onally equivalent.

G. Permutation symmetry

The principal minors of the matrices A and SlASTl
are the same, where Sl is a permutation matrix. This
interchanges the space index of the grassmann variables,

i.e. χ
(r)
j → χ

(r)
s(j) where s is a member of Sl.

H. A generalization

Equation 1 can be generalized to [37]

M (n)(A(1),A(2), ...,A(n)) ≡
∑
I

detA
(1)
I detA

(2)
I ...detA

(n)
I

(73)
whose associated block-diagonal matrix is a generaliza-
tion of Eq. 26

An ≡ diagn

{
A(1),A(2), ...,A(n)

}
, (74)

where A(j)’s are arbitrary matrices. For the case A(j)’s
are different, U(n) is not generally a symmetry of the
system, while Un(1) and U(1) and axial U(1) and SP
symmetries remain valid. The latter symmetries imply,

for example, that
〈
χ̄

(r)
j χ

(r′)
j

〉
= 0 for any r 6= r′. When

A(j)’s are symmetric matrices, SUn(2) and CPH are the

symmetries of the system, while when A(j)’s are antisym-
metric, PH symmetry remains valid. For the case n = 2

and A = diag2

{
A(1),A(2)

}
, one can observe by inspec-

tion that σxAσx = σyAσy = Ã ≡ diag2

{
A(2),A(1)

}
,

while σzAσz = A, and the second term of Eq. 28 remains
unchanged, where σx,y,z are Pauli matrices. Using this,
one can show that〈

f
(
χ̄(1)χ(1)

)〉
A

=
〈
f
(
χ̄(2)χ(2)

)〉
Ã
, (75a)〈

f
(
χ̄(1)χ1χ̄(2)χ2

)〉
A

=
〈
f
(
χ̄(1)χ1χ̄(2)χ2

)〉
Ã
, (75b)

where f is an arbitrary function.
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TABLE I. The symmetry identities resulting from the symmetries.

Identity

(I)
〈
χ̄
(r)
j χ

(r′)
k

〉
=

〈
χ̄
(r′)
j χ

(r)
k

〉
= 0, all r 6= r′, all j, k

(II)
〈
χ̄
(r)
j χ

(r)
k

〉
=

〈
χ̄
(r′)
j χ

(r′)
k

〉
= 0, all r, r′, j, k

(III)
〈
χ̄
(r)
j χ

(r′)
k

〉
=

〈
χ̄
(r′)
j χ

(r)
k

〉
, all r, r′, j, k

(IV)
〈
χ
(r)
j χ

(r′)
k

〉
=

〈
χ
(r′)
j χ

(r)
k

〉
,
〈
χ
(r)
j χ

(r′)
j

〉
= 0, all r, r′, j, k, same for χ̄

(V)
〈
χ
(r)
j χ

(r′)
k

〉
=

〈
χ̄
(r)
j χ̄

(r′)
k

〉
= 0, all r, r′, j, k

(VI)
〈
χ̄
(r)
j χ

(r)
k

〉
=

〈
χ̄
(r)
k χ

(r)
j

〉
, all r, j, k

(VII)
〈
χ̄
(r)
j χ̄

(r′)
k

〉
=

〈
χ
(r′)
k χ

(r)
j

〉
, all r, r′, j, k

(VIII)
〈
χ̄
(r)
j χ

(r′)
k

〉
=

〈
χ̄
(r′)
k χ

(r)
j

〉
, all r, r′, j, k

(IX)
〈
χ̄
(r)
j χ

(r′)
k

〉
= −

〈
χ̄
(r′)
k χ

(r)
j

〉
,
〈
χ̄
(r)
j χ

(r)
j

〉
= 0, all r 6= r′, all j, k

(a) (b) (c) U(n)

SUn(2)

Un(1), SP

SG

PH

U(1)

axial U(1)

CPH

(I)
(II)

(III)

(IV) (IV)

(VII)

(VIII)
(I)

(II)

(III)

(IV)

(IX)

(V)

(V)

(II)

(III)

(IV)

(I) (V)

FIG. 1. A schematic representation of the consequences of the symmetries for two-point functions. The colors show the
symmetries as indicated in the color bar. The symmetry identities listed in Table I are considered to be the pieces of polygons.
The colors in each piece show that the associated symmetry leads to the symmetry identity that is numbered in Table I. The
pentagon (a) represents the results for general matrices, where we have U(n), Un(1), SP, SG, U(1) and axial U(1) symmetries.
The octagon (b) and the hexagon (c) show the results for symmetric and antisymmetric matrices respectively. Note that for
symmetric matrices, in addition to the symmetries of general matrices, we have SUn(2) and CPH symmetries, while for the
antisymmetric matrices the PH is included.

I. Symmetries of the dual Representation

In this section we study the symmetries of the system
in the dual space for the case n = 2, which is given by
Eq. 38. For a general A and arbitrary local parameters uj
and λj satisfying 37, one expects that U(2), U2(1), U(1),
SG, SP and axial U(1) remain the symmetries of the sys-
tem. Consequently, the symmetry equations (I-V) hold
for the two-point functions in the dual space. Most im-
portantly 〈

φ̄
(1)
j φ

(2)
k

〉
=
〈
φ̄

(2)
j φ

(1)
k

〉
= 0, (76a)〈

φ
(r)
j φ

(r′)
k

〉
=
〈
φ̄

(r)
j φ̄

(r′)
k

〉
= 0, (76b)

for any r, r′ = 1, 2. Additionally, when uj = u,∀j, for
a circulant matrix A the correlation functions are also

translational invariant in the dual space.

To summarize this section, in Table. I and Fig. 1 we
see the effect of the symmteries on two-point functions for
three cases: (a) generic matrices, (b) symmetric matrices,
and (c) antisymmetric matrices. For a symmetric A, we
see that N in the dual space (Eq. 38 and 37) is symmetric,
which leads to the same symmetry identities as A (I-VIII
identities in Table I). Note that when the matrix A is
antisymmetric, N is not necessarily antisymmetric, and
consequently the PH symmetry may or may not be the
symmetry of the system.
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VI. MEAN-FIELD THEORY

In this section, we utilize the MF theory to approx-
imate Eq. 31 when n = 2 (generalization to larger
values of n is conceptually straightforward). This ap-
proach involves employing standard MF schemes like ne-
glecting the fluctuations and using self-consistent equa-
tions for two-point functions of the Grassmann variables

χ̄
(1)
j , χ

(1)
j , χ̄

(2)
j , and χ

(2)
j . The self-consistent two point

functions are defined as follows:

∆
(1̄1)
j ≡

〈
χ̄

(1)
j χ

(1)
j

〉
, ∆

(2̄2)
j ≡

〈
χ̄

(2)
j χ

(2)
j

〉
,

∆
(1̄2)
j ≡

〈
χ̄

(1)
j χ

(2)
j

〉
, ∆

(2̄1)
j ≡

〈
χ̄

(2)
j χ

(1)
j

〉
,

∆
(12)
j ≡

〈
χ

(1)
j χ

(2)
j

〉
, ∆

(1̄2̄)
j ≡

〈
χ̄

(1)
j χ̄

(2)
j

〉
,

(77)

where j is a spatial coordinate. Throughout this paper,
we keep the notation “∆” only for self-consistent two
point functions in MF theory. In a system where all the
symmetries are preserved (lacking spontaneous symme-

try breaking), all the two-point functions, except ∆
(1̄1)
j

and ∆
(2̄2)
j , are necessarily identical to zero dictated by the

U(2) or U2(1) symmetries (refer to Sec. V). However, in
a system with broken symmetries (like the ferromagnetic
phase of the Ising model, as we will explore later), all the
two-point functions have a chance to be non-zero. Using
the standard MF scheme (ignoring the fluctuations) one
approximates the interaction (four-Grassmann) term as
follows

χ̄
(1)
j χ

(1)
j χ̄

(2)
j χ

(2)
j ≈∆

(2̄2)
j χ̄

(1)
j χ

(1)
j + ∆

(1̄1)
j χ̄

(2)
j χ

(2)
j −∆

(2̄1)
j χ̄

(1)
j χ

(2)
j −∆

(1̄2)
j χ̄

(2)
j χ

(1)
j −∆

(1̄2̄)
j χ

(1)
j χ

(2)
j −∆

(12)
j χ̄

(1)
j χ̄

(2)
j

−∆
(1̄1)
j ∆

(2̄2)
j + ∆

(1̄2)
j ∆

(2̄1)
j + ∆

(1̄2̄)
j ∆

(12)
j .

(78)

The above approximation is tantamount to ignoring the
fluctuations defined by

∆(j) ≡
〈
χ̄

(1)
j χ

(1)
j χ̄

(2)
j χ

(2)
j

〉
−
〈
χ̄

(1)
j χ

(1)
j

〉〈
χ̄

(2)
j χ

(2)
j

〉
+
〈
χ̄

(1)
j χ

(2)
j

〉〈
χ̄

(2)
j χ

(1)
j

〉
+
〈
χ̄

(1)
j χ̄

(2)
j

〉〈
χ

(1)
j χ

(2)
j

〉
,

(79)

being identically zero for the MF theory. Under this ap-

proximation S(2)
A {χ̄, χ} (Eq. 31) becomes quadratic as

follows

S(2)
A {χ̄, χ} ≈ SMF {χ̄, χ} −

l∑
r=1

∆4(j), (80)

where ∆4(j) ≡ ∆
(1̄1)
j ∆

(2̄2)
j −∆

(1̄2)
j ∆

(2̄1)
j −∆

(1̄2̄)
j ∆

(12)
j , and

SMF {χ̄, χ} ≡ χ̄Oχ−
1

2
χI3χ−

1

2
χ̄Ī3χ̄, (81)

where

O =

(
A + Ĩ2̄2 −Ĩ2̄1

−Ĩ1̄2 A + Ĩ1̄1

)
,

I3 =

(
0 Ĩ1̄2̄

−Ĩ1̄2̄ 0

)
, Ī3 =

(
0 Ĩ12

−Ĩ12 0

)
,

(82)

and

Ĩ2̄2 = diag
{

∆
(2̄2)
j

}l
j=1

, Ĩ1̄1 = diag
{

∆
(1̄1)
j

}l
j=1

,

Ĩ2̄1 = diag
{

∆
(2̄1)
j

}l
j=1

, Ĩ1̄2 = diag
{

∆
(1̄2)
j

}l
j=1

,

Ĩ1̄2̄ = diag
{

∆
(1̄2̄)
j

}l
j=1

, Ĩ12 = diag
{

∆
(12)
j

}l
j=1

.

(83)

The self-consistent two-point (∆) functions are ex-
pressible in terms of SMF {χ̄, χ} as follows:

∆
(XY )
j =

∫
χ̄,χ

XjYje
SMF{χ̄,χ}∫

χ̄,χ
eSMF{χ̄,χ}

, (84)

where Xj , Yj ≡ χ̄
(1)
j , χ̄

(2)
j , χ

(1)
j and χ

(2)
j , which are ab-

breviated by 1̄, 2̄, 1 and 2, respectively. Once all the
two-point functions are obtained using the above equa-
tions, one can find M (2) by substituting them into Eq. 31
as follows:

M (2)(A) ≈M (2)
MF ≡ e−

∑l
j=1 ∆4(j)

∫
χ̄,χ

eSMF{χ̄,χ}. (85)

Using the Pfaffian identities, one obtains

M
(2)
MF = e−

∑l
j=1 ∆4(j)Pf

[
SPf

MF(A)
]
. (86)
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where Pf stands for Pfaffian (see Eq. D19), and

SPf
MF(A) =

[
Ī3 −O
OT I3

]
. (87)

In order to make the mean-field (MF) calculations
feasible we adopt a symmetric case where we assume

∆
(2̄2)
j = ∆

(1̄1)
j and ∆

(2̄1)
j = ∆

(1̄2)
j , and ∆

(1̄2̄)
j = ∆

(12)
j

(expected for a system with SG and PH symmetries).
Additionally, from now on we focus on periodic sys-
tems, in which all the ∆ functions are anticipated to
be independent of the coordinate j owing to the sys-
tem’s translational invariance. Therefore, the indepen-

dent self-consistent functions are ∆
(1̄1)
j = ∆

(2̄2)
j ≡ ∆1,

and ∆
(1̄2)
j = ∆

(2̄1)
j ≡ ∆2, and ∆

(1̄2̄)
j = ∆

(12)
j ≡ ∆3.

Therefore, in this case we have

∆4 ≡
1

l

∑
j

∆4(j) = ∆2
1 −∆2

2 −∆2
3, (88)

and

SMF {χ̄, χ} ≡ χ̄Osχ−∆3

l∑
j=1

(
χ

(1)
j χ

(2)
j + χ̄

(1)
j χ̄

(2)
j

)
,

(89)
and

Os ≡ O|∆j=∆ =

(
A + ∆1I −∆2I

−∆2I A + ∆1I

)
. (90)

One can block-diagonalize Os using a unitary transfor-
mation. For the details of this transformation, see Ap-
pendix D. The details of the calculations using Pfaffian
formulation can be found in Appendix D 2. Specifically,
the self-consistent two point functions are expressed in
terms of the inverse matrix Eq. D20. The result is the fol-
lowing set of self-consistent MF equations (see Eq. D14)

∆1 =

[
As + ∆1I

x + 2∆2Aa

]
j,j

,

∆2 =

[−Aa + ∆2I

x + 2∆2Aa

]
j,j

,

∆3 =

[
∆3I

x + 2∆2Aa

]
j,j

,

(91)

where

x ≡
(
AT + ∆1I

)
(A + ∆1I)−

(
∆2

2 + ∆2
3

)
I

= AAT + 2∆1As + ∆4I,
(92)

and As,a ≡ 1
2

(
A±AT

)
. The resulting ∆-functions

should be incorporated into Eq. 85 to find M (2) (A), lead-
ing to (see also Eq. D3)

M
(2)
MF(A) = e−l∆4 det SMF(A). (93)

where

SMF(A) =

(
A + (∆1 −∆2) I ∆3I

−∆3I −AT − (∆1 + ∆2) I

)
.

(94)

It is worth mentioning that one can obtain the same re-
sults using the Pfaffian to do the Berezin integrals of
Grassmann variables, see Sec. D 2. Using Schur comple-
ment method for block matrices one can easily show that
for even size matrices (see Eq. D10)

det SMF(A) = det (x + 2∆2Aa) . (95)

Thanks to the circulant property of the matrices, the MF
equations can be written in an analytical form (see [42]
for a review on cirlulant matrices). We define Aqk ≡∑
nAmne

iqk(n−m) where k ∈ {1, 2, ..., l}, qk = 2π
l (k+k0),

and k0 = 0 ( 1
2 ) for circulant (anticirculant) matrices. We

also define the Fourier component of x as

x(qk) = (A−qk + ∆1)(Aqk + ∆1)−∆2
2 −∆2

3. (96)

Using these quantities, one converts Eqs. 91 to

∆1 =
1

l

l∑
k=1

As(qk) + ∆1

x(qk) + 2∆2Aa(qk)
, ∆2 =

1

l

l∑
k=1

−Aa(qk) + ∆2

x(qk) + 2∆2Aa(qk)
, ∆3 =

1

l

l∑
k=1

∆3

x(qk) + 2∆2Aa(qk)
, (97)

where As,a(qk) = 1
2 (Aqk ±A−qk). A closed formulae

is obtained for SPPM in the continuum limit using the
Euler-Maclaurin formula for l → ∞. In this limit, the
∆ functions, which are in general l-dependent tend to a
thermodynamic asymptotic limit. Supposing that these
functions converge fast enough to this asymptotic ther-

modynamic limit, and for the case x(q) + 2∆2Aa(q) is
regular (non-zero, and finite and free of discontinuities)
for all qs, we obtain the following expression for SPPM
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using Eqs. 93 and Eq. 95:

lnM
(2)
MF(A) = ln det SMF − l∆4

=

l∑
k=1

ln [x(qk) + 2∆2Aa(qk)]− l∆4

→ l

2π

∫ π

−π
dq ln [x(q) + 2∆2Aa(q)]− l∆4

+ ln [x(0) + 2∆2Aa(0)] +O(l−1).

(98)

Note that the last relation of Eq. 97 for non-zero ∆3

means

∂

∂∆4
M

(2)
MF(A) = 0, (99)

i.e. this function is stationary with respect to ∆4. An-
other important property of the MF theory for anti-
symmetric matrices is concerning the case ∆2 = 0 and
∆3 6= 0. One can easily see that the only equation to be
satisfied is (see Eq. 91)

1

l

l∑
k=1

x(qk)−1 = 1, (100)

from which we see that everything (as well as M (2)(A))
is a sole function of ∆4 (note that for antisymmetric ma-
trices A−q = −Aq which means xq = −A2

q + ∆4). Using
the antisymmetric property of A, one can easily show
that ∆2 = 0 is always a solution.

A. Scaling properties of the MF equations

In this section we explore various scaling properties of
the MF solution. It should be noted that ∆1 = ∆2 =
∆3 = 0 is a trivial solution for antisymmetric matri-
ces. However, for non-trivial solutions, we investigate the
third relation in Eq. 97 in the scaling limit when ∆3 6= 0.
We consider the continuum limit l → ∞ of the consis-
tency relations, having in mind that for SPPM l is finite.
In the large l limit, normally ∆ functions converge expo-
nentially fast to their asymptotic thermodynamic limit,
so that Euler-Maclaurin integrals give reliable approxi-
mations for ∆ functions for finite l, while the convergence
is expected to be slow (power-law) in the critical regions.
In the continuum limit (to order l−1) we have∫ π

−π

dq

2π

1

x(q) + 2∆2Aa(q)
= 1. (101)

For antisymmetric matrices we have A(−q) = −A(q),
this equation for the case ∆2 = 0 becomes∫ π

−π

dq

2π

1

∆4 −A(q)2
= 1. (102)

Solving the above equation in general is a challenge. Nev-
ertheless, its scaling properties provide valuable insights

into the conditions that lead to non-zero values of ∆4, as
well as how these quantities scale with the system size
and external parameters. This can be done through the
analysis of the zeros and singular points of A(q). De-
noting the list of singular points of A as {qi}, we have
A(q)|q→qi ∝ (q − qi)τi , where i varies over the zeros and
singular points of A(q) and τi is its corresponding expo-
nent. Since A(q) is antisymmetric one can easily see that
−qi should also be a root or a singular point. Note that
∆4 = 0, although is a trivial solution of Eq. 97, it is not a
solution of Eq. 102. The onset of spontaneous symmetry
breaking is given by the condition that ∆4 is nonzero,
where the main contribution in the integral comes from
the singular points, around which A(q) shows scaling be-
haviors (for a system in the vicinity of the critical point,
the main contribution is expected to come from this sin-
gular/zero point). Suppose that this singular/zero point
is zero, so that A(q) = a−1

0 qτ for small qs. Here a−1
0 is

a proportionality parameter, which depends on the ex-
ternal parameters in the system (for the Ising model,
a0 = 1− h, where h is the magnetic field, see Sec. VIII).
To satisfy Eq. 102, the integral should not blow up in
the vicinity of the singular points, when ∆1,3 are close to
zero (the transition point), i.e.∫

q∼0

dq

∆4 − a−2
0 q2τ

<∞. (103)

Given the fact that the main contribution to the integrals
comes from the singular point, we extend the integral to
the whole range q ∈ [−π, π]. Doing so, one can show that
Eq. 103 results in

∆4 −∆4(a0 = 0) ∝ aζ0, ζ ≡ 2

2τ − 1
. (104)

In the case where A(q) is symmetric, the outcome ex-
hibits significant differences. When we impose the condi-
tion ∆3 6= 0, the following equations should be satisfied:

∫ π

−π

dq

2π

1

(A(q) + ∆1)2 −∆2
3

= 1, (105a)∫ π

−π

dq

2π

A(q)

(A(q) + ∆1)2 −∆2
3

= 0. (105b)

For the case ∆3 = 0 the only equation to be satisfied is
the first relation in Eq. 97, i.e.

∆1 =

∫ π

−π

dq

2π

1

A(q) + ∆1
, (106)

for which the same arguments as the antisymmetric case
applies. This serves as an evidence that the two point
function ∆3 should be zero for the case A(q) is sym-
metric. In Table. II we summarize various possibilities
regarding the MF solutions for symmetric and antisym-
metric matrices.
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TABLE II. Various passibilities for the MF equations and
the possible solutions. (a) and (b) show the results for an-
tisymmetric matrices, while (c) and (d) show the results for
symmetric matrices.

TABLE III. In this table we show the consequences of dif-
ferent symmetries on the two point functions for n = 2. The
last column is for antisymmetric matrices. Each cell of the
table has been identified by two values: 0 when the two point
function is zero and − when the symmetry has no effect.

SG U(2) SU2(2) U2(1) U(1) SP Ax. U(1) PH CPH

∆1 − − − − − − − 0 −
∆2 − 0 0 0 − 0 0 − −
∆3 0 0 0 0 0 0 − − −

B. Spontaneous Symmetry Breaking

This subsection gives some information concerning the
two point functions based on the symmetry arguments
explored in Sec. V. For a system with U(2) and U2(1)
symmetry ∆2 = ∆3 = 0 as we already mentioned in
Sec. V, while U(1) as a subgroup of U(2) and U2(1) forces
only ∆3 to be zero. Table III shows some relations ob-
tained by symmetries for two point functions. For anti-
symmetric matrices ∆1 is zero because of PH symmetry.
As a well-known scenario, the above symmetries can be
spontaneously broken by changing the external parame-
ters of the system. The TFI chain is an example where
some symmetries are spontaneously broken below a crit-
ical magnetic field (see the following section). Table III
helps to characterize various phases resulting from this
spontaneous symmetry breaking. In general one or more
symmetries of the system can break, leading some two-
point functions of the system to be nonzero. Four dif-
ferent cases are shown for general matrices in terms of
the symmetries in Table IV (different regimes are shown
by Gi, i = 1, ..., 4). In a system with full symmetry (G1)
both ∆2 and ∆3 are zero, while in the opposite case (G4)
both of them can be non-zero.

Four different cases associated with ∆2 and ∆3 for
the symmetric matrices is shown in Table. V, where
the states are labeled by Si, i = 1, ..., 4. In this case
we have additionally SU(2) symmetry which should be

TABLE IV. Four possibilities for (∆2,∆3) versus the sym-
metries of the system for a general matrix. The first column
shows the value of the pair (∆2,∆3), and “0” (�0) shows that
the corresponding two-point function is zero (non-zero). Five
different symmetries are considered. Xshows that the sym-
metry holds, and × shows that the symmetry is broken. The
symbol − shows that the corresponding symmetry can be ei-
ther Xor ×.

(∆2,∆3) SG U(2) U2(1) U(1) SP Ax. U(1)

G1: (0, 0) X X X X X X

G2: (�0, 0)
X × × − × ×
− × × X × ×

G3: (0,�0) × × × × × X

G4: (�0,�0) × × × × × ×

TABLE V. Four possibilities for (∆2,∆3) in terms of symme-
tries of the symmetric matrices (n = 2). The symbols are like
the Table IV.

(∆2,∆3) SG U(2) SU(2) U2(1) U(1) SP Ax U(1)

S1: (0, 0) X X X X X X X

S2: (�0, 0)
X × × × − × ×
− × × × X × ×

S3: (0,�0) × × × × × × X

S4: (�0,�0) × × × × × × ×

necessarily broken for having non-zero ∆2 or ∆3. The
discrete Laplacian is an important example for this case,
however, it does not show any broken symmetry.

For the anti-symmetric matrices, the effect of the sym-
metries are even stronger, where restrictions on ∆1 is set
by the symmetries. Therefore, one can decide about all
the two-point functions in this case, which additionally
have PH symmetry. The details are shown in Table VI.
A system with full symmetry (the case A1) results in all
two-point functions to be identically zero. In the oppo-

TABLE VI. Eight possibilities for (∆1,∆2,∆3) in terms of
the symmetries of the antisymmetric matrices (n = 2). The
symbols are like the Table IV.

(∆1,∆2,∆3) SG U(2) U2(1) U(1) SP Ax U(1) PH

A1: (0, 0, 0) X X X X X X X

A2: (�0, 0, 0) X X X X X X ×

A3: (0,�0, 0)
X × × − × × X

− × × X × × X

A4: (0, 0,�0) × × × × × X X

A5: (�0,�0, 0)
X × × − × × ×
− × × X × × ×

A6: (0,�0,�0) × × × × × × X

A7: (�0, 0,�0) × × × × × X ×
A8: (�0,�0,�0) × × × × × × ×
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site extreme case (all the symmetries are spontaneously
broken, i.e. the case A8), the two-point functions can
be non-zero. The intermediate cases are explored in the
table.

C. MF Equations in the Dual Representation

In this section we develop a MF theory for the dual
representation Eq. 38. The details of the calculations
are presented in Appendix D 3. Analyses presented in

the previous section are applicable for M
(2)
u (A) with

some changes. The MF equations are written in terms
of N given by Eqs. 40 and 42, where u is the duality
parameter. More precisely, with a simple re-definition
∆′i ≡ u∆i (i = 1, 2, 3), and ∆′4 ≡ 1

u

[
∆′21 −∆′22 −∆′23

]
,

one can obtain similar equations as the direct MF
equations 91. Mainly, the expansion given in Eq. D32
is obtained, resulting to the following self-consistent
equations:

∆′1 = u

[
Ns + ∆′1I

x(N) + 2∆′2Na

]
j,j

,

∆′2 = u

[ −Na + ∆′2I

x(N) + 2∆′2Na

]
j,j

,

∆′3 = u

[
∆′3I

x(N) + 2∆′2Na

]
j,j

,

(107)

where x(N) is given by (see Eq. D34)

x(N) = NNT + 2∆′1Ns + u∆′4, (108)

and Na,s ≡ 1
2

(
N±NT

)
. One then finds

M (2)(A) = cle
−l∆′4 detSuMF(N), (109)

where SuMF(N) and cl are given in Eqs. D36 and B14, re-
spectively. One can employ the Euler-Maclaurin formula
to cast this equation into the following form (for even l,
see Eq. D38 for the details)

lnM
(2)
u,MF(A) + l∆′4 =

l∑
k=1

ln

[
A′qkA

′
−qk

u+m2

(
x(N)(qk) + 2∆′2Na(qk)

)]
→ l

2π

∫ π

−π
dq ln

[
A′qA

′
−q

u+m2

(
x(N)(q) + 2∆′2Na(q)

)]
+O(1),

(110)

where

x(N)(q) ≡ (Nq + ∆′1)(N−q + ∆′1)−∆′22 −∆′23 , (111)

is the Fourier component of one row of x(N), and Nq ≡
m− 1

A′q
is the Fourier component of N, A′q ≡ Aq + m

u+m2 .

D. Saddle point approximation

In this section we present an alternative way which
serves as a MF scheme with an ability to go beyond the
lowest order. This method which is based on the sad-
dle point (SP) approximation, enables us to test the effi-
ciency of the MF results by tracking how the MF results
vary as the order of saddle point expansion changes. We

consider the case ∆
(1)
j = ∆

(1̄1)
j = ∆

(2̄2)
j , and ∆

(2)
j ≡

∆
(1̄2)
j = ∆

(2̄1)
j , and ∆

(3)
j = ∆

(1̄2̄)
j = ∆

(12)
j (j ∈ [1, l] is the

space index). We define yj ≡ (y
(1)
j , y

(2)
j , y

(3)
j )T , where

y
(1)
j ≡ ∆

(1)
j , y

(2)
j ≡ i∆

(2)
j , y

(3)
j ≡ i∆

(3)
j . This enables us

to use the notation

yTj yj =
(
y

(1)
j

)2

+
(
y

(2)
j

)2

+
(
y

(3)
j

)2

=
(

∆
(1)
j

)2

−
(

∆
(2)
j

)2

−
(

∆
(3)
j

)2

≡ ∆4(j).

(112)

We define also the corresponding three-currents Jχj ≡
(J

(1)
j , J

(2)
j , J

(3)
j ) as follows

J
(1)
j = χ̄

(1)
j χ

(1)
j + χ̄

(2)
j χ

(2)
j , (113a)

J
(2)
j = i

(
χ̄

(1)
j χ

(2)
j + χ̄

(2)
j χ

(1)
j

)
, (113b)

J
(3)
j = i

(
χ̄

(1)
j χ̄

(2)
j + χ

(1)
j χ

(2)
j

)
, (113c)

so that
〈
J

(k)
j

〉
= 2y

(k)
j , k = 1, 2, 3. We then define the

vectors y ≡ (y1, ..., yl) and Jχ ≡ (Jχ1 , ..., J
χ
l ). Using these

vectors we define the action

L(χ̄, χ, y, Jχ) ≡ χ̄Aχ− 1

2
yTBy + yTJχ

= χ̄Aχ−
∑
j

[(
∆

(1)
j

)2

−
(

∆
(2)
j

)2

−
(

∆
(3)
j

)2
]

+
∑
j

∆
(1)
j (χ̄

(1)
j χ

(1)
j + χ̄

(2)
j χ

(2)
j )

−
∑
j

∆
(2)
j

(
χ̄

(1)
j χ

(2)
j + χ̄

(2)
j χ

(1)
j

)
−
∑
j

∆
(3)
j (χ̄

(1)
j χ̄

(2)
j + χ

(1)
j χ

(2)
j ),

(114)
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and B = 2I2l. This action corresponds to the effective
actions 80 and 89 in the MF analysis. In the case

∆
(2)
j = 0, (115)

we omit J
(2)
j , so that yj → (y

(1)
j , y

(3)
j ), and Jj →

(J
(1)
j , J

(3)
j ). To set up the problem for the SP approx-

imation, we first need to insert auxiliary variables in the
MF action, so that the integration over these variables
gives the original partition function. More precisely, the
exponential of the interaction term is written in terms
of an integration over a new quadratic term with addi-
tional auxiliary variable, which plays the role of the self-
consistent correlation. Now we use the following identity∫
D {y} exp

[
−1

2
yTBy + yTJχ

]
= [detB]

− 1
2 ×

exp

[
1

2
JTχ B−1Jχ

]
,

(116)

with D {y} ≡∏k

∏
j

dy
(k)
j

(2π)
3
2

and also

1

2
JTχ B−1Jχ =

∑
j

χ̄
(1)
j χ

(1)
j χ̄

(2)
j χ

(2)
j , (117)

(which is the interaction term in Eq. 31). Using this
identity, one can easily prove that

M (2)(A) ≡ e−F (2)(A) = [detB]
1
2

∫
D {y}M(2)(A, y),

(118)
where

M(2)(A, y) ≡ e−F(2)(A,y) ≡
∫
χ̄χ

eL(χ̄,χ,y,Jχ). (119)

Using the properties of the Berezin integrals, we obtain

M(2)(A, y) = e−
∑l
j=1 ∆4(j)Pf

[
SPf(A)

]
, (120)

where

SPf(A) =

[
Ī3 −O
OT I3

]
, (121)

and O, Ī3, and I3 are given in Eq. 82, this time for free
parameters ∆1,∆3. The main contribution of the inte-
grand of Eq. 118 comes from the stationary point, i.e. by

minimizing F (2)(A, y) with respect to y
(k)
j s (k = 1, 2, 3

and j ∈ [1, l]):

∂
y
(k)
j
F (2)(A, y)

∣∣∣
y=ȳ

= 0, (122)

or equivalently,

∂
y
(k)
j

ln
[
e

1
2y
TByM(2)(A, y)

]∣∣∣
y=ȳ

=
∑
k′

Bkk′ ȳ(k′)
j , (123)

which is our original MF self-consistent relations Eqs. 84.
Here we see explicitly that the stationary approxima-
tion of the bosonic representation of SPPM corresponds
to the MF approximation. The idea is to take a fur-
ther step from the stationary approximation, and expand
F (2)(A, y) to the second order. To the second order,

defining F
(2)
MF(A) ≡ F (2)(A, ȳ) as the MF approximation

of F (2) we have (note that the first derivatives are zero
by definition)

F (2)
SP (A, y) ≡ F (2)

MF(A)+
1

2

∑
j

∑
k,k′

(y
(k)
j −ȳ

(k)
j )β

(j)
kk′(y

(k′)
j −ȳ(k′)

j ),

(124)

where β
(j)
kk′ ≡ ∂

y
(k)
j
∂
y
(k′)
j

F (2)(A, y)|y=ȳ. In situations

where F (2) has a single minimum, this approximation
can be applied across a significant range of variables, and
it can be inserted into Eq. 118 for a whole range of inte-
gration. In more intricate situations, attention must be
paid to the influence of different minima of F ; for a more
detailed review, refer to Appendix J. Then integrating
over y variable gives

M
(2)
SP (A) ≈ e−F

(2)
MF(A)

√
det C

, (125)

where C ≡ B−1β. Note that β and C are block diagonal

matrices. Representing the elements of C by c
(j)
kk′ , using

Eq. 119 we find

c
(j)
kk′ = δkk′ − h(j)

kk′ , (126)

where

h
(j)
kk′ =

1

2

[〈
J

(k)
j J

(k′)
j

〉
−
〈
J

(k)
j

〉〈
J

(k′)
j

〉]
, (127)

is the correlation function of the currents. Now
we exploit the fact that in the MF approximation〈
χ̄

(1)
j χ

(1)
j χ̄

(2)
j χ

(2)
j

〉
≈
(

∆
(1)
j

)2

−
(

∆
(3)
j

)2

, which results

in

−h(j)
11 = h

(j)
22 =

(
∆

(1)
j

)2

+
(

∆
(3)
j

)2

, (128a)

h
(j)
12 = h

(j)
21 = 2i∆

(1)
j ∆

(3)
j . (128b)

Now if we consider the periodic system, so that ∆
(1)
j =

∆1 and ∆
(3)
j = ∆3 for all j values, we obtain

M
(2)
SP (A) ≈ e−F

(2)
MF(A)

(1− (∆2
1 −∆2

3)2)
l
2

. (129)

This equation can be written in terms of free energy
density fSP ≡ FSP/l, and fMF ≡ FMF/l (FSP ≡
− lnM

(2)
SP (A)) as follows:

fSP/fMF = 1 +
1

2fMF
ln
[
1− (∆2

1 −∆2
3)2
]
. (130)
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This equation shows that when the second term on
the right hand side is small enough, the saddle point
approximation is close to the mean field result. This is
a signature of the stability of the mean field results.

In the dual space, the MF equations are similar to the
ordinary one, except we just need to substitute ∆1 and
∆3 by ∆′1 = u∆1 and ∆′3 = u∆3, and A by N. The
result is (for the details see Appendix H)

fuSP/f
u
MF = 1+

1

2fuMF

ln

[
1− 1

u2

(
∆′1

2 −∆′3
2
)2
]
, (131)

where fuSP and fuMF correspond to fSP and fMF

respectively in the dual space. For the case

1
u2

(
∆′1

2 −∆′3
2
)2

→ 0 one finds fuSP → fuMF. As a

general result we see that the lower the second term,
the more stable the MF solutions. More precisely, the
stable MF results correspond to the situation where
the argument of the logarithm is close to one so that

1− 1
u2

(
∆′1

2 −∆′3
2
)2

� exp [fuMF].

E. Variational method: A lower bound

In this section we present our third MF scheme based
on a variational method. In addtion to giving us the MF
equations, this method provides a lower bound for the
SPPM. This enables us to design other forms of trial rep-
resentations for SPPM and to obtain other approxima-

tions. We start with Eq. 31 (with the action S(2)
A {χ̄, χ})

and show that it is higher than any trial value obtained
from a trial action Strial {y, χ̄, χ}:

Mtrial(y) =

∫
χ̄χ

exp [Strial {y, χ̄, χ}] , (132)

where y ≡ {y1, ..., ys} is the set of parameters in the trial
action. To prove this, we define

〈...〉trial ≡
∫
χ̄,χ

(...)eStrial{y,χ̄,χ}

Mtrial(y)
, (133)

where 〈...〉trial shows the average of any function of χ̄ and
χ with respect to the trial action. One can retrieve the
original SPPM using the identity

M (2)(A) =Mtrial(y)
〈
eS

(2)
A {χ̄,χ}−Strial{y,χ̄,χ}

〉
trial

.

(134)
The main idea is to use the Jensen’s inequality (see Ap-
pendix I)〈
eS

(2)
A {χ̄,χ}−Strial{y,χ̄,χ}

〉
trial
≥ e

〈
S(2)
A {χ̄,χ}−Strial{y,χ̄,χ}

〉
trial ,

(135)
which leads to

M̃trial(y) ≤M (2)(A), (136)

where

M̃trial(y) ≡Mtrial(y)e

〈
S(2)
A {χ̄,χ}−Strial{y,χ̄,χ}

〉
trial . (137)

This identity gives a lower bound for SPPM, and can be
used to find an approximation by maximizing M̃trial(y)
with respect to all yi’s, i.e.

∂M̃trial(y)

∂yi
= 0, i = 1, ..., s. (138)

This equation, along with Eq. 136 are the main equa-
tions of the variational method for estimating the value
of M (2)(A). To make connection with the MF theory,
we set

Strial {y, χ̄, χ} → L(χ̄, χ, y, Jχ), (139)

where y = {∆1,∆2,∆3}, and L(χ̄, χ, y, Jχ) is given in

Eq. 114 and corresponds to SMF {χ̄, χ} −
∑l
j=1 ∆4(j)

in the MF equations. We define M(A, y) according to
Eq. 132 which is equivalent to Eq. 119. Then, using the
fact〈
S(2)
A {χ̄, χ} − SMF {χ̄, χ}

〉
MF

= −
l∑

j=1

∆4(j), (140)

and using Eq. 137, we find that M̃(A, y) =M(A, y). By
maximizing M(A, y) with respect to yi’s (Eq. 138) one
obtains the governing equations on ∆ functions, which
are the original MF equations 97 and 122. To summarize,
we find the following identity

M (2)(A) ≥M(A, y) (141)

so that by maximizing the right hand side with respect to
∆i’s (i = 1, 2, 3) (using Eq. 138) one obtains ∆’s (Eq. 97)
and MMF(A).

The same analysis is also applicable in the dual space,
such that the right hand side of the Eq. 141 depends on
u. To get the best result one should maximizeMu(A, y)
with respect to u. This gives an alternative criterion to
find the best u value.

VII. DISCRETE LAPLACIAN

.
In this subsection we consider the matrix of discrete

Laplacian (DL) defined as [ADL]ii = 2 (i = 1, ..., L),
[ADL]i,i+1 = −1 (i = 1, ..., L − 1), [ADL]i−1,i = −1

(i = 2, ..., L), [ADL]1,L = [ADL]L,1 = −1. For this matrix
we first provide an exact solution for the SPPM for arbi-
trary values of the powers of the principal minors. This
helps us to interpret the system as a statistical model
with an unusual Hamiltonian and the powers as the in-
verse of the temperature. Since the principal minors of
the matrix of Laplacian can be interpreted as spanning
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forests one can consider the problem that we tackle here
also as the statistical mechanics of the spanning forests.
After providing a full exact solution of the model we show
how the MF technique provided in the previous section
can be used to get an approximate solution in the espe-
cial case n = 2. This section is used as a benchmark for
the power of the MF method introduced in the previous
section.

A. An exact solution

For a closed chain of size L we define the partition
function as follows:

Z(n,L) ≡M (n)(ADL) =
∑
I

[detADL(I)]n =
∑
I

e−nEI .

(142)

Here, the energy function EI = − ln detADL(I) depends
on the number of clusters formed by the present (up)

indices in the index configuration I. More precisely, EI =
0 when I includes all indices, otherwise,

EI = −
L−1∑
l=1

m+
l ln(l + 1) = E({m+

l }), (143)

where m+
l denotes the number of clusters of size l. Sim-

ilarly, we define m−l for the number of clusters of size l
formed by the absent (down) indices. Thus, we have,

L =
∑
l

lm+
l +

∑
l

lm−l . (144)

Let us also define the total number of up and down clus-
ters,

m+ =
∑
l

m+
l , m− =

∑
l

m−l . (145)

Note that in a closed chain m+ = m− > 0, except for
the single configuration with all indices present in I. Now
the partition function can be rewritten as

Z(n,L) = 1 +

∞∑
m=1

∑
{m+

l ,m
−
l }

δm±,mδ∑
l l(m

+
l +m−l ),LNclosed({m+

l }, {m−l })e−nE({m+
l }), (146)

where Nclosed({m+
l }, {m−l }) gives the number of index

configurations I with the specified number of up and
down clusters. In Appendix E we obtain an exact ex-
pression for the number of such configurations,

Nclosed({m+
l }, {m−l }) =

2L

m+ +m−
m+!m−!∏

l(m
+
l !)
∏
l(m
−
l !)

.

(147)

The partition function in terms of the spectral entropy
s(e) and free energy density f reads as follows

Z(n,L) =

∫
eL(s(e′)−ne′)de′ = e−nLf . (148)

In the thermodynamic limit L→∞, by the saddle-point
approximation, one finds

f = e− Ts, (149)

where T ≡ 1
n , e ≡ 〈E〉 /L is the energy density, and

s ≡ −
(
∂
∂T f

)
L

is the entropy density. The average of any
observable O is defined as

〈O〉 ≡
∑
I OI exp (−nEI)

Z(n,L)
. (150)

To compute the partition function Z(n,L), we define
the following generating function

G(n, µ) =
∑
L

e−µLZ(n,L), (151)

with µ as a chemical potential. Notably, in the thermo-
dynamic limit, we have

G(n, µ) ≈ e−µ〈L〉Z(n, 〈L〉) ≡ e−n〈L〉g. (152)

Here 〈L〉 is the average L where e−µLZ(n,L) shows a pro-
nounced peak, and g is the associated free energy density.
Therefore, the free energies f and g are related as follows

g = f + µT = e− Ts+ µT. (153)

In Appendix E, we start from the partition function
Z(n,L) (Eq. 146) and obtain an exact expression for
the above generating function,

G(n, µ) =
1

1− e−µ+

∂

∂µ
ln

(
1− e−µ

1− e−µ (
∑
l

e−µl+n ln(l+1))

)
.

(154)

This expression for the generating function can be com-
puted numerically to obtain the free energy g and then f
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from Eq. 153. Note that G(n, µ) is well defined only for
µ > µth where the threshold chemical potential depends
on n. For a given n, we find numerically this threshold
value and compute the interesting quantities for µ larger
but very close to µth. From the definition of the gen-
erating function, the average size of the system in the
thermodynamic limit, see Eq. 150, is given by

〈L〉 = −∂ lnG(n, µ)

∂µ
, (155)

which is a decreasing function of µ. And, 〈L〉 goes to
infinity as µ→ µth. From the above equation we obtain
the chemical potential as a function of n and 〈L〉. In the
same way, we compute the average energy

〈E〉 = −∂ lnG(n, µ)

∂n
. (156)

This is the energy of relevant index configurations given
n and µ. Recall that EI = − ln detADL(I). In addition,
we are able to find the entropy of index configurations
given the energy density e = 〈E〉/L. This is done by
another Legendre transformation,

s(e) = −n(f − e). (157)

In words, given n and µ, we compute numerically
the free energy g and then f, e, s for µ → µth, i.e., for

〈L〉 � 1. To construct s(e), one has to do the above
computation for different values of n to find the entropy
s and energy density e of the relevant index configura-
tions as a function of n. Figure 2 displays the results
obtained in this way for large system sizes. For compar-
ison, we also report the exact results for a small chain of
size L = 20. In fact the results of exact enumerations for
small sizes converge very quickly to those of larger sizes
obtained by the above solution. From the figure we also
see that the entropy of minimum energy configurations
is nonzero up to n = 100.

The average number of present clusters 〈m+
l 〉 can be

computed in a similar way by introducing another La-
grange multiplier λl which is coupled to m+

l ,

Z(n,L, {λl}) =
∑
I

e−nEI+
∑
l λlm

+
l , (158)

G(n, µ, {λl}) =
∑
L

e−µLZ(n,L, {λl}). (159)

Then, we have

〈m+
l 〉 =

∂ lnG(n, µ, {λl})
∂λl

|{λl=0}, (160)

where

G(n, µ, {λl}) =
1

1− e−µ +
∂

∂µ
ln

(
1− e−µ

1− e−µ (
∑
l

e−µl+n ln(l+1)+λl)

)
. (161)

In this way, we obtain

〈m+
l 〉 = − 1

G(n, µ)

∂

∂µ

(
e−µ(l+1)+n ln(l+1)

1− e−µ −∑l′ e
−µ(l′+1)+n ln(l′+1)

)
.

(162)

Figure 3 shows the distribution of present clusters as a
function of l and n for very large closed chains. The
numerical values are obtained as described above in the
last paragraph. We observe that after n = 8 the system
is dominated by clusters of size l = 2 (dimers).

In Appendix F we show that index configurations of
maximum determinant (the ground states) of this sys-
tem are dimer-covering configurations . . . ↓↑↑↓↑↑↓↑↑ . . . ,
which are consistent with the size of the chain L. In
fact, there are a sub-exponential number of such dimer-
coverings which are relevant at zero temperature (n →
∞). These ground states are organized in clusters of
index configurations which are separated by extensive
Hamming distances (number of different variables) in the
configuration space. The complexity or configurational
entropy of this system at zero temperature Σ is define

by the entropy density of such clusters. More precisely,
depending on the size of chain we have,
s = Σ = ln(3)/L, L ≡ 0 mod 3

s = Σ = ln(L)/L, L ≡ −1 mod 3

s = ln(2L+X)/L,Σ = ln(L+X)/L, L ≡ +1 mod 3,

(163)

where X is a number proportional to L2 (see Appendix F
for more details). Therefore, both the entropy density
and complexity approach zero in limit n,L→∞. In Fig.
4 we compare the above theoretical results with numer-
ical values that are obtained by exhaustive enumeration
for small system sizes. Finally, it should be mentioned
that we do not observe a finite-temperature phase tran-
sition in this problem despite the presence of extensively
distant ground states in the configuration space. This
stems from the one-dimensional character of the system;
that is the domain walls which separate two different
phases (ground states) of the system have a finite en-
ergy cost. Therefore, any finite temperature can destroy
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FIG. 2. Exact solution for a large closed chain. (a) free energy, (b) energy, and (c) entropy vs the parameter n. (d) entropy vs
energy. Analytical solution for very large sizes (theory L� 1) is compared with exact numerical solution for a small problem
size (EN L = 20).
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FIG. 3. Distribution of the present clusters m+
l for a large closed chain. The results for different values of l and n are obtained

by the exact solution as described in the text.

and destabilize the ordered phases by the extensive con-
tribution of the entropy of such low-energy excitations.

B. Mean field results

In this subsection, we utilize the MF theory to ana-
lyze the SPPM problem for the DL matrix when n = 2.
Initially, we investigate the problem within the original
space, and subsequently, we demonstrate a substantial
improvement in results achieved by exploiting the dual
space formalism.
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FIG. 4. The entropy of ground states for Laplacian of a closed chain. The total entropy is s = log(Ns)/L and the complexity
is Σ = log(Nc)/L. Here Ns is the number of ground states and Nc is the number of clusters of the ground states. Two ground
states are connected in the configuration space if their Hamming distance is 1. The exact numerical values are compared with
the exact theoretical solutions.

For the DL matrix ∆2 and ∆3 are identically zero
based on numerical findings, whereas ∆1 exhibits non-
zero behavior. To be more specific, ∆1 conforms to the
equation G2 (Sec. Appendix VII):

∆1 =
det (ADL,1 + ∆1I1)

det (ADL + ∆1I)
. (164)

Here ADL,1 and I1 are ADL and I, respectively, with the
first row and column removed. While this equation can
be solved numerically, an analytical expression is found
using the continuum limit Eq. 106 based on the Fourier
transformation of the Laplace matrix. This Fourier com-
ponent is

ADL(q) = 4 sin2 q

2
. (165)

The self-consistent equation is found to be

∆3
1(∆1 + 4) = 1, (166)

the real solutions of which are ∆1 = 0.601232 and ∆1 =
−4.01545, the second being less stable. It is worth noting
that a method based on matrix calculus, presented in
Appendix. VII leads to the same result. Finally, using
Eq. 98 one finds that for even L values (∆4 = ∆2

1)

Z(2, L) = M (2)(ADL) ∝ e−2fL+β , (167a)

f = log

[
1

2

(
∆1 + 2 +

√
∆1(4 + ∆1)

)]
+

∆2
1

2
, (167b)

β = log ∆2
1. (167c)

Using the above equation we find that f ≈ −0.576
and β ≈ −1.01755. This should be compared with the
analytical result (the previous section) fanalytic ≈ −0.63.

For the dual space MF with mu = −
√√

u− u, using
Eq. D42 one finds the following self-consistent equation
for ∆′2 = ∆′3 = 0:

∆′1 =
u

∆′1 +mu

1− u
1
4√

∆′21 (1 + 4mu −
√
u) + ∆′1(4

√
u− 2muu

1
2 − 8u)− 4muu+ u

3
2

 . (168)

Then using Eq. D38, and especially Eq. D43 we find

lnM
(2)
u,MF(ADL) =

L

π

∫ 2π

0

dq ln

∣∣∣∣ADL(q)(mu + ∆′1) +
mu√
u

∆′1 −
√
u

∣∣∣∣− L [1

2
lnu+ ∆′4

]
+O(1). (169)

The efficiency of the dual MF solution is another issue to be addressed here, for which we use Eq. 131. Fig-
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FIG. 5. The stability of the MF results for discrete Laplacian.
The main panel shows the dual MF result for f with (L =
100) in terms of the Sourlas transformation parameter u. For
comparison, the MF and analytical results are also presented
by the dashed lines. The error of the result for dual MF in the
blue area is less than 1.5%, while the error of the MF result in
the real space is about 8%. The inset shows the same quantity
using the saddle-point approximation fu

SP normalized by fu
MF,

i.e. fu
SP/f

u
MF. The blue area exhibits the region where the

solution is most stable defined by the threshold fu
SP/f

u
MF >

0.99.

ure 5 shows the results for DL for L = 100. f(ADL)
is shown in the main figure, and the stability test result
is presented in the inset. First observe that |f(ADL)|
is greater than that resulted from the MF theory in the
direct and the dual space as predicted in Eq. 141. The
blue area in the inset shows the region where the solution
satisfies fuSP/f

u
MF > 0.99, i.e. the MF solution is highly

stable. In the main part of the figure, the same area
is emphasized. It’s noteworthy that within this region,
where the mean field (MF) solution is stable, there is a
close correspondence between the MF results and the ex-
act numerical outcomes. Specifically, the deviation from
the exact results is just about 1.5 percent, indicating a
good agreement in this particular region.

VIII. SHANNON-RÉNYI ENTROPY OF THE
TRANSVERSE FIELD ISING CHAIN

This section is devoted to the Rényi entropy (n = 2)
of the ground state of TFI chain. We will demonstrate
that the MF solution is capable of detecting the phase
transition point, and estimating quantities of interest like
R2 (Eq. 14). For the relation between the Rényi entropy
and SPPM see Eq. 9. The Hamiltonian of the TFI chain
is given by:

HIsing = −1

2

L∑
j=1

σxj σ
x
j+1 −

h

2

L∑
j=1

σzj , (170)

where σx,y,z are Pauli matrices, h is a magnetic field, and
periodic boundary conditions are imposed, i.e. σxL+1 ≡
σx1 . The Ising model is critical at |h| = 1. More precisely,
the system is in the paramagnetic phase for |h| > 1, while
for |h| < 1 it is in the ferromagnetic phase, and |h| = 1 is
the transition point, where the system becomes critical.
Using the Jordan-Wigner transformation defined as

c†j ≡
∏
m<j

σzmσ
+
j , cj ≡

∏
m<j

σzmσ
−
j , (171)

where σ+
j ≡ 1

2

(
σxj + iσyj

)
, and σ−j ≡ 1

2

(
σxj − iσyj

)
, one

can map the TFI chain problem to a discrete fermionic
Hamiltonian

HF
Ising =

1

2

L∑
j=1

[
c†jcj+1 + c†jc

†
j+1 + h.c.

]
− h

L∑
j=1

c†jcj ,

(172)

which is an especial case of Eq. 2. In this equation cj (c†j)

is annihilation (creation) operator defined in Eq. 2. The
Jordan-Wigner transformation leaves a degree of freedom
(concerning the periodicity of the system), according to
which two sectors can be taken: cL+1 = c1 is the Ramond
(R, periodic) sector, while cL+1 = −c1 is the Neveu-
Schwartz (NS, antiperiodic) sector. For the Ising model
the ground state of the spin chain corresponds always to
the ground state of HF

Ising in the NS sector. Therefore, we
consider the NS sector all over this paper. By diagonal-
izing the Hamiltonian, one can find the energy spectrum
of the system. The single particle energy spectrum of

this system is εq ≡
√

1 + h2 − 2h cos q. The correlation
matrix (defined in Eq. 3) for the Ising model is [24]

Gjk =
1

L

L∑
m=1

σqme
iqm(j−k). (173)

Here σq = f(eiq)
|f(eiq)| with f(z) = h−z and qm = 2π

L (m− 1
2 ).

Using the properties of the circulant matrices, one can
find the elements of F matrix defined in Eq. 5 as

Fjk =
1

L

L∑
m=1

Fqme
iqm(j−k), (174)

where Fq ≡ 1+σq
1−σq . Note that Fq = −i cot

θq
2 , θq ≡

tan−1 sin q
cos q−h , so that Fq = −i tan q+π

4 for h = 1. To

test the scaling properties of Fq, we notice that there are
two singular points for lnFq: q → 0 and q → π, in the
vicinity of which Fq has the following asymptotic expan-
sions

Fq|h6=1,q→0 = −i
(

q

2 |1− h|

)sgn(1−h)

+O
[
q2+sgn(1−h)

]
,

(175a)

Fq|h6=−1,q→π = i

(
2 |1 + h|
q − π

)sgn(1+h)

+O
[
(q − π)2−sgn(1+h)

]
.

(175b)
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In addition, limq→0 Fq(h = 1) = −isgn(q) − iq
2 and

limq→π Fq(h = −1) = isgn(q − π) − i(q−π)
2 . Such

singularities and the corresponding exponents are
important in the integral representations like Eq. 98,
in the vicinity of the transition point (critical region)
where ∆ functions approach zero. This becomes clearer
in the following discussions. It is worth noting that
the transformation h → −h (along with q → q + π)
corresponds to σq → −σq, giving rise to F → F−1. It
corresponds to a dual transformation Eqs. 37 with u = 1
and m = 0 (with an extra minus factor). This shows
that R2 for the Ising model has the symmetry h→ −h.

Although the determination of R2 is a challenge, hav-
ing analytic expressions for specific values of the trans-
verse field is very helpful in characterizing this function.
Analytical and numerical findings provide evidence that,
for all values of h, to the leading order of L we have [40]

R2 = α2(h)L+ β2(h). (176)

An important limit is h = 0, for which the Z2

symmetric ground state is given by |g〉h=0 =
1√
2

[|↑↑ ... ↑〉x + |↓↓ ... ↓〉x] . Then the probability of the

configuration |σ1σ2...σL〉z in the ground state is easily

found to be Ph=0(σ1, σ2, ..., σl) = 1
2L−1

[
1+(−1)σ1σ2...σL

2

]
,

resulting to an exact result α2(0) = β2(0) = ln 2. The
other limit is the critical Ising chain (h = 1) that was
numerically investigated in Ref. [40], where based on
numerical fittings up to size L = 44 it was asserted that
to the leading orders α2(1) = 0.2138 and β2(1) ' 0.

Next, we shift our focus to the mean field analysis and
employ the self-consistent equations 91, substituting A
with F. In the critical region one expects that ∆ func-
tions scale with a0 ≡ |1 − h| (around h = 1 for which
τ = 1) or a0 ≡ 1

|1+h| (around h = −1 for which τ = −1),

with a τ -dependent exponent according to Eq. 104. For
the former case (h → 1−), this relation predicts that
∆4 ∝ (1− h)2. Equation 175b can also be used for esti-
mating the last term of Eq. 98 in the L→∞ limit

lim
L→∞

lnM
(2)
MF =

(∫ π

−π

dq

2π
ln
[
−F 2

q + ∆4

]
−∆4

)
L+ lim

q→0
ln
[
−F 2

q + ∆4

]
+O(L−1). (177)

For h ≥ 1 as we will see ∆4 = 0, which, when combined
with Eq. 9 gives

RMF
2 (∆4 = 0) = −2 ln det

(
I−G

2

)
− 2 ln detF

= −2 ln det

(
I + G

2

)
,

(178)

showing that in the paramagnetic phase R2 is related to
the probability of a single spin configuration, known as
the emptiness formation probability (EFP). Writing the
EFP as

log
[
|〈↑↑ ... ↑ |g〉|2

]
= −ζ(h)L+O(L−1), (179a)

and using Eq. 176 one concludes that for h ≥ 1,

α2(h) ≈ −2ζ(h), β2(h) ≈ 0. (180)

The exact form of ζ(h) is given by [43]

ζ(h) ≡ 1

2π

∫ π

0

dq ln

(
1

2
+
h− cos q

2εq

)
. (181a)

For h = 1, we have

ζ(h = 1) =
2C − π ln 2

π
, (182)

where C is the Catalan number, giving rise to

αMF
2 (h = 1) = −2ζ(h = 1) ≈ 0.22005, (183a)

βMF
2 (h = 1) = 0. (183b)

The single spin configuration plays dominant role also in
large n limit. Suppose that there is a single configuration
(C0) in the expansion 7 such that P (C0) is larger than
the probability of any other configuration. Then

Rn(L) =
n

1− n lnP (C0) +
1

1− n ln

(
1 +

∑
C

′
xnC

)
,

(184)
can be treated perturbatively for large enough n values,
where xC ≡ P (C)/P (C0) < 1, and

∑′
C runs over all

configurations except C0. To the leading order we find

lim
n→∞

Rn(L) = − lnP (C0). (185)

The first correction to this formulae is −x
n
C1

n , where C1

is the next most probable configuration.

We see that for large n values when h ≥ 1 the way
to get closer to the exact result is to consider the con-
tribution of the other most probable configurations. For
Eq. 178 one may add kinks (spin flips). For example a
spin flip at site i corresponds to removing ith row and
column of F. Taking into account the effect of configu-
rations with two spin flips (which serves as a first order
correction to MF due to the parity number symmetry),
up to Lmax = 74 results in

α1st
2 (h = 1, Lmax = 74) ≈ 0.2156, (186)



27

which is just 0.8% away from the best available numerical
results.

Interpreting R2 as a free energy, one can study sin-

gularity of the derivative with respect to h (which can

be viewed as specific heat). One can show that
∂αMF

2

∂h is
logarithmically divergent at h = 1. To see this, we note
that for h 6= 1, and to O(L−1):

1

L
lim
L→∞

∂ lnM
(2)
MF

∂h
= i

∫ π

−π

dq

2π
Fq

(
1− F 2

q

∆4 − F 2
q

)
sin q

ε2q
, (187a)

lim
L→∞

∂ζ(h)

∂h
=

∫ π

0

dq

2π

−h+ cos q + εq
ε2q

= −Θ(h− 1)

2h
+

1

π(1 + h)
K

(
4h

(1 + h)2

)
, (187b)

where K(y) is a complete elliptic integral of the first kind,
and Θ(y) is the step function, i.e. Θ(y) = 1 if y > 0 and
zero otherwise. Using Eq.178 for ∆4 = 0, one finds for
all h ≥ 1, and also the limit h→ 1− for which ∆4 is zero
or negligibly small, we have (h 6= 1):

1

L
lim
L→∞

∂ lnM
(2)
MF

∂h
=

4

π(1 + h)
K

(
4h

(1 + h)2

)
. (188)

When h→ 1±, one finds (+O(1− h))

1

L
lim
L→∞

∂ lnM
(2)
MF

∂h

∣∣∣∣∣
h→1±

= − 2

π
ln

( |h− 1|
8

)
, (189a)

lim
L→∞

∂ζ(h)

∂h

∣∣∣∣
h→1±

= −Θ(h− 1)

2
− 1

2π
ln

( |h− 1|
8

)
.

(189b)

This leads us to conclude that ∂R2

∂h is logarithmically
divergent at h = 1.

The above analysis gives the analytic expressions
for R2 in the vicinity of the transition point. For a
general behavior of R2 we numerically solve the MF
equations and compare them with exact numerical (EN)
results for small sizes. Equations 119 and H2 give exact
expressions for M (2)(F) in terms of Gaussian integrals

of M(2)(F, y) and M(2)
u (F, y). In Appendix J the MF

solutions are processed as the stationary points/lines of

M(2)(F, y) andM(2)
u (F, y). The phase space is generally

very big in terms of ∆
(i)
j (i = 1, 2, 3, j = 1, ..., l). We

can, however, project to the subspace ∆
(i)
j = ∆

(i)
j′

which is physically a significant subspace. Since F is
antisymmetric, one expects that the MF solution of
M(2)(F, y) depends only on ∆4. A detailed analysis of

the landscape of M(2)(F, y) and M(2)
u (F, y) in terms of

the ∆ functions is presented in Appendix J.

To directly find the MF results, we first solve numer-
ically Eq. 91 for the direct space, and Eq. 107 in the
dual space (for which we used the “FindRoot” solver
in Mathematica software), and then use Eq. 93 and

Eq. 109 to find the numerical estimations for M (2)(F) in
the direct and dual space, respectively. We concentrate
on positive h values, and for the dual MF analysis we

choose the negative branch m = −
√√

u− u. The Rényi
entropy in the σz basis (R2) is analyzed in Fig. 6 where
the EN results are compared with the MF estimations.
For the direct MF theory, ∆2 is found to be identically
zero for all h values, while ∆1 and ∆3 depend on h.
Noting that F is an antisymmetric matrix, we expect
that the MF functions are sole functions of ∆4 (see
Sec. VI A). ∆4 is depicted in Fig. 6a. When we start
with small h values, ∆4 monotonically decreases with h
up to a transition point h∗ (in the vicinity of the critical
point hc = 1) where an abrupt change of behavior is
observed. In fact, for h > h∗ all the two point functions
are identically zero, while for h < h∗ they are non-zero.
Our observations indicate that h∗ approaches hc = 1
in the L → ∞ limit. More precisely, we found that
1 − h∗ = ζ1L

−ζ2 , where ζ1 ≈ 1.0352, and ζ2 ≈ 0.577,
which suggests that MF recognizes the exact critical
point. In accordance with the arguments presented
in Section VI B, in the paramagnetic phase (h > h∗),
the system exhibits complete symmetry, resulting in all
correlation functions being zero (∆1 = ∆2 = ∆3 = 0).
However, as the system undergoes a transition to the
ferromagnetic phase (h < h∗), certain symmetries of the
original effective action are spontaneously broken. As a
result, ∆4 acquire non-zero values in the latter phase.
∆2 remains zero in the broken phase due to the presence
of the axial U(1) symmetry.

Figure 6b reveals that R2 monotonically decreases
with h, satisfying Eq. 141 for all h and L values, i.e.
REN

2 ≤ RMF
2 (Note that it is related to the minus of

logarithm of M (2)(F)). It shows a linear behavior in
terms of the system size in accordance with Eq. 177. The
local slope (derivative) of this function with respect to h
shows a peaked structure which is depicted in Fig. 6c. As
the value of L increases, the peak position shifts towards
the right and becomes sharper in accordance with
Eq. 187, approaching the critical point at h = 1. The
numerical values for α2 and β2 are presented in Fig. 6d
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for both the EN and MF methods. For sufficiently
large h values (h >∼ 0.5), the direct MF results show
good agreement with the EN results, while for smaller
h values (h <∼ 0.5), the agreement is not as satisfactory.
As h increases, a smaller number of configurations play
a significant role in the summation Eq. 9 for the Rényi
entropy, and for h > 1 the |↑↑ ... ↑〉z configuration sig-
nificantly dominates. The dominant configurations have
a considerably larger formation probability compared to
the rest, which leads to better performance of the MF
theory due to reduced fluctuations in the configuration
space. In appendix J we argue that the inefficiency
of MF theory in the direct space for small h values
can be attributed to the appearance of extra peaks for
M(2)(F, y). For h < 0 the dual MF with u = 1 and
m = 0 (N = −F−1) gives reliable results due to the
h→ −h symmetry.

For a systematic analysis, we also examined the dual
MF approach by employing the dual MF equations 107
and 109, following the same methodology as the direct
MF method. Appendix J provides a general picture of

F (2)
u

(
F, y ≡ {∆i}3i=1

)
in the dual space. There we il-

lustrate that for the u values where F (2)
u has a single

minimum (stationary point), the MF results are reliable,
although the most robust criterion for the validity of the
MF results is the stability test presented in Sec. VI D. In
Fig. 6d we show α2 and β2 in terms of h for the direct and
the dual MF theories as well as the EN results. For ex-
ample α

(u=0.2)
2 (h = 0) = 0.693145, which should be com-

pared with the exact result α2(h = 0) = ln 2 ≈ 0.693147.
For the dual MF theory we used the “best” u values.
Figure 7 shows the SPPM of the Ising model for h = 0
and L = 30 in terms of u, where the inset shows the
stability according to Eq. 131. Within the shaded blue
region, we have identified a highly stable solution that
satisfies fuSP/f

u
MF > 0.99. It is noteworthy that in this

region, the dual MF results exhibit good agreement with
the exact numerical results, while the direct MF predic-
tions are poor. This finding further supports our main
hypothesis that the MF results are more reliable for more
stable MF solutions. A similar pattern is also observed
for other values of h, as detailed in Appendix J. For high
magnetic fields (h > h∗), where the results of the direct-
space MF method are reliable, the dual MF results are
not consistent with EN results.

IX. CONCLUSIONS

In this study, we demonstrated a novel approach to ap-
proximate the SPPM by writing the sum as a fermionic
integral and employing MF theory. We presented three
distinct versions of the MF theory, each with its unique
advantages. Among these versions, the one based on
the SP approximation appears particularly well-suited for
extending the approximation to higher levels of pertur-

bation theory. This can be achieved by leveraging the
expansion of the exponential function and utilizing Bell
polynomials. Although this process can be done system-
atically, we have deferred the intricate details to future
investigations.

Our primary focus in this work was on the case when
n equals 2. However, it is worth noting that the general-
ization to larger values of n is feasible through the judi-
cious application of bosonization techniques in conjunc-
tion with the SP approximation. Despite the straight-
forward conceptual framework, the actual computational
aspects can be quite cumbersome. It would be an intrigu-
ing endeavor to pursue this generalization in a systematic
and methodical manner.

By transitioning to the dual space, we significantly im-
proved the results obtained through the MF theory. Sur-
prisingly, the MF results in the dual space outperformed
those in the real space, especially in cases where the real
space results were subpar. The concept of dualities, such
as the one proposed by Sourlas, appears to have been
astonishingly overlooked in this context.

Although the reason behind the success of the duality
seems intuitively understandable, as it involves a change
in the range of interactions, the extent to which one can
approach the exact value by utilizing the dual space re-
mains far from obvious. Addressing this question would
mark a noteworthy achievement.

In our study, we tackled two specific examples: the
discrete Laplacian of a chain, which can be considered as
the partition function of rooted spanning trees, and the
Rényi entropy of the ground state of a TFI chain. For
the first example, which allowed us to explore the arbi-
trary SPPM index (n) values, we managed to solve the
problem exactly. It served as a benchmark, illustrating
how closely one can approximate the exact value through
MF calculations in both real and dual spaces.

The second example involved investigating the TFI
chain and its phases by analyzing the second Rényi en-
tropy of the ground state. This approach offers a re-
markably simple, intuitive, and experimentally relevant
means of studying this well-known spin chain. Until now,
all studies related to this quantity had been numerical,
but we were able to provide the first analytical calcula-
tion. Surprisingly, MF theory precisely determined the
critical point, and gave a good estimation of the entropy
even deep within the ferromagnetic phase. The Rényi en-
tropy discussed here is experimentally easier to measure
than entanglement, and as demonstrated in this paper,
it can also be calculated analytically.

It’s important to note that our examples include peri-
odic boundary conditions (PBC), especially when study-
ing the Rényi entropy of the entire system. In such cases,
we can formulate and estimate the MF equations analyt-
ically. However, when PBC is not present, as in the case
of the Rényi entropy of a subsystem of the TFI chain,
one possibly needs to rely more on numerical techniques.
These analyses are of utmost importance because the
Rényi entropy contains the central charge, a critical pa-
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FIG. 6. (a) ∆4 in terms of h in the MF approximation for various values of L. h∗ is defined as the point below which ∆4

becomes non-zero for the first time. (b) MF approximation and EN estimation for R2 in terms of h for various values of system
size L. (c) MF approximation (main) and EN estimation (inset) for ∂R2/∂h in terms of h with a peak structure. (d) The
fitting parameters α2 and β2 according to Eq. 176, in terms of h for MF, EN and dual MF, where Lmax (the maximum point
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“best” u values. For more details see Fig. A8, and the “best” u values are reported in Fig A8c.

rameter for the underlying conformal field theory at the
critical point. Recently, the Rényi entropy has been used
to measure the central charge for the first time in quan-
tum spin chains [30]. The techniques outlined in this
paper offer a way to calculate it analytically.
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Appendix A: Berezin integrals of Grassmann variables

In this section, we fix the notation and summarize main results regarding the Berezin integration of Grassmann
variables, see [44] for further details. Consider an l × l matrix denoted as A. We define sets Ir and Jr as
{i1, i2, ..., ir} and {j1, j2, ..., jr}, and the complements of Ir and Jr as Icr and Jcr , respectively. AIrJr is a submatrix
of A corresponding to the rows Ir and the columns Jr, all kept in their original order, and

ε(Ir, Jr) ≡ (−1)
∑
i∈Ir i+

∑
j∈Jr j . We also represent∫ r∏

α=1

(
dξiαdξ̄jα

)
(...) ≡

∫
ξ,ξ̄

(...) , (A1)

to facilitate the representation, where ξi and ξ̄i are some Grassmann variables. If A is invertable, then∫
ξ,ξ̄

exp
(
ξ̄TAξ + λ̄T ξ + ξ̄λ

)
= detA exp

[
−λ̄TA−1λ

]
, (A2)

where “T” stands for the “transpose”, and λ = {λi}li=1 and λ̄ =
{
λ̄i
}l
i=1

are Grassmann vectors. We also have the
following identity for 2r-point Grassmann functions∫

ξ,ξ̄

(
r∏

α=1

ξ̄iαξjα

)
exp

(
ξ̄TAξ

)
= ε(Ir, Jr)

(
detAIcrJ

c
r

)
, (A3)

and if A is invertable then ∫
ξ,ξ̄

(
r∏

α=1

ξ̄iαξjα

)
exp

(
ξ̄TAξ

)
= detAdet

[(
A−T

)
IrJr

]
(A4)

By employing this expression, it is possible to demonstrate the following identity

det
[
A−T

]
IcrJ

c
r

= ε(Ir, Jr)
det [A]IrJr

detA
, (A5)

where A−T ≡
(
A−1

)T
.
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Additionally, there exist links between Grassmann integrals and Pfaffians in the context of antisymmetric matrices.
In the following, we explore a few connections for any arbitrary antisymmetric matrix A [44]∫

ξ

exp

[
1

2
ξTAξ

]
=

∫
ξ

exp

[
−1

2
ξTAξ

]
= Pf [A] (A6a)∫

ξ

(ξi1ξi2 ...ξir ) exp

[
1

2
ξTAξ

]
= (Pf [A]) Pf

[(
A−T

)
IrIr

]
, (A6b)

where Pf [A] is the Pfaffian of an antisymmetric matrix A.

Appendix B: Generalized Partition Function and the Sourlas Transformation

This section provides further elaboration on the Sourlas transformation, which is a duality established in [39]. We
define χ, χ̄, φ and φ̄ as two-component Grassmann variables with the components χ1 and χ2 and φ1 and φ2

respectively, just like the ones defined in Sec. IV B. The generalized partition function Z(n,λ)

J̄,J
is defined as a

generalization of Eq. 31

Z(n,λ)

J̄,J
(A) ≡

∫
χχ̄

expS(n,λ)
A

{
J̄ , J, χ̄, χ

}
, (B1)

where J ≡
{{

J
(r)
j

}l
j=1

}n
r=1

and J̄ ≡
{{

J̄
(r)
j

}l
j=1

}n
r=1

are external Grassmann sources, and S(n,λ)
A {χ̄, χ} is a

generalization of Eq. 28

S(n,λ)
A

{
J̄ , J, χ̄, χ

}
≡ χ̄Aχ+

λ

n!

l∑
j=1

(
n∑
r=1

χ̄
(r)
j χ

(r)
j

)n
+
∑
j

[
χ̄jJj + J̄jχj

]
, (B2)

where χ̄jJj ≡
∑n
r=1 χ̄

(r)
j J

(r)
j , and a similar expression for the other quantities. Note that

M (n)(A) = Z(n,λ=1)

J̄,J=0
(A). (B3)

By utilizing a basic Grassmann identity, the Sourlas transformation establishes an identity for Eq. B1 when n = 2.
To accomplish this, we use the following identity, which holds for any two-component Grassmann variable
χ = (χ(1), χ(2))T and χ̄ = (χ̄(1), χ̄(2)), and complex numbers m and u:∫

φ,φ̄

exp
[u

2

(
φ̄φ
)2

+mφ̄φ+ φ̄χ+ χ̄φ
]

=
(
u+m2

)
exp

[
− m

u+m2
χ̄χ+

u

2(u+m2)2
(χ̄χ)

2

]
. (B4)

This identity can be proved by expanding both sides and using the identities of Grassmann integrals. Then by
inverting Eq. B4, one proves the following identity

exp

[
λ

2
(χ̄χ)

2

]
=
(
u+m2

)−1
exp

[
m

u+m2
χ̄χ

] ∫
φ,φ̄

exp
[u

2

(
φ̄φ
)2

+mφ̄φ+ φ̄χ+ χ̄φ
]
, (B5)

where the relation between m and u and λ is

λ =
u

(u+m2)2
. (B6)

This relation is graphically shown in Fig. A1 for λ = 1 with two branches in different colors (u±(λ)). Using this
identity for all φis, one ends up with the following equation [39]

Z(n=2,λ)

J̄,J
(A) =

∏
j

(
uj +m2

j

)−1
∫
χ,χ̄,φ,φ̄

exp

χ̄A′χ+
∑
j

[uj
2

(
φ̄jφj

)2
+ χ̄jJj + J̄jχj +mj φ̄jφj + φ̄jχj + χ̄jφj

]
(B7)
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FIG. A1. u in terms of m for λ = 1. The upper (lower) branch is for u± = 1
2
−m2 ±

√
1
4
−m2, showing that u can be chosen

arbitrarily small.

where the relationship between each uj and mj is now determined individually via the Eq. B6, i.e. λ ≡ uj
(uj+m2

j )
2 ,

and A′ij ≡ Aij + δij
mj

uj+m2
j
. Now, doing the following Grassmann integral over χ and χ̄:

∫
χ,χ̄

exp

χ̄A′χ+
∑
j

[
χ̄j (Jj + φj) +

(
J̄j + φ̄j

)
χj
] = det [A′] exp

[
−
(
J̄i + φ̄i

) [
(A′)−1

]
ij

(Jj + φj)
]
, (B8)

results in the following duality of the partition functions

Z(2,λ)

J̄,J
(A) = cle

−J̄(A′)
−1
JZ

(2,u)

J̄,J
(N) (B9)

where the dual partition function is defined as

Z
(2,u)

J̄,J
(N) ≡

∫
φφ̄

expL(u)
N

{
J̄ , J, φ̄, φ

}
, (B10)

and the dual effective action is

L(u)
N

{
J̄ , J, φ̄, φ

}
≡ φ̄Nφ+

∑
j

[uj
2

(
φ̄jφj

)2]−∑
ij

[
φ̄i
[
(A′)−1

]
ij
Jj − J̄i

[
(A′)−1

]
ij
φj

]
. (B11)

In these relations we defined

N ≡M−
[
(A′)−1

]
, cl =

l∏
j=1

[(
uj +m2

j

)−1
]

detA′, (B12)

where M ≡
(
M 0

0 M

)
, and Mij ≡ miδij . This implies that N ≡

(
N 0

0 N

)
, where N ≡M + A′

−1
. For the case

J̄ = J = 0, we simplify the notation by introducing

L(u)
N

{
φ̄, φ

}
≡ L(u)

N

{
J̄ = 0, J = 0, φ̄, φ

}
, Z(n)

u (A) ≡ Z
(n,u)

J̄,J=0
(N), Z(n)

λ (A) ≡ Z(n,λ)

J̄,J=0
(N). (B13)

For the case of interest, i.e. λ = 1 and J = J̄ = 0, we have (see Eqs. B3 and B9)

M (2)(A) = clM
(2)
u (N) where M (2)

u (N) ≡
∫
φ,φ̄

expL(u)
N

{
φ̄, φ

}
. (B14)

It is instructive to expand this relation in terms of u. For the rest of this section we consider the case uj is
independent of j, i.e. uj ≡ u for all j ∈ {1, 2, ..., l}. Expanding the interaction term in Eq. B14 we find

M (2)(A) =cl

(detN)
2

+ u
∑
j

(detNj)
2

+ u2
∑
j1>j2

(detNj1j2)
2

+ ...+ 1

 = cl
∑
I

unI (detNI)
2
, (B15)
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where nI ≡ |I| is the number of elements of the set I. The two-point functions (see Eq. 47) are then expressed in
terms of the determinants of N as follows:〈

φ̄
(1)
j φ

(1)
j

〉
u

=

∑
I u

nI (detNI,j) (detNI)∑
I u

nI (detNI)
2 , (B16)

where NI and NI,j are defined in accordance with Eq. 47.

Appendix C: The Partition Function of the Hubbard Model

In this section we map the partition function of the Hubbard model to the SPPM problem. To this end, we divide
the trace in Eq. 18 into N imaginary time slices and then incorporate Berezin-Grassmann integration in each time
slice, resulting in the following expression (see Ref. [38] for the details)

ZHub(L) =

∫
ψψ̄

exp
[
SHub

(
ψ̄, ψ

)]
, (C1)

where the Hubbard discrete action is defined as (ε ≡ β
N , and N is the number of imaginary time slices)

SHub
(
ψ̄, ψ

)
=

N∑
k=2

[
L∑
i=1

∑
σ

ψ̄ik,σ(−ψik,σ + ψik−1,σ + µεψik−1,σ) + εH(ψ̄ik,σ, ψik−1,σ)

]

+

L∑
i=1

∑
σ

[
−ψ̄i1,σ(ψi1,σ + ψiN,σ + µεψiN,σ) + εH(ψ̄i1,σ,−ψiN,σ)

]
,

(C2)

and the Hubbard discrete Hamiltonian for each time slice is defined as

H(ψ̄ik,σ, ψik−1,σ) ≡ t
∑
〈i,j〉,σ

(
ψ̄ik,σψjk−1,σ + ψ̄jk,σψik−1,σ

)
− U

2

L∑
i=1

(∑
σ

ψ̄ik,σψik−1,σ

)2

. (C3)

In these equations i ∈ [1, 2, ..., L] runs over lattice sites, k runs over the discrete imaginary time, and σ = ±1 shows

the spin. One can simplify the notation by defining ~ψσ ≡
{
{ψik,σ}Li=1

}N
k=1

the size of which is l ≡ LN , and also

Ψ ≡
(
~ψ↑
~ψ↓

)
(and the same for Ψ̄), so that ZHub(L) = limN→∞ ZHub

N (L), and

ZHub
N (L) =

∫
ΨΨ̄

exp

Ψ̄STBΨ− Uε

2

N∑
k=2

L∑
i=1

(∑
σ

ψ̄ik,σψik−1,σ

)2

− Uε

2

L∑
i=1

(∑
σ

ψ̄i1,σψiN,σ

)2
 , (C4)

where STB ≡
(
STB 0

0 STB

)
. In this relation “TB” stands for “tight binding” limit and

(
STB

)
jk,j′k′

≡
{

−δjj′δkk′ + δkk′+1 [(1 + µε)δjj′ + tε(δjj′+1 + δjj′−1)] , k ≥ 2 , k′ < N,

−δjj′δk1δk′1 + δk1δk′N [−(1 + µε)δjj′ − tε(δjj′+1 + δjj′−1)] , otherwise.
(C5)

Defining (B)jj′ ≡ (1 + µε)δjj′ + tε (δj,j′+1 + δj+1,j′), which is a circulant matrix, one finds

STB =



−I 0 0 0 ... −B
B −I 0 0 ... 0

0 B −I 0 ... 0

. .

. .

. 0

0 0 0 ... B −I


N×N

, B =



1 + µε tε 0 0 ... tε

tε 1 + µε tε 0 ... 0

0 tε 1 + µε tε ... 0

. .

. .

. tε

tε 0 0 ... tε 1 + µε


L×L

. (C6)
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To make a connection to the SPPM problem, we define a transformation φ̄ik,σ = ψ̄ik,σ, and φik,σ = ψik−1,σ, where
m = 1, 2 is spin degrees of freedom, and k = 2, ..., N accounts for time slices, and i = 1, ..., L is the space index. For
a consistent notation we define φ̄i1,σ = ψ̄i1,σ and φi1,σ = ψiN,σ which results in∑

kk′ii′

ψ̄ik,σ

(
STB

)
ik,i′k′

ψi′k′,σ =
∑
kk′ii′

φ̄ik,σ (AHub)ik,i′k′ φi′k′,σ, (C7)

where

AHub =



−B −I 0 0 ... 0

0 B −I 0 ... 0

0 0 B −I ... 0

. .

. .

. −I
−I 0 0 ... 0 B


N×N

. (C8)

Then it is easily verified that

ZHub
N (L) =

∫
ΦΦ̄

exp

Φ̄AHubΦ− Uε

2

N∑
k=1

L∑
i=1

(∑
σ

φ̄ik,σφik,σ

)2
 , (C9)

where ~φσ ≡
{
{φik,σ}Li=1

}N
k=1

the size of which is l ≡ LN , and also Φ ≡
(
~φ↑
~φ↓

)
(and the same for Φ̄), and

AHub ≡
(
AHub 0

0 AHub

)
. Before mapping this problem to SPPM, we test it for the case L = 1, for which B is 1× 1

with the element b = 1 + µε. In this case one may use the standard identities for the minors of A matrix, namely

lim
N→∞

detAHub = − lim
N→∞

(1 + bN ) = 1 + eβµ, det (AHub)kc1
= (2δk1;1 − 1)bN−1,

det (AHub)kc1,kc2
= (2δk1,k2;1 − 1)bN−2 k2 6= k1, det (AHub)kc1,kc2,kc3

= (2δk1,k2,k3;1 − 1)bN−3, k3 6= k2 6= k1,

...,

(C10)

where the subscripts kci shows that the rows and columns ki are removed. These determinants are involved in the
series expansion of Eq. C9 in terms of the U . Each expansion term generates a minor of the Ahub with some rows

and columns removed. Noting that there are

(
N

n

)
(binomial coefficient) possible ways for removing n rows and

columns from a N ×N matrix (to calculate the principal minors), one can do the summation, which eventually gives

ZHub(L = 1) = lim
N→∞

ZHub
N (L = 1) = lim

N→∞

∑
In

(−εU)n(det(AHub)In)2

= (1 + eβµ)2 + lim
N→∞

N∑
n=1

(
N

n

)
b2(N−n)(−εU)n = 1 + 2eβµ + e2βµe−βU ,

(C11)

as expected from a direct calculation. For a generic value of L, the Eq. C9 can be easily mapped to a SPPM
problem using the duality transformation reviewed in Sec. IV B and B. The result is

ZHub
N (L) =

(
1 +m2

)−l
det

[
AHub +

m

m2 + 1
I
] ∫

ΨΨ̄

exp

Ψ̄NHubΨ +
1

2

∑
ik

(∑
σ

ψ̄ikψik

)2
 , (C12)

where m2 = −1± 1√
−Uε , and

NHub ≡ mI− (AHub +
m

1 +m2
I)−1 =

mI−
(
AHub + m

m2+1I
)−1

0

0 mI−
(
AHub + m

m2+1I
)−1

 . (C13)
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Using the Berezin-Grassmann integral representation described in Sec. IV (see also Appendix A) one can easily
verify that

ZHub
N (L) =

(
1 +m2

)−l
det

(
AHub +

m

m2 + 1
I

)2

M (2)

(
mI−

(
AHub +

m

m2 + 1
I

)−1
)
. (C14)

An equivalent expression is obtained using the Hubbard-Stratonovic transformation. Using Eq. 32, one can write the
partition function as

ZHub
N =

1

2l(m2 + 1)l

∑
S

(
det
[
A

(S)
Hub

])2

, (C15)

where
∑
S ≡

∑{{
s
(k)
i

}K
i=1

}L
k=1

is the sum over auxiliary spins, and

A
(S)
Hub ≡ (mIl + S)

(
AHub +

m

m2 + 1
Il

)
− Il. (C16)

In the above equation S ≡ diag {s1, s2, ..., sN} is a block diagonal matrix, and si ≡ diag
{
s

(1)
i , ..., s

(L)
i

}
, and Il is an

identity matrix of dimension l. One can easily show that

A
(S)
Hub =



f−(B, s1) − (mIL + s1) 0 0 ... 0 0

0 f+(B, s2) − (mIL + s2) 0 ... 0 0

.

.

.

0 0 0 0 ... f+(B, sN−1) − (mIL + sN−1)

− (mIL + sN ) 0 0 0 ... 0 f+(B, sN )


(C17)

where f±(B, si) ≡ (mIL + si)
(
±B + m

m2+1IL

)
− IL. It is useful to write detA

(S)
Hub as follows

detA
(S)
Hub =

N∏
i=1

L∏
j=1

(
m+ s

(j)
i

)
× det

{[(
B +

m

m2 + 1
IL

)
− (mIL + sN )−1

] [(
B +

m

m2 + 1
IL

)
− (mIL + sN−1)−1

]

...

[(
−B +

m

m2 + 1
IL

)
− (mIL + s1)−1

]
− IL

}
.

(C18)

It is instructive to obtain the partition function in two limits: the single site Hubbard model L = 1, and the atomic
limit t = 0 and the atomic limit t = 0.
For the single site Hubbard model, B is a one by one matrix with the element B ≡ 1 + µε = 1 + µβ

N . One can readily
find the determinant of AHub(S) as follows

det (AHub(S)) = −
N∏
i=1

(m+ si) +

N∏
i=1

[
(m+ si)(fiB +

m

m2 + 1
)− 1

]
(C19)

where fi = 1− 2δi,1, which gives

[det (AHub(S))]
2

=

N∏
i=1

[(m+ si)]
2
+

N∏
i=1

([
(m+ si)(fiB +

m

m2 + 1
)− 1

])2

−2

N∏
i=1

[
(m+ si)

2

(
fiB +

m

m2 + 1

)
− (m+ si)

]
.

(C20)
Summing over auxiliary spins, and keeping the terms proportional to the even powers of spins, we find∑

S

[det (AHub(S))]
2

=2N
[(
m2 + 1

)]N
+ 2N

[
(mx1 − 1)2 + x2

1

] [
(mx− 1)2 + x2

]N−1

− 2N+1
[
(m2 + 1)x1 −m

] [
(m2 + 1)x−m

]N−1
,

(C21)
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where x1 ≡ −B + m
m2+1 , and x ≡ B + m

m2+1 . Noting that

(mx− 1)2 + x2

m2 + 1
= 1 +

1

(m2 + 1)2
+

2βµ

N
+O

(
1/N2

)
, x− m

m2 + 1
= 1 +

βµ

N
, (C22)

and (m2 + 1)2 = −(βU/N)−1, and using Eq. C15 one finally finds (SS stands for single site)

ZHub
SS = 1 + 2eβµ + e2βµe−βU , (C23)

which is the known result.
For t = 0, the matrix B is diagonal B = (1 + µβ/N)IL so that Eq.C18 gives us

detA
(S)
Hub(t = 0) =

L∏
j=1

{
N∏
i=1

[(
m+ s

(j)
i

)(
fiB +

m

m2 + 1

)
− 1

]
−

N∏
i=1

(
m+ s

(j)
i

)}
. (C24)

The expression inside the parenthesis is the same as Eq. C19, giving rise to

ZHub(t = 0) =
(
ZHub

SS

)L
(C25)

Appendix D: Details of the Mean Field Theory

The objective of this section is to provide a detailed explanation of our mean field theory starting from the effective
action Eq. 89.

1. MF theory; the Main Scheme

The effective action Eq. 89 is not block-diagonal and also contains the terms like χ(1)χ(2) and χ̄(1)χ̄(2). Using the
following Bogoliobov transformationχ

(1)
j = 1√

2

[
ψ

(1)
j + ψ̄

(2)
j

]
, χ̄

(1)
j = 1√

2

[
ψ̄

(1)
j + ψ

(2)
j

]
χ

(2)
j = 1√

2

[
ψ

(1)
j − ψ̄

(2)
j

]
, χ̄

(2)
j = 1√

2

[
ψ̄

(1)
j − ψ

(2)
j

] , (D1)

one easily finds

SMF

{
ψ̄, ψ

}
= ψ̄SMF(A)ψ, SMF(A) =

(
A + (∆1 −∆2) I ∆3I

−∆3I −AT − (∆1 + ∆2) I

)
, (D2)

where ψT ≡
(
ψ(1), ψ(2)

)
and ψ̄ ≡

(
ψ̄(1), ψ̄(2)

)
. Substituting this equation into Eq. 85, one finds

M (2)(A) = e−l∆4 det SMF(A). (D3)

The self-consistent two-point functions are then expressed in terms of two-point functions of ψ and ψ̄ as follows

∆1 =
1

2

〈[
ψ̄(1) + ψ(2)

] [
ψ(1) + ψ̄(2)

]〉
, (D4a)

∆2 =
1

2

〈[
ψ̄(1) + ψ(2)

] [
ψ(1) − ψ̄(2)

]〉
, (D4b)

∆3 =
1

2

〈[
ψ̄(1) + ψ(2)

] [
ψ̄(1) − ψ(2)

]〉
, (D4c)

in which the following equations hold due to the explicit symmetries of SMF(A):〈
ψ̄

(r)
j ψ̄

(r′)
j

〉
= 0 ,

〈
ψ

(r)
j ψ

(r′)
j

〉
= 0, r, r′ = 1, 2. (D5)
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The other two-point functions are calculated using SMF(A) as follows:〈
ψ̄

(1)
j ψ

(1)
j

〉
= el∆

MF
4

(
M (2)(A)

)−1
∫
ψ̄,ψ

ψ̄
(1)
j ψ

(1)
j eψ̄SMF(A)ψ

=
detSMF(1j)c,(1j)c

detSMF
=
[
S−TMF

]
(1j,1j)

,

(D6)

where we defined SMF(rj)(r′j) as the matrix SMF(A) in which the rows and columns j are removed from the block
r, r′. The other functions are similarly found to be〈

ψ̄
(2)
j ψ

(2)
j

〉
=

det SMF(2j)c(2j)c

det SMF
=
[
S−TMF

]
(2j,2j)

, (D7a)〈
ψ̄

(1)
j ψ

(2)
j

〉
= (−1)l

det SMF(1j)c(2j)c

detSMF
= (−1)l

[
S−TMF

]
(1j,2j)

, (D7b)〈
ψ̄

(2)
j ψ

(1)
j

〉
= (−1)l

det SMF(2j)c(1j)c

detSMF
= (−1)l

[
S−TMF

]
(2j,1j)

, (D7c)

where O−T is defined as
(
O−1

)T
. The self-consistent two-point functions of interest (∆ functions) are expressed as

the liner combination of these functions:

∆1 =
1

2

[〈
ψ̄

(1)
j ψ

(1)
j

〉
−
〈
ψ̄

(2)
j ψ

(2)
j

〉]
, ∆2 =

1

2

[〈
ψ̄

(1)
j ψ

(1)
j

〉
+
〈
ψ̄

(2)
j ψ

(2)
j

〉]
, ∆3 = −

〈
ψ̄

(1)
j ψ

(2)
j

〉
. (D8a)

The inverse of SMF can be readily obtained using their circulant nature (note that A and AT commute). Using
Schur complement method and LDU decomposition one obtains

SMF(A) =

(
I − ∆3

AT+(∆1+∆2)I

0 I

)(
A + (∆1 −∆2)I− ∆2

3

AT+(∆1+∆2)I
0

0 −AT − (∆1 + ∆2)I

)(
I 0

∆3

AT+(∆1+∆2)I
I

)
.

(D9)

Using this equation, and defining As,a ≡ 1
2

(
A±AT

)
, one finds by inspection that

detSMF(A) = det (−x− 2∆2Aa) , (D10)

where

x ≡ (A + ∆1I)
(
AT + ∆1I

)
−
(
∆2

2 + ∆2
3

)
I

= AAT + 2∆1As + ∆4I.
(D11)

Furthermore, one is able to calculate the inverse as

S−1
MF(A) =


AT+(∆1+∆2)I

x+2∆2Aa

∆3I
x+2∆2Aa

− ∆3I
x+2∆2Aa

−A+(∆1−∆2)I
x+2∆2Aa

 . (D12)

We adopted this notation (utilizing matrices in the denominators) because all the matrices within this equation
mutually commute, allowing us to express M

N as N−1M = MN−1 for any matrices M and N that commute. We
derive the following matrix expressions for two-point functions:〈

ψ̄
(1)
j ψ

(1)
j

〉
=

[
AT + (∆1 + ∆2) I

x + 2∆2Aa

]T
j,j

=

[
AT + (∆1 + ∆2) I

x + 2∆2Aa

]
j,j

,

〈
ψ̄

(2)
j ψ

(2)
j

〉
= −

[
A + (∆1 −∆2) I

x + 2∆2Aa

]T
j,j

= −
[
A + (∆1 −∆2) I

x + 2∆2Aa

]
j,j

,

〈
ψ̄

(2)
j ψ

(1)
j

〉
= −

〈
ψ̄

(1)
j ψ

(2)
j

〉
= (−1)l

[
∆3I

x + 2∆2Aa

]T
j,j

= (−1)l
[

∆3I

x + 2∆2Aa

]
j,j

.

(D13)

The final result is the following set of self-consistent MF equations:

∆1 =

[
As + ∆1I

x + 2∆2Aa

]
j,j

, ∆2 =

[−Aa + ∆2I

x + 2∆2Aa

]
j,j

, ∆3 =

[
∆3I

x + 2∆2Aa

]
j,j

. (D14)
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2. Pfaffian Formalism

In this part we re-formulate the MF equations in terms of Pfaffian. To this end, we define a 4-Grassmann variable

ζ ≡
[
χ̄

χ

]
≡


χ̄(1)

χ̄(2)

χ(1)

χ(2)

 . (D15)

Having defined this 4-Grassmann, we use the following property for any given O matrix

1

2

[
χ̄T , χT

] [ 0 O
−OT 0

][
χ̄

χ

]
= −1

2
χTOT χ̄+

1

2
χ̄TOχ

=
1

2

∑
ij

χ̄iOijχj +
1

2

∑
ij

χ̄iOijχj = χ̄Oχ,
(D16)

Using this, one casts the Eq. 81 to

SMF {χ̄, χ} ≡ χ̄Oχ−
1

2
χI3χ−

1

2
χ̄Ī3χ̄ ≡ −

1

2
ζTSPf

MFζ (D17)

where

SPf
MF =

[
Ī3 −O
OT I3

]
(D18)

which is antisymmetric and I3 and O have been defined in Eq. 82. Using the Pfaffian identities for ζ’s, we obtain

M
(2)
MF = e−

∑l
j=1 ∆4(j)Pf

[
SPf

MF

]
. (D19)

One additionally obtains the MF self-consistency equations as follows:

∆
(1̄1)
j ≡

〈
χ̄

(1)
j χ

(1)
j

〉
=
〈
ζ

(1)
j ζ

(3)
j

〉
=

∫
ζ
ζ

(1)
j ζ

(3)
j exp

[
1
2ζ
TSPf

MFζ
]∫

ζ
exp

[
1
2ζ
TSPf

MFζ
] = Pf

[(
SPf

MF

)−T
1j,1j

(
SPf

MF

)−T
1j,3j(

SPf
MF

)−T
3j,1j

(
SPf

MF

)−T
3j,3j

]
(D20a)

∆
(1̄2)
j ≡

〈
χ̄

(1)
j χ

(2)
j

〉
=
〈
ζ

(1)
j ζ

(4)
j

〉
=

∫
ζ
ζ

(1)
j ζ

(4)
j exp

[
1
2ζ
TSPf

MFζ
]∫

ζ
exp

[
1
2ζ
TSPf

MFζ
] = Pf

[(
SPf

MF

)−T
1j,1j

(
SPf

MF

)−T
1j,4j(

SPf
MF

)−T
4j,1j

(
SPf

MF

)−T
4j,4j

]
(D20b)

∆
(1̄2̄)
j ≡

〈
χ̄

(1)
j χ̄

(2)
j

〉
=
〈
ζ

(1)
j ζ

(2)
j

〉
=

∫
ζ
ζ

(1)
j ζ

(2)
j exp

[
1
2ζ
TSPf

MFζ
]∫

ζ
exp

[
1
2ζ
TSPf

MFζ
] = Pf

[(
SPf

MF

)−T
1j,1j

(
SPf

MF

)−T
1j,2j(

SPf
MF

)−T
2j,1j

(
SPf

MF

)−T
2j,2j

]
. (D20c)

In this formula, we used Mur,vr (for a block matrix M, and u, v ∈ {1, 2, 3, 4}) to show (r, r) component of the
(u, v)th sub-matrix, i.e. (Mu,v)l×l. For the Pfaffian, according to the Eq. D20, we should calculate the inverse of

SPf
MF. In this section we consider the case ∆ functions are independent of r, and we restrict ourselves to the case

where there are only three independent functions: ∆1, ∆2 and ∆3. When A is circulant, all of its functions are also
circulant and commutative, allowing us to determine its inverse as follows

(
SPf

MF

)−1
=


−∆2∆3

Aa

y ∆3
x
y

xO1+∆2
2Aa

y ∆2
x+O1Aa

y

−∆3
x
y ∆2∆3

Aa

y ∆2
x+O1Aa

y
xO1+∆2

2Aa

y

−xOT
1 −∆2

2Aa

y −∆2
x−OT

1 Aa

y ∆2∆3
Aa

y ∆3
x
y

−∆2
x−OT

1 Aa

y −xOT
1 −∆2

2Aa

y −∆3
x
y −∆2∆3

Aa

y

 ≡
[

C D

−DT C′

]
(D21)

where Aa ≡ 1
2

[
F− FT

]
, O1 ≡ A + ∆1I, x ≡ OT

1 O1 −
(
∆2

2 + ∆2
3

)
I, and y ≡ x2 − 4∆2

2A
2
a. We also defined

C =

[
C11 C12

−C12 −C11

]
, C′ =

[
−C11 C12

−C12 C11

]
, D =

[
D11 D12

D12 D11

]
(D22)
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in which

C11 = −∆2∆3
2Aa

y
, C12 = ∆3

x

y
, D11 =

xO1 + 2∆2
2Aa

y
, D12 = ∆2

x + 2O1Aa

y
(D23)

Now we consider the consistency equations. According to Eq. D20, for determining ∆1 we should consider the block
corresponding to I = {1j, 3j}, so that

∆1 = Pf[
(
SPf

MF

)−T
II

] = Pf[−
(
SPf

MF

)−1

II
]

= Pf

− [C11]j,j − [D11]j,j[
DT

11

]
j,j

[C11]j,j

 = Pf

 0 − [D11]j,j[
DT

11

]
j,j

0

 = [D11]j,j .
(D24)

In the other hand we have

[D11]j,j =

[
xO1 + 2∆2

2Aa

y

]
j,j

=

[
xO1

y

]
j,j

=
1

2

[
xO1

y
+

(
xO1

y

)T]
j,j

. (D25)

One may be interested in writing this equation in a symmetric form, as follows

xO1

y
=

1

2

[
O1

x− 2Aa∆2
+

O1

x + 2Aa∆2

]
,(

xO1

y

)T
=

1

2

[
OT

1

x + 2Aa∆2
+

OT
1

x− 2Aa∆2

]
,

(D26)

so that

∆1 =
1

4

[
O1 + OT

1

x− 2Aa∆2

]
j,j

+
1

4

[
O1 + OT

1

x + 2Aa∆2

]
j,j

=
1

2

[
O1 + OT

1

x + 2Aa∆2

]
j,j

, (D27)

which coincides with Eq. D14. Now let us consider ∆2, for which we have to consider the block corresponding to
I = {1r, 4r}, so that

∆2 = Pf[
(
SPf

MF

)−T
II

] = Pf[−
(
SPf

MF

)−1

II
] = Pf

− [C11]j,j − [D12]j,j[
DT

12

]
j,j

[C11]j,j

 = Pf

 0 − [D12]j,j[
DT

12

]
j,j

0

 = [D12]j,j . (D28)

Therefore we have

∆2 = [D12]j,j = ∆2

[
x + 2O1Aa

y

]
j,j

. (D29)

For ∆3 we consider I = {1r, 2r}, so that

∆3 = Pf[
(
SPf

MF

)−T
II

] = Pf[−
(
SPf

MF

)−1

II
] = Pf

− [C11]j,j − [C12]j,j[
CT

12

]
j,j

[C11]j,j

 = Pf

 0 − [C12]j,j[
CT

12

]
j,j

0

 = [C12]j,j . (D30)

One then obtains

∆3 = [C12]r,r = ∆3

[
x

y

]
j,j

. (D31)

One can show by inspection that this equation coincides with Eq. D14.
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3. Mean field in dual space

The MF theory of the Sourlas action L(u)
N

{
φ̄, φ

}
is just like the previous section written in terms of N given in

Eq. 40. Then with a simple re-definition ∆′i ≡ u∆φ
i , i = 1, 2, 3 (∆φ

i are defined like the ones in Eq. 77, but for the φ
variables in the dual space), and ∆′4 ≡ 1

u

[
∆′21 −∆′22 −∆′23

]
, one can obtain the same MF equations as the Eq. 85

and the self-consistent two-point functions Eq. 91. Based on these definitions, and the MF scenario we obtain

M (2)
u (A) ≈ clA′

∫
φ̄φ

exp

φ̄Nφ+
∑
j

[
∆′1

(
φ̄

(1)
j φ

(1)
j + φ̄

(2)
j φ

(2)
j

)
−∆′2

(
φ̄

(1)
j φ

(2)
j − φ̄

(2)
j φ

(1)
j

)
−∆′3

(
φ

(1)
j φ

(2)
j − φ̄

(1)
j φ̄

(2)
j

)] ,

(D32)
where A′ ≡ exp [−l∆′4]. If we consider a uniform transformation, i.e. mi = m and ui = u for all i values, then we
adopt a same method as the MF in the direct space for the functions with “prime”. Then, defining

Na,s ≡ 1
2

[
N±NT

]
, the self-consistent equations are proven to be

∆′1 = u

[
Ns + ∆′1I

x(N) + 2∆′2Na

]
j,j

, ∆′2 = u

[ −Na + ∆′2I

x(N) + 2∆′2Na

]
j,j

, ∆′3 = u

[
∆′3I

x(N) + 2∆′2Na

]
j,j

, (D33)

where

x(N) ≡ (N + ∆′1I)
(
NT + ∆′1I

)
−
(
∆′22 + ∆′23

)
I

= NNT + 2∆′1Ns + u∆′4.
(D34)

These equations bear resemblance to the Eqs. 91, featuring an additional multiplication factor u, and substituting
the matrix A with N. The general expression for the SPPM in the MF approximation is then given by

M
(2)
u,MF(A) = cle

−l∆′4 det SuMF(N), (D35)

where

SuMF(N) ≡
(
N + (∆′1 −∆′2) I ∆′3I

−∆′3I −NT − (∆′1 + ∆′2) I

)
. (D36)

One can simplify the formulae using the Schur’s complement method (Sec. D9), according to which

detSuMF(N) = det
[
−x(N) − 2∆′2Na

]
, (D37)

which is similar to Eqs. D10 and 95. It’s worth mentioning that when matrix A is circulant, the same property
holds for N. This implies that for even l:

lnM
(2)
u,MF(A) = ln det SuMF + ln cl − l∆′4 =

l∑
k=1

ln
[
x(N)(qk) + 2∆′2Na(qk)

]
− l ln

(
u+m2

)
+

l∑
k=1

ln(A′qkA
′
−qk)− l∆′4

=

l∑
k=1

ln
[
A′qkA

′
−qkx

(N)(qk) + 2∆′2A
′
qk
A′−qkNa(qk)

]
− l
[
ln
(
u+m2

)
+ ∆′4

]
=

l∑
k=1

ln
[(
A′qk(m+ ∆′1)− 1

) (
A′−qk(m+ ∆′1)− 1

)
−A′qkA′−qk(∆′22 + ∆′23 ) + 2∆′2A

′
qk
A′−qkNa(qk)

]
− l
[
ln
(
u+m2

)
+ ∆′4

]
→ l

2π

∫ 2π

0

dq ln
[(
A′q(m+ ∆′1)− 1

) (
A′−q(m+ ∆′1)− 1

)
−A′qA′−q(∆′22 + ∆′23 ) + 2∆′2A

′
qA
′
−qNa(q)

]
− l
[
ln
(
u+m2

)
+ ∆′4

]
+O(1).

(D38)

where A′q ≡ Aq + m
u+m2 , N(q) ≡ m− 1

A′q
is the Fourier component of N, Ns,a ≡ 1

2 (N(q)±N(−q)), and x(N) is given

in Eq. 111. As an example consider the case ∆′2 ≡ 0 and ∆′3 6= 0, then as a result of the first and the third relations
in Eq. D33 we have [

Ns

x(N)

]
j,j

= 0 ,

[(
x(N)

)−1
]
j,j

=
1

u
. (D39)
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↑ ↓

FIG. A2. A configuration of clusters formed by the subset of present indices in I for an open and closed chain. The present
and absent indices are shown by ↑ and ↓, respectively.

or equivalently in the Fourier space:∫ π

−π

dq

2π

Ns(q)

NqN−q + 2∆′1Ns(q) + ∆′21 −∆′23
= 0,

∫ π

−π

dq

2π

1

NqN−q + 2∆′1Ns(q) + ∆′21 −∆′23
=

1

u
. (D40)

For antisymmetric N only the second identity of the above equation holds∫ π

−π

dq

2π

1

−N2
q + u∆′4

=
1

u
. (D41)

For the symmetric N, according the discussions presented in Sec. VI (and TABLE II) one expects that if ∆3 is zero,
then the only equation to be satisfied is

∆′1 =

∫ π

−π

dq

2π

1

Nq + ∆′1
. (D42)

Using Eq. D38 we also finds for the symmetric N (l→∞)

lnM
(2)
u,MF(A) =

l

π

∫ 2π

0

dq ln
∣∣(A′q(m+ ∆′1)− 1

)∣∣− l [ln (u+m2
)

+ ∆′4
]

+O(1). (D43)

Appendix E: Free energy of minors of a closed chain: Finite temperature

In the following, we present the details of computing the free energy of principal minors for the Laplacian of a closed
chain of size L. Recall that the partition function is:

Z(n,L) =
∑
I

e−nEI , (E1)

with the energy function EI = − ln detADL(I).
More precisely, EI = 0 when index configuration I includes all indices, otherwise,

EI = −
L−1∑
l=1

m+
l ln(l + 1) = E({m+

l }), (E2)

where m+
l denotes the number of clusters of size l. Similarly, we define m−l for the number of clusters of size l

formed by the absent (down) indices (see Fig.A2). Thus, we have,

L =
∑
l

lm+
l +

∑
l

lm−l . (E3)
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Let us also define the total number of up and down clusters,

m+ =
∑
l

m+
l , m− =

∑
l

m−l . (E4)

In a closed chain m+ = m− > 0, except for the single configuration with all indices in I. Thus the partition function
can be rewritten as

Z(n,L) = 1 +

∞∑
m=1

∑
{m+

l ,m
−
l }

δm±,mδ∑
l l(m

+
l +m−l ),LNclosed({m+

l }, {m−l })e−nE({m+
l }), (E5)

where Nclosed({m+
l }, {m−l }) gives the number of index configurations I with the specified number of up and down

clusters.
We first start with an open chain to compute the above entropy function, see Fig. A2. For an open chain either
m+ = m− ± 1 or m+ = m−. In the former case, the chain must start with an up cluster if m+ = m− + 1 or with a
down cluster if m+ = m− − 1. In the latter case, we have the option to start with an up cluster or a down cluster.
In each case the number of index configurations is given by the number of cluster permutations m+!m−! divided by
the symmetry factor

∏
l(m

+
l !)
∏
l(m
−
l !). Therefore, we have,

Nopen({m+
l }, {m−l }) =

m+!m−!∏
l(m

+
l !)
∏
l(m
−
l !)

(δm+=m−±1 + 2δm+=m−). (E6)

When the chain is closed m+ = m− ≥ 1, excluding the all up configuration. Consider an imaginary boundary
separating indices 1 and L. If we fix the state (type, size, and position) of the cluster at this boundary then the
problem reduces to the open chain problem with m+ = m− ± 1. Therefore,

Nclosed({m+
l }, {m−l }) =

∑
l′

l′(
m+
l′

m+
+
m−l′

m−
)

m+!m−!∏
l(m

+
l !)
∏
l(m
−
l !)

. (E7)

But m+ = m− and
∑
l lm

+
l +

∑
l lm

−
l = L, thus we get

Nclosed({m+
l }, {m−l }) =

2L

m+ +m−
m+!m−!∏

l(m
+
l !)
∏
l(m
−
l !)

. (E8)

To compute the partition function Z(n,L), we define the following generating function

G(n, µ) =
∑
L

e−µLZ(n,L), (E9)

with µ as a chemical potential. Using Eq. E5 for Z(n,L), the generating function reads as follows:

G(n, µ) =
1

1− e−µ −
∂

∂µ

∞∑
m=1

∑
{m+

l ,m
−
l }

δm,
∑
lm
±
l

e−µ
∑
l(lm

+
l +lm−l )

m

m!m!∏
l(m

+
l !)
∏
l(m
−
l !)

en
∑
lm

+
l ln(l+1). (E10)

Note that here we replace Le−µL with − ∂
∂µe
−µL and then we set L =

∑
l(lm

+
l + lm−l ). In the thermodynamic limit

we can utilize the following relation∑
m+,m−

∑
{m+

l ,m
−
l }

δm+,
∑
lm

+
l
δm−,

∑
lm
−
l
O({m±l }) =

∑
{m+

l ,m
−
l }

O({m±l }), (E11)

where in the right hand side there is no constraint on the m±l . Now, we can do the sum over the m±l to get

G(n, µ) =
1

1− e−µ −
∂

∂µ

∞∑
m=1

1

m
(
∑
l

e−µl)m(
∑
l

e−µl+n ln(l+1))m. (E12)

Finally, the sum over m is connected to Taylor expansion of logarithm function, that is,

G(n, µ) =
1

1− e−µ +
∂

∂µ
ln

(
1− e−µ

1− e−µ (
∑
l

e−µl+n ln(l+1))

)
. (E13)
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(a) (b)

(c1) (c2) (c3)

FIG. A3. The possible ground states (maximal minors) of Laplacian for a closed chain. The number of ground states depends
on the length of the chain. The filled circles are the present elements.

Appendix F: Entropy of minors of a closed chain: Zero temperature

In this section, we study the number and structure of the relevant minors of the Laplacian of a closed chain at zero
temperature. These are the maximal principal minors, that is index configurations of maximum determinants. Recall
that an index configuration is represented by a set of clusters of present indices in that configuration (Fig. A2). The
determinant of a principal minor is indeed the product of determinants of these clusters of indices. Thus the energy
associated to an index configuration is sum of the energy contributions of such clusters. A cluster of size l has energy

El = − log(l + 1). (F1)

If there are m+
l clusters of size l then the total energy is

E = −
∑
l

m+
l log(l + 1). (F2)

At zero temperature the above energy is minimized by the ground states of the system. Consider index
configurations that are a sequence of L/(l + 1) clusters of size l separated by single absent indices, e.g.,
... ↑↑↑↓↑↑↑↓↑↑↑↓ .. when l = 3. Therefore, the energy density for such configurations is

e(l) = − log(l + 1)/(l + 1). (F3)

We see that the above function is minimized for l = 2, that is for dimer configurations. Depending on the size of
chain we can have different numbers of dimer coverings which minimize the energy (Fig. A3). The three cases that
happen are listed below:

• Case L ≡ 0 mod 3:

Here the chain is covered by a number of dimers; starting from a ground state the others can be obtained from
a translation by one lattice constant. So, there are 3 dimer coverings which differ in 2L/3 sites. Each dimer
covering is separated by an extensive Hamming distance from the other two coverings. Thus the complexity
Σ = ln(3)/L and the entropy density s = Σ approach zero in the thermodynamic limit.

• Case L ≡ −1 mod 3:

Here the chain is covered by a number of dimers and a cluster of size l = 1; starting from a ground state the
others are obtained for different positions of the isolated site. So, there are L dimer coverings with extensive
Hamming distances. Again, each dimer configuration is isolated with Hamming distances larger than 1 from
the other coverings. Thus Σ = ln(L)/L and s = Σ.

• Case L ≡ +1 mod 3:

First, there are L clusters each including two configurations with Hamming distance one. In one of these
configurations we have a single cluster of size l = 3, which is replaced by two clusters of size l = 1 in the other
configuration. Note that a cluster of size l = 3 has exactly the same energy as two clusters of size l = 1. i.e.
− ln(3 + 1) = −2 ln(1 + 1). The other dimer coverings are isolated configurations. They are obtained by
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(a)

(b)

(c)

FIG. A4. Instability of the ground states of a closed chain at finite temperatures. The free energy barrier to go from the
ground state (a) to (b) is small and any finite temperature can destroy such an order. Panels (a) and (b) show a section of two
different ground states which are related by a translation. An excited state is obtained in panel (c) by replacing part of state
(a) with the same part from state (b). The excitation energy comes from the highlighted domain walls and is independent of
the size of the region.

separating the two clusters of size l = 1 and placing each of them between two adjacent dimers. More

precisely, the number of these configurations is X =
∑L/10
i=1 [LI(5i < L/2) + L

2 I(5i = L/2)]. The indicator
function I(C) is one if the condition C is satisfied, otherwise it is zero. Therefore, here we have
Σ = ln(L+X)/L and s = ln(2L+X)/L.

In all cases the entropy density and complexity approach zero in the thermodynamic limit. Moreover, despite the
presence of extensively distant ground states, we do not observe a finite-temperature phase transition in this
problem. As Fig. A4 schematically displays, this is because the domain walls which separate two different phases of
the system have a finite energy cost. Thus, the extensive contribution of their entropy can easily destroy the ordered
phases at any finite temperature.

Appendix G: MF results for discrete Laplace matrix

In this section, we provide a detailed exposition of the mean field theory applied to the discrete Laplace scenario. In
general, when computing any two-point function associated with a circulant matrix A of size L× L within the mean
field approximation (refer to Eqs. D2 and D7 for the specific case where ∆2 = ∆3 = 0), one must evaluate the
following determinants:

detSMF = det (A + ∆1I) det
(
−AT −∆1I

)
(G1a)

det SMF(1j)(1j) = det (A1 + ∆1I1) det
(
−AT −∆1I

)
(G1b)

det SMF(1j)(2j) = det (A + ∆1I) det
(
−AT

1 −∆1I1

)
(G1c)

where A1 and I1 are A and I respectively with first row and column removed. These relations tell us that

2∆1 = ∆ψ
11 −∆ψ

22 =
detSMF(1r)(1r)

detSMF
− det SMF(2r)(2r)

detSMF
=

det (A1 + ∆1I1)

det (A + ∆1I)
−

det
(
−AT

1 −∆1I1

)
det
(
−AT −∆1I

) = 2
det (A1 + ∆1I1)

det (A + ∆1I)
.

(G2)

Hence, the mean field theory applied to the discrete Laplace problem necessitates calculating the determinants of
both ADL + ∆1I and ADL,1 + ∆1I1, as demonstrated in Equation 164. These matrices are

ADL + ∆1I =



2 + ∆1 −1 0 ... 0 −1

−1 2 + ∆1 −1 ... 0 0

0 −1 2 + ∆1 ... 0 0

. . ... 0 0

. . ... 2 −1

−1 0 0 ... −1 2 + ∆1


L×L

(G3)
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which, after removing the first row and column becomes

ADL,1 + ∆1I1 =



2 + ∆1 −1 0 ... 0 0

−1 2 + ∆1 −1 ... 0 0

0 −1 2 + ∆1 ... 0 0

. . ... 0 0

. . ... 2 + ∆1 −1

0 0 0 ... −1 2 + ∆1


(L−1)×(L−1)

. (G4)

Before calculating these determinants, let us start with calculating the determinant of ADL and ADL,1 as a guidance
of the other determinants. It is easily obtained using the properties of circulant matrices (see the previous section),

giving rise to detADL = 4L
∏L
k=1 sin2 πk

L . The determinant of ADL,1 is simply calculated using a recursion relation.

Denoting detADL,1 by D
(L)
0 , one easily shows by inspection that

D
(L)
0 = 2D

(L−1)
0 −D(L−2)

0 (G5)

where D
(L−1)
0 (D

(L−2)
0 ) is the determinant of the ADL,1 with first (first and second) row(s) and column(s) removed.

Note that D
(1)
0 = 2 and D

(2)
0 = 3. One can easily solve this recursion relation by trying

D
(L)
0 = aL−12L−1 + aL−22L−2 + ...+ 2a1 + a0 where ai’s should be determined, given that a0 = 2 and a1 = 1

2 . One

shows that the solution corresponds to the relation aL = 1
2aL−1, giving rise to D

(L)
0 = L+ 1.

Back to the problem of interest, i.e. the determinants in Eq. G2, and considering the case A = ADL one easily finds
that

det (ADL + ∆1I) =

L∏
k=1

(
4 sin2 πk

L
+ ∆1

)
. (G6)

Using the Euler-Maclaurin formula we find the following relation in the thermodynamic limit

lim
L→∞

ln

L∏
k=1

(
4 sin2 πk

L
+ ∆1

)
= lim
L→∞

L∑
k=1

ln

(
4 sin2 πk

L
+ ∆1

)
→
∫ L

0

dk ln

(
4 sin2 πk

L
+ ∆1

)
+O(1)

=
L

π

∫ π

0

dx ln
(
4 sin2 x+ ∆1

)
+O(1) = L ln

∆1 + 2 +
√

∆1(∆1 + 4)

2
+O(1).

(G7)

For D(L) ≡ det (ADL,1 + ∆1I1), similar to the Eq. G5 we have

D(L) = ζD(L−1) −D(L−2) (G8)

where ζ ≡ 2 + ∆1. To find a closed form for G8, we note that:

D(1) = ζ, D(2) = ζ2 − 1, D(3) = ζ3 − 2ζ,

D(4) = ζ4 − 3ζ2 + 1, D(5) = ζ5 − 4ζ3 + 3ζ

D(6) = ζ6 − 5ζ4 + 6ζ2 − 1, D(7) = ζ7 − 6ζ5 + 10ζ3 − 4ζ

D(8) = ζ8 − 7ζ6 + 15ζ4 − 10ζ2 + 1

D(9) = ζ9 − 8ζ7 + 21ζ5 − 20ζ3 + 5ζ, ...,

(G9)

and in general

D(L) = ζL −
(
L− 1

L− 2

)
ζL−2 +

(
L− 2

L− 4

)
ζL−4

−
(
L− 3

L− 6

)
ζL−6 +

(
L− 4

L− 8

)
ζL−8 + ...

=

int[L2 ]∑
m=0

(−1)m

(
L−m
L− 2m

)
ζL−2m

= ζL2F1

[
−L− 1

2
,−L

2
,−L, 4

ζ2

]
.

(G10)
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Note also that we can find the leading term in the thermodynamic limit (L→∞) using the Eq. G8:

D(L)

D(L−1)
= (2 + ∆1)− 1

D(L−1)

D(L−2)

(G11)

In the thermodynamic limit we have x ≡ D(L)

D(L−1) ' D(L−1)

D(L−2) , so that

x = 2 + ∆1 −
1

x
→ x =

ζ

2
+

1

2

√
ζ2 − 4. (G12)

Now, by utilizing this thermodynamic solution, it becomes straightforward to examine the following trial form as the
leading term in the thermodynamic limit (note that the size of ADL,1 is (L− 1)× (L− 1))

D(L) = α(ζ)× xL−1, (G13)

α(ζ) being a proportionality function independent of L. Therefore, we have

D
(L→∞)
leading term = α(ζ)

(
ζ

2
+

1

2

√
ζ2 − 4

)L−1

, (G14)

Comparing this with Eq. G10 we find that limL→∞ α(ζ) = 1, and also

α(ζ) = lim
L→∞

(
2

ζ +
√
ζ2 − 4

)L−1

× ζL2F1

[
−L− 1

2
,−L

2
,−L, 4

ζ2

]
' 1 + c0

e−γ1ζ

(ζ − 2)γ2

(G15)

where the second line is obtained by fitting the function in the interval ]2, 3], and c0 ' 4
5 , γ1 ' 1

2 , and γ2 ' 0.6. All
in all we have

D
(L→∞)
leading term '

(
1 + c0

e−γ1ζ

(ζ − 2)γ2

)(
ζ +

√
ζ2 − 4

2

)L−1

. (G16)

Therefore for large enough L values, Eq. 164 gives us

ζ − 2 =α(ζ)

(
ζ +

√
ζ2 − 4

2

)L−1 [ L∏
k=1

(
4 sin2 πk

L
+ ζ − 2

)]−1

, (G17)

which, transforms to the following form using the Eq. G7

ζ − 2 = α(ζ)

(
ζ+
√
ζ2−4

2

)L−1

(
ζ+
√
ζ2−4

2

)L , so that α(ζ) =
1

2
(ζ − 2)

(
ζ +

√
ζ2 − 4

)
. (G18)

Appendix H: Stability of the MF Solution in the dual space

In the dual space, the MF equations are similar to the ordinary one, except we need to interchange ∆ functions by
∆′ = u∆, and A by N given in Eq. 40. Here we adopt the notation of section VI D, i.e. we define

∆
(1)
j

′
≡ ∆

(1̄1)
j

′
= ∆

(2̄2)
j

′
and ∆

(3)
j

′
≡ ∆

(1̄2̄)
j

′
= ∆

(12)
j

′
, y′j ≡

(
y

(1)
j

′
, y

(3)
j

′)
, where y

(1)
j

′
≡ ∆

(1)
j

′
and y

(3)
j

′
≡ i∆(3)

j

′
.
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B = Bu ≡ 2
u I2l, where u is the Sourlas transformation parameter. We set ∆

(2)
j

′
to zero like section VI D. Then we

use the identity

1

2
JTφ B−1

u Jφ = u
∑
j

φ̄
(1)
j φ

(1)
j φ̄

(2)
j φ

(2)
j , (H1)

as an alternative expression for the four-interaction part of the effective action in the dual space. In this equation

(φ̄
(r)
j , φ

(r)
j ) is a Grassmann couple, and Jφ ≡ (Jφ1 , ..., J

φ
l ), Jφj ≡ (J

(1)
j , J

(2)
j , J

(3)
j ) given in Eq. 113 but this time for φ̄

and φ, so that
〈
J

(k)
j

〉
= 2y

(k)
j

′
. Using the identity Eq. 116 we find

M (2)(A) = cl

∫
φφ̄

exp
[
φ̄Nφ+ uφ̄(1)

r φ(1)
r φ̄(2)

r φ(2)
r

]
= [detBu]

1
2

∫
D {y} e−F(2)

u (A,y′), (H2)

where

F (2)
u (A, y′) ≡ − ln

[
M(2)

u (A, y′)
]
≡ − ln

[
cl

∫
φ̄φ

eLu(φ̄,φ,y′,Jφ)

]
, (H3)

and

Lu(φ̄, φ, y′, Jφ) ≡ φ̄Nφ− 1

2
y′
TBuy′ + y′

T
Jφ, (H4)

is a variant of L defined in Eq. 114. We derive the dual MF equations by minimizing F (2)
u (A, y′) with respect to all

y′i’s as follows:

∂
y
(k)
j

′F (2)
u (A, y′)

∣∣∣∣
y′=ȳ′

= 0, (H5)

or equivalently

∂
y
(k)
j

′ ln
[
e

1
2y
′TBuy′M(2)

u (A, y′)
]

=
∑
k′

Bu,kk′ ȳ′(k
′)

j . (H6)

Analogous to the direct space, we define F
(2)
MF,u(A) ≡ F (2)

u (A, ȳ′). Expanding F (2)
u (A, y) around ȳ′ to the second

order, and doing the Gaussian integral we find that

M
(2)
SP (A) ≈ e−F

(2)
MF,u(A)

√
det Cu

, (H7)

where Cu ≡ B−1
u βu, and β

(j)
u,kk′ ≡ ∂y′(k)j

∂
y′

(k′)
j

F (2)
u (A, y′)|y′=ȳ′ . Now, representing the elements of Cu by cru,ij , one finds

c
(j)
u,kk′ = δkk′ − h(j)

u,kk′ , (H8)

where

h
(j)
u,kk′ =

u

2

[〈
J

(k)
j J

(k′)
j

〉
u
−
〈
J

(k)
j

〉
u

〈
J

(k′)
j

〉
u

]
(H9)

is the correlation function of the currents in the dual space. In this equation 〈〉u shows an expectation value with
respect to the dual effective action Lu. Repeating the same calculations as Sec. VI D, we find that

−h(j)
u,11 = h

(j)
u,22 =

1

u

[(
∆

(1)
j

′)2

+
(

∆
(3)
j

′)2
]
, hru,12 = hru,21 =

2i

u
∆

(1)
j

′
∆

(3)
j

′
. (H10a)

Here ∆
(1)
j

′
= u

〈
φ̄

(1)
j φ

(1)
j

〉
and ∆

(3)
j

′
= u

〈
φ

(1)
j φ

(2)
j

〉
are the MF solutions of Eq. H6. For the case the ∆

(k)
j

′
is

independent of j, i.e. ∆
(k)
j

′
≡ ∆′k k = 1, 3, we find that

M
(2)
SP (A) ≈ e−F

(2)
MF,u(A)

(1− 1
u2 (∆′1

2 −∆′3
2)2)

l
2

. (H11)

This equation can be written in terms of free energy density fuSP ≡ FuSP/l as follows:

fuSP/f
u
MF = 1 +

1

2fuMF

ln

[
1− 1

u2
(∆′1

2 −∆′3
2
)2

]
. (H12)
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Appendix I: Jensen’s inequality for Berezin Integrals

A convex function (φ(x)) is defined as a function that satisfies the following identity

φ(tx1 + (1− t)x0) ≤ tφ(x1) + (1− t)φ(x0) (I1)

where 0 ≤ t ≤ 1 is the interpolation (real) parameter between x0 and x1. The above relation guarantees the
following consequences

φ(x1) ≥ φ(x0) +
dφ

dt

∣∣∣∣
t=0

, φ(x0) ≥ φ(x1)− dφ

dt

∣∣∣∣
t=1

. (I2)

One can also show that for a convex function

φ

(∫
g(x)f(x)dx

)
≤
∫
φ (g(x)) f(x)dx, (I3)

where f(x) ≥ 0 is a weight function. An important example is φ(X) = expX, resulting to〈
eg(x)

〉
≥ e〈g(X)〉, (I4)

where 〈...〉 ≡
∫
...f(x)dx. This identity is valid in any dimension for the real integrals. For our case where we deal

with the Berezin integrals we use the following construction: We define

M0 ≡M (2)
MF(A) =

∫
χ̄χ

eS0{χ̄,χ}, M1 ≡M (2)(A) =

∫
χ̄χ

eS
(2)
A {χ̄,χ}, (I5)

where S0 {χ̄, χ} ≡ SMF {χ̄, χ} −
∑
r ∆4(r). We also define an interpolation between these two actions as follows

St {χ̄, χ} ≡ tS(2)
A {χ̄, χ}+ (1− t)S0 {χ̄, χ} , (I6)

and correspondingly

Mt ≡
∫
χ̄,χ

eSt{χ̄,χ}, 〈...〉t ≡
∫
χ̄,χ

...eSt{χ̄,χ}

Mt
(I7)

Then one checks

d logMt

dt
=
〈
S(2)
A {χ̄, χ} − S0 {χ̄, χ}

〉
t
,

d2 logMt

dt2
=

〈(
S(2)
A {χ̄, χ} − S0 {χ̄, χ}

)2
〉
t

−
〈
S(2)
A {χ̄, χ} − S0 {χ̄, χ}

〉2

t
≥ 0,

(I8)

which tells us that logMt is a convex function. Then Eq. I2 gives

logM1 ≥ logM0 +
d logMt

dt

∣∣∣∣
t=0

, M1 ≥M0e

〈
S(2)
A {χ̄,χ}−S0{χ̄,χ}

〉
0 . (I9)

This, when combined with Eq. 140 leads to Eq. 141.

Appendix J: Analysis of M and F for the TFI chain

In this section, we examine F and M as defined in Eq.119 both in the direct space and in the dual space (Eq. H3).
By conducting this analysis, insights can be gained into the reliability of the mean-field (MF) solutions with respect
to external parameters and the u parameter in the dual space. Our focus is on the Ising model, which exhibits a
complex structure. Throughout this section, we assume ∆2 = 0, and ∆1 and ∆3 are real. In this case the ∆ space is
pretty large, i.e. 2l-dimensional, see Eq. 119 where ∆ functions have space indices. To make the space smaller, we
consider the subspace corresponding to ∆r

i = ∆r′

i for all r, r′ ∈ [1, l] and i = 1, 3. This subspace corresponds to the
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FIG. A5. The SP integrand in the direct space M(2)
MF given in Eq. 119 for the Ising model L = 10, in terms of ∆1 and ∆3 for

various h values. The stationary points for a continuous line which is locus of stationary points with zero slope. It forms two
hyperbolas according to the relation ∆2

1 −∆2
3 = ∆4, where ∆4 is the solution of mean field consistency relations.

restriction implied by the periodicity of the system, making ∆ functions independent of space. This gives a
two-dimensional landscape which is considered in the following.

Figure A5 illustrates M(2)
u (∆1,∆3) as a function of h. Since F is an antisymmetric matrix for the Ising model, one

anticipates that the mean-field (MF) solutions are solely dependent on ∆4 as defined in Eq. 88 (refer to the

reasoning leading to Eq. 102). For instance, in the case of h = 0, two hyperbolas emerge where ∆1 = ±
√

∆4 −∆2
3

and M(2)
u reaches its maximum. As h increases, these hyperbolas converge due to the decreasing nature of ∆4 (the

gap between them), ultimately disappearing at h = 1 in the thermodynamic limit, as observed in the h = 1 case in
Fig. 102.

To decipher the solution structure, let’s examine ∆3 = 0, where two peaks for M(2)
u emerge, representing the

primary contribution of the integrand 118: ∆peak
1 = ±∆4. These peaks merge as h→ 1. In the other hand, as shown

in Fig. 6d, the MF results become highly consistent with the exact numerical results as h→ 1. This leads us to the

conclusion that when M(2)
u exhibits a single peak, the MF results become more reliable.

To evaluate the universality of this finding, we undertake a parallel analysis in the dual space. In Fig.A6, we present

F (2)
u for the Ising model with L = 10, h = 0, and various values of u. Notably, there are distinct paths where M

becomes zero, leading to the divergence of F (2)
u and the emergence of a complex energy landscape with multiple

minima, representing mean-field (MF) solutions. To elucidate the solution structure, we plot F (2)
u (∆′1,∆

′
3 = 0) in

terms of ∆1 beneath each graph. For ∆′3 = 0, the configuration of minima undergoes changes with varying u. As u
increases, a second peak emerges, gaining strength with continued increases in u. Around 0.5 <∼ u, the second peak
becomes substantial, coinciding with a decrease in the validity of the MF results (refer to Fig.7, where it is evident
that the MF results in the dual space are valid and stable for u <∼ 0.5). Once again, when the second peak becomes
comparable to the first, the reliability of the MF solutions diminishes. This is the reason why the direct MF results
are better for higher h values.
The structure of the MF solutions for a fixed ∆′3 is depicted in Fig.A7, revealing a multitude of solutions for

∆′3 = 0.4. Here, the minimum of F (2)
u coincides with the MF solutions as per Eq.107, specifically, ∆′1 = f1(∆′1,∆

′
3),

where f1(∆′1,∆
′
3) corresponds to the right-hand side of the first relation in this equation.

In addition to the criteria outlined above, the most robust criterion we have identified for assessing the reliability of
MF results is the stability analysis, which was outlined and employed in Sections VII B and VIII. In the subsequent
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FIG. A6. F (2)
u in the dual space given in Eq. H3 for the Ising model with h = 0, L = 10, and m = −

√√
u− u in terms of ∆1

and ∆3 for various rates of u: (a) u = 0.1, (b) u = 0.2, (c) u = 0.35, (d) u = 0.5, (e) u = 0.75, and (f) u = 0.99. We see that
for 0.5 <∼ u a second peak appears which makes the MF approximation questionable.

discussion, we provide results pertaining to the stability of MF results for the Ising model in the dual space. The
Fig. A8 shows the slope (Fig. A8a) and the width (Fig. A8b) of R2 for h = 0. This figure displays both the direct
and dual MF results, along with the EN results. The corresponding stability tests are also presented in Fig. A8d for
various magnetic fields. A good consistency is observed between the “best u intervals” (based on the fitness to the
EN results) and the most “stable” solutions (identified by a shaded area in blue using the criterion fuSP/f

u
MF > 0.99).

Fig. A8c shows the best u values that we used in Fig. 6 in terms of h.
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FIG. A7. F (2)
u (∆1,∆3) (Eq. H3) for the Ising model with h = 0, u = 0.7, L = 30, and m = −

√√
u− u in terms of ∆′1 for (a)

∆′3 = 0 and (b) ∆′3 = 0.4. In each figure y′ = ∆′1 and y = f1(∆′1,∆
′
3) (defined as the right-hand-side of the first relation of

Eq. 107) have also been shown, the crossing point of which is the MF solutions. We see that the crossing points are actually the

extremum (stationary) points of the free energy F (2)
u . For (a), ∆′1 = 0.373 is an unstable solution in the sense that it represents

a local maximum for F (2)
u , which is unstable towards the two other solutions.
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FIG. A8. MF approximation of (a) α2 and (b) β2 for the Ising model for h = 0 in terms of u (compared with the exact result).
The blue area in (a) shows the region with fSP/fMF > 0.99. (c) The best u value that was used in Fig. 6d. Note that for h > 1
the best choice is the direct MF, which does not correspond to any u. (d) shows fSP/fMF for various h values representing the
stability of the MF solution.


